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Abstract

The importance of building semantic parsers
which can be applied to new domains and
generate programs unseen at training has long
been acknowledged, and datasets testing out-
of-domain performance are becoming increas-
ingly available. However, little or no atten-
tion has been devoted to learning algorithms
or objectives which promote domain general-
ization, with virtually all existing approaches
relying on standard supervised learning. In
this work, we use a meta-learning framework
which targets zero-shot domain generalization
for semantic parsing. We apply a model-
agnostic training algorithm that simulates zero-
shot parsing by constructing virtual train and
test sets from disjoint domains. The learning
objective capitalizes on the intuition that gra-
dient steps that improve source-domain perfor-
mance should also improve target-domain per-
formance, thus encouraging a parser to gen-
eralize to unseen target domains. Experimen-
tal results on the (English) Spider and Chinese
Spider datasets show that the meta-learning ob-
jective significantly boosts the performance of
a baseline parser.

1 Introduction

Semantic parsing is the task of mapping natural
language (NL) utterances to executable programs.
While there has been much progress in this area,
earlier work has primarily focused on evaluating
parsers in-domain (e.g., tables or databases) and
often with the same programs as those provided
in training (Finegan-Dollak et al., 2018). A much
more challenging goal is achieving domain gener-
alization, i.e., building parsers which can be suc-
cessfully applied to new domains and are able
to produce complex unseen programs. Achiev-
ing this generalization goal would, in principle,
let users query arbitrary (semi-)structured data on
the Web and reduce the annotation effort required
to build multi-domain NL interfaces (e.g., Apple

database: farm

Please show the different statuses of cities and the average
population of cities with each status.

SELECT Status ,  avg(Population) FROM City GROUP BY Status

database: concert singer

Show all countries and the number of singers in each country.

SELECT Country ,  count(*) FROM Singer GROUP BY Country

Test

Train

Figure 1: Zero-shot semantic parsing: at training time,
a parser observes instances for the database concert
singer. At test time, it needs to generate SQL for ques-
tions pertaining to the unseen database farm.

Siri or Amazon Alexa). Current parsers strug-
gle in this setting; for example, we show in Sec-
tion 5 that a modern parser trained on the chal-
lenging Spider dataset (Yu et al., 2018b) has a gap
of more than 25% in accuracy between in- and
out-of-domain performance. While the importance
of domain generalization has been previously ac-
knowledged (Cai and Yates, 2013; Chang et al.,
2020), and datasets targetting zero-shot (or out-of-
domain) performance are becoming increasingly
available (Pasupat and Liang, 2015; Wang et al.,
2015; Zhong et al., 2017; Yu et al., 2018b), little or
no attention has been devoted to studying learning
algorithms or objectives which promote domain
generalization.

Conventional supervised learning simply as-
sumes that source- and target-domain data orig-
inate from the same distribution, and as a result
struggles to capture this notion of domain gener-
alization for zero-shot semantic parsing. Previous
approaches (Guo et al., 2019b; Wang et al., 2020;
Herzig and Berant, 2018) facilitate domain gener-
alization by incorporating inductive biases in the
model, e.g., designing linking features or functions
which should be invariant under domain shifts. In
this work, we take a different direction and improve
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the domain generalization of a semantic parser by
modifying the learning algorithm and the objec-
tive. We draw inspiration from meta-learning (Finn
et al., 2017; Li et al., 2018a) and use an objec-
tive that optimizes for domain generalization. That
is, we consider a set of tasks, where each task is a
zero-shot semantic parsing task with its own source
and target domains. By optimizing towards better
target-domain performance on each task, we en-
courage a parser to extrapolate from source-domain
data and achieve better domain generalization.

Specifically, we focus on text-to-SQL parsing
where we aim at translating NL questions to
SQL queries and conduct evaluations on unseen
databases. Consider the example in Figure 1, a
parser needs to process questions to a new database
at test time. To simulate this scenario during train-
ing, we synthesize a set of virtual zero-shot parsing
tasks by sampling disjoint source and target do-
mains1 for each task from the training domains.
The objective we require is that gradient steps com-
puted towards better source-domain performance
would also be beneficial to target-domain perfor-
mance. One can think of the objective as consisting
of both the loss on the source domain (as in stan-
dard supervised learning) and a regularizer, equal
to the dot product between gradients computed
on source- and target-domain data. Maximizing
this regularizer favours finding model parameters
that work not only on the source domain but also
generalize to target-domain data. The objective is
borrowed from Li et al. (2018a) who adapt a Model-
Agnostic Meta-Learning (MAML; Finn et al. 2017)
technique for domain generalization in computer
vision. In this work, we study the effectiveness of
this objective in the context of semantic parsing.
This objective is model-agnostic, simple to incorpo-
rate and does not require any changes in the parsing
model itself. Moreover, it does not introduce new
parameters for meta-learning.

Our contributions can be summarized as follows.

• We handle zero-shot semantic parsing by ap-
plying a meta-learning objective that directly
optimizes for domain generalization.

• We propose an approximation of the meta-
learning objective that is more efficient and
allows more scalable training.

• We perform experiments on two text-to-SQL
benchmarks: Spider and Chinese Spider. Our

1We use the terms domain and database interchangeably.

new training objectives obtain significant im-
provements in accuracy over a baseline parser
trained with conventional supervised learning.

• We show that even when parsers are aug-
mented with pre-trained models, e.g., BERT,
our method can still effectively improve do-
main generalization in terms of accuracy.

Our code is available at https://github.
com/berlino/tensor2struct-public.

2 Related Work

Zero-Shot Semantic Parsing Developing a
parser that can generalize to unseen domains has
attracted increased attention in recent years. Pre-
vious work has mainly focused on the sub-task of
schema linking as a means of promoting domain
generalization. In schema linking, we need to rec-
ognize which columns or tables are mentioned in
a question. For example, a parser would decide
to select the column Status because of the word
statuses in Figure 1. However, in the setting of
zero-shot parsing, columns or tables might be men-
tioned in a question without ever being observed
during training.

One line of work tries to incorporate inductive
biases, e.g., domain-invariant n-gram matching
features (Guo et al., 2019b; Wang et al., 2020),
cross-domain alignment functions (Herzig and Be-
rant, 2018), or auxiliary linking tasks (Chang et al.,
2020) to improve schema linking. However, in the
cross-lingual setting of Chinese Spider (Min et al.,
2019), where questions and schemas are not in the
same language, it is not obvious how to design
such inductive biases like n-gram matching fea-
tures. Another line of work relies on large-scale un-
supervised pre-training on massive tables (Herzig
et al., 2020; Yin et al., 2020) to obtain better repre-
sentations for both questions and database schemas.
Our work is orthogonal to these approaches and
can be easily coupled with them. As an example,
we show in Section 5 that our training procedure
can improve the performance of a parser already en-
hanced with n-gram matching features (Guo et al.,
2019b; Wang et al., 2020).

Our work is similar in spirit to Givoli and Re-
ichart (2019), who also attempts to simulate source
and target domains during learning. However, their
optimization updates on virtual source and target
domains are loosely connected by a two-step train-
ing procedure where a parser is first pre-trained on

https://github.com/berlino/tensor2struct-public
https://github.com/berlino/tensor2struct-public
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virtual source domains and then fine-tuned on vir-
tual target domains. As we will show in Section 3,
our training procedure does not fine-tune on virtual
target domains but rather, uses them to evaluate a
gradient step (for every batch) on source domains.
This is better aligned with what is expected of the
parser at test time: there will be no fine-tuning on
real target domains at test time so there should not
be any fine-tuning on simulated ones at train time
either. Moreover, Givoli and Reichart (2019) treat
the division of training domains to virtual train and
test domains as a hyper-parameter, which is possi-
ble for a handful of domains, but problematic when
dealing with hundreds of domains as is the case for
text-to-SQL parsing.

Meta-Learning for NLP Meta-learning has
been receiving soaring interest in the machine learn-
ing community. Unlike conventional supervised
learning, meta-learning operates on tasks, instead
of data points. Most previous work (Vinyals et al.,
2016; Ravi and Larochelle, 2017; Finn et al., 2017)
has focused on few-shot learning where meta-
learning helps address the problem of learning to
learn fast for adaptation to a new task or domain.
Applications of meta-learning in NLP are cast in a
similar vein and include machine translation (Gu
et al., 2018) and relation classification (Obamuyide
and Vlachos, 2019). The meta-learning framework
however is more general, with the algorithms or
underlying ideas applied, e.g., to continual learn-
ing (Gupta et al., 2020), semi-supervised learn-
ing (Ren et al., 2018), multi-task learning (Yu
et al., 2020) and, as in our case, domain generaliza-
tion (Li et al., 2018a).

Very recently, there have been some applications
of MAML to semantic parsing tasks (Huang et al.,
2018; Guo et al., 2019a; Sun et al., 2019). These
approaches simulate few-shot learning scenarios in
training by constructing a pseudo-task for each ex-
ample. Given an example, similar examples are re-
trieved from the original training set. MAML then
encourages strong performance on the retrieved
examples after an update on the original example,
simulating test-time fine-tuning. Lee et al. (2019)
use matching networks (Vinyals et al., 2016) to en-
able one-shot text-to-SQL parsing where tasks for
meta-learning are defined by SQL templates, i.e., a
parser is expected to generalize to a new SQL tem-
plate with one example. In contrast, the tasks we
construct for meta-learning aim to encourage gener-
alization across domains, instead of adaptation to

a new task with one (or few) examples. One clear
difference lies in how meta-train and meta-test sets
are constructed. In previous work (e.g., Huang et al.
2018), these come from the same domain whereas
we simulate domain shift and sample different sets
of domains for meta-train and meta-test.

Domain Generalization Although the notion of
domain generalization has been less explored in
semantic parsing, it has been studied in other ar-
eas such as computer vision (Ghifary et al., 2015;
Zaheer et al., 2017; Li et al., 2018b). Recent
work (Li et al., 2018a; Balaji et al., 2018) em-
ployed optimization-based meta-learning to handle
domain shift issues in domain generalization. We
employ the meta-learning objective originally pro-
posed in Li et al. (2018a), where they adapt MAML
to encourage generalization in unseen domains (of
images). Based on this objective, we propose a
cheap alternative that only requires first-order gra-
dients, thus alleviating the overhead of computing
second-order derivatives required by MAML.

3 Meta-Learning for Domain
Generalization

We first formally define the problem of domain
generalization in the context of zero-shot text-to-
SQL parsing. Then, we introduce DG-MAML,
a training algorithm that helps a parser achieve
better domain generalization. Finally, we propose
a computationally cheap approximation thereof.

3.1 Problem Definition
Domain Generalization Given a natural lan-
guage question Q in the context of a relational
database D, we aim at generating the correspond-
ing SQL P . In the setting of zero-shot parsing,
we have a set of source domains Ds where labeled
question-SQL pairs are available. We aim at de-
veloping a parser that can perform well on a set of
unseen target domainsDt. We refer to this problem
as domain generalization.

Parsing Model We assume a parameterized pars-
ing model that specifies a predictive distribution
pθ(P |Q,D) over all possible SQLs. For domain
generalization, a parsing model needs to properly
condition on its input of questions and databases
such that it can generalize well to unseen domains.

Conventional Supervised Learning Assuming
that question-SQL pairs from source domains and
target domains are sampled i.i.d from the same
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distribution, the typical training objective of super-
vised learning is to minimize the loss function of
the negative log-likelihood of the gold SQL query:

LB(θ) = −
1

N

N∑
i=1

log pθ(P |Q,D) (1)

where N is the size of mini-batch B. Since a mini-
batch is randomly sampled from all training source
domainsDs, it usually contains question-SQL pairs
from a mixture of different domains.

Distribution of Tasks Instead of treating seman-
tic parsing as a conventional supervised learning
problem, we take an alternative view based on meta-
learning. Basically, wea re interested in a learning
algorithm that can benefit from a distribution of
choices of source and target domains, denoted by
p(τ), where τ refers to an instance of a zero-shot
semantic parsing task that has its own source and
target domains.

In practice, we usually have a fixed set of train-
ing source domains Ds. We construct a set of vir-
tual tasks τ by randomly sampling disjoint source
and target domains from the training domains. In-
tuitively, we assume that divergences between the
test and training domains during the learning phase
are representative of differences between training
and actual test domains. This is still an assumption,
but considerably weaker compared to the i.i.d. as-
sumption used in conventional supervised learning.
Next, we introduce the training algorithm called
DG-MAML motivated by this assumption.

3.2 Learning to Generalize with DG-MAML

Having simulated source and target domains for
each virtual task, we now need a training algo-
rithm that encourages generalization to unseen tar-
get domains in each task. For this, we turn to
optimization-based meta-learning algorithms (Finn
et al., 2017; Nichol et al., 2018; Li et al., 2018a)
and apply DG-MAML (Domain Generalization
with Model-Agnostic Meta-Learning), a variant
of MAML (Finn et al., 2017) for this purpose. Intu-
itively, DG-MAML encourages the optimization in
the source domain to have a positive effect on the
target domain as well.

During each learning episode of DG-MAML,
we randomly sample a task τ which has its own
source domain Dτs and target domain Dτt . For the
sake of efficiency, we randomly sample mini-batch
question-SQL pairs Bs and Bt from Dτs and Dτt ,

respectively, for learning in each task. DG-MAML
conducts optimization in two steps, namely meta-
train and meta-test.

Meta-Train DG-MAML first optimizes param-
eters towards better performance in the virtual
source domain Dτs by taking one step of stochastic
gradient descent (SGD) from the loss under Bs.

θ′ ← θ − α∇θLBs(θ) (2)

where α is a scalar denoting the learning rate of
meta-train. This step resembles conventional su-
pervised learning where we use stochastic gradient
descent to optimize the parameters.

Meta-Test We then evaluate the resulting param-
eter θ′ in the virtual target domainDt by computing
the loss under Bt, which is denoted as LBt(θ′).

Our final objective for a task τ is to minimize
the joint loss on Ds and Dt:

Lτ (θ) = LBs(θ) + LBt(θ′)
= LBs(θ) + LBt(θ − α∇θLBs(θ))

(3)

where we optimize towards the better source and
target domain performance simultaneously. Intu-
itively, the objective requires that the gradient step
conducted in the source domains in Equation (2) be
beneficial to the performance of the target domain
as well. In comparison, conventional supervised
learning, whose objective would be equivalent to
LBs(θ) + LBt(θ), does not pose any constraint on
the gradient updates. As we will elaborate shortly,
DG-MAML can be viewed as a regularization of
gradient updates in addition to the objective of con-
ventional supervised learning.

We summarize our DG-MAML training process
in Algorithm 1. Basically, it requires two steps
of gradient update (Step 5 and Step 7). Note that
θ′ is a function of θ after the meta-train update.
Hence, optimizingLτ (θ) with respect to θ involves
optimizing the gradient update in Equation (2) as
well. That is, when we update the parameters θ
in the final update of Step 7, the gradients need
to back-propagate though the meta-train updates
in Step 5. The update function in Step 7 could be
based on any gradient descent algorithm. In this
work we use Adam (Kingma and Ba, 2015).

Comment Note that DG-MAML is different
from MAML (Finn et al., 2017) which is typically
used in the context of few-shot learning. In our
case, it encourages domain generalization during
training, and does not require an adaptation phase.
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Algorithm 1 DG-MAML Training Algorithm

Require: Training databases D
Require: Learning rate α

1: for step← 1 to T do
2: Sample a task τ of (Dτs ,Dτt ) from D
3: Sample mini-batch Bτs from Dτs
4: Sample mini-batch Bτt from Dτt
5: Meta-train update:

θ′ ← θ − α∇θLBτs (θ)
6: Compute meta-test objective:

Lτ (θ) = LBs(θ) + LBt(θ′)
7: Final Update:

θ ← Update(θ,∇θLτ (θ))
8: end for

3.3 Analysis of DG-MAML
To give an intuition of the objective in Equation (3),
we follow previous work (Nichol et al., 2018; Li
et al., 2018a) and use the first-order Taylor series
expansion to approximate it:

Lτ (θ) =LBs(θ) + LBt(θ′)
=LBs(θ) + LBt(θ − α∇θLBs(θ))
≈LBs(θ) + LBt(θ)−
α(∇θLBs(θ) · ∇θLBt(θ))

(4)

where in the last step we expand the function LBs
at θ. The approximated objective sheds light on
what DG-MAML optimizes. In addition to mini-
mizing the losses from both source and target do-
mains, which are LBs(θ) + LBt(θ), DG-MAML
further tries to maximize ∇θLBs(θ) · ∇θLBt(θ),
the dot product between the gradients of source
and target domain. That is, it encourages gradients
to generalize between source and target domain
within each task τ .

3.4 First-Order Approximation
The final update in Step 7 of Algorithm 1 requires
second-order derivatives, which may be problem-
atic, inefficient or non-stable with certain classes
of models (Mensch and Blondel, 2018). Hence,
we propose an approximation that only requires
computing first-order derivatives.

First, the gradient of the objective in Equation (3)
can be computed as:

∇θLτ (θ) =∇θθ
′∇θ′LBt(θ′) +∇θLBs(θ)

=
(
I − α∇2

θLBs(θ)
)
∇θ′LBt(θ′)

+∇θLBs(θ)
(5)

where I is an identity matrix and ∇2
θLBs(θ) is the

Hessian of LBs at θ. We consider the alternative
of ignoring this second-order term and simply as-
sume that ∇θθ

′ = I . In this variant, we simply
combine gradients from source and target domains.
We show in the Appendix that this objective can
still be viewed as maximizing the dot product of
gradients from source and target domain.

The resulting first-order training objective,
which we refer to as DG-FMAML, is inspired
by Reptile, a first-order meta-learning algo-
rithm (Nichol et al., 2018) for few-shot learning. A
two-step Reptile would compute SGD on the same
batch twice while DG-FMAML computes SGD on
two different batches, Bs and Bt, once. To put it
differently, DG-FMAML tries to encourage cross-
domain generalization while Reptile encourages
in-domain generalization.

4 Semantic Parser

In general, DG-MAML is model-agnostic and can
be coupled with any semantic parser to improve
its domain generalization. In this work, we use
a base parser that is based on RAT-SQL (Wang
et al., 2020), which currently achieves state-of-the-
art performance on Spider.2

Formally, RAT-SQL takes as input question Q
and schema S of its corresponding database. Then
it produces a program which is represented as an ab-
stract syntax tree T in the context-free grammar of
SQL (Yin and Neubig, 2018). RAT-SQL adopts the
encoder-decoder framework for text-to-SQL pars-
ing. It has three components: an initial encoder,
a transformer-based encoder and an LSTM-based
decoder. The initial encoder provides initial repre-
sentations, denoted as Qinit and Sinit for the ques-
tion and the schema, respectively. A relation-aware
transformer (RAT) module then takes the initial rep-
resentations and further computes context-aware
representations Qenc and Senc for the question and
the schema, respectively. Finally, a decoder gener-
ates a sequence of production rules that constitute
the abstract syntax tree T based on Qenc and Senc.
To obtain Qinit and Sinit, the initial encoder could
either be 1) LSTMs (Hochreiter and Schmidhuber,
1997) on top of pre-trained word embeddings, like
GloVe (Pennington et al., 2014), or 2) pre-trained
contextual embeddings like BERT (Devlin et al.,

2We re-implemented RAT-SQL, and added a component
for value prediction so that our base parsers can be evaluated
by execution accuracy.
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2019). In our work, we will test the effectiveness
of our method for both variants.

As shown in Wang et al. (2020), the encodings
Qenc and Senc, which are the output of the RAT
module, heavily rely on schema-linking features.
These features are extracted from a heuristic func-
tion that links question words to columns and tables
based on n-gram matching, and they are readily
available in the conventional mono-lingual setting
of the Spider dataset. However, we hypothesize
that the parser’s over-reliance on these features is
specific to Spider, where annotators were shown
the database schema and asked to formulate queries.
As a result, they were prone to re-using terms from
the schema verbatim in their questions. This would
not be the case in a real-world application where
users are unfamiliar with the structure of the un-
derlying database and free to use arbitrary terms
which would not necessarily match column or table
names (Suhr et al., 2020). Hence, we will also eval-
uate our parser in the cross-lingual setting where
Q and S are not in the same language, and such
features would not be available.

5 Experiments

To evaluate DG-MAML, we integrate it with a base
parser and test it on zero-shot text-to-SQL tasks.
By designing an in-domain benchmark, we also
show that the out-of-domain improvement does
not come at the cost of in-domain performance.
We also present some analysis to show how DG-
MAML affects domain generalization.

5.1 Datasets and Metrics

We evaluate DG-MAML on two zero-shot text-
to-SQL benchmarks, namely, (English) Spider (Yu
et al., 2018b) and Chinese Spider (Min et al., 2019).
Chinese Spider is a Chinese version of Spider that
translates all NL questions from English to Chinese
and keeps the original English database. It intro-
duces the additional challenge of encoding cross-
lingual correspondences between Chinese and En-
glish.3 In both datasets, we report exact set match
accuracy, following Yu et al. (2018b). We also
report execution accuracy in the Spider dataset.

5.2 Baselines

Two kinds of features are widely used in recent
semantic parsers to boost domain generalization:

3Please see the appendix for details of the datasets.

schema-linking features (as mentioned in Sec-
tion 4) and pre-trained emebddings such as BERT.
To show that our method can still achieve additional
improvements, we compare with strong baselines
that are integrated with schema-linking features
and pre-trained embeddings. In the analysis (Sec-
tion 5.6), we will also show the effect of our method
when both features are absent in the base parsers.

5.3 Implementation and Hyperparameters
Our base parser is based on RAT-SQL (Wang et al.,
2020), which is implemented in PyTorch (Paszke
et al., 2019). For English questions and schemas,
we use GloVe (Pennington et al., 2014) and BERT-
base (Devlin et al., 2019) as the pre-trained em-
beddings for encoding. For Chinese questions, we
use Tencent embeddings (Song et al., 2018) and
Multilingual-BERT (Devlin et al., 2019). In all
experiments, we use a batch size of Bs = Bt = 12
and train for up to 20,000 steps. See the Appendix
for details on other hyperparameters.

5.4 Main Results
Our main results on Spider and Chinese Spider are
listed in Table 1 and 2, respectively.

Non-BERT Models DG-MAML boosts the per-
formance of non-BERT base parsers on Spider and
Chinese Spider by 2.1% and 4.5% respectively,
showing its effectiveness in promoting domain gen-
eralization. In comparison, the performance margin
for DG-MAML is more significant in the cross-
lingual setting of Chinese Spider. This is presum-
ably due to the fact that heuristic schema-linking
features, which help promote domain generaliza-
tion for Spider, are not applicable in Chinese Spi-
der. We will present more analysis on this in Sec-
tion 5.6.

BERT Models Most importantly, improvements
on both datasets are not cancelled out when the
base parsers are augmented with pre-trained repre-
sentations. On Spider, the improvements brought
by DG-MAML remain roughly the same when the
base parser is integrated with BERT-base. As a
result, our base parser augmented with BERT-base
and DG-MAML achieves the best execution accu-
racy compared with previous models. On Chinese
Spider, DG-MAML helps the base parser with mul-
tilingual BERT achieve a substantial improvement.
Overall, DG-MAML consistently boosts the per-
formance of the base parser, and is complementary
to using pre-trained representations.
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Model Dev Test

Set Match Accuracy
SyntaxSQLNet (Yu et al., 2018a) 18.9 19.7
Global-GNN (Bogin et al., 2019) 52.7 47.4
IRNet (Guo et al., 2019b) 55.4 48.5
RAT-SQL (Wang et al., 2020) 62.7 57.2
Our Models

Base Parser 56.4 -
Base Parser + DG-MAML 58.5 -

With BERT-base:
SyntaxSQLNet + BERT-base (Guo et al., 2019b) 25.0 25.4
IRNet + BERT-base (Guo et al., 2019b) 61.9 54.7
BRIDGE + BERT-base (Lin et al., 2020) 65.5 58.2
RAT-SQL + BERT-base 66.0♦ -
Our Models

Base Parser + BERT-base 66.8 63.3
Base Parser + BERT-base + DG-MAML 68.9 65.2

With BERT-large:
RYANSQL + BERT-large (Choi et al., 2020) 70.6 60.6
RAT-SQL + BERT-large (Wang et al., 2020) 69.7 65.6
Execution Accuracy
GAZP + Distil-BERT (Zhong et al., 2020) 59.2 53.5
BRIDGE + BERT-base (Lin et al., 2020) 65.3 59.9
Our Models

Base Parser + BERT-base 66.8 64.1
Base Parser + BERT-base + DG-MAML 69.3 66.1

Table 1: Accuracy (%) on the development and test
sets of Spider. The first half shows set match accuracy
for both non-BERT and BERT models; the second half
shows execution accuracy of BERT models. Due to the
number of model submissions constraint enforced by
the Spider team, we only evaluate our BERT models
on the test set for now. The number with ♦ is produced
by running the code of Wang et al. (2020).

5.5 In-Domain vs. Out-of-Domain

To confirm that the base parser struggles when ap-
plied out-of-domain, we construct an in-domain set-
ting and measure the gap in performance. This set-
ting also helps us address a natural question: does
using DG-MAML hurt in-domain performance?
This would not have been surprising as the parser
is explicitly optimized towards better performance
on unseen target domains.

To answer these questions, we create a new split
of Spider. Specifically, for each database from the
training and development set of Spider, we include
80% of its question-SQL pairs in the new training
set and assign the remaining 20% to the new test
set. As a result, the new split consists of 7702
training examples and 1991 test examples. When
using this split, the parser is tested on databases
that all have been seen during training. We evaluate
the non-BERT parsers with the same metric of set
match for evaluation.

Does the parser struggle out-of-domain? As
in-domain and out-of-domain setting have differ-

Model Dev Test

SyntaxSQLNet (Yu et al., 2018a) 16.4 13.3
Our Models

Base Parser 31.0 23.0
Base Parser + DG-MAML 35.5 26.8

With Multilingual BERT (M-BERT):
RAT-SQL + M-BERT (Anonymous) 41.4 37.3
RYANSQL + M-BERT (Choi et al., 2020) 41.3 34.7
Our Models

Base Parser + M-BERT 47.0 44.3
Base Parser + M-BERT + DG-MAML 50.1 46.9

Table 2: Set match accuracy (%) on the development
and test sets of Chinese Spider.

ent splits, and thus do not use the same test set,
the direct comparison between them only serves
as a proxy to illustrate the effect of domain shift.
We show that, despite the original split of out-
of-domain setting containing a larger number of
training examples (8659 vs 7702), the base parser
tested in-domain achieves a much better perfor-
mance (78.2%) than its counterpart tested out-of-
domain (56.4%). This suggests that the domain
shift genuinely hurts the base parser.

Does DG-MAML hurt in-domain perfor-
mance? We study DG-MAML in the in-domain
setting to see if it hurts in-domain performance.
Somewhat surprisingly, we instead observe a
modest improvement (+1.1%) over the base parser.
This suggests that DG-MAML, despite optimizing
the model towards domain generalization, captures,
to a certain degree, a more general notion of
generalization or robustness, which appears
beneficial even in the in-domain setting.

5.6 Additional Experiments and Analysis

We first discuss additional experiments on linking
features and DG-FMAML, and then present further
analysis probing how DG-MAML works. As the
test sets for both datasets are not publicly available,
we will use the development sets.

Linking Features As mentioned in Section 2,
previous work addressed domain generalization
by focusing on the sub-task of schema linking. For
Spider, where questions and schemas are both in
English, Wang et al. (2020) leverage n-gram match-
ing features which improve schema linking and
significantly boost parsing performance. However,
in Chinese Spider, it is not easy and obvious how
to design such linking heuristics. Moreover, as
pointed out by Suhr et al. (2020), the assumption
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Model Dev (%)

Spider
Base Parser 55.6 ± 0.5

+ DG-FMAML 56.8 ± 1.2
+ DG-MAML 58.0 ± 0.8

Base Parser without Features 38.2 ± 1.0
+ DG-FMAML 41.8 ± 1.5
+ DG-MAML 43.5 ± 0.9

Chinese Spider
Base Parser 29.7 ± 1.1

+ DG-FMAML 32.5 ± 1.3
+ DG-MAML 34.3 ± 0.9

Table 3: Accuracy (and ±95% confidence interval) on
the development sets of Spider and Chinese Spider.

that columns/tables are explicitly mentioned is not
general enough, implying that exploiting matching
features would not be a good general solution to
domain generalization. Hence, we would like to
see whether DG-MAML can be beneficial when
those features are not present.

Specifically, we consider a variant of the base
parser that does not use this feature, and train it
with conventional supervised learning and with
DG-MAML for Spider. As shown4 in Table 3,
we confirm that those features have a big impact on
the base parser. More importantly, in the absence
of those features, DG-MAML boosts the perfor-
mance of the base parser by a larger margin. This
is consistent with the observation that DG-MAML
is more beneficial for Chinese Spider than Spider,
in the sense that the parser would need to rely more
on DG-MAML when these heuristics are not inte-
grated or not available for domain generalization.

Effect of DG-FMAML We investigate the effect
of the first-order approximation in DG-FMAML to
see if it would provide a reasonable performance
compared with DG-MAML. We evaluate it on
the development sets of the two datasets, see Ta-
ble 3. DG-FMAML consistently boosts the perfor-
mance of the base parser, although it lags behind
DG-MAML. For a fair comparison, we use the
same batch size for DG-MAML and DG-FMAML.
However, because DG-FMAML uses less memory,
it could potentially benefit from a larger batch size.
In practice, DG-FMAML is twice faster to train
than DG-MAML, see Appendix for details.

4Some results in Table 3 differ from Table 1. The former
reports dev set performance over three runs, while the latter
shows the best model, selected based on dev set performance.

Model Precision Recall F1

Spider
Base Parser 70.0 70.4 70.2
Base Parser + DG-MAML 73.8 70.6 72.1

Chinese Spider
Base Parser 61.5 60.4 61.0
Base Parser + DG-MAML 66.8 61.2 63.9

Table 4: Performance (%) of column prediction on the
development sets of Spider and Chinese Spider.

Probing Domain Generalization Schema link-
ing has been the focus of previous work on zero-
shot semantic parsing. We take the opposite direc-
tion and use this task to probe the parser to see if it,
at least to a certain degree, achieves domain gen-
eralization due to improving schema linking. We
hypothesize that improving linking is the mecha-
nism which prevents the parser from being trapped
in overfitting the source domains.

We propose to use ‘relevant column recognition’
as a probing task. Specifically, relevant columns
refer to the columns that are mentioned in SQL
queries. For example, the SQL query “Select Sta-
tus, avg(Population) From City Groupby Status” in
Figure 1 contains two relevant columns: ‘Status’
and ‘Population’. We formalize this task as a bi-
nary classification problem. Given a NL question
and a column from the corresponding database,
a classifier should predict whether the column is
mentioned in the gold SQL query. We hypothesize
that representations from the DG-MAML parser
will be more predictive of relevance than those of
the baseline, and the probing classifier will detect
this difference in the quality of the representations.

We first obtain the representations for NL ques-
tions and schemas from the parsers and keep them
fixed. The binary classifier is then trained based
only on these representations. For classifier train-
ing we use the same split as the Spider dataset,
i.e., the classifier is evaluated on unseen databases.
Details of the classifier are provided in the Ap-
pendix. The results are shown in Table 4. The
classifier trained on the parser with DG-MAML
achieves better performance. This confirms our
hypothesis that using DG-MAML makes the parser
have better encodings of NL questions and database
schemas and that this is one of the mechanisms the
parsing model uses to ensure generalization.

6 Conclusions

The task of zero-shot semantic parsing has been
gaining momentum in recent years. However, previ-
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ous work has not proposed algorithms or objectives
that explicitly promote domain generalization. We
rely on the meta-learning framework to encourage
domain generalization. Instead of learning from in-
dividual data points, DG-MAML learns from a set
of virtual zero-shot parsing tasks. By optimizing
towards better target-domain performance in each
simulated task, DG-MAML encourages the parser
to generalize better to unseen domains.

We conduct experiments on two zero-shot text-
to-SQL parsing datasets. In both cases, using DG-
MAML leads to a substantial boost in performance.
Furthermore, we show that the faster first-order
approximation DG-FMAML can also help a parser
achieve better domain generalization.
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A Analysis of DG-FMAML

Similarly, we use the first-order Taylor expansion
to analyze the gradients of DG-FMAML:

∇θLτ (θ) = ∇θLBs(θ) +∇θ′LBt(θ′)
=∇θLBs(θ) +∇θ′LBt(θ − α∇θLBs(θ))
≈∇θLBs(θ) +∇θ′LBt(θ)+

α∇2
θ′LBt(θ)∇θLBs(θ)

=∇θLBs(θ) +∇θ′LBt(θ)+
α∇θ′

(
∇θ′LBt(θ) · ∇θLBs(θ)

)

where in Step 3 we expand the gradient func-
tion ∇θ′LBt at θ. In DG-FMAML, there is no
gradients back-propogating from θ′ to θ, so we can
treat ∇θLBs(θ) and ∇θ′LBt(θ′) as two indepen-
dent functions with θ and θ′ denoting their param-
eters respectively.

In Step 4, the first two terms ∇θLBs(θ) +
∇θ′LBt(θ) can be viewed as the gradient of ap-
plying θ to both source and target domains. The
last term can be viewed as maximize the dot prod-
uct between gradients of source and target domain
with respect to θ′. In the same spirit as DG-MAML,
DG-FMAML also tries to encourage the gradients
to generalize between source and target domains.

B Datasets

Spider Spider consists of 10,181 examples (ques-
tions and SQL pairs) from 206 databases, includ-
ing 1,659 examples taken from the Restaurants
(Popescu et al., 2003; Tang and Mooney, 2000),
GeoQuery (Zelle and Mooney, 1996), Scholar
(Iyer et al., 2017), Academic (Li and Jagadish,
2014), Yelp and IMDB (Yaghmazadeh et al., 2017)
datasets. We follow their split and use 8,659 exam-
ples (from 146 databases) for training, and 1,034
examples (from 20 databases) as our development
set. The remaining 2,147 examples from 40 test
databases are held out and kept by the authors for
evaluation.

Chinese Spider Chinese Spider is a Chinese ver-
sion of Spider that translates all NL questions from
English to Chinese and keeps the original English
database. It simulates the real-life scenario where
schemas for most relational databases in industry
are written in English while NL questions from
users could be in any other language. Follow-
ing Min et al. (2019), we use the same split of
train/development/test as the Spider dataset.

C Hyperparameters

Base Parser We stack 6 relation-aware self-
attention layers for encoding. Within them, we
set the number of attention heads to be 8 and use
dropout rate 0.1. Word embeddings for English
questions, column and table names are shared and
held fixed except for the 50 most common words
in the training set. Word embeddings for Chinese
questions are also fixed, except for the 50 most com-
mon words in the training set. As noted in Wang
et al. (2020), RAT-SQL went through an extensive
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hyperparameter sweep for non-BERT RAT-SQL,
which partially explains why our non-BERT base
parser is not as good as it in Spider. However, after
the integration of BERT representations, our base
parser slightly outperforms RAT-SQL, as shown in
the main paper.

Preprocessing A major difference between our
base parser and RAT-SQL (Wang et al., 2020)
is the way of preprocessing. During preprocess-
ing, input questions, column names and table
names in schemas are tokenized and lemmatized
by Stanza (Qi et al., 2020) which can handle both
English and Chinese.

Learning Rates We use the learning rate of α =
5 × 10−4 for meta-train. For the final update of
parameters, we use Adam (Kingma and Ba, 2015)
with the learning rate 6×10−4. We manually search
for the best meta-train learning rates from 1×10−4

to 9 × 10−4 with the step size 2 × 10−4, based
on performance on the development set. Other
hyperparameters are not tuned. For the learning
rate of final update (not α of meta-train), we use the
same scheduler as Wang et al. (2020). Specifically,
during the first 500 steps, the learning rate linearly
increases from 0 to 6× 10−4. Then, it is annealed
to 0 with 6× 10−4(1− step−500

9500 )−0.5.

Hardware and Model Size Our non-BERT
models are trained using NVIDIA GeForce RTX
2080, which has a memory size of 11GB. The base
parser has around 10 million parameters, where
around 1.5 million parameters are pre-trained em-
beddings that are mostly fixed during training. For
BERT models, we first find the best hyperparame-
ters using GeForce RTX 2080 with a small batch
size; then we train them using V100 to save cost.

Average Runtime The average training time for
the non-BERT base parser, DG-MAML and DG-
FMAML are 10, 24, 13 hours per run. For BERT
models, the numbers are 36, 68, 42 hours per run.

C.1 Loss Curve

In Figure 2, we show the loss curves of the models
on the two datasets during training. In compari-
son, DG-MAML helps to reduce the gap between
training and validation loss.

D Classifier for Probing Domain
Generalization

The classifier takes the input of a pair of (column,
question) and outputs a binary label indicating
whether the column is relevant. As explained in the
paper, we retrieve the representations of columns
and questions from a pre-trained parser. We denote
the representation of a column as c ∈ Rk, and the
representation of a question as q ∈ Rn×k where n
is the number of words in the question and k is the
size of encoding.

For each pair of (c, q), we first align the col-
umn c softly with the question q using an attention
function, and obtain an aligned representation t
for the column. Then we compute a score of rele-
vance based on the aligned representation. Finally,
a probability p of relevance is computed through a
sigmoid function σ.

t = Attention(c, q)

score = MLP(c, t)

p = σ(score)

(6)
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(a) Loss curves on the Spider dataset.
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(b) Loss curves on the Chinese Spider dataset.

Figure 2: Comparison of losses when the parser is trainined with conventaional supervised learning (Baseline) and
DG-MAML.


