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Abstract

The state-of-the-art on basic, single-
antecedent anaphora has greatly improved
in recent years. Researchers have therefore
started to pay more attention to more complex
cases of anaphora such as split-antecedent
anaphora, as in Time-Warner is considering a
legal challenge to Telecommunications Inc’s
plan to buy half of Showtime Networks Inc–a
move that could lead to all-out war between
the two powerful companies. Split-antecedent
anaphora is rarer and more complex to resolve
than single-antecedent anaphora; as a result,
it is not annotated in many datasets designed
to test coreference, and previous work on
resolving this type of anaphora was carried
out in unrealistic conditions that assume
gold mentions and/or gold split-antecedent
anaphors are available. These systems also
focus on split-antecedent anaphors only. In
this work, we introduce a system that resolves
both single and split-antecedent anaphors, and
evaluate it in a more realistic setting that uses
predicted mentions. We also start addressing
the question of how to evaluate single and
split-antecedent anaphors together using
standard coreference evaluation metrics.1

1 Introduction

Thanks in part to the latest developments in deep
neural network architectures and contextual word
embeddings (e.g., ELMo (Peters et al., 2018) and
BERT (Devlin et al., 2019)), the performance of
models for single-antecedent anaphora resolution
has greatly improved (Wiseman et al., 2016; Clark
and Manning, 2016b; Lee et al., 2017, 2018; Kan-
tor and Globerson, 2019; Joshi et al., 2020). So
recently, the attention has turned to more com-
plex cases of anaphora, such as anaphora requir-
ing some sort of commonsense knowledge as in
the Winograd Schema Challenge (Rahman and Ng,

1The code is available at https://github.com/
juntaoy/dali-full-anaphora

2012; Peng et al., 2015; Liu et al., 2017; Sakaguchi
et al., 2020); pronominal anaphors that cannot be
resolved purely using gender (Webster et al., 2018),
bridging reference (Hou, 2020; Yu and Poesio,
2020), discourse deixis (Kolhatkar and Hirst, 2014;
Marasović et al., 2017; Kolhatkar et al., 2018) and,
finally, split-antecedent anaphora (Zhou and Choi,
2018; Yu et al., 2020a) - plural anaphoric reference
in which the two antecedents are not part of a single
noun phrase.

However, a number of hurdles have to be tack-
led when trying to study these cases of anaphora,
ranging from the lack of annotated resources to the
rarity of some of these phenomena in the existing
ones. Thus, most previous work on resolving these
anaphoric relations focused on developing dedi-
cated systems for the specific task. The systems
are usually enhanced by transfer-learning to utilise
extra resources, as those anaphoric relations are
sparsely annotated. The most frequently used extra
resource is single-antecedent anaphors. Due to the
complexity of these tasks, previous work is usually
based on assuming that either gold anaphors (Hou,
2020; Yu et al., 2020a) or gold mentions (Zhou and
Choi, 2018; Yu and Poesio, 2020) are provided. By
contrast, in this work we introduce a system that
resolves both single and split-antecedent anaphors,
and is evaluated in a more realistic setting that does
not rely on gold anaphors/mentions. We evalu-
ate our system on the ARRAU corpus (Poesio and
Artstein, 2008; Uryupina et al., 2020), in which
both single and split-antecedent anaphors are an-
notated, although the latter are much rarer than the
former. We use the state-of-the-art coreference res-
olution system on ARRAU (Yu et al., 2020b) as our
base system for single-antecedent anaphors. This
cluster-ranking system interprets single-antecedent
anaphors, singletons and non-referring expressions
jointly. In this work, we extend the system to
resolve split-antecedent anaphors. The extended
part of the system shares mention representations

https://github.com/juntaoy/dali-full-anaphora
https://github.com/juntaoy/dali-full-anaphora
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and candidate clusters with the base system, and
outputs binary decisions between a mention and
individual candidate clusters. We configure our
system to learn the split-antecedent part and the
base system in both JOINT and PRE-TRAINED fash-
ion. The results show both versions work much
better than naive baselines based on heuristics
and random selection. The PRE-TRAINED version
works equally well as the JOINT version on split-
antecedent anaphors, but it is better for the other
aspects of anaphoric interpretation.

In the paper we also begin to address the question
of how a system carrying out both single and split-
antecedent anaphora resolution should be evaluated.
Specifically, we introduce an extended version of
LEA (Moosavi and Strube, 2016), a standard coref-
erence metric which can be used to give partial
credit for resolution, to evaluate single and split-
antecedent anaphors together. Using this metric,
we find that our best model achieves a better LEA

score than the baselines.
We further evaluate our best system in the gold

setting to compare with the Yu et al. (2020a) sys-
tem. The model achieved better performance when
compared to their system that is designed solely for
split-antecedent task.

2 Related Work

2.1 Neural Approaches to Single-antecedent
Anaphora Resolution

Single-antecedent anaphora resolution is an ac-
tive research topic. The first neural model was
introduced by Wiseman et al. (2015) and later ex-
tended in (Wiseman et al., 2016). Clark and Man-
ning (2016b) introduced a hybrid cluster/mention-
ranking approach, whereas Clark and Manning
(2016a) adapted reinforcement learning to a
mention-ranking model. Lee et al. (2017) intro-
duced the first end-to-end system, performing men-
tion detection and coreference resolution jointly.
The Lee et al. (2017) system was also simpler than
previous systems, using only a small number of
hand-coded features. As a result, the Lee et al.
(2017) system has become the blueprint for most
subsequent systems. Lee et al. (2018) and Kan-
tor and Globerson (2019) showed that employing
contextual ELMo (Peters et al., 2018) and BERT

(Devlin et al., 2019) embeddings in the system by
Lee et al. (2017) can significantly improve perfor-
mance. (Joshi et al., 2019, 2020) fine-tuned BERT

and SpanBERT to further improve performance.

Recently, Wu et al. (2020) framed coreference res-
olution task as question answering and showed that
the additional pre-training on a large question an-
swering dataset can further improve performance.
However, those systems are only focused on single-
antecedent anaphors and do not consider the other
anaphoric relations.

2.2 Other Aspects of Anaphoric
Interpretation

Interpreting nominal expressions with respect to a
discourse model is not simply a matter of identify-
ing identity links; it also involves recognizing that
certain potential anaphors are in fact non-referring,
or singletons; other expressions refer to entities
which have to be introduced in the discourse model
via accomodation processes involving for instance
the construction of a plural object out of other en-
tities, as in the case of split-antecedent anaphors;
other expressions again are related to existing enti-
ties by associative relations, as in one-anaphora or
bridging reference. These other anaphoric interpre-
tation processes are much less studied, primarily
because the relevant information is not annotated
in the dominant corpus for coreference, OntoNotes
(Pradhan et al., 2012). Systems such as the Stan-
ford Deterministic Coreference Resolver (Lee et al.,
2013) do use linguistically-based heuristic rules to
recognize and filter singletons and non-referring
expressions, but these aspects of the system are not
evaluated. Carrying out such an evaluation requires
a corpus with richer anaphoric annotations, such as
ARRAU (Uryupina et al., 2020).

Yu et al. (2020b) is the only neural system that
targets singletons and non-referring expressions.
The system uses the mention representation from
Lee et al. (2018); Kantor and Globerson (2019)
and applies a cluster-ranking algorithm to incre-
mentally attach mentions directly to their clus-
ters. Yu et al. (2020b) showed that performance
on single-antecedent anaphors improves by up to
1.4 p.p. when jointly training the model with non-
referring expressions and singletons. We use Yu
et al. (2020b) as our base system, and extend it to
resolve split-antecedent anaphors.

A few systems resolving split-antecedent
anaphors have been proposed in recent years. Vala
et al. (2016) introduced a system to resolve plural
pronouns they and them in a fiction corpus they
themselves annotated. Zhou and Choi (2018) intro-
duced an entity-linking corpus based on the tran-
scripts of the Friends sitcom. The mentions (in-
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cluding plural mentions) are annotated if they are
linked to the main characters. Coreference clusters
are then created for mentions linked to the same en-
tities. One issue with this corpus is that it is mainly
created for entity-linking, so it is problematic as a
coreference dataset, as many mentions are linked
to general entities that are not annotated in the text.
Zhou and Choi (2018) trained a CNN classifier to de-
termine the relation between mention pairs, jointly
performing single and split-antecedent resolution.

Another issue with this work is evaluation. Zhou
and Choi (2018) evaluate their system using the
standard CONLL scorer; in order to do this, they
encode split-antecedent anaphora by adding the
plural mention to each cluster. So, for instance,
in John met Mary. They went to the movies, they
would have two gold clusters: {John, They} and
{Mary, They}. This is clearly problematic, as They
is not a mention of the individual entity John, but of
the set consisting of John and Mary. In this work,
we propose an alternative, an extended version of
LEA (Moosavi and Strube, 2016) that does joint
evaluation of single/split-antecedent anaphors by
explicitly representing plural entities.

Yu et al. (2020a) introduced the first system to
resolve all split-antecedent anaphors annotated in
the ARRAU corpus. Their work focuses on the data
sparsity problem; split-antecedent anaphora resolu-
tion is helped using four auxiliary corpora created
from a crowdsourced corpus and other anaphoric
annotations in the ARRAU corpus. However, their
approach focuses on split-antecedent anaphora
only, and assumes gold split-antecedent anaphors
and gold mentions are provided during the eval-
uation, which is not realistic. In this work, we
resolve both single and split-antecedent anaphora
and evaluate our system on predicted mentions.

3 The Resolution Method

3.1 The Base System

In this work, we use the system of Yu et al.
(2020b) as starting point, and extend it to handle
split-antecedent anaphora. Yu et al. (2020b) is a
cluster-ranking system that jointly processes single-
antecedent anaphors, singletons and non-referring
expressions. The system uses the same mention
representations as in Lee et al. (2018); Kantor and
Globerson (2019). The input to the system is a
concatenation of contextual BERT (Devlin et al.,
2019) embeddings, context-independent GLOVE

embeddings (Pennington et al., 2014) and learned

character-level embeddings based on convolutional
neural network (CNNs). The system then uses a
multi-layer BILSTM to encode the document at the
sentence level to create the word representations
(Ti). The candidate mention representations (Mi)
are created by the concatenation of the word rep-
resentations at the start/end positions of the men-
tion as well as a weighted sum of all the tokens
within the mention boundary. After that, the candi-
date mentions are pruned according to their men-
tion scores (sm(i)) computed by applying a feed-
forward neural network (FFNN) to the Mi. The
top-ranked candidate mentions are then used by the
cluster-ranking model to form the entity clusters
and to identify the non-referring expressions.

The cluster-ranking model incrementally links
the candidate mentions to the clusters according
to the scoring function (s(i, j)) between candi-
date mention Mi and partial clusters created so
far (Cji−1). More precisely, s(i, j) is defined as:

s(i, j) =


sno(i) j = NO
snr(i) + sm(i) j = NR
sdn(i) + sm(i) j = DN
sm(i) + sc(j) + smc(i, j) j ∈ Ci−1

where sno(i), snr(i) and sdn(i) are the likelihood
for a candidate mention to be a non-mention (NO),
a non-referring expression (NR) or a discourse
new mention (DN) respectively. sm(i), sc(j) and
smc(i, j) are the mention scores (computed for
mention pruning), cluster scores (a weighted sum
of sm for the mentions in the cluster) and cluster-
mention pairwise scores. The system employs addi-
tional methods to enhance performance–e.g., keep-
ing cluster histories and training the system on the
oracle clusters. We refer the reader to (Yu et al.,
2020b) for more details. We use the default settings
of the system in our experiments.

3.2 Resolving Split-antecedent Anaphors
To resolve split-antecedent anaphors, we follow Yu
et al. (2020a) who framed the task as a binary clas-
sification task. The system uses a scoring function
to assign each cluster-mention pair a score sp(i, j)
specifying the likelihood that that cluster is one of
the split-antecedents of the mention. During train-
ing, we add a dummy score (sε(i) = 0) for the
cases in which a mention is not a split-antecedent
anaphor. Formally, sp(i, j) is calculated as follows:

sp(i, j) =

{
0 j = ε
sm(i) + sc(j) + spmc(i, j) j ∈ Ci−1

The extension for split-antecedents uses the same
mention/cluster representations as well as the can-
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didate mentions/clusters of the single-antecedent
component. This benefits the split-antecedent
anaphors part of the system, that can share the rep-
resentations learned from more numerous single-
antecedent anaphors. As a result, the extension
shares the same sm(i) and sc(j) scores as the
base system. spmc is calculated by applying a
FFNN to the cluster-mention pairwise representa-
tions. At test time, we convert sp(i, j) into prob-
abilities (pp(i, j)), and assign split-antecedents to
plural mentions when the pp(i, j) between the plu-
ral mentions and the candidate clusters are above
the threshold (e.g., 0.5). pp(i, j) is calculated by
applying a sigmoid function to sp(i, j):

pp(i, j) =
1

1 + e−sp(i,j)

To make sure the final system outputs (single-
antecedent anaphors, singletons, non-referring ex-
pressions and split-antecedent anaphors) do not
contradict each other, we only allow discourse-new
mentions to become split-antecedent anaphors. We
also constrain split-antecedent anaphors to have at
least two and at most five antecedents.

Since we are working with predicted clusters,
to evaluate using lenient and strict scores as in Yu
et al. (2020a), we need to find a way to align the
predicted clusters with the gold clusters. Here we
use the standard coreference alignment function
CEAFφ4 to align predicted and gold clusters. The
alignment between predicted and gold clusters is
at the centre of the CEAFφ4 scores, which gives
exactly what we need for our evaluation.

3.3 Training Strategies
To train, we add to the original loss (losss) a
second dedicated loss (lossp) for split-antecedent
anaphors. We use marginal log-likelihood loss,
and optimize on all oracle clusters that belong to
the gold split-antecedent cluster list GOLDp(i) of
split-antecedent anaphors Mi. Formally,

lossp = log
N∏
j=1

∑
ĉ∈GOLDp(j)

sp(ĉ, j)

Since the vast majority of mentions (99%) are
negative examples (non-split-antecedent anaphors),
training is highly imbalanced. So during training
we also use the mentions from the same cluster
as the split-antecedent anaphors as additional posi-
tive examples. In this way we managed to nearly
double the number of positive training examples.
We multiply the losses of the negative examples an
adjustment parameter α to balance the training.

We train our system both in JOINT and PRE-
TRAINED mode. For JOINT learning, we train our
system on the sum of two losses and weigh them by
a β factor that determines the relative importance
of the losses. Formally, we compute the joint loss
as follows:

lossj = (1− β)losss + βlossp

To use a joint loss the split-antecedent part of the
system can have an impact on the mention repre-
sentations hence might lead to better performance.

Our PRE-TRAINED approach is based on the
hypothesis that mention/cluster representations
trained on the single-antecedent anaphors are suf-
ficient as pre-trained embeddings for downstream
tasks like split-antecedent anaphors. The PRE-
TRAINED approach minimises the changes to the
base system, and one can even reuse the models
trained solely for the base system. The training for
the split-antecedent part is inexpensive. We use the
pre-trained models for our base system to supply
mention/cluster representations and other neces-
sary information and optimise the split-antecedent
part of the system solely on lossp.

4 Evaluating Coreference Chains with
Split Antecedents

If the interpretation of a split-antecedent anaphor
were only given credit when all antecedents are
correctly detected and grouped together, without
giving any reward to systems that find at least some
of the antecedents, systems that get closer to the
gold would be unfairly penalized, particularly for
the cases with 3 or more split antecedents (25% in
our data). Consider example 4.1, in which “theiri,j”
refers to the set {“Mary”, “John”}, and “theyi,j,p”
to the set {“Mary”, “John”, “Jane”}. And take
two systems A and B that resolve “theiri,j” to
{“Alex”, “Jane”} and {“Mary”, “Jane”}, respec-
tively and “theyi,j,p” to {“Alex”} and {“Maryi”,
“Johnj”}, respectively. Neither system is perfect,
but intuitively, system B is more accurate in resolv-
ing split-antecedent anaphors (it correctly identifies
1 antecedent of “theiri,j” and 2 of “theyi,j,p”, ver-
sus 0 for A)–yet both systems will receive the same
0 score if only a perfect match is credited.

Example 4.1. Maryi and Johnj were on their way
to visit Alexk when Maryi saw Janep on theiri,j
way and realized theyi,j,p all wore the same shirt.

This example indicates that in order to score
a system carrying out both single and split-
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antecedent resolution three issues have to be ad-
dressed. First of all, it is necessary to have
some way to represent plural entities. Second, we
need some way of ensuring that systems that pro-
pose different but equivalent resolutions for split-
antecedent plurals score the same. Third, we need
a metric allowing some form of partial credit.2 We
discuss how we addressed each issue in turn.

Plural mentions First of all, we propose to have
two types of mentions in our coreference chains:
in addition to the standard individual mentions
(“Mary”), we also allow plural mentions ({“Mary”,
“Jane”}).

Normalizing coreference chains As Exam-
ple 4.1 shows, a text may contain multiple indi-
vidual mentions of the same entity that participate
in a plural mention (e.g. ‘Mary’). Plural mentions
whose antecedents are mentions of the same en-
tity should be equivalent. To do this, we use the
first mention of each gold coreference chains as the
representative of the entity. We normalize every
plural mention in a system- produced coreference
chain by (i) aligning the system-produced coref-
erence chains for the individual mentions in the
plural mention to the gold coreference chains using
CEAF, and (ii) replacing each individual mention
in the plural mention with the first mention in the
aligned gold coreference chains.

Partial credit A natural way to obtain a scorer
for coreference resolution giving partial credit is
to extend the LEA evaluation metric (Moosavi and
Strube, 2016) to handle split-antecedents. For each
entity e, LEA evaluates (a) how important is e, and
(b) how well it is resolved. Thus, for computing re-
call, LEA evaluates a set of system-detected entities
E as follows:3∑

e∈E importance(e) ∗ resolution-score(e)∑
e∈E importance(e)

(1)

where resolution-score is the ratio of correctly re-
solved coreference links in the entity, and the im-
portance measures how important is entity e in the
given text. In the default implementation, impor-
tance is set to the size of the entity. However, it can
be adjusted based on the use case.

2This third issue is the reason why (Vala et al., 2016; Yu
et al., 2020a) used lenient metrics for scoring split-antecedent
resolution, although ones that did not score single antecedent
resolution as well.

3We can compute precision by switching the role of system
and key entities in LEA computations.

Let e be an entity in the system output E consist-
ing of n mentions, and K be the set of gold entities.
The resolution-score (RS) of e is computed as:

RS(e) =
1

|L(e)|
∑
l∈L(e)

B(l,K) (2)

where L(e) is the set of all coreference links in e4,
and B(l,K) is defined as

B(l,K) =

{
1 {∃k∈K |l ∈ L(k)}
0 otherwise

(3)

(3) states that for each coreference link l in sys-
tem entities, the system receives a reward of one if
l also exists in gold entities, and zero otherwise. If
any of the mentions that are connected by l is a par-
tially resolved plural mention, the system receives
a zero score.

To extend LEA to handle split-antecedents, we
change B to also reward a system if any of the cor-
responding mentions of l, i.e., mentions that are
connected by l, is a plural mention and is partially
resolved. Let P̂(m) be an ordered list of all sub-
sets of m, including m, by descending order of
their size. If m is a singular mention, P̂ will only
contain {m}. If m is a plural mention, P̂ will con-
tain m as well as all the subsets of m’s containing
mentions. For instance, P̂({“Mary”, “John”})=[
{“Mary”, “John”}, {“John”}, {“Mary”}]. Assum-
ing the corresponding mentions of l are mi and mj ,
we update B(l,K) as follows:


|si|∗|sj |
|mi|∗|mj |

{∃k∈K,si∈P̂(mi),sj∈P̂(mj)
|lsi,sj ∈ L(k)}

|mi|∗|mj |
|mk|∗|mp| {∃k∈K,mi∈P̂(mk),mj∈P̂(mp)

|lmk,mp ∈ L(k)}
0 otherwise

where lsi,sj is the link connecting si and sj that
are the largest subset of P̂(mi) and P̂(mj), respec-
tively, that exist in gold entities and are coreferent.
mk and mp are gold coreferring mentions that mi

and mj are a subset of, respectively.
For instance, consider the system chain

{m1={“Mary”, “Jane”}, m2=“theiri,j”} for Exam-
ple 4.1. The coreference link between m1 and m2

does not exist in the gold entities. However, m1

is a subset of a gold mention, i.e., mk={“Mary”,
“John”, “Jane”}, and m1 ⊂ P̂(mk). Therefore, sys-
tem B receives a reward of 2∗1

3∗1 for resolving the
coreference link between m1 and m2 based on RS.

4There are n(n−1)
2

coreference links in e.
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Train/Dev Test

Documents 353 60
Sentences 7524 1211
Tokens 195676 33225
Mentions 61671 10341
Singletons 26368 4158
Non-referring expressions 8159 1391
Single-antecedent anaphors 20127 3568
Split-antecedent anaphors 356 60
Split-antecedents 878 137

Table 1: Statistics about the corpus used for evaluation.

Importance As discussed, the number of enti-
ties that contain split-antecedents in our annotated
data is negligible compared to entities with singular
mentions. Therefore, we will not see a big differ-
ence in the overall score when the system resolves
both singular and plural mentions. In order to put
more emphasize on harder coreference links, i.e.,
resolving split-antecedents, we adapt the impor-
tance measure to assign a higher weight to entities
containing split-antecedent as follows:

importance(e) =
importance-factor(e) ∗ |e|∑
ei

importance-factor(ei) ∗ |ei|

The importance-factor assigns Impsplit times
higher importance on plural entities compared to
entities of singular mentions:

importance-factor(e) =

{
Impsplit If e is a plural entity
1 If e is singular

5 Experiments

5.1 Datasets

We evaluated our system on the RST portion of
the ARRAU corpus (Uryupina et al., 2020). AR-
RAU provides a wide range of anaphoric informa-
tion (referring expressions including singletons and
non-referring expressions; split-antecedent plurals;
generic references; discourse deixis; and bridging
references) and was used in the CRAC shared task
(Poesio et al., 2018); RST was the main evaluation
subset in that task; the RST portion of the ARRAU

corpus consists of 1/3 of the Penn Treebank (news
texts). Table 1 summarizes the key statistics about
the corpus.

5.2 Separate and Joint Evaluation Methods

In separate evaluation, we follow standard
practice to report CONLL average F1 score
(macro average of MUC, B3 and CEAFφ4) for
single-antecedent anaphors, and F1 scores for

Parameter Value

BiLSTM layers/size/dropout 3/200/0.4
FFNN layers/size/dropout 2/150/0.2
CNN filter widths/size [3,4,5]/50
Char/Glove/Feature embedding size 8/300/20
BERT embedding layer/size Last 4/1024
Embedding dropout 0.5
Max span width (l) 30
Max num of clusters 250
Mention/token ratio 0.4
Optimiser Adam (1e-3)
Non-referring method Hybrid
Prefiltering threshold 0.5
Adjustment parameter (α) 0.01
Loss weight (β) 0.1

Table 2: Hyperparameters for our models.

non-referring expressions. For split-antecedent
anaphors, we report three F1 scores: the strict F1
score that only gives credit when both anaphors and
all their split-antecedents are resolved correctly5;
the lenient F1 score that gives credit to anaphors
that resolved partially correct (Vala et al., 2016);
and the anaphora recognition F1 score.

For joint evaluation of single/split-antecedent
anaphors, we report the LEA score using the up-
graded script described in Section 4.

5.3 Hyperparameters

We use the default parameter settings of Yu et al.
(2020b) and use their hybrid approach for handling
the non-referring expressions. The split-antecedent
part of the system uses an FFNN with two hidden
layers and a hidden size of 150. The negative ex-
ample loss adjustment parameter α and the loss
weight parameter β (used for JOINT learning) are
set to 0.01 and 0.1 respectively after tuning on the
development set. Table 2 provides details on our
parameter settings.

6 Results and Discussions

6.1 Separate Evaluation on
Single/Split-antecedent Anaphors

We first evaluate our two proposed systems in the
separate evaluation setting, in which we report sep-
arate scores for single-antecedent anaphors, non-
referring expressions and split-antecedent anaphors.
Showing individual scores for different aspects pro-
vide a clear picture of the different models.

Training settings In the JOINT setting, the sys-
tem is trained end-to-end with a weighted loss func-

5Here we report F1 instead of accuracy used in Yu et al.
(2020a) as our evaluation is based on predicted mentions.
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CoNLL Non-referring Anaphora Recsplit Lenientsplit Strictsplit
F1 R P F1 R P F1 R P F1 R P F1

Recent-2 - - - - 31.7 42.2 36.2 10.3 15.6 12.4 5.0 6.7 5.7
Recent-3 - - - - 31.7 42.2 36.2 16.9 17.0 17.0 0.0 0.0 0.0
Recent-4 - - - - 30.0 40.9 34.6 18.4 14.2 16.0 0.0 0.0 0.0
Recent-5 - - - - 28.3 39.5 33.0 16.9 10.7 13.1 0.0 0.0 0.0
Random - - - - 31.7 42.2 36.2 5.9 3.7 4.5 0.0 0.0 0.0

JOINT 77.1 72.6 77.2 74.8 50.0 51.7 50.9 39.0 35.3 37.1 15.0 15.5 15.3
PRE-TRAINED 77.9 72.4 78.0 75.1 45.0 71.1 55.1 30.2 46.1 36.4 16.7 26.3 20.4

Table 3: Separate evaluation of our systems on the test set. Xsplit are the scores for the split-antecedent anaphors.

Impsplit = 1 Impsplit = 10
R P F1 R P F1

Recent-2 70.5 66.9 68.7 61.5 61.3 61.4
Recent-3 70.5 66.9 68.7 61.6 61.1 61.4
Recent-4 70.6 66.9 68.7 61.8 61.1 61.5
Recent-5 70.5 66.9 68.7 61.5 61.2 61.3
Random 70.4 66.7 68.5 60.9 60.0 60.4

Our model 70.8 67.2 69.0 63.8 64.4 64.1

Table 4: LEA evaluation on both single- and split-
antecedent anaphors. Impsplit indicates the split-
antecedent importance.

tion. In the PRE-TRAINED setting, we use the pre-
trained model provided by Yu et al. (2020b), and
train only the split-antecedent part of the system.

Baselines Like (Vala et al., 2016; Yu et al.,
2020a), we include baselines based on heuris-
tic rules or random selection. For all base-
lines, we use the same model as used by our
PRE-TRAINED approach to supply the candidate
split-antecedent anaphors/singular clusters. The
anaphora recognition baseline classifies as split-
antecedent anaphors the discourse-new mentions
belonging to a small list of plural pronoun (e.g.,
they, their, them, we).6 The recent-x baseline
chooses the x closest singular clusters as an-
tecedents for these candidates. The random base-
line assigns two to five antecedents randomly to
each chose split-antecedent anaphors.

Results Table 3 shows the comparison between
our two systems and the baselines. Since plural
pronouns are the most frequent split-antecedent
anaphors, the simple heuristic gives a reasonably
good F1 score of up to 36.2% for anaphora recog-

6We also tried a random selection based approach, but such
an approach only gets less than 5% split-antecedent anaphors
correctly.

nition. In term of the scores on full resolution, the
baselines only achieved a maximum F1 of 17% and
5.7% when evaluated in the lenient and strict set-
tings respectively. The low F1 scores indicate that
split-antecedent anaphors are hard to resolve.

When compared with the baselines, both of our
approaches achieved much better scores for all
three evaluations. Our models achieved substan-
tial improvements over the baselines of up to 19%,
19.9% and 14.7% for anaphora recognition, full
resolution (lenient and strict) respectively. The
model trained in a JOINT setting achieves a bet-
ter recall for both lenient evaluation and anaphora
recognition, while the PRE-TRAINED setting has
much better precision. We expect this is be-
cause the joint system could have an impact on
candidate mentions/clusters, hence potentially re-
cover more antecedent-anaphora pairs. By contrast,
the candidate mentions/clusters are fixed in the
PRE-TRAINED setting. Overall, the JOINT model
achieves a slightly better lenient F1 score but a
lower strict F1 score, whereas the PRE-TRAINED

setting has a better overall performance when com-
pared with the JOINT model. The JOINT system
also has a lower CONLL average F1 score and non-
referring F1 score when compared with the system
trained in a PRE-TRAINED fashion. This indicates
that jointly training is not helpful for the single-
antecedent anaphors and non-referring expressions.
Hence we use the PRE-TRAINED approach for fur-
ther experiments.

6.2 Evaluating single and split antecedent
anaphors jointly

We then evaluate our models with the newly ex-
tended LEA scores to show how split-antecedent
anaphors could impact the results when evaluated
together with single-antecedent anaphors. Table 4
shows the LEA score comparison between our best
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model (PRE-TRAINED) and the baselines. As only
half of the test documents contain split-antecedent
anaphors, we report the results on those test docu-
ments to give a clear picture on the evaluation.

We carried out two evaluations. The first setting
is the traditional evaluation setting for coreference,
in which split-antecedent anaphors are weighed
equally as single antecedent anaphors (i.e., they
are treated in LEA as a single mention, Impsplit
= 1). We do not believe, however, that treating
all anaphors equally is the most informative ap-
proach to evaluating coreference, for it is well-
known that some anaphors are much easier to re-
solve than others (Barbu and Mitkov, 2001; Web-
ster et al., 2018). LEA makes it possible to give
more weight to anaphors that are harder to resolve.
So in our second evaluation we give more impor-
tance to split-antecedent anaphors (Impsplit = 10)
since they are much harder to resolve and also in-
frequent when compare to the single-antecedent
anaphors. To have slightly higher importance for
split-antecedents will give us a better view of their
impact. The results in Table 4 show that our best
model achieved moderate improvements of 0.3%
- 0.5% on the first LEA score setting when com-
pared with the baselines. This is mainly because
the split-antecedent anaphors are less than 1% of
the mentions. But ss expected, the improvements
become more clear in the second evaluation setting,
in which our model is 2.6% - 3.7% better than the
baselines.

6.3 State-of-the-art Comparison

To compare with the state-of-the-art system on
ARRAU, (Yu et al., 2020a), we train our best set-
ting (PRE-TRAINED) as Yu et al. (2020a) did,
i.e., assuming both gold mention and gold split-
antecedent anaphors are provided. We first train the
base model using gold mentions, then train the split-
antecedent part of the system using gold mentions
and gold split-antecedent anaphors. Since Yu et al.
(2020a)’s system is evaluated on the full ARRAU

corpus and with a customised train/test split priori-
ties the split-antecedent anaphors, we retrain their
system using the same standard RST split as used
in our evaluation. We train their system with both
baseline and the best settings using a single auxil-
iary corpus (SINGLE-COREF).7 As shown in Table
5, our best model achieved both better lenient and

7The best setting, that uses multi-auxiliary corpora, is more
complex to train and only moderately improves the results.

Lenient Strict
R P F1 Accuracy

Yu et al. Baseline 61.0 52.5 56.5 21.7
Yu et al. Best model 69.1 63.9 66.4 35.0

Our model 71.3 65.1 68.1 45.0

Table 5: State-of-the-art comparison on the test set.

better strict accuracy than the Yu et al. (2020a) sys-
tem, even though theirs is a dedicated system con-
cerned only with split-antecedent anaphora. The
results suggest the pre-trained mention/cluster rep-
resentations are suitable for low-resource tasks that
reply heavily on such representations.

6.4 Analysis

In this section, we carry a qualitative analysis on
the system outputs to find out the main courses of
the performance gaps between the gold and pre-
dicted settings. We also report a more detailed
comparison between our system and the Yu et al.
(2020a) system to see if there is a systematic differ-
ence between the two systems on the gold settings.

The Challenge of Using Predicted Setting The
split-antecedent anaphora resolution task is more
complex than its single-antecedent counterpart.
The semantic relation between each individual
antecedent and the anaphora is not identity, but
element-of; and the number of antecedents can
also vary. The results on evaluations with gold
mentions and gold split-antecedent anaphors pro-
vided are promising. However, when evaluated
using predicted mentions we have two main chal-
lenges: anaphora recognition and noisy candidate
mentions/clusters. For anaphora recognition, our
best model (PRE-TRAINED) only recalls 45% of
the anaphors. The performance of our anaphora
recognition is affected by the predicted mentions,
and further capped by the fact that we only attempt
to classify as split-antecedent the mentions classed
as discourse-new by the base model. To assess
the impact of these two factors, we computed the
recall of split-antecedent anaphors by predicted
mentions and discourse-new mentions. Virtually
all split-antecedent anaphors are recalled among
the predicted mentions–98.33%–but only 65% are
recalled among the discourse-new mentions. This
has a big impact on our results for split anaphora
recognition, since 35% of the anaphors are not ac-
cessible to our system. To understand the impact of
this gap on the result, we supply to our system the
98.33% of split-antecedent anaphors recognized as
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predicted. We keep everything else– predicted men-
tions, and clusters–unchanged. When run this way,
our system achieves a lenient F1 score of 47.7%,
which is 11.3 p.p. better than the score (36.4%)
achieved using predicted anaphors, although still
20.4% lower than the model trained and evalu-
ated with gold mentions and gold split-antecedent
anaphors (68.1%). We suggest this additional dif-
ference is mainly a result of noise in the predicted
mentions and clusters. Overall, then, the noise
in the predicted mentions and clusters contributed
2/3 of the score difference, while problems with
anaphora recognition are responsible for the rest.

In Depth Comparison with Yu et al. (2020a).
Next, we compared our model’s outputs in the gold
setting with those of the best model of Yu et al.
(2020a) in more detail. We split the test set in
two different ways and compute the system perfor-
mances on different categories. First, we follow Yu
et al. (2020a) and split the split antecedent anaphors
in the test set into two classes according to the num-
ber of gold split-antecedents: one class includes
the anaphors with two split-antecedents, whereas
the second class includes the anaphors with three
or more split-antecedents (about 23% of the total).
Table 6 compares these two classes. As we can see
from the Table, with lenient evaluation the two sys-
tems work equally well for the anaphors with two
split-antecedents, but our model is 8.5% better for
mentions with three or more split-antecedents. In
terms of strict evaluation, our model outperforms
the (Yu et al., 2020a) model by 8.7% and 14.3% for
two classes respectively. Overall, the model pre-
sented here achieved substantial performance gains
on anaphors with three or more split-antecedents.

We then split the data into two classes accord-
ing to a different criterion: the part-of-speech of
the anaphor. The first class consists of pronoun
anaphors, such as “they” or “their”. The second
class consists of all other split antecedent anaphors,
such as “those companies” or “both”. As shown
in Table 7, the (Yu et al., 2020a) model achieves
better scores for pronoun anaphors (mainly “they”
and “their”). However, our new model outperforms
the old system with non-pronominal anaphors by
5.4% according to lenient F1, and doubled their
strict accuracy.

7 Conclusions

In this paper, we introduced a neural system per-
forming both single and split-antecedent anaphora

Yu et al. Our model
Count Lenient Strict Lenient Strict

2 46 71.9 45.7 70.9 54.4
3+ 14 52.5 0.0 61.0 14.3

Table 6: Scores for anaphors with different number of
antecedents.

Yu et al. Our model
Count Lenient Strict Lenient Strict

PRP 24 82.4 58.3 76.4 54.2
Other 36 57.5 19.4 62.9 38.9

Table 7: Scores for pronoun and other anaphors.

resolution, and evaluated the system in a more re-
alistic setting than previous work. We extended
the state-of-the-art coreference system on ARRAU

to also resolve split-antecedent anaphors. The pro-
posed system achieves much better results on split-
antecedent anaphors when compared with the base-
lines using heuristic and random selection when
using the predicted mentions/clusters. Our sys-
tem also achieves better results than the previous
state-of-the-art system on ARRAU (Yu et al., 2020a),
which only attempted single-antecedent anaphora
resolution from gold mentions, when evaluated on
the same task.

In addition, we also proposed an extension of the
LEA coreference evaluation metric to evaluate both
single and split-antecedent anaphors in a single
metric.
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