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Abstract
Natural language processing (NLP) research
combines the study of universal principles,
through basic science, with applied science tar-
geting specific use cases and settings. How-
ever, the process of exchange between ba-
sic NLP and applications is often assumed
to emerge naturally, resulting in many inno-
vations going unapplied and many important
questions left unstudied. We describe a new
paradigm of Translational NLP, which aims to
structure and facilitate the processes by which
basic and applied NLP research inform one
another. Translational NLP thus presents a
third research paradigm, focused on under-
standing the challenges posed by application
needs and how these challenges can drive in-
novation in basic science and technology de-
sign. We show that many significant advances
in NLP research have emerged from the in-
tersection of basic principles with application
needs, and present a conceptual framework
outlining the stakeholders and key questions
in translational research. Our framework pro-
vides a roadmap for developing Translational
NLP as a dedicated research area, and identi-
fies general translational principles to facilitate
exchange between basic and applied research.

1 Introduction

Natural language processing (NLP) lies at the in-
tersection of basic science and applied technolo-
gies. However, translating innovations in basic
NLP methods to successful applications remains a
difficult task in which failure points often appear
late in the development process, delaying or pre-
venting potential impact in research and industry.
Application challenges range widely, from changes
in data distributions (Elsahar and Gallé, 2019) to
computational bottlenecks (Desai et al., 2020) and
integration with domain expertise (Rahman et al.,
2020). When unanticipated, such challenges can
be fatal to applications of new NLP methodologies,
leaving exciting innovations with minimal practical
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Figure 1: Interactions between linguistic theory, model
development, and applications in NLP research. Solid
lines indicate moving from basic research to applica-
tions, and dashed lines indicate how applied research
feeds back into basic study. Translational NLP devel-
ops processes to realize this exchange.

impact. Meanwhile, real-world applications may
rely on regular expressions (Anzaldi et al., 2017)
or unigram frequencies (Slater et al., 2017) when
more sophisticated methods would yield deeper in-
sight. When successful translations of basic NLP
insights into practical applied technologies do oc-
cur, the factors contributing to this success are
rarely analyzed, limiting our ability to learn how to
enable the next project and the next technology.

We argue for a third kind of NLP research, which
we call Translational NLP. Translational NLP re-
search aims to understand why one translation suc-
ceeds while another fails, and to develop general,
reusable processes to facilitate more (and easier)
translation between basic NLP advances and real-
world application settings. Much NLP research
already includes translational insights, but often
considers them properties of a specific application
rather than generalizable findings that can advance
the field. This paper illustrates why general prin-
ciples of the translational process enhance mutual
exchange between linguistic inquiry, model devel-
opment, and application research (illustrated in Fig-
ure 1), and are key drivers of NLP advances.
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We present a conceptual framework for Trans-
lational NLP, with specific elements of the trans-
lational process that are key to successful appli-
cations, each of which presents distinct areas for
research. Our framework provides a concrete path
for designing use-inspired basic research so that
research products can effectively be turned into
practical technologies, and provides the tools to
understand why a technology translation succeeds
or fails. A translational perspective further enables
factorizing “grand challenge” research questions
into clearly-defined pieces, producing intermediate
results and driving new basic research questions.
Our paper makes the following contributions:

• We characterize the stakeholders involved in
the process of translating basic NLP advances
to applications, and identify the roles they play
in identifying new research problems (§3.1).

• We present a general-purpose checklist to use
as a starting point for the translational pro-
cess, to help integrate basic NLP innovations
into applications and to identify basic research
opportunities arising from application needs
(§3.2).

• We present a case study in the medical domain
illustrating how the elements of our Transla-
tional NLP framework can lead to new chal-
lenges for basic, applied, and translational
NLP research (§4).

2 Defining Translational NLP

2.1 A third type of research

A long history of distinguishing between basic and
applied research (Bush, 1945; Shneiderman, 2016)
has noted that these terms are often relative; one
researcher’s basic study is the application of an-
other’s theory. In practice, basic and applied re-
search in NLP are endpoints of a spectrum, rather
than discrete categories. As use-inspired research,
most NLP studies incorporate elements of both ba-
sic and applied research. We therefore define our
key terms for this paper as follows:

Basic research Basic NLP research is focused
on universal principles: linguistically-motivated
study that guides model design (e.g., Recasens and
Hovy (2009) for coreference, Kouloumpis et al.
(2011) for sentiment analysis), or modeling tech-
niques designed for general use across different
settings and genres. Basic research tends to focus

on one problem at a time, and frequently leverages
established datasets to provide a well-controlled
environment for varying model design. Basic NLP
research is intended to take the long view: it takes
the time to investigate fundamental questions that
may yield rewards for years to come.

Applied research Applied NLP research studies
the intersection of universal principles with specific
settings; it is responsive to the needs of commer-
cial applications or researchers in other domains.
Applied research utilizes real-world datasets, often
specialized, and involves sources of noise and un-
reliability that complicate capturing linguistic regu-
larities of interest. Applications often involve tack-
ling multiple interrelated problems, and demand
complex combinations of tools (e.g. using OCR
followed by NLP to analyze scanned documents).
Applied research is concrete and immediate, but
may also be reactive and have a limited scope.

Translational research The term translational
is used in medicine to describe research that aims to
transform advances in basic knowledge (biological
or clinical) to applications to human health (Butte,
2008; Rubio et al., 2010). Translational research is
a distinct discipline bridging basic science and ap-
plications (Pober et al., 2001; Reis et al., 2010). We
adopt the term Translational NLP to describe re-
search bridging the gap between basic and applied
NLP research, and aiming to understand the pro-
cesses by which each informs the other. Section 4
presents one in-depth example; other salient ex-
amples include comparing the efficacy of domain
adaptation methods for different application do-
mains (Naik et al., 2019) and developing reusable
software for processing specific text genres (Neu-
mann et al., 2019). Translational research occupies
a middle ground in the timeframe and complex-
ity of solutions: it develops processes to rapidly
and effectively integrate new innovations into appli-
cations to address emerging needs, and facilitates
integration between pipelines of NLP tools.

2.2 Translation is bidirectional

In addition to “forward” motion of basic inno-
vations into practical applications, the needs of
real-world applications also provide significant op-
portunities for new fundamental research. Shnei-
derman’s model of “two parents, three children”
(Shneiderman, 2016) provides an informative pic-
ture: combining a practical problem and a theo-
retical model yields (1) a solution to the problem,
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(2) a refinement of the theory, and (3) guidance for
future research. Tight links between basic research
and applications have driven many major advances
in NLP, from machine translation and dialog sys-
tems to search engines and question answering.
Designing research with application needs in mind
is a key impact criterion for both funding agencies
(Christianson et al., 2018) and industry (Spector
et al., 2012), and helps to identify new, high-impact
research problems (Shneiderman, 2018).

2.3 NLP as a translational field: a historical
perspective

The NLP field has always lain at the nexus of ba-
sic and applied research. Application needs have
driven some of the most fundamental developments
in the field, leading to explosions in basic research
in new topics and on long-standing challenges.

The need to automatically translate Russian sci-
entific papers in the early years of the Cold War led
to some of the earliest NLP research, creating the
still-thriving field of machine translation (Slocum,
1985). Machine translation has since helped drive
many significant advances in basic NLP research,
from the adoption of statistical models in the 1980s
(Dorr et al., 1999) to neural sequence-to-sequence
modeling (Sutskever et al., 2014) and attention
mechanisms (Bahdanau et al., 2015).

Similarly, the rapid growth of the World Wide
Web in the 1990s created an acute need for tech-
nologies to search the growing sea of information,
leading to the development of NLP-based search
engines such as Lycos (Mauldin, 1997), followed
by PageRank (Page et al., 1999) and the growth of
Google. The need to index and monetize vast quan-
tities of textual information led to an explosion in
information retrieval research, and the NLP field
and ever-growing web data continue to co-develop.

In a more recent example, IBM identified auto-
mated question answering (QA) as a new business
opportunity in a high-information world, and de-
veloped the Watson project (Ferrucci et al., 2010).
Watson’s early successes catapulted QA into the
center of NLP research, where it has continued
to drive both novel technology development and
benchmark evaluation datasets used in hundreds of
basic NLP studies (Rajpurkar et al., 2016).

These and other examples illustrate the key role
that application needs have played in driving inno-
vation in NLP research. This reflects not only the
history of the field but the role that integrating basic

and applied research has in enriching scientific en-
deavor (Stokes, 1997; Branscomb, 1999; Narayana-
murti et al., 2013; Shneiderman, 2016). An inte-
grated approach has been cited by both Google
(Spector et al., 2012) and IBM (McQueeney, 2003)
as central to their successes in both business and
research. The aim of our paper is to facilitate this
integration in NLP more broadly, through present-
ing a rubric for studying and facilitating the process
of getting both to and back from application.

2.4 A practical definition
For an operational definition of Translational NLP,
it is instructive to consider four phases of a generic
workflow for tackling a novel NLP problem using
supervised machine learning.1 First, a team of NLP
experts works with subject matter experts (SMEs)
to identify appropriate corpora, define concepts
to be extracted, and construct annotation guide-
lines for the target task. Second, SMEs use these
guidelines to annotate natural language data, us-
ing iterative evaluation, revision of guidelines, and
re-annotation to converge on a high-quality gold
standard set of annotations. Third, NLP experts use
these annotations to train and evaluate candidate
models of the task, joined with SMEs in a feed-
back loop to discuss results and needed revisions
of goals, guidelines, and gold standards. Finally,
buy-in is sought from SMEs and practitioners in
the target domain, in a dialogue informed by empir-
ical results and conceptual training. NLP adoption
in practice identifies failure cases and new informa-
tion needs, and the process begins again.

This laborious process is needed because of the
gaps between expertise in NLP technology and ex-
pertise in use cases where NLP is applied. NLP
expertise is needed to properly formulate problems,
and subsequently to develop sound and generaliz-
able solutions to those problems. However, for up-
take (and therefore impact) to occur, these solutions
must be based in deep expertise in the use case do-
main, reified in a computable manner through anno-
tation or knowledge resource development. These
distinct forms of expertise are generally found in
different groups of individuals with complementary
perspectives (see e.g. Kruschwitz and Hull (2017)).

Given this gap, we define Translational NLP as
the development of theories, tools, and processes
to enable the direct application of advanced NLP

1While workflows will vary for different classes of NLP
problems, dialogue between NLP experts and subject matter
experts is at the heart of developing almost all NLP solutions.



4128

tools in specific use cases. Implementing these
tools and processes, and engaging with basic NLP
experts and SMEs in their use, is the role of the
Translational NLP scientist. Although every use
case has unique characteristics, there are shared
principles in designing NLP solutions that under-
gird the whole of the research and application pro-
cess. These shared translational principles can be
adopted by basic researchers to increase the im-
pact of NLP methods innovations, and guide the
translational researcher in developing novel efforts
targeting fundamental gaps between basic research
and applications. The framework presented in this
paper identifies common variables and asks specific
questions that can drive this research.

For examples of this process in practice, it is
valuable to examine NLP development in the medi-
cal domain. Use-inspired NLP research has a long
history in medicine (Sager et al., 1982; Ranum,
1989), frequently with an eye towards practical ap-
plications in research and care. Chapman et al.
(2011) highlight shared tasks as a key step towards
addressing numerous barriers to application of NLP
on clinical notes, including lack of shared datasets,
insufficient conventions and standards, limited re-
producibility, and lack of user-centered design (all
factors presenting basic research opportunities, in
addition to NLP task improvement). Several ef-
forts have explored the development of graphical
user interfaces for conducting NLP tasks, including
creation and execution of pipelines (Cunningham,
2002; D’Avolio et al., 2010, 2011; Soysal et al.,
2018), although these efforts generally do not re-
port on evaluation of usability by non-NLP experts.
Usability has been investigated by other studies in-
volving more focused tools aimed at specific NLP
tasks, including concept searching (Hultman et al.,
2018), annotation (Gobbel et al., 2014b,a), and in-
teractive review of and update of text classification
models (Trivedi et al., 2018, 2019; Savelka et al.,
2015). Recent research has utilized interactive NLP
tools for processing cancer research (Deng et al.,
2019) and care (Yala et al., 2017) documents. By
constructing, designing, and evaluating tools de-
signed to simplify specific NLP processes, these
efforts present examples of Translational NLP.

3 The Translational NLP framework

We present a conceptual framework for Transla-
tional NLP, to formalize shared principles describ-
ing how basic and applied research interact to cre-

ate NLP solutions. Our framework codifies fun-
damental variables in this process, providing a
roadmap for negotiating the design of methodolog-
ical innovations with an eye towards potential ap-
plications. Although it is certainly not the case
that every basic research advance must be tied to
a downstream application need, designing founda-
tional technologies for potential application from
the beginning produces more robust technologies
that are easier to transfer to practical settings, in-
creasing the impact of basic research. By defining
common variables, our framework also provides
a structure for aligning application needs to basic
technologies, helping to identify potential failure
points and new research needs early for faster adop-
tion of basic NLP advances.

Our framework has two components:

1. A definition of broad classes of stakeholders
in translating basic NLP innovations into ap-
plications, including the roles that each stake-
holder plays in defining and guiding research;

2. A checklist of fundamental questions to struc-
ture the Translational NLP process, and to
guide identification of basic research opportu-
nities in specific application cases.

3.1 Stakeholders
NLP applications involve three broad categories
of stakeholders, illustrated in Figure 2. Each con-
tributes differently to technology implementation
and identifying new research challenges.

NLP Experts NLP researchers bring key ana-
lytic skills to enable achieving the goals of an ap-
plied system. NLP experts provide methodological
sophistication in models and paradigms for analyz-
ing language, and an understanding of the nature
of language and how it captures information. NLP
researchers provide much-needed data expertise,
including skills in obtaining, cleaning, and format-
ting data for machine learning and evaluation, as
well as conceptual models for representing informa-
tion needs. NLP scientists identify research oppor-
tunities in modeling information needs, bringing
linguistic knowledge into the equation, and devel-
oping appropriate tools for application and reuse.

Subject Matter Experts Subject matter experts
(SMEs) provide the context that helps to determine
what information is important to analyze and what
the outputs of applied NLP systems mean for the
application setting. SMEs, from medical practition-
ers to legal scholars and financial experts, bring
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Figure 2: Attributes of key stakeholders in the translational process for NLP.

an understanding of where relevant information
can be found (e.g., document sources (Fisher et al.,
2016) and sections (Afzal et al., 2018)), which can
help identify new types of language for basic re-
searchers to study (Burstein, 2009; Crossley et al.,
2014) and new challenges such as sparse complex
information (Newman-Griffis and Fosler-Lussier,
2019) and higher-level structure in complex docu-
ments (Naik et al., 2019). In addition, the context
that domain experts offer in terms of the needs of
target applications feeds back into evaluation meth-
ods in the basic research setting (Graham, 2015).

SMEs are also the consumers of NLP solutions,
as tools for their own research and applications.
Thus, SMEs must also be consultants regarding
the trustworthiness and reliability of proposed so-
lutions, and can identify key application-specific
concerns such as security requirements.

End Users The end users of NLP solutions span
a range of roles, environmental contexts, and goals,
each of which guides implementation factors of
NLP applications. For example, collecting patient
language in a lab setting, in a clinic, or at home will
pose different challenges in each setting, which can
inform the development of basic NLP methods. Ap-
plication settings may have limited computational
resources, motivating the development of efficient
alternatives to high-resource models (e.g. Wang
et al. (2020)), and have different human factors
affecting information collection and use.

End users have different constraints on data
availability, in terms of how much data of what
types can be obtained from whom; the extensive
work funded by DARPA’s Low Resource Lan-
guages for Emergent Incidents (LORELEI) initia-
tive (Christianson et al., 2018) is a testament to the
basic research arising from these constraints.

Beyond the individual domain expert, end users

use NLP technologies to address their own infor-
mation needs according to the priorities of their
organizations. These organizational priorities may
conflict with existing modeling assumptions, high-
lighting new opportunities for basic research to
expand model capabilities. For example, Shah et al.
(2019) highlight the conceptual gap between pre-
dictive model performance in medicine and clinical
utility to call for new research on utility-driven
model evaluation. Spector et al. (2012) make a sim-
ilar point about Google’s mission-driven research
identifying unseen gaps for new basic research.

The role of the Translational NLP researcher
is to interface with each of these stakeholders, to
connect their goals, constraints, and contributions
into a single applied system, and to identify new
research opportunities where parts of this system
conflict with one another. Notably, this creates an
opportunity for valuable study of SME and end user
research practices, and for participatory design of
NLP research (Lazar et al., 2017). Our checklist,
introduced in the next section, provides a structured
framework for this translational process.

3.2 Translational NLP Checklist

The path between basic research and applications is
often nebulous in NLP, limiting the downstream im-
pact of modeling innovations and obscuring basic
research challenges found in application settings.
We present a general-purpose checklist covering
fundamental variables in translating basic research
into applications, which breaks down the transla-
tional process into discrete pieces for negotiation,
measurement, and identification of new research
opportunities. Our checklist, illustrated in Figure 3,
is loosely ordered from initial design to application
details. In practice, these items reflect different ele-
ments of the application process and are constantly
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Information Need What is the goal, and what 
are the outputs?

Data 
Characteristics

Which genres and linguistic 
communities are involved?

Task Paradigms Which existing NLP tasks are 
involved?

Available 
Resources

What knowledge sources and 
infrastructure is available?

NLP Technologies What models and methods 
are appropriate?

Evaluation How is model performance 
evaluated?

Interpretation How can model decisions be 
interpreted for accountability?

Application 
Engineering

How can this tool be made 
consumable and reusable?

Des
ign

App
lica
tion

Figure 3: The eight items in our Translational NLP
checklist, with key questions for each. Items are
loosely ordered from initial design to application de-
tails, but should be regularly revisited in a feedback
loop between application stakeholders.

re-evaluated via a feedback loop between the ap-
plication stakeholders. While many of these items
will be familiar to NLP researchers, each represents
potential points of failure in translation. Designing
the research process with these variables in mind
will produce basic innovations that are more eas-
ily adopted for application and more directly con-
nected to the challenges of real-world use cases.

We illustrate our items for two example cases:
Ex. 1: Analysis of multimodal clinical data
(scanned text, tables, images) for patient diagnosis.
Ex. 2: Comparison of medical observations to gov-
ernment treatment and billing guidelines.

Information Need The initial step that guides
an application is defining inputs and outputs, at two
levels: (1) the overall problem to address with NLP
(led by the subject matter expert), and (2) the for-
mal representation of that problem (led by the NLP
expert). The overall goal (e.g., “extract informa-
tion on cancer from clinical notes”) determines the
requirements of the solution, and is central to iden-
tifying a measurement of its effectiveness. Once
the overall goal is determined, the next step is a
formal representation of that goal in terms of text
units (documents, spans) to analyze and what the
analysis should produce (class labels, sequence
annotations, document rankings, etc.). These re-
quirements are tailored to specific applications and
may not reflect standardized NLP tasks. For ex-

ample, a clinician interested in the documented
reasoning behind a series of laboratory test orders
needs: (1) the orders themselves (text spans); (2)
the temporal sequence of the orders; and (3) a text
span containing the justification for each order.
Ex. 1: type, severity, history of symptoms.
Ex. 2: clinical findings, logical criteria.

Data Characteristics A clear description of the
language data to be analyzed is key to identifying
appropriate NLP technologies. Data characteris-
tics include the natural language(s) used (e.g., En-
glish, Chinese), the genre(s) of language to analyze
(e.g., scientific abstracts, quarterly earnings reports,
tweets, conversations), and the type(s) of linguis-
tic community that produced them (e.g., medical
practitioners, educators, policy experts). This infor-
mation identifies the sublanguage(s) of interest (Gr-
ishman and Kittredge, 1986), which determine the
availability and development of appropriate NLP
tools (Grishman, 2001). Corporate disclosures, fi-
nancial news reports, and tweets all require differ-
ent processing strategies (Xing et al., 2018), as do
tweets written by different communities (Blodgett
et al., 2016; Groenwold et al., 2020).
Ex. 1: clinical texts, lab reports.
Ex. 2: clinical texts, legal guidelines.

Task Paradigms To address the overall goal
with an NLP solution, it must be formulated in
terms of one or more well-defined NLP problems.
Many real-world application needs do not clearly
correspond to a single benchmark task formulation.
For example, our earlier example of the sequence
of lab order justifications can be formulated as a
sequence of: (1) Named Entity Recognition (treat-
ing the order types as named entities in a medical
knowledge base); (2) time expression extraction
and normalization; (3) event ordering; and (4) evi-
dence identification. Breaking the application need
into well-studied subproblems at design time en-
ables faster identification and development of rele-
vant NLP technologies, and highlights any portions
of the goal that do not correspond with a known
problem, requiring novel basic research.
Ex. 1: document type classification, OCR, informa-
tion extraction (IE), patient classification.
Ex. 2: IE, natural language inference.

Available Resources The question of resources
to support an NLP solution includes two distinct
concerns: (1) knowledge sources available to rep-
resent salient aspects of the target task; and (2)
compute infrastructure for NLP system execution
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and deployment. Knowledge sources may be sym-
bolic, such as knowledge graphs or gazetteers, or
representational, such as representative corpora or
pretrained language models. For some applica-
tions, powerful knowledge sources may be avail-
able (such as the UMLS (Bodenreider, 2004) for
biomedical reasoning), while others are severely
under-resourced (such as emerging geopolitical
events, which may lack even relevant social me-
dia text). These resources in turn affect the kinds
of technologies that are appropriate to use.

In terms of infrastructure, NLP technologies are
deployed on a wide variety of systems, from com-
mercial data centers to mobile devices. Each set-
ting presents constraints of limited resources and
throughput requirements (Nityasya et al., 2020).
An application environment with a high maxi-
mum resource load but low median availability
is amenable to batch processing architectures or
approaches with high pretraining cost and low
test-time cost. Pretrained word representstions
(Mikolov et al., 2013; Pennington et al., 2014) and
language models (Peters et al., 2018; Devlin et al.,
2019) are one example of fundamental technolo-
gies that address such a need. Throughput require-
ments, i.e., how much language input needs to be
analyzed in a fixed amount of time, often require
engineering optimization for specific environments
(Afshar et al., 2019), but the need for faster runtime
computation has led to many advances in machine
learning for NLP, such as variational autoencoders
(Kingma and Welling, 2014) and the Transformer
architecture (Vaswani et al., 2017).

Ex. 1: UMLS, high GPU compute.
Ex. 2: UMLS, guideline criteria, low compute.

NLP Technologies The interaction between task
paradigms, data characteristics, and available re-
sources helps to determine what types of implemen-
tations are appropriate to the task. Implementa-
tions can be further broken down into representa-
tion technologies, for mathematically representing
the language units to be analyzed; modeling ar-
chitectures, for capturing regularities within that
language; and optimization strategies (when us-
ing machine learning), for efficiently estimating
model parameters from data. In low-resource set-
tings, highly parameterized models such as BERT
may not be appropriate, while large-scale GPU
server farms enable highly complex model archi-
tectures. When the overall goal is factorized into
multiple NLP tasks, optimization often involves

joint or multi-task learning (Caruana, 1997).
Ex. 1: large language models, dictionary matching,
OCR, multi-task learning.
Ex. 2: dictionary matching, small neural models.

Evaluation Once a solution has been designed,
it must be evaluated in terms of both the specific
NLP problem(s) and the overall goal of the applica-
tion. Standardized NLP task formulations typically
define benchmark metrics which can be used for
evaluating the NLP components: F-1 and AUC for
information extraction, MRR and NDCG for infor-
mation retrieval, etc. The design of these metrics
is its own extensive area of research (Jones and
Galliers, 1996; Hirschman and Thompson, 1997;
Graham, 2015), and even established evaluation
methods may be constantly revised (Grishman and
Sundheim, 1995). Critically for the translational
researcher, some metrics may be preferred over
others (e.g., precision over recall), and standard-
ized evaluation metrics may not reflect the goals
and needs of applications (Friedman and Hripcsak,
1998). Improvements on standardized evaluation
metrics (such as increased AUC) may even obscure
degradations in application-relevant performance
measures (such as decreased process efficiency).
Translational researchers thus have the opportunity
to work with NLP experts and SMEs to identify
or develop metrics that capture both the effective-
ness of the NLP system and its contribution to the
application’s overall goal.
Ex. 1: F-1, patient outcomes.
Ex. 2: F-1, billing rates.

Interpretation Interpretability and analysis of
NLP and other machine learning systems has been
the focus of extensive research in recent years
(Gilpin et al., 2018; Belinkov and Glass, 2019),
with debate over what constitutes an interpretation
(Rudin, 2019; Wiegreffe and Pinter, 2019) and de-
velopment of broad-coverage software packages
for ease of use (Nori et al., 2019). For the trans-
lational researcher, the first step is to engage with
SMEs to determine what constitutes an acceptable
interpretation of an NLP system’s output in the ap-
plication domain (which may be subject to specific
legal or ethical requirements around accountability
in decision-making processes). This leads to an
iterative process, working with SMEs and NLP ex-
perts to identify appropriately interpretable models,
or to identify the need for new basic research on
interpretability within the target domain.
Ex. 1: Evidence identification, model audits.
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Ex. 2: Criteria visualization, model audits.
Application Engineering Last but not least, the

translational process must also be concerned with
the implementation of NLP solutions, both in terms
of the specific technologies used and how they can
fit in to broader information processing pipelines.
The development of general-purpose NLP architec-
tures such as the Stanford CoreNLP Toolkit (Man-
ning et al., 2014), spaCy (Honnibal and Montani,
2017), and AllenNLP (Gardner et al., 2018), as
well as more targeted architectures such as the
clinical NLP framework presented by Wen et al.
(2019), provide well-engineered frameworks for
implementing new technologies in a way that is
easy for others to both adopt and adapt for use in
their own pipelines. Standardized data exchange
frameworks such as UIMA (Ferrucci and Lally,
2004) and JSON make implementations more mod-
ular and easier to wire together. Leveraging tools
and frameworks like these, together with good soft-
ware design principles, makes NLP tools both eas-
ier to apply downstream and easier for other re-
searchers to incorporate into their own work.
Ex. 1: Multiple interoperable technologies.
Ex. 2: Single decision support tool.

3.2.1 Translating methodology advances into
existing applications

While the checklist items can guide initial design
of a new NLP solution, they are equally applica-
ble for incorporating new basic NLP innovations
into existing solutions. Any new innovation can be
reviewed in terms of our checklist items to iden-
tify new requirements or constraints (e.g., higher
computational cost, more intuitive interpretability
measures). The translational researcher can then
work with NLP experts, SMEs, and the end users to
determine how to incorporate the new innovation
into the existing solution.

4 Case Study: NLP for Disability Review

We illustrate our Translational NLP framework us-
ing our recent line of research on developing NLP
tools to assist US Social Security Administration
(SSA) officials in reviewing applications for dis-
ability benefits (Desmet et al., 2020). The goal of
this effort was to help identify relevant pieces of
medical evidence for making decisions about dis-
ability benefits, analyzing vast quantities of medi-
cal records collected during the review process.

The stakeholders in this setting included: NLP
researchers (interested in developing generalizable

methods); subject matter experts in disability and
rehabilitation; and SSA end users (limited com-
puting, large data but strictly controlled, overall
priorities of efficiency and accuracy).

The Translational NLP checklist for this setting
is shown in Table 1. This combination of factors
has led to several translational studies, including:

• Newman-Griffis et al. (2018) developed a low-
resource entity embedding method for do-
mains with minimal knowledge sources (lack
of Available Resources).

• Newman-Griffis and Zirikly (2018) analyzed
the data size and representativeness tradeoff
for information extraction in domains lacking
large corpora (Available Resources).

• Newman-Griffis and Fosler-Lussier (2019)
developed a flexible method for identifying
sparse health information that is syntactically
complex (challenging Data Characteristics).

• Newman-Griffis and Fosler-Lussier (2021)
compared the Task Paradigms of classification
and candidate selection paradigms for medical
coding in a new domain.

While these studies do not systematically ex-
plore Evaluation, Interpretation, or Application En-
gineering, they illustrate how the characteristics of
one application setting can lead to a line of Trans-
lational NLP research with broader implications.
Several further challenges of this application area
remain unstudied: for example, representing and
modeling the complex timelines of persons with
chronic health conditions and intermittent health
care and adapting NLP systems to highly variable
medical language from practitioners and patients
around the US. These present intriguing challenges
for basic NLP research that can inform many other
applications beyond this case study.

Of course, these studies are far from the only
examples of Translational NLP research. Many
studies tackle translational questions, from domain
adaptation (shifts in Data Characteristics) and low-
resource learning (limited Available Resources),
and the growing NLP literature in domain-specific
venues such as medical research, law, finance, and
more involves all aspects of the translational pro-
cess. Rather, this case study is simply one illustra-
tion of how an explicitly translational perspective
in study design can identify and connect broad op-
portunities for contributions to NLP research.
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Information Need Overall goal: Improve disability benefits review process by highlighting relevant information
Formal representation: Spans of evidence, with attributes for activity type and level of limitation

Data Characteristics Medical records and administrative forms from USA, mostly English

Task Paradigms Information extraction (spans), information retrieval (documents), span classification (activity
and limitations)

Available Resources Minimal knowledge sources for function and disability, no public corpora; US government
computing systems; high throughput requirements (thousands of records/day)

NLP Technologies Low-latency, low-compute sequence models; rule-based systems

Evaluation Standard metrics (F-1, accuracy). Information retrieval metrics reported for use case prototypes.

Interpretation Interpretation needs primarily around human decision-making; NLP tools highlight and organize
information in context. No ML interpretability reported in published results.

Application
Engineering

Open-source implementations using standardized frameworks for preprocessing. No data ex-
change reported.

Table 1: Translational NLP checklist items for Disability Review case study, including notes on published results.

5 Discussion

Our paradigm of Translational NLP defines and
gives structure to a valuable area of research not
explicitly represented in the ACL community. We
note that translational research is not meant to re-
place either basic or applied research, nor do we in-
tend to say that all basic NLP studies must be tied to
specific application needs. Rather we aim to high-
light the value of studying the processes of turn-
ing basic innovations into successful applications.
These processes, from scaling model computation
to redesigning tools to meet changing application
needs, can inform new research in model design,
domain adaptation, etc., and can help us understand
why some tools succeed in application while oth-
ers fail. In addition to helping more innovations
successfully translate, the principles outlined in
this paper can be of use to basic and applied NLP
researchers as well as translational ones, in identi-
fying common variables and concerns to connect
new work to the broader community.

Translational research is equally at home in in-
dustry and academia, and already occurring in both.
While resource disparities between industrial and
academic research increasingly push large-scale
modeling efforts out of reach of academic teams, a
translational lens can help to identify rich areas of
knowledge-driven study that do not require exas-
cale data or computing resources. The general prin-
ciples and interdisciplinary nature of translational
research make it a natural fit for public knowledge-
driven academic settings, while its applicability to
commercial needs is highly relevant to industry.

Our framework provides a starting point for the
translational process, which will evolve differently

for every project. The specifics of different applica-
tions will expand our initial questions in different
ways (e.g., “Data Characteristics” may involve mul-
timodal data, or different language styles), and the
dynamics of collaborations will shift answers over
time (e.g., a change in evaluation criteria may mo-
tivate different model training approaches). Our
checklist provides a minimal set of common ques-
tions, and can function as a touchstone for discus-
sions throughout the research process, but it can
and should be tailored to the nature of each project.
Our framework is itself a preliminary characteriza-
tion of Translational NLP research, and will evolve
over time as the field continues to develop.

6 Conclusion

We have outlined a new model of NLP research,
Translational NLP, which aims to bridge the gap
between basic and applied NLP research with gen-
eralizable principles, tools, and processes. We iden-
tified key types of stakeholders in NLP applica-
tions and how they inform the translational process,
and presented a checklist of common variables and
translational principles to consider in basic, transla-
tional, or applied NLP research. The translational
framework reflects the central role that integrating
basic and applied research has played in the devel-
opment of the NLP field, and is illustrated by both
the broad successes of machine translation, speech
processing, and web search, as well as many indi-
vidual studies in the ACL community and beyond.
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