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Abstract

Most current neural machine translation mod-

els adopt a monotonic decoding order of either

left-to-right or right-to-left. In this work, we

propose a novel method that breaks up the lim-

itation of these decoding orders, called Smart-

Start decoding. More specifically, our method

first predicts a median word. It starts to decode

the words on the right side of the median word

and then generates words on the left. We evalu-

ate the proposed Smart-Start decoding method

on three datasets. Experimental results show

that the proposed method can significantly out-

perform strong baseline models.

1 Introduction

Neural machine translation (NMT) has made re-

markable progress in recent years. There has been

much progress in encoder-decoder framework, in-

cluding recurrent neural models (Wu et al., 2016),

convolutional models (Gehring et al., 2017) and

self-attention models (Vaswani et al., 2017). Par-

ticularly, the Transformer, only relying on self-

attention networks, has achieved state-of-the-art

performance on different benchmarks.

Most encoder-decoder frameworks generate tar-

get translation in a completely monotonic order

from left to right (L2R) or from right to left (R2L).

However, monotonic generation is not always the

best translation order for the machine translation

task. As shown in Figure 1, “乐 (happy)” needs

to leverage the future context “开朗 (lively)” to

make disambiguation of the translation in English

sentence, because “乐” has two meanings: “happy

to do something” and “Le (person name)”. In this

example, the L2R baseline model produced an in-

correct translation of “Le (person name)” due to

unseen future context.

∗Contribution during internship at Microsoft Research
Asia.

†Corresponding author.

Source: ,     .

Ref:    Happy to talk with people , Yang Sen has a lively personality

Left-to-Right Translation: Le talks with people , Yang Sen is very lively .

Translation:    Chatting with people , Yang Sen has a lively personality . 

glad    with people     chat            Yang Sen   personality     very

(a)

(b)
Smart-Start: Yang Sen has a lively personality . [m] Chatting with people ,

Figure 1: Example of baseline method (a) and our

Smart-Start method (b). “[m]” is designed to indicate

the termination of the right part generation. “[m]” is

an abbreviation of “[middle]”.

There are some related works on non-monotonic

text generation (Mehri and Sigal, 2018; Welleck

et al., 2019; Gu et al., 2019; Zhou et al., 2019b,a).

Inspired by these works, we are extremely inter-

ested in considering choosing one proper position

to start decoding instead of L2R or R2L order. We

propose a novel method called the Smart-Start de-

coding method. Specifically, our method starts the

generation of target words from the right part of

the sentence “Yang Sen has a lively personality .”,

followed by the generation of the left part of the

sentence “Chatting with people ,”. The intuition is

that humans do not always translate the sentence

from the first word to the last word. Instead, hu-

mans may translate different parts of the sentence

before organizing the whole translation.

As shown in Figure 1, our Smart-Start method

predicts the word “Yang” in the median position

of the target sentence, together with the follow-

ing words of the right part of the sentence “Yang

Sen has a lively personality .”. Once our model

produces the specific symbol “[m]” which is de-

signed to indicate the termination of the right part

generation, we will start predicting the left part of

the sentence “Chatting with people ,”. Finally, we

obtain the final translation from the intermediate

translation by solely placing the right part “Yang

Sen has a lively personality .” in front of the left

part and removing the additional symbol “[m]”.
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We introduce a weighted maximum likelihood algo-

rithm to automatically learn this kind of decoding

order by giving weights to translations with differ-

ent start positions.

To verify the effectiveness of our method, we

conduct experiments on three benchmarks, includ-

ing IWSLT14 German-English, WMT14 English-

German, and LDC Chinese-English translation

tasks. Experimental results show that our method

outperforms monotonic and non-monotonic base-

lines. In conclusion, we propose a simple but ef-

fective method, which predicts from the median

words to the last position’s word followed by the

word predictions on the left part of the sentence.

2 Smart-Start Machine Translation

In this section, we present the details of the pro-

posed hard and soft Smart-Start methods. Our

method first predicts a median word and then pre-

dicts the words on the right part, and then generates

words on the left.

2.1 Method

Our method is split into two phases. First, given

the source sentence X = (x1, x2, . . . , xm), we

use the model Pθ(Zk|X) to predict the inter-

mediate translation Zk starting from the mid-

dle position of the sentence, where Zk =
(yn−k+1, . . . , yn,[m], y1, . . . , yn−k) and “[m]”

is the kth word of Zk. Second, we construct the

final translation Y from the the intermediate trans-

lation Zk. As shown in Figure 2, our method pre-

dicts a word yn−k+1, given the source sentence.

Then our model predicts the right part of sentence

(yn−k+1, . . . , yn) at a time. Furthermore, when it

predicts the symbol “[m]”, we start predicting the

left part of the sentence (y1, . . . , yn−k). Then, we

obtain the final translation Y from the intermedi-

ate translation Zk. Our method is based on the

Transformer architecture.

2.2 Smart-Start Decoding

Our Smart-Start method is extremely interested

in breaking up the limitation of this decoding or-

der. Different from the traditional L2R and R2L

(Sennrich et al., 2016a), our Smart-Start method

predicts median word yn−k+1 over the source sen-

tence. Furthermore, we predict the right part of tar-

get sentence (yn−k+1, . . . , yn) sequentially which

is on the right part of this word. Finally, we gener-

ate the rest words (y1, . . . , yn−k) on the left part of

the sentence given the source sentence and left part.

Formally, we build our Smart-Start neural machine

translation model as below:

Pθ(Zk|X)

= Pθ(yn−k+1|X)×
∏

n−k+1<i≤n

Pθ(yi|X; yk, . . . , yi−1)

× Pθ([m]|X; yn−k+1, . . . , yn)

×
∏

1≤j≤n−k

Pθ(yj |X; y1, . . . , yj−1, yn−k+1, . . . , yn)

(1)

where i,j denote the ith and jth words in the target

sentence. [m] is the kth word of Zk.

2.3 Smart-Start Training
Since there is no annotation of initial words to

start the decoding, we construct the intermediate

sentences with different start positions and then

score them with hard or soft Smart-Start methods.

Therefore, given the source sentence X of

length m and target sentence Y of length n, we

can construct n intermediate sentences Zk =
(yn−k+1, . . . , yn,[m], y1, . . . , yn−k)(k ∈ [1, n]).
Because the target sentence length n can be too

long, we randomly sample S intermediate sen-

tences from n intermediate sentences to construct

the subset SY , where S is the number of sam-

pled start positions. We apply scores calculated

by the hard or soft Smart-Start methods to the loss

of different intermediate samples to teach model

which start position is better. This procedure can be

described by the weighted log-likelihood (WML)

(Dimitroff et al., 2013) reward function L over the

dataset D as below:

L =
∑

X,Y ∈D

∑

Zk∈SY

wk logPθ(Zk|X) (2)

where SY is the subset containing S samples. wk is

calculated by the hard or soft Smart-Start methods.

For the hard Smart-Start method, we use the

median training loss of intermediate samples as

threshold to select appropriate samples to update

model parameters. We calculate wk by comparing

the training loss generated by the current model of

each Zk from SY with the threshold as below:

wk = δLk≥Lmed
(3)

where δLk≥Lmed
equals to 1 if Lk ≥ Lmed else 0.

Lmed is the median loss of the sample in SY . For

each intermediate sentence Zk ∈ SY , the objective

of Zk is denoted as Lk = logPθ(Zk|X).
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Figure 2: Overview of our Smart-Start method.

The soft Smart-Start method uses BLEU metric

to evaluate intermediate samples with different start

positions. It calculates BLEU points between the

translation Ztrans
k and the reference Zk. Softmax

function is used to reweigh the wk as below:

wk = Softmax
Zk∈SY

(BLEU(Ztrans
k , Zk)) (4)

where Ztrans
k is the intermediate translation gener-

ated by the current training model Pθ(Zk|X) using

the teacher forcing method. Zk is the intermediate

sentence from SY .

3 Experiments

In this section, we evaluate our method on three

popular benchmarks.

3.1 Dataset

IWSLT14 De-En corpus contains 16K training

sequence pairs. The valid and test set both con-

tain 7K sentence pairs. LDC Zh-En corpus is

from the LDC corpus. The training data contains

1.4M sentence pairs. NIST 2006 is used as the

valid set. NIST 2002, 2003, 2005, 2008, and 2012

are used as test sets. WMT14 En-De corpus has

4.5M sentence pairs. The newstest2013 and the

newstest2014 are used as valid the test set. All

languages are tokenized by Moses (Koehn et al.,

2007) and our Chinese tokenizer, and then encoded

using byte pair encoding (BPE) (Sennrich et al.,

2016b) with 40K merge operations. The evaluation

metric is BLEU (Papineni et al., 2002).

3.2 Training Details

We conduct experiments on 8 NVIDIA 32G V100

GPUs and set batch size as 1024 tokens. In

the training stage, we adopt the Adam optimizer

BL
EU

Number of Sampled Start Positions

Figure 3: Results of different values of the number of

sampled start positions on IWSLT14 De→En test set.

(β1 = 0.9, β2 = 0.98) (Kingma and Ba, 2015) us-

ing the inverse sqrt learning rate schedule (Vaswani

et al., 2017) with a learning rate of 0.1 and 4000

warming-up steps. We set the number of sampled

start positions S = 8 described as Equation 2.

For the LDC Zh→En translation task, we use

the Transformer_base setting with the embedding

size as 512 and feed-forward network (FFN) size

as 2048. For the IWSLT14 De→En translation
task, we use the Transformer_small setting with

embedding size as 512 and FFN size as 1024. The

dropout is set as 0.3 and weight decay as 0.0001

to prevent overfitting. For the WMT14 En→De
translation task, we use the Transformer_big set-

ting with embedding size as 1024 and FFN size

as 4096. Following the previos work (Ott et al.,

2018), we accumulate the gradient for 16 iterations

to simulate a 128-GPU environment.

3.3 Baselines and Results

We compare our method with the other base-

lines, including Transformer (Vaswani et al.,

2017), RP Transformer (Shaw et al., 2018), Light-
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Zh → En MT06 MT02 MT03 MT05 MT08 MT12 Avg

LightConv (Wu et al., 2019) 43.41 42.63 45.02 43.93 35.95 34.61 40.43

DynamicConv (Wu et al., 2019) 43.65 42.60 45.80 43.60 36.91 35.55 40.89

Transformer (our implementation) 44.55 44.60 46.55 45.81 36.57 35.10 41.73

Hard Smart-Start (our method) 45.15 44.62 47.59 46.75 38.52 36.83 42.86

Soft Smart-Start (our method) 45.70 44.61 48.10 47.63 39.18 37.66 43.44

Table 1: Case-insensitive evaluation results on LDC Zh→En translation task with BLEU-4 scores (%). The “Avg”

column means the averaged result of all NIST test sets. All baselines are re-implemented by ourselves.

Distribution of Start PositionsDistribution of Start Positions Distribution of Start Positions
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Figure 4: The distribution of different start positions of our approach. We counted the location of

the start tag [m] in the intermediate translation Z. The kth position represents the sentence Zk =
(yn−k+1, . . . , yn,[m], y1, . . . , yn−k). Translations of our Smart-Start method with a length of 10, 15, 20 sepa-

rately contain 313, 249, and 190 samples from the IWSLT14 German→English test set.

De → En BLEU

LightConv (Wu et al., 2019) 34.80

DynamicConv (Wu et al., 2019) 35.20

Transformer (our implementation) 34.63

Hard Smart-Start (our method) 35.25

Soft Smart-Start (our method) 35.61

Table 2: Case-insensitive BLEU-4 scores (%) on

IWSLT14 De→En translation task.

Conv/DynamicConv (Wu et al., 2019), and SB-

NMT (Zhou et al., 2019a).

For the results of IWSLT14 De→En in Table 2

and LDC Zh→En machine translation tasks in Ta-

ble 1, our soft method significantly gets an improve-

ment of +0.98/+1.71 BLEU points than a strong

Transformer model.

For the WMT14 En→De task, the results of our

model are presented in Table 3. Besides, we also

compare our method with other self-attention mod-

els. The SB-NMT model gets a BLEU points of

29.21 which decodes from L2R and R2L simul-

taneously and interactively. Our method achieves

an improvement of +0.56 BLEU points over the

Transformer baseline. Besides, our soft Smart-Start

method outperforms the SB-NMT model by +0.80

En → De BLEU

RP Transformer (Shaw et al., 2018) 29.20

SB-NMT (Zhou et al., 2019a) 29.21

LightConv (Wu et al., 2019) 28.90

DynamicConv (Wu et al., 2019) 29.70

Transformer (our implementation) 29.36

Hard Smart-Start (our method) 29.45

Soft Smart-Start (our method) 30.01

Table 3: Case-sensitive BLEU-4 scores (%) on

WMT14 En→De translation task.

BLEU points.

3.4 Discussions and Analysis
Number of Sampled Start Positions To explore

the effect of the number of sampled start positions

S described as Equation 2, we conduct experiments

on the IWSLT14 De→En translation task. Figure

3 shows that our hard and soft Smart-Start meth-

ods have gradually improved performance by in-

creasing the value of S. Soft Smart-Start method

outperforms the hard method under different set-

tings. The soft method achieves a higher BLEU

score when the number of sampled start positions

equals 7. The proper interval (4 ≤ S ≤ 12) is rec-

ommended to use in our method. In conclusion, the
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soft Smart-Start method can bring a more positive

influence on BLEU scores.

Distribution of Start Positions During the in-

ference stage, our model generates intermediate

translation Zk, where [m] is in the kth position.

We explore the distribution of the positions of sym-

bol [m]. We separately collect all translations, the

length of which equals 10, 15, and 20 tokens. For

example, in the left picture of Figure 4, we count

the positions of [m] in all sentences with a length

of 10. Also, the middle picture reports the posi-

tions of sentences with a length of 15 and the right

picture reports these sentences with a length of 20.

Figure 4 shows that other positions in the sentence

also occupy a certain proportion. Therefore, the

conventional left-to-right decoding order is not al-

ways the best decoding order, and starting from

other positions is beneficial for translation quality,

which verifies our motivation.

Linguistic Analysis Based on the Figure 4, we

further try making linguistic analysis. Three pic-

tures show that the [m] tends to occur in the

1th position, where the intermediate translation is

Z1 = (yn,[m], y1, . . . , yn−1). We observe that

yn mostly is the punctuation such as period, ques-

tion mark, and exclamation mark under this situa-

tion. Conjunction and preposition words are also

inclined to appear at the beginning of sentences

such as “or” and “but”, which indicates clauses are

easier to be placed at the beginning. It is consistent

with our intuition that punctuation marks are most

easy to predict at first.

De → En Training time (hours) BLEU (%)

Transformer 0.9 34.6

Our method 1.8 35.4

Table 4: The comparison of the training time and

the model performance between the Transformer base-

line and our method on the IWSLT14 De→En trans-

lation task. Both experiments are conducted on the 8-

V100-GPU environment. To save the training time, we

choose a small value of the number of sampled start

positions 4 to save time in the practical scenario.

Training Time The Transformer baseline costs

nearly 0.9 hours and our method costs nearly 1.8

hours (only ×2 lower speed) on the IWSLT-2014

De→En translation task, where both experiments

are conducted on the 8-V100-GPU environment

with 1024 max tokens. Our method doesn’t re-

quire many additional training steps to converge

compared with the Transformer baseline. Our

method outperforms the Transformer baseline by

+0.8 BLEU points. Another factor affecting the

training time is the number of sampled start po-

sitions. We also investigate the proper value of

the number of sampled start positions. In prac-

tice, smaller value such as 4 or 6 can also bring

significant improvements. Therefore, we choose

a smaller value of the sampled start positions and

use multiple GPUs to keep the training time in a

reasonable range.

4 Related Work

Neural Machine Translation (NMT) has attracted a

lot of attention recently. The architecture of NMT

models has evolved quickly so that there are many

different models (Sutskever et al., 2014; Bahdanau

et al., 2015; Luong et al., 2015; Kalchbrenner et al.,

2016; Gehring et al., 2017; Vaswani et al., 2017; He

et al., 2018). Asynchronous and synchronous Bidi-

rectional decoding Model (Zhang et al., 2018; Zhou

et al., 2019b) exploits the contexts generated in the

R2L manner to help the L2R translation. Previ-

ous non-monotonic methods (Serdyuk et al., 2018;

Zhang et al., 2018; Zhou et al., 2019a,b; Zhang

et al., 2019; Welleck et al., 2019) jointly leverage

L2R and R2L information. Non-monotonic meth-

ods are also widely used in many tasks (Huang

et al., 2018; Shu and Nakayama, 2018), such as

parsing (Goldberg and Elhadad, 2010), image cap-

tion (Mehri and Sigal, 2018), and dependency pars-

ing (Kiperwasser and Goldberg, 2016; Li et al.,

2019). Similarly, insertion-based method (Gu et al.,

2019; Stern et al., 2019) predicts the next token and

its position to be inserted.

5 Conclusion

In this work, we propose a novel method that breaks

up the limitation of these decoding orders, called

Smart-Start decoding. Our method predicts a me-

dian word and then generates the words on the right

part. Finally, it generates words on the left. Exper-

imental results show that our Smart-Start method

significantly improves the quality of translation.
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