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Abstract

Volatility prediction is complex due to the
stock market’s stochastic nature. Existing re-
search focuses on the textual elements of finan-
cial disclosures like earnings calls transcripts
to forecast stock volatility and risk, but ig-
nores the rich acoustic features in the com-
pany executives’ speech. Recently, new mul-
timodal approaches that leverage the verbal
and vocal cues of speakers in financial disclo-
sures significantly outperform previous state-
of-the-art approaches demonstrating the ben-
efits of multimodality and speech. However,
the financial realm is still plagued with a se-
vere underrepresentation of various communi-
ties spanning diverse demographics, gender,
and native speech. While multimodal mod-
els are better risk forecasters, it is imperative
to also investigate the potential bias that these
models may learn from the speech signals of
company executives. In this work, we present
the first study to discover the gender bias in
multimodal volatility prediction due to gender-
sensitive audio features and fewer female ex-
ecutives in earnings calls of one of the world’s
biggest stock indexes, the S&P 500 index. We
quantitatively analyze bias as error disparity
and investigate the sources of this bias. Our re-
sults suggest that multimodal neural financial
models accentuate gender-based stereotypes.1

1 Introduction

Earnings calls are publicly available, quarterly con-
ference calls where CEOs discuss their company’s
performance and future prospects with outside ana-
lysts and investors (Qin and Yang, 2019; Sawhney
et al., 2020b). They consist of two sections: a
prepared delivery of performance statistics, anal-
ysis and future expectations, and a spontaneous
question-answer session to seek additional informa-
tion not disclosed before (Keith and Stent, 2019).

1Code & Implementation: https://github.com/
midas-research/multimodal-bias-naacl

Researchers have studied the Post Earnings An-
nouncement Drift (PEAD) to observe that state-
ments made by upper management affect the way
information is digested and acted upon impact-
ing short-term price movements (Ball and Brown,
1968; Bernard and Thomas, 1989; Yang et al.,
2020).

Audio features contextualize text and connotate
speaker’s emotional and psychological state (Fish
et al., 2017; Jiang and Pell, 2017; Burgoon et al.,
2015; Bachorowski, 1999). Hence, when used with
textual features, audio features significantly deter-
mine the effect of earning calls on the stock market
(Qin and Yang, 2019; Yang et al., 2020). Past re-
search has shown that audio features such as speak-
ers’ pitch, intensity, etc. vary greatly across gen-
ders (Mendoza et al., 1996; Burris et al., 2014;
Latinus and Taylor, 2012). Moreover, female exec-
utives are highly underrepresented in these earnings
calls(Agarwal, 2019; Investments, 2017). The vari-
ation in audio features is amplified by deep learning
models due to a dearth of female training examples
and is manifested as a gender bias. The system
learns unneeded correlations between stock volatil-
ity and sensitive attributes like gender, accent, etc.
It further perpetuates gender-based stereotypes and
generalizations like female executives are less con-
fident than male executives (Lonkani, 2019), men
are assessed as more charismatic than female exec-
utives under identical conditions (Novák-Tót et al.,
2017), and nurses are female and doctors are male
(Saunders and Byrne, 2020). Biased models further
perpetuate stereotypes that can harm underrepre-
sented communities, specifically in the financial
and corporate world. Novák-Tót et al. (2017) even
show that female speakers have to deliver better
acoustic-melodic performance to seem as charis-
matic as men.

Taking a step towards fair risk forecasting mod-
els, we analyze gender bias by studying the er-
ror disparity in the state-of-the-art for multimodal

https://github.com/midas-research/multimodal-bias-naacl
https://github.com/midas-research/multimodal-bias-naacl
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volatility prediction, MDRM (Qin and Yang, 2019).

2 Background: Why Study Bias?

Bias in Finance Public financial data is impacting
virtually every aspect of investment decision mak-
ing (Perić et al., 2016; Brynjolfsson et al., 2011).
Prior research shows that NLP methods leveraging
social media (Sawhney et al., 2020a), news (Du
and Tanaka-Ishii, 2020), and earning calls (Wang
and Hua, 2014) can accurately forecast financial
risk. Companies and investors use statistical and
neural models on multimodal financial data to fore-
cast volatility (Cornett and Saunders, 2003; Trippi
and Turban, 1992) and minimize risk. These mod-
els although effective, may be tainted by bias due
to individual and societal differences, often unin-
tended (Mehrabi et al., 2019). For example, models
trained on the audio features extracted from CEO’s
speech in earnings calls (Qin and Yang, 2019), may
be prone to bias given the underrepresentation of
several demographics across race, gender, native
language, etc. in the financial realm.

Bias in AI Bias is prevalent in AI based neural
models owing to the lack of diversity in training
data (Torralba and Efros, 2011; Tommasi et al.,
2017). The design and utilization of AI mod-
els trained on gender imbalanced data, pose po-
tential deprivation of opportunities to underrepre-
sented groups such as females(Niethammer, 2020;
Dastin, 2018). With over 75% of AI profession-
als being men, male experiences also dominate
algorithmic creation (Forum, 2018). In terms of
natural language representation, embeddings such
as word2vec and GloVe, trained on news articles
may inherit gender stereotypes (Packer et al., 2018;
Bolukbasi et al., 2016; Park et al., 2018). Recent
studies also show the presence of bias in speech
emotion recognition (Li et al., 2019).

Bias in AI and Finance With the advent of AI
and Big Data, companies are intelligently using
data to measure performance (Newman, 2020).
But seldom do enterprises check on the imbal-
ance in gathered data. Women still represent fewer
than 20% positions in the financial-services C-suite
(Chin et al., 2018) and only 5% of Fortune-500
CEOs are women (Suresh and Guttag, 2019). Stud-
ies show that models trained on gender imbalanced
data reduce the chances for women to get capi-
tal investments or loans (Gürdeniz et al., 2020).
Apart from that, using feature representations in-

Figure 1: Model architecture used for training the multi-
modal audio-text model for evaluating the gender spe-
cific performance inspired by (Qin and Yang, 2019)

trinsic to different genders can inculcate semantic
gender bias (Li et al., 2019; Suresh and Guttag,
2019). Professional studies have found that men
tend to self-reference using ‘I’, ‘me’ and ‘mine’
whereas women tend to reference the team, like
‘we’, ‘our’ and ‘us’ (Investments, 2017). Although
there is great progress in mitigating bias in text,
understanding its presence in multimodal speech
based analysis, particularly in real world scenar-
ios like corporate earnings calls analysis remain
an understudied yet promising research direction.
Another study found that despite having identical
credibility, female CEOs are perceived as less capa-
ble to attract growth capital (Bigelow et al., 2014).

3 Formulation and Experiments

Stock volatility Following Kogan et al. (2009);
Sawhney et al. (2020c), for a given stock, with a
close price of pi on trading day i, we calculate the
average log volatility over n days following the day
of the earnings call as:

v[0,n] = ln

√∑n
i=1(ri − r̄)2

n

 (1)

where, the return price ri is defined as pi
pi−1
−1 and

r̄ is the average of ri from 0 to τ .

Volatility Prediction Consider each earnings
call E, with aligned audio recordings A and text
transcripts T . The earnings calls are divided into
separate distributions based on the gender of the
speaker to analyse the effect of gender on the model
performance. Building upon the work of Qin and
Yang (2019); Yang et al. (2020) our main focus
is to learn a function f(E{T,A}) → v[0,τ ], over
τ ∈ {3, 7, 15, 30} days to evaluate the bias for
different time periods.
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Split Date Range (2017) Female Male Total

Train 17 Jan- 3 Aug 11% 89% 391
Val 3 Aug- 24 Oct 12.5% 87.5% 56
Test 24 Oct- 21 Dec 14.3% 85.7% 112

12% 88% 559

Table 1: Details of the Train, Validation and Test sets

Earnings Call Data We use the dataset2 created
by Qin and Yang (2019) comprising 559 pub-
lic earnings calls audio recordings with their tran-
scripts for 277 companies in the S&P 500 index
spanning over a year of earnings calls. The details
of the dataset splits for training have been given
in Table 1. For the identification of gender bias
in the earnings calls acoustics, we first map the
speakers from all the earnings calls to their self re-
ported gender. For this we perform web scrapping
from Reuters3 (pronouns), Crunchbase4 where the
genders are self-declared and the available genders
from the Wikidata API. The genders extracted cor-
respond only to male and female, 11.8% of the
speakers are female and 88.2% are male which mo-
tivates us to estimate the error disparity in model
performance.

Evaluating Gender Bias We use performance
error disparity ∆G = MSEf − MSEm where
f and m stand for female and male respec-
tively (Saunders and Byrne, 2020). A higher ∆G
is indicative of bias is in favour of the male distri-
bution.

Model Architecture and Training We use the
state-of-the-art, Multimodal Deep Regression
Model (MDRM) Qin and Yang (2019), as shown
in Figure 1. MDRM takes utterancde level audio A
and text T embeddings and models them through
two contextual BiLSTM layers followed by late
multimodal fusion. The fused text-audio features
are fed to another BiLSTM followed by two fully-
connected layers. MDRM is trained end-to-end by
optimizing the mean square error (MSE) between
the predicted and true stock volatility.

Training Setup For textual features we use Fin-
BERT embeddings5 (Araci, 2019) with default

2https://github.com/GeminiLn/
EarningsCall_Dataset

3https://www.thomsonreuters.com/en/
profiles.html

4https://www.crunchbase.com/discover/
people

5https://github.com/ProsusAI/finBERT

∆G = MSEF −MSEM ↓
τ = 3 τ = 7 τ = 15 τ = 30

MDRM(A) 0.38 0.16 0.26 0.18
MDRM(T) 0.33 0.12 0.20 0.16
MDRM(AT) 0.30 0.11 0.28 0.14

Table 2: Modality specific ∆G i.e. the difference be-
tween the MSE for female and male distributions for 3,
7, 15 and 30 days over 5 runs. Here A stands for Audio
only, T for Text only and AT for Audio and Text.

Test MSE ↓
Combined Male Female

Audio
τ = 3 0.738±0.03 0.684±0.02 1.059±0.04

τ = 7 0.395±0.03 0.372±0.02 0.536±0.07

τ = 15 0.292±0.02 0.255±0.02 0.511±0.05

τ = 30 0.208±0.02 0.182±0.02 0.362±0.05

Text
τ = 3 0.662±0.05 0.615±0.04 0.943±0.09

τ = 7 0.390±0.08 0.372±0.08 0.495±0.11

τ = 15 0.252±0.04 0.224±0.05 0.419±0.08

τ = 30 0.225±0.07 0.202±0.06 0.362±0.10

Audio + Text
τ = 3 0.644±0.08 0.603±0.07 0.898±0.10

τ = 7 0.362±0.08 0.345±0.06 0.457±0.07

τ = 15 0.308±0.07 0.272±0.06 0.552±0.14

τ = 30 0.185±0.02 0.165±0.02 0.308±0.04

Table 3: Test MSE results over 5 runs for the individual
and combined Audio-Text modalities and male-female
distributions for all time periods i.e. 3, 7, 15, 30 days.

parameters and for audio cues, we extract 26-
dimensional vectors with Praat (Boersma and
Van Heuven, 2001) extracted by Qin and Yang
(2019), spanning Shimmer, Jitter, Pitch, Intensity,
etc. We report the complete list in Table 4. The
maximum number of audio clips in any call is 520.
Hence, we zero-pad the calls that have less than
520 clips. The model is trained on TPU version 3.8
for 20 epochs using a learning rate of 0.001. The
hyperparameters are tuned on the validation set de-
fined by Qin and Yang (2019) following the same
preprocessing. We perform 5 end-to-end runs with
early stopping over the validation loss to arrive at
the decision of training for 20 epochs.

4 Results and Analysis

Bias in Multimodal Volatility Prediction For
evaluating gender bias in MDRM, we analyze the
error disparity quantified by ∆G for the individual
text and audio modalities and their combination for
τ = 3,7,15,30 days. We tabulate the error disparity

https://github.com/GeminiLn/EarningsCall_Dataset
https://github.com/GeminiLn/EarningsCall_Dataset
https://www.thomsonreuters.com/en/profiles.html
https://www.thomsonreuters.com/en/profiles.html
https://www.crunchbase.com/discover/people
https://www.crunchbase.com/discover/people
https://github.com/ProsusAI/finBERT
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Figure 2: MSE mean values for 5 runs of different train
set distributions for multimodal MDRM with τ = 3.
Shading indicates error bounds upto the first standard
deviation across MSE for 5 independent runs per train-
ing ratio split.

in terms of ∆G across modalities in Table 2 and
performance in Table 3. We observe that for all
modalities the error for male distribution is consis-
tently less than that of female distribution for both
short- and long-term durations. Although the audio
modality improve model performance significantly,
it has the highest amount of bias as audio features
for males and females vary significantly. Further,
the skewed distribution of speakers’ gender in the
earnings calls amplifies this error disparity.

Over amplification refers to bias that occurs in
a system during model fitting. The model learns im-
perfect generalizations between the attributes and
the final labels and amplifies them while predicting
on the test set. In our case, since female examples
are very less in comparison to the male counter-
parts, the model discriminates between male and
female examples by inferring insufficient informa-
tion beyond its source base rate as shown in Table 2.
To study this effect we train the model for differ-
ent training sample ratios as per gender to observe
performance variation in Figure 2. We note that
as the male:female training ratio increases, the test
loss is amplified the most in audio modality fol-
lowed by audio+text and text. Test MSEmale de-
creases in comparison to increase in MSEfemale.
MSEfemale increases as the percentage of female
examples in the train set decreases as the gener-
alised notions of this underrepresented community
are learnt and the incorrect inferences do not harm
the overall performance much. Since the difference
in test loss for male and female is significantly
less when the number of samples across genders

Audio features P value Bonferroni

Pitch Analysis
Mean Fundamental Frequency (F0) ↑
Stdev Fundamental Frequency (F0) ↑↑↑
Number of pulses ↓↓↓↓ *
Number of periods ↓↓↓↓ *
Degree of voice breaks ↑↑↑
Maximum Pitch ↓
Minimum Pitch ↓
Voiced Frames ↑
Voiced to Unvoiced Ratio ↑
Voiced to Total Ratio ↑

Intensity Analysis
Mean Intensity ↑↑
SD Energy ↑↑↑
Maximum Intensity ↑↑
Minimum Intensity ↓

Voice Analysis
Local Jitter ↑↑↑↑ *
Local Absolute Jitter ↑↑↑↑ *
Relative Average Perturbation Jitter ↑↑↑↑ *
Period Perturbation Quotient-5 Jitter ↑↑↑↑ *
ddp Jitter ↑↑↑↑ *
Local Shimmer ↑↑↑↑ *
Local dB Shimmer ↑↑↑ *
apq3 Shimmer ↑↑↑↑ *
apq5 Shimmer ↑↑↑↑ *
apq11 Shimmer ↑↑↑↑ *
dda Shimmer ↑↑↑↑ *

Harmonicity Analysis
Harmonic to Noise Ratio ↓↓↓

Table 4: Comparison of the audio features for male and
female speaker distributions. The number of bars sig-
nify the magnitude of the P -value and the direction in-
dicates the relation of the mean of the male distribu-
tion with that of the female distribution. ↑↑↑↑ : mean
of male is higher than female with P < 0.001, ↑↑↑ :
P < 0.01, ↑↑ : P < 0.05, ↑ : P >= 0.05. Features
whose difference is statistically significant for the male
and female distributions under the two-tailed T-test af-
ter the Bonferroni correction are marked with *.

is equal. Through this observation, we note that
performance for female examples can be improved
by augmentation techniques or cross domain adap-
tation, which we leave for future work.

Semantic Bias occurs in embeddings and repre-
sentations of audio and textual data which learn
unwanted stereotypes. For our case semantic bias
occurs as the audio features are significantly differ-
ent for male and female distributions. We analyze
each audio feature for both distributions in Table
4. We find that 13 out of 26 features have a statis-
tically significant difference under the two-tailed
T-test (α = 0.05) after applying Bonferroni cor-
rection (Weisstein, 2004), a multiple comparison
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correction when multiple statistical tests are being
performed. These differences in audio features of
executives’ speech can amplify the error disparity,
as models may associate certain gender specific
features such as Voice analysis-based features like
Shimmer and Jitter.

5 Ethical Considerations

Degradation in the performance of speech models
could be due to discernible noise and indiscernible
sources like demographic bias: age, gender, di-
alect, culture, etc (Meyer et al., 2020; Hashimoto
et al., 2018; Tatman and Kasten, 2017). Studies
also show that AI can deploy biases against black
people in criminal sentencing (Angwin et al., 2016;
Tatman and Kasten, 2017). Although we only ac-
count for the gender bias in our study, we acknowl-
edge that there could exist other kinds of bias due
to age, accent, culture, ethnic and regional dispari-
ties in audio cues, as the publicly available earnings
calls majorly have companies belonging to the US.
Moreover, only publicly available earnings calls
have been used limiting the scope of the data. This
also limits the availability of genders in the data to
only male and female. In the future, we hope to
increase the amount of data to expand our study to
more categories and types of sensitive attributes.

6 Conclusion

Earnings calls provide company insights from ex-
ecutives proving to be high risk-reward opportuni-
ties for investors. Recent multimodal approaches
that utilize these acoustic and textual features to
predict the financial risk achieve state-of-the-art
performance, but overlook the gender bias associ-
ated with speech. We analyze the gender bias in
volatility prediction of earnings calls due to gender
sensitive audio features and underrepresentation
of women in executive positions. We observe that
the while adding speech features improves perfor-
mance, it also perpetuates gender bias, as the audio
modality has the highest error disparity. We further
probe into the sources of bias, and analyze audio
feature variations across gender, and perform ex-
periments with varying training data distributions.
Our study presents the first analysis of its kind to
analyze gender bias in multimodal financial fore-
casting to bridge the gap between fairness in AI,
neural financial forecasting and multimodality.
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