
Proceedings of the 2021 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, pages 3662–3677

June 6–11, 2021. ©2021 Association for Computational Linguistics

3662

MULTIPROVER: Generating Multiple Proofs for Improved
Interpretability in Rule Reasoning

Swarnadeep Saha Prateek Yadav Mohit Bansal
UNC Chapel Hill

{swarna, prateek, mbansal}@cs.unc.edu

Abstract
We focus on a type of linguistic formal rea-
soning where the goal is to reason over ex-
plicit knowledge in the form of natural lan-
guage facts and rules (Clark et al., 2020). A re-
cent work, named PROVER (Saha et al., 2020),
performs such reasoning by answering a ques-
tion and also generating a proof graph that ex-
plains the answer. However, compositional
reasoning is not always unique and there may
be multiple ways of reaching the correct an-
swer. Thus, in our work, we address a new
and challenging problem of generating multi-
ple proof graphs for reasoning over natural lan-
guage rule-bases. Each proof provides a differ-
ent rationale for the answer, thereby improv-
ing the interpretability of such reasoning sys-
tems. In order to jointly learn from all proof
graphs and exploit the correlations between
multiple proofs for a question, we pose this
task as a set generation problem over struc-
tured output spaces where each proof is rep-
resented as a directed graph. We propose
two variants of a proof-set generation model,
MULTIPROVER. Our first model, Multilabel-
MULTIPROVER, generates a set of proofs via
multi-label classification and implicit condi-
tioning between the proofs; while the sec-
ond model, Iterative-MULTIPROVER, gener-
ates proofs iteratively by explicitly condition-
ing on the previously generated proofs. Exper-
iments on multiple synthetic, zero-shot, and
human-paraphrased datasets reveal that both
MULTIPROVER models significantly outper-
form PROVER on datasets containing multiple
gold proofs. Iterative-MULTIPROVER obtains
state-of-the-art proof F1 in zero-shot scenarios
where all examples have single correct proofs.
It also generalizes better to questions requir-
ing higher depths of reasoning where multiple
proofs are more frequent.

1 Introduction

Formal reasoning over explicit multi-sentence
knowledge (Newell and Simon, 1956) has often

proved to be challenging (Musen and Van Der Lei,
1988), owing to the difficulty in creating logical
forms from such sentences, thereby restricting the
application of semantic parsers (Zettlemoyer and
Collins, 2005; Berant et al., 2013; Berant and
Liang, 2014). Thus, in a recent work, Clark et al.
(2020) bypass the creation of intermediate logi-
cal forms and show that transformers (Vaswani
et al., 2017) can act as “soft theorem provers" by an-
swering questions over natural language (English)
rule-bases, consisting of facts and rules. In or-
der to reliably interpret these predicted answers,
Saha et al. (2020) propose PROVER, a transformer-
based model that generates the corresponding proof
graph, thus emulating formal reasoning closely.
Consider the two example rule-bases with two ques-
tions and corresponding proofs in Figure 1, where a
proof is a directed graph consisting of the relevant
facts and rules from the corresponding rule-base.

PROVER shows good single-proof generation
accuracy but is designed and trained in a way to
generate only a single proof for each question. This
is not ideal because formal proofs are not always
unique and there may be multiple correct ways
of arriving at the answer. For example, Q1 and
Q2 in Figure 1 have three and four correct proofs
respectively. Hence, in order to enhance the human-
interpretability of linguistic formal reasoning sys-
tems, it is desirable to develop methods that can
generate multiple proofs, each providing a differ-
ent rationale for the predicted answer. Such inter-
pretable methods, while possessing the flexibility
of operating over natural language, can also aid
in verifying claims when constructing proofs from
scratch is tedious or infeasible.

We find that PROVER (Saha et al., 2020), when
trained on all proofs as independent training ex-
amples (Eq. 2) and extended to generate top-p
proofs during inference (Eq. 3), fails drastically,
achieving a low proof precision of 34%. The sub-
sequent proofs are often incorrect because it is not

3663

Facts:
F1: Bob is big. F2: Bob is blue.
F3: Bob is furry. F4: Bob is young.
F5: Dave is red. F6: Fiona is white.
F7: Harry is big. F8: Harry is red.
F9: Harry is round. F10: Harry is white.

Rules:

R1: White, round things are furry.
R2: All blue, young things are big.
R3: If something is white and young, then it is blue.
R4: If Dave is round then Dave is white.
R5: If something is blue and white then it is round.
R6: If Harry is big and Harry is white then Harry is red.
R7: All furry, red things are young.
R8: Red things are round.
R9: If something is blue then it is red.

Q1: Harry is furry. [Answer : T]

Rules:

R1: Round things are nice.
R2: Nice things are young.
R3: If something is big and not young then it is not white.
R4: If something is young and smart then it is round.
R5: All big things are young.
R6: If Bob is not white then Bob is big.
R7: Young, nice things are quiet.
R8: If something is not big then it is nice.
R9: All white things are not quiet.

Facts:
F1: Anne is round. F2: Bob is smart.
F3: Fionna is nice. F4: Fiona is round.
F5: Harry is nice. F6: Harry is quiet.
F7: Harry is smart.

Q2: Anne is not quiet. [Answer : F]

NAF

NAF

NAF

NAF

Figure 1: Diagram showing two rule-bases with rules, facts, questions, answers and all possible proofs. The first
question has three correct proofs while the second question has four correct proofs. MULTIPROVER answers both
questions correctly and also generates all the corresponding proofs accurately for each question.

trained jointly with all proofs and hence, is un-
able to exploit the inter-proof correlations and also
does not learn the correct number of proofs for
a question. Thus, we propose MULTIPROVER, a
transformer-based model that can generate a set
of proof graphs with appropriate cardinality for a
given question. Since multiple proofs can be gener-
ated in any arbitrary order, we pose this task as a set
generation problem over graphs and train MULTI-
PROVER jointly with a permutation-invariant Hun-
garian Loss (Zhang et al., 2019a,b) over all proofs.

A proof graph is generated through a node mod-
ule which selects the relevant facts and rules as part
of the proof and an edge module which determines
the edges between the chosen nodes. Similar to
PRover, we first enforce multiple structural con-
straints during training and inference to ensure that
a generated proof is valid. Next, in order to gen-
erate a set of proofs jointly, we propose our first
model, Multilabel-MULTIPROVER, a multi-label
classification framework which performs implicit
conditioning among the proofs and predicts p bi-
nary labels for each node and edge, denoting its
presence or absence in each of the p proofs that we
want to generate. It is efficient in terms of number
of parameters and training time and also achieves
a better proof F1 than PROVER. However, the
lack of explicit conditioning between the proofs is
not ideal because a question with multiple proofs
often has certain common sub-graphs across the
proofs. E.g., all the 3 proofs for Q1 in Figure 1
have the sub-graph {F10 → R1} common. Thus,
in order to exploit these correlations which Mul-
tilabel-MULTIPROVER cannot capture explicitly,
we further propose an improved variant of MULTI-
PROVER, named Iterative-MULTIPROVER, which
generates appropriate number of proofs by stacking
multiple node and edge encoders, each of which

generates one proof at each time step by condi-
tioning on the previously generated proofs. This
enables the model to better learn the correlations
between multiple proofs for a given question. To
capture the set-based nature of the task, we train
MULTIPROVER using a permutation-invariant Hun-
garian Loss (Sec. 3.5), which solves an assignment
problem between a set of predicted and gold proofs.

Empirical evaluation on synthetic and human
paraphrased QA rule-bases (Clark et al., 2020)
show that both of our MULTIPROVER models
achieve a significantly higher proof F1 compared to
PROVER while retaining the QA accuracy. Further,
on a challenging hand-authored zero-shot dataset,
where all examples have single gold proofs, Itera-
tive-MULTIPROVER achieves state-of-the-art proof
F1. It also generalizes better to questions requir-
ing higher depths of reasoning with more multiple
proofs. Overall, our contributions are:
• We address a new and challenging problem of

generating a set of multiple logical proof graphs
for reasoning over natural language rule-bases by
proposing two set-based joint models, Multilabel-
MULTIPROVER and Iterative-MULTIPROVER.1

• Iterative-MULTIPROVER’s joint training and ex-
plicit conditioning helps it to better learn the rela-
tive importance of rules and facts for a particular
question and uncover common subgraphs across
multiple proofs. Thus, compared to Multilabel-
MULTIPROVER and PROVER, it is able to trans-
fer well in zero-shot settings because it learns to
assign a soft prior over the rule-base.

• Iterative-MULTIPROVER’s conditional genera-
tion also enables it to generalize better to ques-
tions requiring higher depths of reasoning where
the presence of multiple proofs is frequent.

1Our code and models are publicly available at https:
//github.com/swarnaHub/multiPRover.

https://github.com/swarnaHub/multiPRover
https://github.com/swarnaHub/multiPRover

3664

2 Related Work

The task of rule reasoning (Clark et al., 2020) is
related to other recently proposed tasks on QA (We-
ston et al., 2015; Yang et al., 2018; Lin et al., 2019;
Tafjord et al., 2019; Richardson et al., 2020) and
NLI (MacCartney and Manning, 2014). However,
most of these tasks require implicit reasoning rules
as opposed to explicit ones and the focus is either
on broad language understanding or on single rule
application. Below we discuss MULTIPROVER’s
relation to multiple areas of NLP and ML.

Structured Explanations: There is useful previ-
ous work on developing interpretable and explain-
able models (Doshi-Velez and Kim, 2017; Rudin,
2019; Hase and Bansal, 2020; Jacovi and Goldberg,
2020) for NLP. Explanations in NLP take three ma-
jor forms – (1) extractive rationales or highlights
(Zaidan et al., 2007; Lei et al., 2016; Yu et al., 2019;
DeYoung et al., 2020) where a subset of the input
text explain a prediction, (2) free-form or natural
language explanations (Camburu et al., 2018; Ra-
jani et al., 2019; Zhang et al., 2020; Kumar and
Talukdar, 2020) that are not constrained to the in-
put, and (3) structured explanations that range from
semi-structured text (Ye et al., 2020) to chain of
facts (Khot et al., 2020; Jhamtani and Clark, 2020;
Gontier et al., 2020) to explanation graphs (based
on edges between chains of facts) (Jansen et al.,
2018; Jansen and Ustalov, 2019; Xie et al., 2020).

Generating Multiple Outputs: Generating a set
of proofs can be viewed as a task of generating
multiple structured outputs (Prasad et al., 2014).
Multiple prior studies focus on generating diverse
unstructured texts (Gimpel et al., 2013; Dai et al.,
2017; Xu et al., 2018; Raffel et al., 2020). which
broadly span two categories – (1) using improved
decoding techniques like beam search with inter-
sibling ranking penalty (Li et al., 2016), iterative
beam search (Kulikov et al., 2018), diverse beam
search (Vijayakumar et al., 2018), and sentence
codes (Shu et al., 2019), (2) varying the hidden
representations or using multiple decoders (Dai
et al., 2017; Jain et al., 2017; Shen et al., 2019). Our
baseline, PROVER-top-p, which extends PROVER

to generate top-p proofs during inference falls in
the first category while MULTIPROVER falls in the
second category, where the multiple node and edge
encoders vary the node and edge representations
for generating multiple proofs.

Machine Learning over Sets: Set-based ML
models (Zaheer et al., 2017; Lee et al., 2018; Zhang
et al., 2019a; Kosiorek et al., 2020) have a wide
range of applications including generating multiple
image captions (Vinyals et al., 2015), generating di-
verse translations (Cho et al., 2014; Bahdanau et al.,
2015), enumerating rules in a logical inference sys-
tem (Gao et al., 2019). Set problems are challeng-
ing because the number of valid solutions for a set
of size n are n!, which increases faster than expo-
nential in n and ignoring the set structure produces
sub-optimal solutions (Zhang et al., 2019a). Thus,
we use a set-based Hungarian Loss (Zhang et al.,
2019a,b) for capturing the permutation-invariant
nature of generating a set of proofs.

3 Method

3.1 Task Description and Notations

The input to our task is a tuple of the form (C,Q),
where C is a rule-base context and Q is the ques-
tion. We want to predict a binary answer A ∈
{True, False} for the question and generate a set
of proof graphs P = {P1, . . . ,Pp}, each of which
provides a diverse rationale for the answer (see
Figure 1). The context C consists of a set of facts
and rules, denoted by F andR respectively. Facts
F = {F1, . . . Ff} are unambiguous statements,
while rules R = {R1, . . . Rr} are logical state-
ments, which can be used in conjunction with the
facts to arrive at a logical conclusion. Each proof
Pi = (Vi, Ei) is a directed graph, with a set of
nodes Vi ⊆ N and a set of edges Ei ⊆ Vi × Vi,
where N = F ∪ R ∪ {NAF} and k = |N |. If a
statement (E.g. “Anne is big”) cannot be deduced
from the context, then Negation as Failure (NAF)
contains the negation of that statement (E.g. “Anne
is not big”), which is considered true in a closed-
world assumption. See appendix for more details
of the syntax of proof graphs.

3.2 Baseline PROVER Model

PROVER (Saha et al., 2020) builds on top of
RoBERTa (Liu et al., 2019) and consists of a ques-
tion answering (QA) module, a node module and
an edge module where the node and edge modules
are used to predict a single proof graph. The in-
put to RoBERTa is the concatenation of the facts,
rules and the question. The QA module takes in
the representation of the [CLS] token and predicts
a binary label for the question. The node mod-
ule computes the node embeddings N ∈ Rk×d

3665

p :

Figure 2: Plot showing the percentage of samples with
p > 1 proofs for different training datasets, DU0-DU5.

consisting of the representations of each fact, rule
and NAF where d is the embedding dimension.
The ith row ni of N denotes the embedding of
node i. A node classifier takes in these embed-
dings to output the node probabilities npi ∈ Rk
for each fact, rule and NAF being present in the
proof. The edge module computes the edge em-
beddings E ∈ Rk2×3d for every edge (i, j) through
the function φ(i, j) = [ni;nj ; (ni − nj)] where ;
is the concatenation operation and outputs prob-
abilities epi,j ∈ Rk2

of each edge being present
in the proof. PROVER is trained using the joint
cross-entropy loss over the QA, node and edge
modules. The authors pose inference as a Integer
Linear Program (ILP). Given a set of nodes and
the edge probabilities from the trained model, the
following global score over the edge probabilities
is maximized, subject to multiple structural con-
straints S that ensure the validity of a proof graph
(like checking for graph connectivity).

argmax
ei,j∈{0,1},s∈S

∑
i,j,i 6=j

epi,j ∗ei,j+(1−epi,j)∗(1−ei,j) (1)

Extending PROVER to Generate Proof-Sets:
Since Saha et al. (2020) focus on generating one
proof per question, they also train their model with
one gold proof per question. For multiple proof
generation, an obvious extension is to treat each
proof for a question as a separate training example.
Formally, for each sample l, given a context Cl, a
question Ql, an answer Al and a set of gold proofs
P li , where i ∈ {1, . . . , pl}, the extended training
dataset can be defined as:

D =

L⋃
l=1

{(
Ql, Cl,Al,P li

)pl
i=1

}
l

(2)

Once PROVER is trained with this dataset, dur-
ing inference, we generate top-p proofs by first
selecting the top-p node sets according to Eqn. 3
and then choosing the corresponding edge sets us-

Ed
ge

 E
m

be
dd

in
g

M
od

ul
e

RoBERTa

F1

Ff

R1

Rr

CLS

Q

Tokens Tokens
Embeddings

N
od

e
Em

be
dd

in
g

M
od

ul
e

Node	&	Edge
Embeddings

H
un

ga
ria

n
Pr

oo
f

Lo
ss

Cross	
Entropy	Loss

Final
Loss

Q
A

C
la

ss
ifi

er
M

ul
ti-

La
be

l N
od

e
C

la
ss

ifi
er

M
ul

ti-
La

be
l

Ed
ge

 C
la

ss
ifi

er

Q
A

Lo
ss

Base PRover

Figure 3: Multilabel-MULTIPROVER.

ing the optimization function in Eqn. 1.

argmax
v∈{0,1}k

k∑
i=1

npi ∗ vi + (1− npi) ∗ (1− vi) (3)

The top-p solutions of Eqn. 3 are v1, . . . , vp
which indicate a node’s presence or absence in the
proofs. Although simple, this approach has two ma-
jor issues. First, the lack of coupling between the
proofs can potentially confuse the model as there
are multiple possible proofs for the same (question,
context) pair. Second, inference is inflexible and
always generates a fixed number of proofs for every
example, thus leading to the generation of many
incorrect proofs (Section 5.1). As shown in Fig-
ure 1, certain questions can have multiple possible
proofs. Figure 2 demonstrates this phenomenon sta-
tistically – the datasets we experiment with (Clark
et al., 2020) contain up to 13% of the samples with
> 1 correct proof. Thus, in the light of PROVER’s
limitations, we propose two novel architectures of
a proof-set generation model, MULTIPROVER.

3.3 Multilabel-MULTIPROVER

As described in the previous section, a desired prop-
erty for generating a set of proofs is to have the
proofs conditioned on each other as opposed to
treating them independently. Thus, we propose
Multilabel-MULTIPROVER (see Figure 3), which
poses the problem of generating a set of proofs as a
multi-label classification task over all the nodes and
edges corresponding to the set of p proofs. Each
training example is a tuple

(
Ql, Cl,Al, {P li}

pl
i=1

)
,

3666

Base
PRover

F1

Ff

R1

Rr

CLS

Q

H
un

ga
ria

n
Pr

oo
f

Lo
ss

Q
A

Lo
ss

Ed
ge

C

la
ss

ifi
er

N
od

e
C

la
ss

ifi
er

Tr
an

sf
or

m
er

N
od

e
En

co
de

r
Tr

an
sf

or
m

er
Ed

ge
 E

nc
od

er

Q
A

C
la

ss
ifi

er

Ed
ge

C

la
ss

ifi
er

N
od

e
C

la
ss

ifi
er

Tr
an

sf
or

m
er

N
od

e
En

co
de

r

Ed
ge

C

la
ss

ifi
er

N
od

e
C

la
ss

ifi
er

Tr
an

sf
or

m
er

N
od

e
En

co
de

r

Second
Proof	Layer

p-1	Proof
Layer

Node	&	Edge
Embeddings

Tr
an

sf
or

m
er

Ed
ge

 E
nc

od
er

Tr
an

sf
or

m
er

Ed
ge

 E
nc

od
er

N
od

e
C

la
ss

ifi
er

Ed
ge

C

la
ss

ifi
er

Cross	
Entropy	Loss

Final
Loss

Tokens

Figure 4: Iterative-MULTIPROVER.

consisting of a set of gold proofs {P li}
pl
i=1 per exam-

ple. It consists of a QA module, a node module and
an edge module. Following PROVER (Section 3.2),
we obtain the node representations N ∈ Rk×d by
mean-pooling over the constituent RoBERTa repre-
sentations. These are then passed through a multi-
label node classifier, which consists of two linear
layers and produces the probabilities npi ∈ Rp of
a node being present in the p proofs. The node
embeddings ni and nj for a pair of nodes are trans-
formed by the function φ(i, j), described in Section
3.2, to output the edge embeddings E ∈ Rk2×3d.
We also have a multi-label edge classifier, which
takes in the edge embeddings to generate the prob-
abilities epi,j ∈ Rp of an edge (i, j) being present
in the p proofs. Lastly, a question answering mod-
ule predicts a binary answer for the question. Fol-
lowing PROVER, during training, we mask certain
impossible edges like fact to fact, rule to fact and
non-nodes. Given the outputs from the three mod-
ules, we train our model jointly over all proofs
using a set-based Hungarian Loss.

This model is advantageous because there is im-
plicit conditioning between the proofs as all the
proofs are generated in parallel from the same node
embeddings and edge embeddings. Thus, it has
no additional time or memory overhead while also
generating proof-sets better than PROVER (Section
5.1). However, it suffers from two major draw-
backs. First, since the proofs are generated in par-
allel, the model is trained by padding empty proof
graphs. Hence for higher values of p, the model
has to learn more empty proofs, which makes the

Figure 5: Plot showing the percentage of samples in
DU5 with at least one common node, common edge or
both between the proofs for varying number of proofs.

learning problem harder. Second, the proofs are
not explicitly conditioned on each other. This moti-
vates us to propose Iterative-MULTIPROVER.

3.4 Iterative-MULTIPROVER

As a motivating example for why explicit condi-
tioning among proofs is necessary, consider the
proofs for Q1 in Figure 1 where the sub-graph
{F10 → R1} is common across all the proofs. F10

and R1 are essential for answering the question
and hence conditioning on the previously gener-
ated proofs will help the model adjust the relevance
of nodes and edges in the subsequent proofs. Quan-
titatively, we find that about 75% of the samples
with 4 proofs have at least one node and one edge
common across all the proofs (see Figure 5). Thus,
we propose Iterative-MULTIPROVER (see Figure
4), which broadly consists of a base PROVER ar-
chitecture, as in Figure 3 and an additional p node
and edge encoders for generating a maximum of p
proofs. The proofs are generated iteratively until
an empty graph is generated to denote the end.

Base PROVER architecture computes the first
level of node embeddings N1 ∈ Rk×d and edge
embeddings E1 ∈ Rk2×d. These are passed respec-
tively through a node and edge classifier to generate
the node probabilities np1 ∈ Rk and edge proba-
bilities ep1 ∈ Rk2

, corresponding to the first proof.
In the next iteration, two transformer encoders gen-
erate the node and edge embeddings corresponding
to the second proof. Specifically, we condition
the generation of the next node embeddings N2 on
the previous node (N1) and edge (E1) embeddings
simultaneously. Conditioning on both is crucial
because N1 captures the relevance of nodes for the
first proof, while E1 contains information about the
strength of the connections between these nodes.
We condition E2 only on E1, because the edge em-
beddings corresponding to the nodes predicted by

3667

N1 are already updated in E1. Formally,

T1 = W (1)E1W (2),W (1) ∈ Rk×k
2

,W (2) ∈ R3d×d

N′ = [N1;T1]W (3),W (3) ∈ R2d×d

N2 = Transformer(N′); E2 = Transformer(E1)

These next set of embeddings, when passed
through the respective node and edge classifiers,
predict the node probabilities np2 ∈ Rk and edge
probabilities ep2 ∈ Rk2

, denoting the likelihood
of their presence in the second proof. We repeat
this process of stacking up node and edge encoders
for generating a maximum of p proofs. Given the
node and edge probabilities corresponding to each
proof and a QA probability from the QA module,
we train Iterative-MULTIPROVER jointly with all
proofs using the Hungarian Loss, described below.

3.5 Permutation-Invariant Hungarian Loss
Unlike words in text generation, proofs can be gen-
erated in any arbitrary order. Consequently, com-
puting cross-entropy loss between the ith predicted
proof and the ith gold proof, i ∈ {1, ..., p} will be
sub-optimal. Thus, we use a permutation-invariant
Hungarian Loss (Zhang et al., 2019a,b) which finds
the most optimal assignment between the predicted
proofs and the gold proofs such that the overall
loss is minimized. Formally, the Hungarian loss
LH and total loss L are denoted as follows:

LH = min
π∈Π

p∑
i=1

CE(npi, yπ(i)
n) + CE(epi, yπ(i)

e)

L = LQA + LH

where CE (., .) is the cross entropy loss, npi and
epi are the respective node and edge probabilities
for the ith predicted proof while yπ(i)n ∈ {0, 1}k

and yπ(i)e ∈ {0, 1}k2
are the respective true node

and edge labels for the gold proof π(i), where π
is the most optimal permutation. The Hungarian
Loss is implemented by first summing the node and
edge cross-entropy loss matrices Ln ∈ Rp×p and
Le ∈ Rp×p respectively, each entry (i, j) of which
corresponds to the proof loss between the ith pre-
dicted proof and jth gold proof (see Figures 3 and
4). Then we find the best assignment between the
gold and predicted proofs through the Hungarian
algorithm (Kuhn and Yaw, 1955). Our final loss
sums the Hungarian proof loss and the QA loss.

3.6 Integer Linear Program (ILP) Inference
Following PROVER, we generate valid proofs dur-
ing inference using an ILP, subject to multiple

global constraints (see Saha et al. (2020)). For
each predicted proof, the predicted nodes and edge
probabilities from MULTIPROVER, we obtain the
corresponding predicted edges using Eqn. 1.

4 Experimental Setup

We experiment on synthetic, hand-authored zero-
shot, and human paraphrased datasets, following
Clark et al. (2020); Saha et al. (2020).

Datasets: The five synthetic datasets DU0-DU5
consist of 100k questions with their own train, val-
idation and test splits (70/10/20) and reasoning
depths up to D = 0, 1, 2, 3, 5. Each example in
these datasets is annotated with all possible proofs.
The second dataset is a Birds-Electricity dataset,
consisting of 5k hand-authored samples aimed at
evaluating the zero-shot performance of the mod-
els. Unlike the previous datasets, all examples
in this dataset have a unique gold proof. Third,
ParaRules is a human-paraphrased dataset, con-
sisting of 40k examples with all possible proofs,
where the facts and rules are paraphrased by crowd-
workers. Further details of the datasets and model’s
hyperparameters can be found in the appendix.

Evaluation Metrics: Following PROVER, QA
evaluation is done through accuracy. For proofs,
we compute the following metrics: (1) Node Pre-
cision, Recall, F1 (2) Edge Precision, Recall, F1,
(3) Proof Precision, Recall, F1, and (4) Full Ac-
curacy (FA). For each sample, given a set of gold
proofs and predicted proofs, node precision is com-
puted as the fraction of predicted proofs where
the predicted node set matches exactly with a gold
proof’s node set. Similarly, node recall for each
sample is computed as the fraction of gold proofs
where the corresponding node sets match exactly.
The overall node precision, recall and F1 are the
respective sample-wise precision, recall and F1
scores averaged over all the samples. Edge met-
rics are computed similarly but with respect to the
edges only and the proof metrics consider both
nodes and edges in conjunction. Our final metric,
full accuracy evaluates a sample as a whole and is
given by the fraction of samples where the answer
and all corresponding proofs are exactly correct.

5 Results and Analysis

5.1 Comparison of PROVER variants with
MULTIPROVER

In Table 1, we compare ML-MULTIPROVER and
IT-MULTIPROVER with five variants of PROVER

3668

Node Edge Proof

QA P R F1 P R F1 P R F1 FA

PROVER (Saha et al., 2020) 99.3 89.2 84.9 86.0 87.5 84.2 85.3 87.1 84.0 84.7 81.2
PROVER-all 99.3 87.9 83.8 84.9 87.1 83.6 84.6 85.9 82.8 83.7 80.3
PROVER-top-p 99.3 34.4 88.4 48.4 33.8 87.4 47.7 33.3 86.7 47.2 00.0
PROVER-top-p-classifier 99.3 85.7 84.4 83.8 84.8 84.1 83.5 83.9 83.4 82.6 77.3
PROVER-top-p-threshold 99.3 84.4 88.0 85.0 83.6 87.1 84.4 83.0 86.5 83.8 77.2
ML-MULTIPROVER 99.5 89.4 89.2 89.0 87.7 87.8 87.4 87.2 87.3 87.0 83.8
IT-MULTIPROVER 99.5 90.6 90.2 90.0 89.6 89.4 89.2 89.1 89.0 88.7 85.5

Table 1: Comparison of our MULTIPROVER models with PROVER variations on DU5 test set. Iterative-
MULTIPROVER’s improvement in Full Accuracy over Multilabel-MULTIPROVER is statistically significant with
p < 0.001.

– (1) PROVER, as introduced in Saha et al. (2020),
trained with one proof per example and also gener-
ates a single proof, (2) PROVER-all, trained with
all proofs as separate examples and generates a
single proof per example, (3) PROVER-top-p, an
extension of PROVER-all, generating top-p proofs
for all examples, (4) PROVER-top-p-classifier, an
improvement over the vanilla top-p model, where
we first predict the number of proofs by training
a RoBERTa classifier with concatenated question
and context and then generate those many top proof
graphs, and (5) PROVER-top-p-threshold, another
improved model over vanilla top-p, where we use
the optimization score from Equation 3 to predict
the number of proofs to generate, i.e., we stop gen-
erating proofs when the score difference between
two consecutive proofs exceeds a certain thresh-
old (tuned on the validation set). All models are
trained on the DU5 train set and tested on the corre-
sponding test set. Based on Figure 2 which shows
that 98% of the dataset contains samples with ≤
3 proofs, we set max-proofs, p = 3. 87% of the
examples in the dataset have a single gold proof,
thereby making PROVER a strong baseline.

We observe that PROVER-all has a slightly lower
proof F1 than PROVER, because the model likely
gets confused with multiple possible proofs for
the same context and question. PROVER-top-p’s
huge drop in precision is unsurprising because the
subsequent non-empty proofs are always incorrect,
causing full accuracy to drop to 0%. When we
perform careful inference over PROVER either by
predicting the number of proofs or by thresholding
and do not generate a fixed p number of proofs
for all examples, we observe a boost in precision
over the vanilla top-p model, with very little drop
in recall. However, PROVER continues to be a
stronger baseline than all the top-p variants because
of a lot of single-proof examples in the dataset.

Both MULTIPROVER models improve signifi-
cantly on the state-of-the-art proof F1, while retain-
ing a near perfect QA accuracy. IT-MULTIPROVER

is a significantly stronger model because of its
explicit conditioning mechanism and obtains up
to a statistically significant2 (p < 0.001) 4% im-
provement on proof F1 and full accuracy. While
our model is expected to improve the proof recall
compared to PROVER and PROVER-all because
of the generation of multiple proofs, the improve-
ment in precision is particularly important as it
shows that the subsequently generated proofs by IT-
MULTIPROVER are mostly correct. Similarly, its
improvement in proof recall compared to PROVER-
top-p also shows the strength of the model con-
sidering that PROVER-top-p generates the maxi-
mum number of proofs for every sample. Over-
all, IT-MULTIPROVER outperforms all other mod-
els in all metrics. In summary, careful inference
strategies over a single-proof generation model like
PROVER are largely ineffective for generating mul-
tiple proofs and an effective proof-set generation
model needs to exploit and learn the inter-proof
correlations during the training phase itself. Our
experiments on the ParaRules dataset demonstrate
similar findings, details of which and the effect of
varying p for MULTIPROVER is in the appendix.

Iterative-MULTIPROVER performs equally well
on the subset of questions where the context has
negations, achieving a high proof F1 of 90.8. As
part of error analysis, we find that 58% of Iterative-
MULTIPROVER’s wrongly predicted proofs have
more nodes and edges than those in the gold proof,
suggesting that our model tends to overestimate the
essential rules and facts and their inter-connections.
In the following subsections, we analyze MULTI-
PROVER’s generalization capabilities in three dif-

2We use bootstrap test (Efron and Tibshirani, 1994) for
calculating the statistical significance score.

3669

Node Edge Proof

QA P R F1 P R F1 P R F1 FA

PROVER (Saha et al., 2020) 86.5 81.3 81.3 81.3 81.4 81.4 81.4 80.7 80.7 80.7 80.7
PROVER-all 85.9 80.9 80.9 80.9 80.4 80.4 80.4 80.2 80.2 80.2 80.0
ML-MULTIPROVER 85.1 79.2 79.9 79.4 79.4 79.9 79.5 78.7 79.1 78.8 78.1
IT-MULTIPROVER 86.3 82.7 83.3 82.9 82.4 83.0 82.6 82.2 82.7 82.3 81.8

Table 2: Comparison of all models on the zero-shot Birds-Electricity dataset containing one gold proof per sample.
Iterative-MULTIPROVER’s improvement in Full Accuracy over PROVER is statistically significant with p < 0.001.

Proof F1 Full Acc

d MP PR ML IT PR ML IT

0 7.2 93.8 97.8 98.2 92.6 96.7 97.0
1 10.3 88.0 92.8 93.5 85.7 91.0 91.7
2 15.7 80.8 86.1 87.1 76.5 81.8 83.7
3 17.7 78.0 80.7 83.0 72.2 75.9 78.0
4 19.9 71.1 72.3 77.2 65.9 66.4 70.1
5 23.1 67.7 64.9 70.6 61.0 58.7 63.7

Table 3: Comparison of PROVER-all and MULTI-
PROVER models on the subset of samples in DU5 test
set requiring d depth of reasoning.

ferent contexts – zero-shot settings, higher depth
questions and training with less training data.

5.2 Generalization to Zero-Shot Dataset with
Single Gold Proofs

The Birds-Electricity test-only dataset evaluates the
zero-shot performance. It contains examples with
single gold proofs; hence, if a multiple-proof gener-
ation model like MULTIPROVER transfers well to it,
this indicates strong generalization capabilities be-
cause along with generating correct proofs, it also
needs to infer the correct number of proofs. With
that motivation, in Table 2, we compare PROVER

and PROVER-all, both trained on DU5 to generate a
single proof, with our MULTIPROVER models, also
trained on DU5 and find that IT-MULTIPROVER

obtains state-of-the-art result on all proof-related
metrics, while retaining the QA performance. Note
that IT-MULTIPROVER has two important design
choices which explains its good performance on
out-of-domain transfer – (1) it trains on all proofs
jointly, (2) explicit proof conditioning. Both of
these, when combined, enable it to learn the corre-
lations between the proofs to identify the degree of
relevance of facts and rules, ranging from essential
to sometimes useful to irrelevant, for a given ques-
tion. Thus, on out-of-domain test data, it assigns
soft prior relevance scores to the context which
helps it to better learn the significantly smaller
space of correct proofs and be more accurate even
for a single-proof dataset.

QA Proof F1 Full Acc

Count ML IT ML IT ML IT

10k 87.2 86.1 41.5 41.4 39.0 39.5
30k 97.7 98.2 74.3 74.9 71.2 72.0
50k 99.4 99.4 83.7 84.5 80.0 81.0
70k (All) 99.5 99.5 87.0 88.7 83.8 85.5

Table 4: Comparative study between the two MULTI-
PROVER models with varying amount of training data
on DU5. Count = number of training examples.

5.3 Generalization to Higher Depths

The DU5 dataset consists of questions requiring
reasoning up to a maximum depth of 5. Thus, we
test the generalization capabilities of the MULTI-
PROVER models on higher depth questions. Specif-
ically, in Table 3, we compare the DU5-trained
models of PROVER-all, ML-MULTIPROVER and
IT-MULTIPROVER on the subset of DU5 test ex-
amples with varying depths of reasoning (d). Each
row also shows the percentage of examples with
multiple gold proofs (MP) which, unsurprisingly,
increases as the depth increases. We observe
that much of IT-MULTIPROVER’s improvement
compared to ML-MULTIPROVER comes at higher
depths where the presence of multiple proofs is
a more frequent phenomenon. At depth-5, where
23% of the examples have > 1 correct proof, IT-
MULTIPROVER obtains a 6% improvement over
ML-MULTIPROVER. This shows that joint training
with all proofs and explicit conditioning between
them leads to better generalization at higher depths.

5.4 Generalization with Less Training Data

Collecting proofs for supervised training is expen-
sive in most real-world scenarios. Hence, on top of
the zero-shot and depth generalization results pre-
sented so far, we ask if our MULTIPROVER models
can learn from less training data. Table 4 shows
that these models obtain near perfect QA accu-
racy with only 40% of the training data (30k exam-
ples). However, proof generation proves to be chal-
lenging and only improves with sufficient training

3670

Facts:
F1: Bob is quiet. F2: Bob is young.
F3: Charlie is quiet. F4: Charlie is young.
F5: Fiona is nice. F6: Fiona is quiet.
F7: Fiona is round. F8: Fiona is white.
F9: Gary is green. F10: Gary is nice.
F11: Gary is quiet. F12: Gary is young.

Facts:
F1: Anne is cold. F2: Bob is cold.
F3: Bob is young. F4: Fiona is big.
F5: Fiona is young. F6: Harry is big.
F7: Harry is blue. F8: Harry is cold.
F9: Harry is furry. F10: Harry is quite.
F11: Harry is red. F12: Harry is young.

Rules:

R1: Cold, young people are red.
R2: Furry people are young.
R3: Young, big people are blue.
R4: Red, big people are quiet.
R5: Quiet people are furry.
R6: Blue people are red.
R7: Young people are big.
R8: All quiet, big people are furry.
R9: If someone is blue and furry then they are cold.

Q2: Bob is not cold. [Answer : F]

Rules:

R1: All green, white people are round.
R2: Quiet people are white.
R3: All green, young people are nice.
R4: If someone is quiet and green then they are kind.
R5: White people are nice.
R6: Quiet people are young.
R7: All green, white people are nice.
R8: If someone is kind and white then they are green.
R9: All nice, quiet people are kind.

Q1: Fiona is not kind. [Answer : F]

Figure 6: Figure showing all the proofs correctly generated by our Iterative-MULTIPROVER model for two ran-
domly chosen questions corresponding to two different rule-bases.

data. Another interesting observation is that while
both MULTIPROVER models perform comparably
with less training data, IT-MULTIPROVER starts
to outperform ML-MULTIPROVER upon training
with more examples. IT-MULTIPROVER consists
of more trainable parameters because of its mul-
tiple node and edge encoders, which get learned
better with more data. See appendix for runtime
and parameter space of these models.

5.5 Comparison of MULTIPROVER with the
Skyline Single-Proof Generation Model

We find that an ideal (skyline) single-proof gener-
ation model’s proof recall for the DU5 dataset is
upper-bounded by 92% as it contains about 87%
of single-proof examples. This is computed by
considering exactly 1 correct proof per question.
Hence, we ask how well our MULTIPROVER mod-
els compare with this ideal performance (Figure 7).
Our results are encouraging, not only because IT-
MULTIPROVER generates more correct proofs than
all other models but also because it almost matches
the performance of the skyline single-proof gener-
ation model. The PROVER model is 9.2% worse
as compared to the skyline single-proof genera-
tion model while IT-MULTIPROVER reduces this
gap to 3%. Given the dataset mostly contains
single-proof examples, the skyline is a strong upper-
bound on proof generation performance and IT-
MULTIPROVER significantly reduces the gap. See
appendix for ablations of IT-MULTIPROVER, in-
cluding the effect of Hungarian Loss.

6 Qualitative Analysis of MULTIPROVER

Fig. 6 shows the sets of proofs correctly gener-
ated by Iterative-MULTIPROVER for two randomly
chosen questions. For Q1, it generates all the pos-
sible proofs by identifying the common subgraph

92%

9.2%
3%

Figure 7: Comparison of proof recall for all models
with that of the skyline single-proof generation model.

F6 → R9. Q2 is interesting, because (i) the single-
node proof F2 is significantly different from the
other proofs in both structure and size, and (ii) the
two larger proofs have two distinct common sub-
graphs. Here, PROVER performs simple lookup
in the rule-base to generate the proof F2, thereby
limiting our understanding of its reasoning capabil-
ities. However, MULTIPROVER, through its abil-
ity to also generate the larger and more complex
proofs enhances the transparency and verification
of its reasoning abilities, and hence is a crucial
step towards bridging the gap between neural and
symbolic approaches.

7 Conclusion

We proposed Multilabel-MULTIPROVER and Iter-
ative-MULTIPROVER, two variants of a proof-set
generation model where the former performs im-
plicit conditioning between the proofs to gener-
ate them in parallel while the latter generates a
proof-set through explicit conditioning on the previ-
ously generated proofs. Both models obtain strong
proof F1 improvements on synthetic and human-
paraphrased datasets and Iterative-MULTIPROVER

also obtains state-of-the-art proof F1 on a zero-shot
dataset with single proofs. MULTIPROVER’s mod-
eling is fairly generic and similar methods can be
used in generating a set of structured explanations
for other NLP tasks like multi-hop QA.

3671

Ethical Considerations

Despite the overwhelming success of pre-trained
language models for various NLP tasks, a common
criticism is their lack of interpretability. Generating
structured proofs from such models allows us to ex-
plain their reasoning capabilities and also bridges
the gap between neural and symbolic systems. In
this work, we take a step closer towards improv-
ing the interpretability of rule-based reasoning by
generating a set of multiple proofs, each provid-
ing a diverse rationale for the reasoning process.
We experiment with a wide variety of rule-bases
ranging from synthetic to hand-authored to human-
paraphrased rule-bases. Our results show good
generalization performance of our models across
three different aspects – (1) zero-shot settings, (2)
questions requiring higher depths of reasoning, and
(3) availability of less training data. We hope our
models and findings will inspire future work on
generating multiple structured explanations for dif-
ferent compositional reasoning tasks in NLP.

Acknowledgements

We thank the reviewers and Peter Hase for
their helpful feedback. This work was sup-
ported by DARPA MCS Grant N66001-19-2-4031,
NSF-CAREER Award 1846185, DARPA YFA17-
D17AP00022, ONR Grant N00014-18-1-2871, Mi-
crosoft Investigator Fellowship, and Munroe & Re-
becca Cobey Fellowship. The views in this article
are those of the authors and not the funding agency.

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2015. Neural machine translation by jointly
learning to align and translate. In ICLR.

Jonathan Berant, Andrew Chou, Roy Frostig, and Percy
Liang. 2013. Semantic parsing on freebase from
question-answer pairs. In Proceedings of the 2013
conference on empirical methods in natural lan-
guage processing, pages 1533–1544.

Jonathan Berant and Percy Liang. 2014. Semantic pars-
ing via paraphrasing. In Proceedings of the 52nd An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1415–
1425.

Oana-Maria Camburu, Tim Rocktäschel, Thomas
Lukasiewicz, and Phil Blunsom. 2018. e-SNLI: Nat-
ural language inference with natural language expla-
nations. In Advances in Neural Information Process-
ing Systems, pages 9539–9549.

Kyunghyun Cho, Bart van Merrienboer, Çaglar
Gülçehre, Fethi Bougares, Holger Schwenk, and
Yoshua Bengio. 2014. Learning phrase representa-
tions using RNN encoder-decoder for statistical ma-
chine translation. In EMNLP.

Peter Clark, Oyvind Tafjord, and Kyle Richardson.
2020. Transformers as soft reasoners over language.
In Proceedings of the Twenty-Ninth International
Joint Conference on Artificial Intelligence, IJCAI-
20, pages 3882–3890. International Joint Confer-
ences on Artificial Intelligence Organization. Main
track.

Bo Dai, Sanja Fidler, Raquel Urtasun, and Dahua Lin.
2017. Towards diverse and natural image descrip-
tions via a conditional gan. In Proceedings of the
IEEE International Conference on Computer Vision,
pages 2970–2979.

Jay DeYoung, Sarthak Jain, Nazneen Fatema Rajani,
Eric Lehman, Caiming Xiong, Richard Socher, and
Byron C Wallace. 2020. Eraser: A benchmark to
evaluate rationalized nlp models. In Proceedings of
the 58th Annual Meeting of the Association for Com-
putational Linguistics, pages 4443–4458.

Finale Doshi-Velez and Been Kim. 2017. Towards a
rigorous science of interpretable machine learning.
arXiv preprint arXiv:1702.08608.

Bradley Efron and Robert J Tibshirani. 1994. An intro-
duction to the bootstrap. CRC press.

Tian Gao, Jie Chen, Vijil Chenthamarakshan, and
Michael Witbrock. 2019. A sequential set gener-
ation method for predicting set-valued outputs. In
Proceedings of the AAAI Conference on Artificial In-
telligence, volume 33, pages 2835–2842.

Kevin Gimpel, Dhruv Batra, Chris Dyer, and Gregory
Shakhnarovich. 2013. A systematic exploration of
diversity in machine translation. In Proceedings of
the 2013 Conference on Empirical Methods in Natu-
ral Language Processing, pages 1100–1111, Seattle,
Washington, USA. Association for Computational
Linguistics.

Nicolas Gontier, Koustuv Sinha, Siva Reddy, and Chris
Pal. 2020. Measuring systematic generalization
in neural proof generation with transformers. Ad-
vances in Neural Information Processing Systems,
33.

Peter Hase and Mohit Bansal. 2020. Evaluating ex-
plainable AI: Which algorithmic explanations help
users predict model behavior? In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics.

Alon Jacovi and Yoav Goldberg. 2020. Towards faith-
fully interpretable nlp systems: How should we de-
fine and evaluate faithfulness? In ACL.

https://www.aclweb.org/anthology/D13-1160.pdf
https://www.aclweb.org/anthology/D13-1160.pdf
https://www.aclweb.org/anthology/P14-1133
https://www.aclweb.org/anthology/P14-1133
http://papers.nips.cc/paper/8163-e-snli-natural-language-inference-with-natural-language-explanations.pdf
http://papers.nips.cc/paper/8163-e-snli-natural-language-inference-with-natural-language-explanations.pdf
http://papers.nips.cc/paper/8163-e-snli-natural-language-inference-with-natural-language-explanations.pdf
http://arxiv.org/abs/1406.1078
http://arxiv.org/abs/1406.1078
http://arxiv.org/abs/1406.1078
https://doi.org/10.24963/ijcai.2020/537
https://arxiv.org/abs/1702.08608
https://arxiv.org/abs/1702.08608
https://www.aclweb.org/anthology/D13-1111
https://www.aclweb.org/anthology/D13-1111
https://arxiv.org/abs/2005.01831
https://arxiv.org/abs/2005.01831
https://arxiv.org/abs/2005.01831

3672

Unnat Jain, Ziyu Zhang, and Alexander G Schwing.
2017. Creativity: Generating diverse questions us-
ing variational autoencoders. In Proceedings of the
IEEE Conference on Computer Vision and Pattern
Recognition, pages 6485–6494.

Peter Jansen and Dmitry Ustalov. 2019. Textgraphs
2019 shared task on multi-hop inference for expla-
nation regeneration. In Proceedings of the Thir-
teenth Workshop on Graph-Based Methods for Nat-
ural Language Processing (TextGraphs-13), pages
63–77.

Peter A Jansen, Elizabeth Wainwright, Steven Mar-
morstein, and Clayton T Morrison. 2018. Worldtree:
A corpus of explanation graphs for elementary
science questions supporting multi-hop inference.
arXiv preprint arXiv:1802.03052.

Harsh Jhamtani and Peter Clark. 2020. Learning to ex-
plain: Datasets and models for identifying valid rea-
soning chains in multihop question-answering. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 137–150.

Tushar Khot, Peter Clark, Michal Guerquin, Peter
Jansen, and Ashish Sabharwal. 2020. Qasc: A
dataset for question answering via sentence compo-
sition. In Proceedings of the AAAI Conference on
Artificial Intelligence, 05, pages 8082–8090.

Adam R Kosiorek, Hyunjik Kim, and Danilo J
Rezende. 2020. Conditional set generation with
transformers. arXiv preprint arXiv:2006.16841.

H. W. Kuhn and Bryn Yaw. 1955. The hungarian
method for the assignment problem. Naval Res. Lo-
gist. Quart, pages 83–97.

Ilya Kulikov, Alexander H Miller, Kyunghyun Cho,
and Jason Weston. 2018. Importance of a search
strategy in neural dialogue modelling. In iNLG.

Sawan Kumar and Partha Talukdar. 2020. NILE: Natu-
ral language inference with faithful natural language
explanations. In ACL.

Juho Lee, Yoonho Lee, Jungtaek Kim, Adam R. Ko-
siorek, Seungjin Choi, and Yee Whye Teh. 2018.
Set transformer: A framework for attention-based
permutation-invariant neural networks. In ICML.

Tao Lei, Regina Barzilay, and Tommi Jaakkola. 2016.
Rationalizing neural predictions. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 107–117.

Jiwei Li, Will Monroe, and Dan Jurafsky. 2016. A sim-
ple, fast diverse decoding algorithm for neural gen-
eration. arXiv preprint arXiv:1611.08562.

Kevin Lin, Oyvind Tafjord, Peter Clark, and Matt Gard-
ner. 2019. Reasoning over paragraph effects in situ-
ations. In Proceedings of the 2nd Workshop on Ma-
chine Reading for Question Answering, pages 58–
62, Hong Kong, China. Association for Computa-
tional Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
RoBERTa: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Bill MacCartney and Christopher D Manning. 2014.
Natural logic and natural language inference. In
Computing meaning, pages 129–147. Springer.

Mark A Musen and Johan Van Der Lei. 1988. Of brit-
tleness and bottlenecks: Challenges in the creation
of pattern-recognition and expert-system models. In
Machine Intelligence and Pattern Recognition, vol-
ume 7, pages 335–352. Elsevier.

Allen Newell and Herbert Simon. 1956. The logic
theory machine–a complex information processing
system. IRE Transactions on information theory,
2(3):61–79.

Adarsh Prasad, Stefanie Jegelka, and Dhruv Batra.
2014. Submodular meets structured: Finding di-
verse subsets in exponentially-large structured item
sets. In Advances in Neural Information Processing
Systems, volume 27, pages 2645–2653. Curran As-
sociates, Inc.

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring
the limits of transfer learning with a unified text-to-
text transformer. Journal of Machine Learning Re-
search, 21(140):1–67.

Nazneen Fatema Rajani, Bryan McCann, Caiming
Xiong, and Richard Socher. 2019. Explain your-
self! leveraging language models for commonsense
reasoning. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics,
pages 4932–4942.

Kyle Richardson, Hai Hu, Lawrence Moss, and Ashish
Sabharwal. 2020. Probing natural language infer-
ence models through semantic fragments. In Pro-
ceedings of the AAAI Conference on Artificial Intel-
ligence, volume 34, pages 8713–8721.

Cynthia Rudin. 2019. Stop explaining black box ma-
chine learning models for high stakes decisions and
use interpretable models instead. Nature Machine
Intelligence, 1(5):206–215.

Swarnadeep Saha, Sayan Ghosh, Shashank Srivastava,
and Mohit Bansal. 2020. PRover: Proof generation
for interpretable reasoning over rules. In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
122–136.

Tianxiao Shen, Myle Ott, Michael Auli, and
Marc’Aurelio Ranzato. 2019. Mixture models for
diverse machine translation: Tricks of the trade. In
Proceedings of the 36th International Conference on
Machine Learning, volume 97 of Proceedings of Ma-
chine Learning Research, pages 5719–5728, Long
Beach, California, USA. PMLR.

https://doi.org/10.18653/v1/D19-5808
https://doi.org/10.18653/v1/D19-5808
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692
https://link.springer.com/chapter/10.1007/978-94-007-7284-7_8
https://www.sciencedirect.com/science/article/pii/B9780444871374500291
https://www.sciencedirect.com/science/article/pii/B9780444871374500291
https://www.sciencedirect.com/science/article/pii/B9780444871374500291
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1056797
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1056797
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1056797
https://proceedings.neurips.cc/paper/2014/file/8d9a0adb7c204239c9635426f35c9522-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/8d9a0adb7c204239c9635426f35c9522-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/8d9a0adb7c204239c9635426f35c9522-Paper.pdf
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://www.aclweb.org/anthology/P19-1487.pdf
https://www.aclweb.org/anthology/P19-1487.pdf
https://www.aclweb.org/anthology/P19-1487.pdf
https://www.nature.com/articles/s42256-019-0048-x
https://www.nature.com/articles/s42256-019-0048-x
https://www.nature.com/articles/s42256-019-0048-x
http://proceedings.mlr.press/v97/shen19c.html
http://proceedings.mlr.press/v97/shen19c.html

3673

Raphael Shu, Hideki Nakayama, and Kyunghyun Cho.
2019. Generating diverse translations with sentence
codes. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics,
pages 1823–1827.

Oyvind Tafjord, Matt Gardner, Kevin Lin, and Peter
Clark. 2019. QuaRTz: An open-domain dataset of
qualitative relationship questions. In Proceedings of
the 2019 Conference on Empirical Methods in Nat-
ural Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 5941–5946, Hong Kong,
China. Association for Computational Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

Ashwin K. Vijayakumar, Michael Cogswell, Ram-
prasaath R. Selvaraju, Qing Sun, Stefan Lee, David J.
Crandall, and Dhruv Batra. 2018. Diverse beam
search: Decoding diverse solutions from neural se-
quence models. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence.

O. Vinyals, A. Toshev, S. Bengio, and D. Erhan. 2015.
Show and tell: A neural image caption generator. In
2015 IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 3156–3164.

Jason Weston, Antoine Bordes, Sumit Chopra, Alexan-
der M Rush, Bart van Merriënboer, Armand Joulin,
and Tomas Mikolov. 2015. Towards AI-complete
question answering: A set of prerequisite toy tasks.
arXiv preprint arXiv:1502.05698.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language process-
ing. In Proceedings of the 2020 Conference on Em-
pirical Methods in Natural Language Processing:
System Demonstrations, pages 38–45.

Zhengnan Xie, Sebastian Thiem, Jaycie Martin, Eliz-
abeth Wainwright, Steven Marmorstein, and Peter
Jansen. 2020. Worldtree v2: A corpus of science-
domain structured explanations and inference pat-
terns supporting multi-hop inference. In Proceed-
ings of The 12th Language Resources and Evalua-
tion Conference, pages 5456–5473.

Qiongkai Xu, Juyan Zhang, Lizhen Qu, Lexing
Xie, and Richard Nock. 2018. D-page: Di-
verse paraphrase generation. arXiv preprint
arXiv:1808.04364.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio,
William Cohen, Ruslan Salakhutdinov, and Christo-
pher D. Manning. 2018. HotpotQA: A dataset
for diverse, explainable multi-hop question answer-
ing. In Proceedings of the 2018 Conference on Em-
pirical Methods in Natural Language Processing,
pages 2369–2380, Brussels, Belgium. Association
for Computational Linguistics.

Qinyuan Ye, Xiao Huang, Elizabeth Boschee, and Xi-
ang Ren. 2020. Teaching machine comprehension
with compositional explanations. In Proceedings of
the 2020 Conference on Empirical Methods in Nat-
ural Language Processing: Findings, pages 1599–
1615.

Mo Yu, Shiyu Chang, Yang Zhang, and Tommi
Jaakkola. 2019. Rethinking cooperative rationaliza-
tion: Introspective extraction and complement con-
trol. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
4085–4094.

Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh,
Barnabas Poczos, Russ R Salakhutdinov, and
Alexander J Smola. 2017. Deep sets. In Advances in
Neural Information Processing Systems, volume 30,
pages 3391–3401. Curran Associates, Inc.

Omar Zaidan, Jason Eisner, and Christine Piatko. 2007.
Using “annotator rationales” to improve machine
learning for text categorization. In Human language
technologies 2007: The conference of the North
American chapter of the association for computa-
tional linguistics; proceedings of the main confer-
ence, pages 260–267.

Luke S. Zettlemoyer and Michael Collins. 2005. Learn-
ing to map sentences to logical form: Structured
classification with probabilistic categorial grammars.
In Proceedings of the Twenty-First Conference on
Uncertainty in Artificial Intelligence, UAI’05, page
658–666. AUAI Press.

Hongming Zhang, Xinran Zhao, and Yangqiu Song.
2020. WinoWhy: A deep diagnosis of essential
commonsense knowledge for answering Winograd
schema challenge. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, pages 5736–5745, Online. Association
for Computational Linguistics.

Yan Zhang, Jonathon Hare, and Adam Prugel-Bennett.
2019a. Deep set prediction networks. In Ad-
vances in Neural Information Processing Systems,
volume 32, pages 3212–3222. Curran Associates,
Inc.

Yan Zhang, Jonathon Hare, and Adam Prügel-Bennett.
2019b. Fspool: Learning set representations with
featurewise sort pooling. In International Confer-
ence on Learning Representations.

https://doi.org/10.18653/v1/D19-1608
https://doi.org/10.18653/v1/D19-1608
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
http://arxiv.org/abs/1610.02424
http://arxiv.org/abs/1610.02424
http://arxiv.org/abs/1610.02424
https://doi.org/10.1109/CVPR.2015.7298935
https://arxiv.org/abs/1502.05698
https://arxiv.org/abs/1502.05698
https://doi.org/10.18653/v1/D18-1259
https://doi.org/10.18653/v1/D18-1259
https://doi.org/10.18653/v1/D18-1259
https://proceedings.neurips.cc/paper/2017/file/f22e4747da1aa27e363d86d40ff442fe-Paper.pdf
https://dl.acm.org/doi/10.5555/3020336.3020416
https://dl.acm.org/doi/10.5555/3020336.3020416
https://dl.acm.org/doi/10.5555/3020336.3020416
https://doi.org/10.18653/v1/2020.acl-main.508
https://doi.org/10.18653/v1/2020.acl-main.508
https://doi.org/10.18653/v1/2020.acl-main.508
https://proceedings.neurips.cc/paper/2019/file/6e79ed05baec2754e25b4eac73a332d2-Paper.pdf

3674

Node Edge Proof

QA P R F1 P R F1 P R F1 FA

PROVER (Saha et al., 2020) 99.3 90.0 85.3 86.4 88.6 85.6 86.2 88.0 84.7 85.5 82.1
PROVER-all 99.4 88.4 84.2 85.3 87.9 84.4 85.4 86.5 83.5 84.3 81.1
PROVER-top-p 99.4 34.4 88.6 48.4 34.0 88.0 48.0 33.4 87.3 47.4 00.0
PROVER-top-p-classifier 99.4 86.2 85.1 84.4 85.6 85.1 84.4 84.6 84.2 83.4 78.2
PROVER-top-p-threshold 99.4 85.0 88.4 85.6 84.5 87.8 85.2 83.9 87.1 84.5 78.0
ML-MULTIPROVER 99.3 89.9 89.6 89.3 88.3 88.3 88.0 87.7 87.6 87.3 83.9
IT-MULTIPROVER-seq 99.4 88.5 86.8 87.2 87.4 86.0 86.3 86.7 85.3 85.6 81.4
IT-MULTIPROVER-nec 99.3 90.2 89.7 89.5 89.4 89.1 89.0 89.0 88.6 88.5 85.2
IT-MULTIPROVER 99.5 90.6 90.5 90.1 89.9 90.0 89.5 89.4 89.4 89.0 85.3

Table 5: Comparison of our final MULTIPROVER models with variants of PROVER and other ablations of IT-
MULTIPROVER on the validation set of DU5. IT-MULTIPROVER-seq = Iterative-MULTIPROVER with sequen-
tial loss. IT-MULTIPROVER-nec = Iterative-MULTIPROVER with no edge conditioning. The final Iterative-
MULTIPROVER model outperforms all other models across all metrics.

A Appendix

A.1 Experimental Setup
MULTIPROVER is developed on top of the Hug-
ging Face transformers library (Wolf et al., 2020).3

Experiments with PROVER (Saha et al., 2020) are
performed using their publicly released code and
hyperparameters.4 All MULTIPROVER hyperpa-
rameters are chosen based on the best Full Accu-
racy on the corresponding validation sets. We use
RoBERTa-large (Liu et al., 2019) as the pre-trained
language model. The batch size and maximum se-
quence length are set to 8 and 300 respectively. We
train all our models for a maximum of 7 epochs
using an initial learning rate of 10−5, a weight de-
cay of 0.1 and a dropout probability of 0.1. We
use a random seed of 42 across all our experiments.
All experiments are performed on one V100 Volta
GPU. Batch size and learning rate are manually
tuned in the range {8,16} and {10−5, 2 ∗ 10−5}
respectively. For inference, we use PROVER’s ILP
optimization code, which is modeled using PuLP.5

In all the datasets, the maximum number of facts
and rules corresponding to a context is 25.

A.2 Datasets
Our experiments are conducted on the datasets in-
troduced in Clark et al. (2020).6 These consist of
5 datasets with synthetic rule-bases, DU0-DU5, a
zero-shot test-only dataset called Birds-Electricity
and a dataset with human-paraphrased rules called
ParaRules. All datasets, except Birds-Electricity,

3https://github.com/huggingface/
transformers

4https://github.com/swarnaHub/PRover
5https://pypi.org/project/PuLP/
6https://rule-reasoning.apps.allenai.

org/

have their corresponding train, validation and test
splits.

DU0-DU5: Each of these consists of 100k ques-
tions with sythetic rule-bases and requires reason-
ing chains up to a maximum depth of D (D =
0, 1, 2, 3, 5). The number of train, validation and
test examples in each of the datasets are 70k, 10k
and 20k respectively. Further, each question in the
datasets is annotated with all possible proofs. The
total number of proofs in the DU5 train set range
from 1 to 1350, with a mean and median of 1.45
and 1 respectively.

Birds-Electricity: The Birds-Electricity dataset
comprises of two test-only datasets where the con-
texts are about birds and electric circuits. The vo-
cabulary of the entities, attributes and predicates,
apart from is() are all new at test time, thus pro-
viding a benchmark for testing the generalization
capability of the models on out-of-distribution data.
Another interesting aspect of this dataset is that all
examples are annotated with a unique gold proof.

ParaRules: The ParaRules dataset is one where
the facts and rules are paraphrased by humans into
more natural language. It consists of a total of 40k
questions, with 28k, 4k, and 8k questions in the
train, validation and test splits respectively. This
dataset tests the model’s ability to reason over more
complex human-like language. Similar to the syn-
thetic datasets, each example is annotated with all
possible proofs.

A.3 Syntax of Proof Graph

Each proof Pi = (Vi, Ei) is a directed graph, with a
set of nodes Vi ⊆ N and a set of edges Ei ⊆ Vi×Vi.
Each node ni ∈ N is either a fact F ∈ F or a rule

https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
https://github.com/swarnaHub/PRover
https://pypi.org/project/PuLP/
 https://rule-reasoning.apps.allenai.org/
 https://rule-reasoning.apps.allenai.org/

3675

Node Edge Proof

p QA P R F1 P R F1 P R F1 PA

2 99.4 90.5 89.1 89.2 89.3 88.3 88.4 88.8 87.8 87.9 84.4
3 99.3 89.9 89.6 89.3 88.3 88.3 88.0 87.7 87.6 87.3 83.9
4 99.3 89.1 89.2 88.8 87.8 82.0 87.8 87.2 87.5 87.1 83.6
5 99.2 88.6 89.1 88.5 87.2 87.8 87.2 86.6 87.2 86.6 83.1

Table 6: Effect of varying maximum number of proofs (p) on Multilabel-MULTIPROVER. All models are trained
on the DU5 training set and evaluated on the corresponding validation set. The proof metrics start to decrease
marginally with increase in p.

Node Edge Proof

p QA P R F1 P R F1 P R F1 PA

2 99.5 90.0 89.0 89.0 89.2 88.4 88.3 88.6 87.8 87.7 84.1
3 99.5 90.6 90.5 90.1 89.9 90.0 89.5 89.4 89.4 89.0 85.3
4 99.5 90.2 89.7 89.5 89.5 89.2 89.1 89.1 88.7 88.6 85.2
5 99.5 90.1 89.6 89.4 89.5 89.2 89.1 89.0 88.6 88.5 85.2

Table 7: Effect of varying maximum number of proofs (p) on Iterative-MULTIPROVER. All models are trained
on the DU5 training set and evaluated on the corresponding validation set. Unlike Multilabel-MULTIPROVER, it is
significantly robust to variation in p.

R ∈ R from the context or a special NAF node,
denoting “Negation as Failure". A NAF node in
a proof indicates the truthfulness of the negation
of statement(s) that cannot be proved using the set
of rules (under closed-world assumption). Edges
in the graph can be directed either from a fact (or
NAF) to a rule or between two rules. An edge from
a fact to a rule means that the rule applies on the
fact to generate a new fact. Similarly, an edge from
a rule R1 ∈ R to another rule R2 ∈ R implies
the application of R2 on the fact generated by R1.
Proofs are either successful or failed. A successful
proof is one where the question statement can be
logically reached (to be either proved or disproved)
using the given rule-base while for failed proofs,
no conclusion can be reached, in which case the
shallowest branch of the proof tree that fails is
generated. For more details and examples of proofs,
we refer the readers to prior work (Saha et al., 2020;
Clark et al., 2020).

A.4 Ablation Analysis

In Table 5, we compare our baselines PROVER,
PROVER-all and PROVER-top-p variants with our
MULTIPROVER models on the validation set of
DU5 dataset. Additionally, we also show two ab-
lations of IT-MULTIPROVER – in the first, we re-
place the Hungarian loss with a sequential loss,
which computes the cross-entropy loss of the ith

predicted proof with the ith gold proof and in the
second, we condition the node embeddings on the

previous node embeddings only instead of both
node and edge embeddings. All models, except
PROVER and PROVER-all, generate a maximum of
3 proofs. PROVER-top-p suffers from a huge drop
in proof precision due to the generation of many
incorrect proofs. Although carefully choosing the
value of p either by thresholding or through a clas-
sifier helps boost the proof precision, PROVER con-
tinues to be a superior baseline on this dataset due
to a high skew towards single-proof examples. ML-
MULTIPROVER improves upon PROVER’s proof
F1 and full accuracy (FA) which are further bet-
tered by IT-MULTIPROVER, owing to its explicit
conditioning mechanism between the proofs. Re-
placing the Hungarian loss with a sequential loss
leads to a significant drop in proof F1, thereby
showing the effectiveness of modeling multiple
proof generation as a set generation problem. Fi-
nally, conditioning the node embeddings on both
node and edge embeddings leads to marginal im-
provement in proof F1. Overall, IT-MULTIPROVER

outperforms all other models across all metrics.

A.5 MULTIPROVER with Varying Maximum
Number of Proofs

We analyze the effect of varying the maximum
number of proofs p on ML-MULTIPROVER and
IT-MULTIPROVER in Table 6 and 7 respectively.
All models are trained on the DU5 training set and
evaluated on the corresponding validation set. Al-
though all models maintain the QA accuracy, we

3676

Node Edge Proof

QA P R F1 P R F1 P R F1 FA

PROVER-all 98.6 95.9 94.1 94.5 95.4 93.8 94.3 95.3 93.7 94.2 92.3
PROVER-top-p 98.6 39.3 96.6 55.0 38.9 96.0 54.6 38.9 95.9 54.5 00.1
ML-MULTIPROVER 98.9 96.7 96.4 96.4 96.4 96.2 96.2 96.2 96.0 96.0 95.2
IT-MULTIPROVER 98.9 97.3 97.2 97.2 97.2 97.0 97.0 96.8 96.7 96.7 96.1

Table 8: Comparison of models trained on DU3 and ParaRules training sets and evaluated on ParaRules validation
set. IT-MULTIPROVER outperforms all other models across all metrics.

Node Edge Proof

QA P R F1 P R F1 P R F1 FA

PROVER-all 98.2 95.3 92.8 93.5 94.7 92.7 93.3 94.4 92.4 93.0 90.5
PROVER-top-p 98.2 38.7 95.9 54.3 38.3 95.5 53.9 38.2 95.3 53.8 00.1
ML-MULTIPROVER 98.3 96.0 95.6 95.7 95.9 95.5 95.6 95.5 95.2 95.2 93.8
IT-MULTIPROVER 98.3 96.8 96.2 96.3 96.5 96.3 96.3 96.2 96.0 96.0 94.5

Table 9: Comparison of models trained on DU3 and ParaRules training sets and evaluated on ParaRules test set.
IT-MULTIPROVER outperforms all other models across all metrics.

find that the proof F1 for ML-MULTIPROVER starts
to decrease marginally with the increase in p. Note
that this model is trained with padding of empty
proof graphs since it generates all p proofs in paral-
lel. Thus, the amount of padding increases with the
increase in p, thereby leading to a harder learning
problem as the model needs to predict more num-
ber of empty graphs. IT-MULTIPROVER, on the
other hand, is significantly robust to such variations
in p, because it generates proofs iteratively with
one empty graph at the end, indicating end of set.

A.6 Evaluation on Human-Paraphrased
Rule-Bases

Following PROVER, we also test MULTIPROVER’s
effectiveness in generating proofs for more human-
like complex rule-bases. The ParaRules dataset is
constructed by first creating a set of fact groups
where each fact group consists of all facts in the
theory concerning a particular person and then para-
phrasing these fact groups into more complex lan-
guage. E.g., a fact group “Alan is blue. Alan is
rough. Alan is young.", may be re-worded into
“Alan is on the young side, but rough. He often
feels rather blue." Thus, unlike the DU datasets or
the Birds-Electricity dataset where the proof graphs
are composed of facts and rules, ParaRules proofs
are composed of fact groups and rules. Following
past work (Clark et al., 2020; Saha et al., 2020) we
train our models combining the DU3 and ParaRules
train sets, and evaluate on the ParaRules validation
and test set in Tables 8 and 9 respectively. We find
that similar conclusions to the DU5 dataset hold for

Parameters Time/epoch (in hours)

p PR ML IT PR ML IT

1 361M 361M 488M 5.0 3.4 3.6
2 361M 361M 615M 5.0 3.5 4.0
3 361M 361M 742M 5.0 3.6 4.6
4 361M 361M 869M 5.0 3.7 5.1
5 361M 361M 996M 5.0 3.8 5.7

Table 10: Comparative study of the number of parame-
ters and training time per epoch (in hours) for PROVER-
all (PR), ML-MULTIPROVER and IT-MULTIPROVER
with varying number of maximum proofs (p).

this dataset as well – ML-MULTIPROVER achieves
a better proof F1 and full accuracy than PROVER,
which are further improved by IT-MULTIPROVER

due to its explicit conditioning mechanism between
the proofs.

A.7 Training Time and Size Comparison

Table 10 shows the number of trainable param-
eters and training times per epoch for the base-
line model PROVER and our proposed models,
ML-MULTIPROVER and IT-MULTIPROVER across
varying number of maximum proofs (p) per sam-
ple. Since ML-MULTIPROVER adopts the same
PROVER architecture but with multi-label clas-
sification, it has the same number of parameters
as PROVER, which also remains unchanged irre-
spective of the maximum number of proofs. The
number of parameters for IT-MULTIPROVER, how-
ever, increases with the increase in p because of
the presence of multiple node and edge encoders.

3677

While IT-MULTIPROVER has more parameters than
PROVER, our empirical findings reveal that just
having a similarly-sized, larger PROVER model
will not be sufficient and exploiting the correla-
tions between multiple proofs with a permutation-
invariant loss is necessary for the task of generating
a set of multiple proofs.

The training time of PROVER is more than
that of ML-MULTIPROVER because the former
treats each proof as a separate example, causing
an increase in the training data size from 70k
to 110k. ML-MULTIPROVER is the most time-
efficient model and its running time only increases
marginally with the increase in p. This is due to
the additional node and edge classifications that
the model has to perform corresponding to each ex-
tra proof. Unsurprisingly, IT-MULTIPROVER takes
longer to train but encouragingly for p ≤ 4, still
has a comparable running time to PROVER.

