@inproceedings{saha-etal-2021-multiprover,
title = "multi{PR}over: Generating Multiple Proofs for Improved Interpretability in Rule Reasoning",
author = "Saha, Swarnadeep and
Yadav, Prateek and
Bansal, Mohit",
editor = "Toutanova, Kristina and
Rumshisky, Anna and
Zettlemoyer, Luke and
Hakkani-Tur, Dilek and
Beltagy, Iz and
Bethard, Steven and
Cotterell, Ryan and
Chakraborty, Tanmoy and
Zhou, Yichao",
booktitle = "Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
month = jun,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://preview.aclanthology.org/fix-sig-urls/2021.naacl-main.287/",
doi = "10.18653/v1/2021.naacl-main.287",
pages = "3662--3677",
abstract = "We focus on a type of linguistic formal reasoning where the goal is to reason over explicit knowledge in the form of natural language facts and rules (Clark et al., 2020). A recent work, named PRover (Saha et al., 2020), performs such reasoning by answering a question and also generating a proof graph that explains the answer. However, compositional reasoning is not always unique and there may be multiple ways of reaching the correct answer. Thus, in our work, we address a new and challenging problem of generating multiple proof graphs for reasoning over natural language rule-bases. Each proof provides a different rationale for the answer, thereby improving the interpretability of such reasoning systems. In order to jointly learn from all proof graphs and exploit the correlations between multiple proofs for a question, we pose this task as a set generation problem over structured output spaces where each proof is represented as a directed graph. We propose two variants of a proof-set generation model, multiPRover. Our first model, Multilabel-multiPRover, generates a set of proofs via multi-label classification and implicit conditioning between the proofs; while the second model, Iterative-multiPRover, generates proofs iteratively by explicitly conditioning on the previously generated proofs. Experiments on multiple synthetic, zero-shot, and human-paraphrased datasets reveal that both multiPRover models significantly outperform PRover on datasets containing multiple gold proofs. Iterative-multiPRover obtains state-of-the-art proof F1 in zero-shot scenarios where all examples have single correct proofs. It also generalizes better to questions requiring higher depths of reasoning where multiple proofs are more frequent."
}
Markdown (Informal)
[multiPRover: Generating Multiple Proofs for Improved Interpretability in Rule Reasoning](https://preview.aclanthology.org/fix-sig-urls/2021.naacl-main.287/) (Saha et al., NAACL 2021)
ACL