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Abstract

Text Simplification improves the readability
of sentences through several rewriting trans-
formations, such as lexical paraphrasing, dele-
tion, and splitting. Current simplification sys-
tems are predominantly sequence-to-sequence
models that are trained end-to-end to perform
all these operations simultaneously. However,
such systems limit themselves to mostly delet-
ing words and cannot easily adapt to the re-
quirements of different target audiences. In
this paper, we propose a novel hybrid approach
that leverages linguistically-motivated rules
for splitting and deletion, and couples them
with a neural paraphrasing model to produce
varied rewriting styles. We introduce a new
data augmentation method to improve the para-
phrasing capability of our model. Through au-
tomatic and manual evaluations, we show that
our proposed model establishes a new state-of-
the art for the task, paraphrasing more often
than the existing systems, and can control the
degree of each simplification operation applied
to the input texts.1

1 Introduction

Text Simplification aims to improve the readability
of texts with simpler grammar and word choices
while preserving meaning (Saggion, 2017). It pro-
vides reading assistance to children (Kajiwara et al.,
2013), non-native speakers (Petersen and Osten-
dorf, 2007; Pellow and Eskenazi, 2014; Paetzold,
2016), and people with reading disabilities (Rello
et al., 2013). It also helps with downstream nat-
ural language processing tasks, such as parsing
(Chandrasekar et al., 1996), semantic role labelling
(Vickrey and Koller, 2008), information extraction
(Miwa et al., 2010), and machine translation (MT,
Chen et al., 2012; Štajner and Popovic, 2016).

Since 2016, nearly all text simplification sys-
tems have been sequence-to-sequence (seq2seq)

1Our code and data are available at https://github.
com/mounicam/controllable_simplification.

OLen %new %eq %split
Complex (input) 20.7 0.0 100.0 0.0
Narayan and Gardent (2014)† 10.4 0.7 0.8 0.4
Zhang and Lapata (2017)† 13.8 8.1 16.8 0.0
Dong et al. (2019)† 10.9 8.4 4.6 0.0
Kriz et al. (2019)† 10.8 11.2 1.2 0.0
LSTM 17.0 6.1 28.4 1.2
Our Model 17.1 17.0 3.0 31.8
Simple (reference) 17.9 29.0 0.0 30.0

Table 1: Output statistics of 500 random sentences
from the Newsela test set. Existing systems rely on
deletion and do not paraphrase well. OLen, %new,
%eq and %split denote the average output length, per-
centage of new words added, percentage of system out-
puts that are identical to the inputs, and percentage of
sentence splits, respectively. †We used the system out-
puts shared by their authors.

models trained end-to-end, which have greatly in-
creased the fluency of the outputs (Zhang and Lap-
ata, 2017; Nisioi et al., 2017; Zhao et al., 2018; Kriz
et al., 2019; Dong et al., 2019; Jiang et al., 2020).
However, these systems mostly rely on deletion
and tend to generate very short outputs at the cost
of meaning preservation (Alva-Manchego et al.,
2017). Table 1 shows that they neither split sen-
tences nor paraphrase well as reflected by the low
percentage of splits (< 1%) and new words intro-
duced (< 11.2%). While deleting words is a viable
(and the simplest) way to reduce the complexity of
sentences, it is suboptimal and unsatisfying. Pro-
fessional editors are known to use a sophisticated
combination of deletion, paraphrasing, and sen-
tence splitting to simplify texts (Xu et al., 2015).

Another drawback of these end-to-end neural
systems is the lack of controllability. Simplification
is highly audience dependant, and what constitutes
simplified text for one group of users may not be
acceptable for other groups (Xu et al., 2015; Lee
and Yeung, 2018). An ideal simplification system
should be able to generate text with varied char-
acteristics, such as different lengths, readability
levels, and number of split sentences, which can be
difficult to control in end-to-end systems.

https://github.com/mounicam/controllable_simplification
https://github.com/mounicam/controllable_simplification
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Figure 1: Overview of our proposed model for text simplification, which can perform a controlled combination of
sentence splitting, deletion, and paraphrasing.

To address these issues, we propose a novel
hybrid approach that combines linguistically-
motivated syntactic rules with data-driven neural
models to improve the diversity and controllabil-
ity of the simplifications. We hypothesize that the
seq2seq generation model will learn lexical and
structural paraphrases more efficiently from the
parallel corpus, when we offload some of the bur-
den of sentence splitting (e.g., split at comma) and
deletion (e.g., remove trailing preposition phrases)
decisions to a separate component. Previous hy-
brid approaches for simplification (Narayan and
Gardent, 2014; Siddharthan and Mandya, 2014;
Sulem et al., 2018c) used splitting and deletion
rules in a deterministic step before applying an
MT-based paraphrasing model. In contrast, our
approach provides a more flexible and dynamic in-
tegration of linguistic rules with the neural models
through ranking and data augmentation (Figure 1).

We compare our method to several state-of-the-
art systems in both automatic and human evalua-
tions. Our model achieves overall better perfor-
mance measured by SARI (Xu et al., 2016) and
other metrics, showing that the generated outputs
are more similar to those written by human editors.
We also demonstrate that our model can control the
extent of each simplification operation by: (1) im-
posing a soft constraint on the percentage of words
to be copied from the input in the seq2seq model,
thus limiting lexical paraphrasing; and (2) select-
ing candidates that underwent a desired amount
of splitting and/or deletion. Finally, we create a
new test dataset with multiple human references
for Newsela (Xu et al., 2015), the widely used text
simplification corpus, to specifically evaluate lexi-
cal paraphrasing.

2 Our Approach

Figure 1 shows an overview of our hybrid approach.
We combine linguistic rules with data-driven neural
models to improve the controllability and diversity
of the outputs. Given an input complex sentence
x, we first generate a set of intermediate simplifica-
tions V = {v1,v2, . . . ,vn} that have undergone
splitting and deletion (§2.1). These intermediate
sentences are then used for two purposes: (1) Se-
lected by a pairwise neural ranking model (§2.2)
based on the simplification quality and then rewrit-
ten by the paraphrasing component; (2) Used for
data augmentation to improve the diversity of the
paraphrasing model (§2.3).

2.1 Splitting and Deletion

We leverage the state-of-the-art system for struc-
tural simplification, called DisSim (Niklaus et al.,
2019), to generate candidate simplifications that fo-
cus on splitting and deletion.2 The English version
of DisSim applies 35 hand-crafted grammar rules
to break down a complex sentence into a set of hi-
erarchically organized sub-sentences (see Figure 1
for an example). We choose a rule-based approach
for sentence splitting because it works really well.
In our pilot experiments, DisSim successfully split
92% of 100 complex sentences from the training
data with more than 20 words, and introduced er-
rors for only 6.8% of these splits. We consider
these sub-sentences as candidate simplifications
for the later steps, except those that are extremely
short or long (compression ratio /∈ [0.5, 1.5]). The
compression ratio is calculated as the number of

2https://github.com/Lambda-3/
DiscourseSimplification

https://github.com/Lambda-3/DiscourseSimplification
https://github.com/Lambda-3/DiscourseSimplification
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words in a candidate simplification vi (which may
contain one or more sub-sentences) divided by that
of the original sentence x.

To further increase the variety of generated can-
didates, we supplement DisSim with a Neural
Deletion and Split module trained on the text sim-
plification corpus (§3.1). We use a Transformer
seq2seq model with the same configuration as the
base model for paraphrasing (§2.3). Given the in-
put sentence x, we constrain the beam search to
generate 10 outputs with splitting and another 10
outputs without splitting. Then, we select the out-
puts that do not deviate substantially from x (i.e.,
Jaccard similarity > 0.5). We add outputs from the
two systems to the candidate pool V .

2.2 Candidate Ranking

We design a neural ranking model to score all the
candidates that underwent splitting and deletion,
V = {v1,v2, . . . ,vn}, then feed the top-ranked
one to the lexical paraphrasing model for the final
output. We train the model on a standard text sim-
plification corpus consisting of pairs of complex
sentence x and manually simplified reference y.

Scoring Function. To assess the “goodness” of
each candidate vi during training, we define the
gold scoring function g∗ as a length-penalized
BERTscore:

g∗(vi,y) = e−λ||φvi−φy||×
BERTScore(vi,y) (1)

BERTScore (Zhang et al., 2020b) is a text similarity
metric that uses BERT (Devlin et al., 2019) embed-
dings to find soft matches between word pieces
(Wu et al., 2016) instead of exact string match-
ing. We introduce a length penalty to favor the
candidates that are of similar length to the human
reference y and penalize those that deviate from the
target compression ratio φy. λ defines the extent of
penalization and is set to 1 in our experiments. φvi

represents the compression ratios of vi compared
to the input x. In principle, other similarity metrics
can also be used for scoring.

Pairwise Ranking Model. We train the ranking
model in a pairwise setup since BERTScore is sen-
sitive to the relative rather than absolute similarity,
when comparing multiple candidates with the same
reference. We transform the gold ranking of V
(|V | = n) into n2 pairwise comparisons for every

candidate pair, and learn to minimize the pairwise
ranking violations using hinge loss:

LMR =
1

m

m∑
k=1

1

n2k

nk∑
i=1

nk∑
j=1,i 6=j

max(0, 1− lkijdkij)

dkij = g(vki )− g(vkj )

lkij = sign
(
g∗(vki , y

k)− g∗(vkj , y
k)
)

(2)

where g(.) is a feedforward neural network, m is
the number of training complex-simple sentence
pairs, k is the index of training examples, and
nk represents the number of generated candidates
(§2.1). On average, nk is about 14.5 for a sentence
of 30 words, and can be larger for longer sentences.
We consider 10 randomly sampled candidates for
each complex sentence during training.

Features. For the feedforward network g(.), we
use the following features: number of words in
vi and x, compression ratio of vi with respect to
x, Jaccard similarity between vi and x, the rules
applied on x to obtain vi, and the number of rule
applications. We vectorize all the real-valued fea-
tures using Gaussian binning (Maddela and Xu,
2018), which has shown to help neural models
trained on numerical features (Liu et al., 2016; Sil
et al., 2017; Zhong et al., 2020). We concatenate
these vectors before feeding them to the ranking
model. We score each candidate vi separately and
rank them in the decreasing order of g(vi). We
provide implementation details in Appendix A.

2.3 Paraphrase Generation

We then paraphrase the top-ranked candidate v̂ ∈
V to generate the final simplification output ŷ. Our
paraphrase generation model can explicitly control
the extent of lexical paraphrasing by specifying the
percentage of words to be copied from the input
sentence as a soft constraint. We also introduce a
data augmentation method to encourage our model
to generate more diverse outputs.

Base Model. Our base generation model is a
Transformer encoder-decoder initialized by the
BERT checkpoint (?), which achieved the best re-
ported performance on text simplification in the
recent work (Jiang et al., 2020). We enhance this
model with an attention-based copy mechanism to
encourage lexical paraphrasing, while remaining
faithful to the input.
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Copy Control. Given the input candidate v̂ =
(v̂1, v̂2, . . . , v̂l) of l words and the percentage of
copying cp ∈ (0, 1], our goal is to paraphrase the
rest of (1 − cp) × l words in v̂ to a simpler ver-
sion. To achieve this, we convert cp into a vector
of the same dimension as BERT embeddings using
Gaussian binning (Maddela and Xu, 2018) and add
it to the beginning of the input sequence v̂. The
Transformer encoder then produces a sequence of
context-aware hidden states H = (h1,h2 . . .hl),
where hi corresponds to the hidden state of v̂i.
Each hi is fed into the copy network which predicts
the probability pi that word v̂i should be copied to
output. We create a new hidden state h̄i by adding
hi to a vector u scaled according to pi. In other
words, the scaled version of u informs the decoder
whether the word should be copied. A single vec-
tor u is used across all sentences and hidden states,
and is randomly initialized then updated during
training. More formally, the encoding process can
be described as follows:

(h1,h2, . . . ,hl) = encoder([cp; v̂1, v̂2, . . . , v̂l])

h̄i = hi + pi · u,
H̄ = (h̄1, h̄2, . . . , h̄l) (3)

The Transformer decoder generates the output se-
quence from H̄. Our copy mechanism is incorpo-
rated into the encoder rather than copying the input
words during the decoding steps (Gu et al., 2016;
See et al., 2017). Unless otherwise specified, we
use the average copy ratio of the training dataset,
0.7, for our experiments.

Multi-task Training. We train the paraphrasing
model and the copy network in a multi-task learn-
ing setup, where predicting whether a word should
be copied serves as an auxiliary task. The gold
labels for this task are obtained by checking if
each word in the input sentence also appears in
the human reference. When a word occurs multiple
times in the input, we rely on the monolingual word
alignment results from JacanaAlign (Yao et al.,
2013) to determine which occurrence is the one
that gets copied. We train the Transformer model
and the copy network jointly by minimizing the
cross-entropy loss for both decoder generation and
binary word classification. We provide implemen-
tation and training details in Appendix A.

Data Augmentation. The sentence pairs in the
training corpus often exhibit a variable mix of split-
ting and deletion operations along with paraphras-

ing (see Figure 1 for an example), which makes it
difficult for the encoder-decoder models to learn
paraphrases. Utilizing DisSim, we create additional
training data that focuses on lexical paraphrasing

For each sentence pair 〈x,y〉, we first generate a
set of candidates V = {v1,v2, . . . ,vn} by apply-
ing DisSim to x, as described in §2.1. Then, we se-
lect a a subset of V , called V ′ = {v′1,v′2, . . . ,v′n′}
(V ′ ∈ V ) that are fairly close to the reference y,
but have only undergone splitting and deletion. We
score each candidate vi using the length-penalized
BERTScore g∗(vi,y) in Eq. (1), and discard those
with scores lower than 0.5. While calculating g∗,
we set φy and λ to 1 and 2 respectively to favor
candidates of similar length to the reference y.
We also discard the candidates that have different
number of split sentences with respect to the ref-
erence. Finally, we train our model on the filtered
candidate-reference sentence pairs 〈v′1,y〉, 〈v′2,y〉,
. . . , 〈v′n′ ,y〉, which focus on lexical paraphrasing,
in addition to 〈x,y〉.

2.4 Controllable Generation

We can control our model to concentrate on specific
operations. For split- or delete-focused simplifica-
tion, we select candidates with desirable length or
number of splits during the candidate generation
step. We perform only the paraphrase generation
step for paraphrase-focused simplification. The
paraphrasing model is designed specifically to para-
phrase with minimal deletion and without splitting.
It retains the length and the number of split sen-
tences in the output, thus preserving the extent of
deletion and splitting controlled in the previous
steps. We control the degree of paraphrasing by
changing the copy ratio.

3 Experiments

In this section, we compare our approach to vari-
ous sentence simplification models using both au-
tomatic and manual evaluations. We show that
our model achieves a new state-of-the-art and can
adapt easily to different simplification styles, such
as paraphrasing and splitting without deletion.

3.1 Data and Experiment Setup

We train and evaluate our models on Newsela (Xu
et al., 2015)3 and Wikipedia copora (Zhu et al.,
2010; Woodsend and Lapata, 2011; Coster and
Kauchak, 2011). Newsela consists of 1,882 news

3https://newsela.com/data/

https://newsela.com/data/
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Models SARI add keep del FK SLen OLen CR %split s-BL %new %eq
Complex (input) 15.9 0.0 47.6 0.0 12.0 23.7 23.8 1.0 0.0 100.0 0.0 100.0
Simple (reference) 90.5 86.8 86.6 98.2 7.4 14.4 19.0 0.83 28.0 35.5 33.0 0.0
LSTM 35.0 1.6 45.5 57.8 8.9 17.6 17.9 0.8 1.9 66.5 5.0 20.2
Hybrid-NG 35.8 1.9 41.8 63.7 9.9 21.2 23.7 1.0 11.6 59.7 8.8 5.1
Transformerbert 37.0 3.1 43.6 64.4 8.1 15.6 20.2 0.87 24.1 58.8 12.8 10.2
EditNTS 38.1 1.6 45.8 66.5 8.5 16.0 21.4 0.92 32.0 71.4 8.3 0.2
Our Model 38.7 3.3 42.9 70.0 7.9 15.8 20.1 0.86 23.9 48.7 16.2 0.4

Table 2: Automatic evaluation results on NEWSELA-AUTO test set. We report SARI, the main automatic metric
for simplification, and its three edit scores namely precision for delete (del) and F1 scores for add and keep
operations. We also report FKGL (FK), average sentence length (SLen), output length (OLen), compression
ratio (CR), self-BLEU (s-BL), percentage of sentence splits (%split), average percentage of new words added
to the output (%new), and percentage of sentences identical to the input (%eq). Bold typeface denotes the best
performances (i.e., closest to the reference).

articles with each article rewritten by professional
editors for students in different grades. We used
the complex-simple sentence pairs automatically
aligned by Jiang et al. (2020), called the NEWSELA-
AUTO dataset. To capture sentence splitting, we
joined the adjacent sentences in the simple article
that are aligned to the same sentence in the com-
plex article. Following Štajner et al. (2015), we
removed the sentence pairs with high (>0.9) and
low (<0.1) BLEU (Papineni et al., 2002) scores,
which mostly correspond to the near identical and
semantically divergent sentence pairs respectively.
The final dataset consists of 259,778 train, 32,689
validation and 33,391 test complex-simple sentence
pairs, where ∼30% of pairs involve sentence split-
ting. Besides Newsela, we also provide the details
of experiments on Wikipedia corpus in Appendix
F, which show similar trends.

To demonstrate that our model can be controlled
to generate diverse simplifications, we evaluate
under the following settings: (i) Standard eval-
uation on the NEWSELA-AUTO test set similar
to the methodology in the recent literature (Jiang
et al., 2020; Dong et al., 2019; Zhang and Lap-
ata, 2017), and (ii) Evaluation on different subsets
of the NEWSELA-AUTO test set that concentrate
on a specific operation. We selected 9,356 sen-
tence pairs with sentence splits for split-focused
evaluation. Similarly, we chose 9,511 sentence
pairs with compression ratio < 0.7 and without
sentences splits to evaluate delete-focused simplifi-
cation. We created a new dataset, called NEWSELA-
TURK, to evaluate lexical paraphrasing.4 Simi-
lar to the WIKIPEDIA-TURK benchmark corpus
(Xu et al., 2016), NEWSELA-TURK consists of
human-written references focused on lexical para-

4We also provide results on 8,371 sentence pairs of
NEWSELA-AUTO test set with compression ratio > 0.9 and
no splits in Appendix D, which show similar trends.

phrasing. We first selected sentence pairs from the
NEWSELA-AUTO test set of roughly similar length
(compression ratio between 0.8 and 1.2) and no
sentence splits because they more likely involve
paraphrasing. Then, we asked Amazon Mechani-
cal Turk workers to simplify the complex sentence
without any loss in meaning.5 To ensure the quality
of simplifications, we manually selected the work-
ers using the qualification test proposed in Alva-
Manchego et al. (2020), during which the workers
were asked to simplify three sentences. We selected
top 35% of the 300 workers that participated in the
test. We periodically checked the submissions and
removed the bad workers. In the end, we collected
500 sentences with 4 references for each sentence.

3.2 Existing Methods

We use the following simplification approaches as
baselines: (i) BERT-Initialized Transfomer (?),
where the encoder is initialized with BERTbase
checkpoint and the decoder is randomly initialized.
It is the current state-of-the-art for text simplifi-
cation (Jiang et al., 2020). (ii) EditNTS (Dong
et al., 2019),6 another state-of-the-art model that
uses a neural programmer-interpreter (Reed and
de Freitas, 2016) to predict the edit operation on
each word, and then generates the simplified sen-
tence. (iii) LSTM baseline, a vanilla encoder-
decoder model used in Zhang and Lapata (2017).
(iv) Hybrid-NG (Narayan and Gardent, 2014),7

one of the best existing hybrid systems that per-
forms splitting and deletion using a probabilistic
model and lexical substitution with a phrase-based
machine translation system. We retrained all the
models on the NEWSLA-AUTO dataset.

5We provide instructions in Appendix B
6https://github.com/yuedongP/EditNTS
7https://github.com/shashiongithub/

Sentence-Simplification-ACL14

https://github.com/yuedongP/EditNTS
https://github.com/shashiongithub/Sentence-Simplification-ACL14
https://github.com/shashiongithub/Sentence-Simplification-ACL14
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Models SARI add keep del FK SLen OLen CR %split s-BL %new %eq
Complex (input) 22.3 0.0 67.0 0.0 12.8 23.3 23.5 1.0 0.0 100.0 0.0 100.0
Simple (reference) 62.3 44.8 68.3 73.9 11.1 23.8 23.5 1.01 0.0 48.5 24.1 0.0
Hybrid-NG 38.2 2.8 57.0 54.8 10.7 21.6 23.1 0.98 7.0 57.2 9.1 1.4
Transformerbert 36.0 3.3 54.9 49.8 8.9 16.1 20.2 0.87 23.0 58.7 13.3 7.6
EditNTS 37.4 1.6 61.0 49.6 9.5 16.9 21.9 0.94 0.0 73.1 5.8 0.0
Our Model 38.1 3.9 55.1 55.5 8.8 16.6 20.2 0.86 19.6 50.4 15.7 0.0
Our Model (no split; cp = 0.6) 39.0 3.8 57.7 55.6 11.2 22.1 22.9 0.98 0.2 55.9 18.0 1.0
Our Model (no split; cp = 0.7) 41.0 3.4 63.1 56.6 11.5 22.2 22.9 0.98 0.0 69.4 10.4 4.2
Our Model (no split; cp = 0.8) 40.6 2.9 65.0 54.0 11.8 22.4 23.2 0.99 0.0 77.7 6.6 10.8

Table 3: Automatic evaluation results on NEWSELA-TURK that focuses on paraphrasing (500 complex sentences
with 4 human written paraphrases). We control the extent of paraphrasing of our models by specifying the percent-
age of words to be copied (cp) from the input as a soft constraint.

Models SARI add keep del FK SLen OLen CR %split s-BL %new %eq
Complex (input) 17.0 0.0 51.1 0.0 14.6 30.0 30.2 1.0 0.0 100.0 0.0 100.0
Simple (reference) 93.0 89.9 91.6 97.5 7.0 13.4 28.6 0.98 100.0 36.8 29.7 0.0
Hybrid-NG 37.1 2.2 44.9 64.1 11.6 25.5 30.1 1.0 17.3 57.7 8.7 1.6
Transformerbert 39.5 4.2 47.3 67.0 8.8 17.1 25.3 0.85 39.7 57.7 11.9 5.2
EditNTS 38.9 1.5 49.1 66.2 9.1 16.9 26.2 0.88 50.3 71.2 7.2 0.2
Our Model 39.4 4.0 46.6 67.6 8.7 17.5 25.5 0.85 40.6 48.3 15.6 0.1
Our Model (w/ split) 42.1 5.6 50.6 70.1 8.1 15.3 30.3 1.02 93.5 60.7 12.4 1.1

Table 4: Automatic evaluation results on a splitting-focused subset of the NEWSELA-AUTO test set (9,356 sentence
pairs with splitting). Our model chooses only candidates that have undergone splitting during the ranking step.

Models SARI add keep del FK SLen OLen CR %split s-BL %new %eq
Complex (input) 9.6 0.0 28.8 0.0 12.9 25.8 26.0 1.0 0.0 100.0 0.0 100.0
Simple (reference) 85.7 82.7 76.0 98.6 6.7 12.6 12.6 0.5 0.0 19.6 32.6 0.0
Hybrid-NG 35.8 1.4 27.0 79.1 10.6 22.7 25.9 1.0 13.3 58.9 8.7 3.6
Transformerbert 36.8 2.2 29.6 78.7 8.4 16.2 21.7 0.85 27.7 57.9 12.3 8.2
EditNTS 37.1 1.0 29.7 80.7 8.8 16.6 23.1 0.91 36.6 71.8 7.8 0.6
Our Model 39.2 2.4 29.8 85.3 8.2 16.4 21.9 0.85 29.1 48.8 15.6 0.4
Our Model (no split; CR<0.7) 38.2 2.0 28.5 84.1 8.6 16.8 17.5 0.68 0.1 42.0 12.5 0.2

Table 5: Automatic evaluation results on a deletion-focused subset of the NEWSELA-AUTO test set (9,511 sen-
tence pairs with compression ratio < 0.7 and no sentence splits). Our model selects only candidates with similar
compression ratio and no splits during ranking.

3.3 Automatic Evaluation

Metrics. We report SARI (Xu et al., 2016),
which averages the F1/precision of n-grams (n ∈
{1, 2, 3, 4}) inserted, deleted and kept when com-
pared to human references. More specifically, it
computes the F1 score for the n-grams that are
added (add),8 which is an important indicator if
a model is good at paraphrasing. The model’s
deletion capability is measured by the F1 score
for n-grams that are kept (keep) and precision for
those deleted (del).9 To evaluate a model’s para-

8We slightly improved the SARI implementation by Xu
et al. (2016) to exclude the spurious ngrams while calculating
the F1 score for add. For example, if the input contains the
phrase “is very beautiful”, the phrase “is beautiful” is treated
as a new phrase in the original implementation even though it
is caused by the delete operation.

9SARI score of a reference with itself may not always be
100 as it considers 0 divided by 0 as 0, instead of 1, when cal-
culating n-gram precision and recall. This avoids the inflation
of del scores when the input is same as the output.

phrasing capability and diversity, we calculate the
BLEU score with respect to the input (s-BL), the
percentage of new words (%new) added, and the
percentage of system outputs identical to the input
(%eq). Low s-BL, %eq, or high %new indicate
that the system is less conservative. We also report
Flesch-Kincaid (FK) grade level readability (Kin-
caid and Chissom, 1975), average sentence length
(SLen), the percentage of splits (%split), compres-
sion ratio (CR), and average output length (OLen).
We do not report BLEU because it often does not
correlate with simplicity (Sulem et al., 2018a,b; Xu
et al., 2016).

Results. Table 2 shows the results on NEWSELA-
AUTO test set. Our model outperforms the state-of-
the-art Transformerbert and EditNTS models with
respect to SARI.10 EditNTS and LSTM focus on

10According to Jiang et al. (2020), a BERT-initialized Trans-
former performs better than EditNTS. We see a different be-
havior here because we retained sentence splits from 0-1, 1-2,
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Overall Simplification Structural Simplification
Model Fluency Adequacy Simplicity Average Fluency Adequacy Has Split Correct Split
Hybrid-NG 3.23* 2.96* 3.40* 3.19* 3.25* 3.53* 42% 15%
EditNTS 3.88* 3.70 3.67 3.75 4.08 3.81* 41% 18%
Transformerbert 3.91 3.63 3.65* 3.73 4.15 3.65* 53% 49%
Our Model 4.02 3.65 3.77 3.81 4.19 4.13 97% 90%
Simple (reference) 4.12 3.64 3.97 3.84 4.41 4.10 100% 100%

Table 6: Human evaluation of 100 random simplifications from the NEWSELA-AUTO test set and the split-focused
subset of the same test set. Has Split and Correct Split denote the percentage of the output sentences that have
undergone splitting and the percentage of coherent splits respectively. * denotes that our model is significantly
better than the corresponding baseline (according to a t-test with p < 0.05).

deletion as they show high self-BLEU (>66.5) and
FK (>8.8) scores despite having compression ra-
tios similar to other systems. Transformer model
alone is rather conservative and copies 10.2% of the
sentences directly to the output. Although Hybrid-
NG makes more changes than any other baselines,
its SARI and add scores are 3.7 and 1.7 points lower
than our model indicating that it generates more
errors. Our model achieves the lowest self-BLEU
(48.7), FK (7.9), and percentage of sentences iden-
tical to the input (0.4), and the highest add (3.3)
score and percentage of new words (16.2%). In
other words, our system is the least conservative,
generates more good paraphrases, and mimics the
human references better. We provide examples of
system outputs in Table 9 and Appendix C.

Tables 3, 4, and 5 show the results on NEWSELA-
TURK, split-focused, and delete-focused subsets of
NEWSELA-AUTO test set respectively. For these
experiments, we configure our model to focus on
specific operations (details in §2.4). Our model
again outperforms the existing systems according
to SARI, add score, and percentage of new words,
which means that our model is performing more
meaningful paraphrasing. We show that we can
control the extent of paraphrasing by varying the
copy ratio (cp). Our model splits 93.5% of the
sentences, which is substantially better than the
other models.

3.4 Human Evaluation

We performed two human evaluations: one to mea-
sure the overall simplification quality and the other
to specifically capture sentence splitting.11 For
the first one, we asked five Amazon Mechanical
Turk workers to evaluate fluency, adequacy and
simplicity of 100 random simplifications from the
NEWSELA-AUTO test set. We supplemented the

2-3 readability levels in NEWSELA-AUTO, which contained
more lexical overlaps and inflated the scores for EditNTS.

11We provide instructions in Appendix E.

fluency and adequacy ratings with binary questions
described in Zhang et al. (2020a) for the second
evaluation over another 100 simplifications from
the NEWSELA-AUTO split-focused test set. We
asked if the output sentence exhibits spitting and
if the splitting occurs at the correct place. While
fluency measures the grammaticality of the output,
adequacy captures the extent of meaning preserved
when compared to the input. Simplicity evaluates if
the output is simpler than the input. Each sentence
was rated on a 5-point Likert scale and we aver-
aged the ratings from the five workers. We chose
the majority value for the binary ratings. We used
the output of our model that is tailored for sentence
splitting for the second evaluation.

Table 6 demonstrates that our model achieves
the best fluency, simplicity, and overall ratings.
The adequacy rating is also very close to that
of Transformerbert and EditNTS even though our
model is performing more paraphrasing (Table 2),
which verifies that the changes made by our system
are meaningful. Our model achieves the most num-
ber of correct sentence splits (90%), and the highest
fluency (4.19) for syntactic simplification, show-
ing that it can generate more number of coherent
sentence splits when compared to other models.

4 Model Analysis

In this section, we analyze the contribution of each
model component and examine the system errors.

4.1 System Ablations
We evaluate our key design choices, namely can-
didate ranking that is based on length-penalized
BERTScore and paraphrase generation that uses
data augmentation and copy attention. Table 8 sum-
marizes the results. Our pairwise ranking model
(BERTScorelen) achieves an increase of 3.2 points
in SARI when compared to choosing a random
(Random) candidate. Randomly selecting a candi-
date also performs fairly well, indicating that the
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Examples
Good (49%)
Complex The Seattle kids petitioned Washington state last year to adopt stricter science-based regulations to

protect them against climate change.
Simple The eight kids from Seattle who petitioned Washington state last year are fighting for the state to adopt

stricter laws to protect their future against climate change.
Our Model The Seattle kids asked the Washington state last year to take tougher rules against climate change.
Hallucinations (13%)
Complex “It’s more of a family than living outside,” said Jessica Konczal, 33, whose husband is Sgt. Matthew

Konczal .
Simple Jessica Konczal, age 33, says the base is its own type of family .
Our Model “It’s more of a family than living outside,” said Jessica Konczal, one of the protesters.
Fluency Errors (14%)
Complex Parental feedback on the menu additions so far, from some of the early adopter markets, has been

“phenomenal,” Leverton said.
Simple Leverton said parents love the new food.
Our Model So far, parents parents have feedback on the menu changes has been a great deal, he added.
Bad Substitution (15%)
Complex One of the device’s inventors explained to the president that the machine was a prototype.
Simple One of the girls explained it was just a prototype.
Our Model One of the inventors told the president that the first design was a design.
Anaphora Resolution / Entailment (12%)
Complex Sea slugs dubbed sacoglossans are some of the most remarkable biological burglars on the planet.
Simple The sea slugs known as sacoglossans are some of the most interesting burglars on the planet.
Our Model Scientists say these are some of the most interesting creatures on the planet.
Human Reference Errors (4%)
Complex They float in and out of formations that combine the underwater world with the stage.
Simple In the dance on a round stage on the seabed, the dancers swim together and apart.
Our Model They float in and out of places that combine stage with the underwater.

Table 7: Error analysis of 200 simplifications from NEWSELA-AUTO test set generated by our model. Red marks
the errors; blue marks good paraphrases.

SARI FK CR %split %new
Complex (input) 15.9 12.2 1.0 0.0 0.0
Simple (reference) 90.5 7.5 0.83 28.9 32.8
Random Candidate 33.7 8.1 0.81 34.4 5.5
BERTScorelen 36.9 9.0 0.87 25.9 5.9
Our Model 38.6 8.4 0.88 26.1 18.9
− augmentation 37.6 7.9 0.86 29.5 12.7
− copy attn 36.0 8.1 0.87 26.2 15.9
− only Transformer 37.9 7.7 0.78 26.3 16.5
− only DisSim 37.2 8.3 0.84 27.1 18.0

Table 8: Model ablation study on dev set

sentence splitting and deletion models we chose
are of good quality.

Compared to our final model (Our Model), its
variants without data augmentation (− augmenta-
tion) and copy mechanism (− copy attn) suffer a
drop of 1.0 and 2.6 points in SARI respectively and
a decrease of at least 3.0% of new words, which
demonstrates that these components encourage the
system to paraphrase. Our model trained on only
DisSim (− only DisSim) and Transformer (− only
Transformer) candidates performs close to our best
model (Our Model) in terms of SARI.

4.2 Error Analysis

To understand the errors generated by our model,
we manually classified 200 simplifications from the

NEWSELA-AUTO test set into the following cate-
gories: (a) Good, where the model generated mean-
ingful simplifications, (b) Hallucinations, where
the model introduced information not in the input,
(c) Fluency Errors, where the model generated
ungrammatical output, (d) Anaphora Resolution,
where it was difficult to resolve pronouns in the
output. (e) Bad substitution, where the model in-
serted an incorrect simpler phrase, and (e) Human
Reference Errors, where the reference does not
reflect the source sentence. Note that a simplifica-
tion can belong to multiple error categories. Table
7 shows the examples of each category.

5 Related Work

Before the advent of neural networks, text simplifi-
cation approaches performed each operation sepa-
rately in a pipeline manner using either handcrafted
rules (Carroll et al., 1999; Siddharthan, 2002; Sid-
dharthan et al., 2004) or data-driven methods based
on parallel corpora (Zhu et al., 2010; Woodsend and
Lapata, 2011; Narayan and Gardent, 2014). Follow-
ing neural machine translation, the trend changed
to performing all the operations together end-to-
end (Zhang and Lapata, 2017; Nisioi et al., 2017;
Zhao et al., 2018; Alva-Manchego et al., 2017; Vu
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System Outputs
Complex Since 2010, project researchers have uncovered documents in Portugal that have revealed who owned

the ship.
Simple Since 2010, experts have been figuring out who owned the ship.
Hybrid-NG since 2010, the project scientists have uncovered documents in portugal that have about who owns the

ship.
LSTM since 2010, scientists have uncovered documents in portugal that have revealed who owned the ship.
Transformerbert they discovered that the ship had been important.
EditNTS since 2010, project researchers have uncovered documents in portugal. have revealed who owned the

ship.
Our Model (cp = 0.6) scientists have found a secret deal. they have discovered who owned the ship.
Our Model (cp = 0.7) scientists have found documents in portugal. they have also found out who owned the ship.
Our Model (cp = 0.8) scientists have found documents in portugal. they have discovered who owned the ship.
Complex Experts say China’s air pollution exacts a tremendous toll on human health.
Simple China’s air pollution is very unhealthy.
Hybrid-NG experts say the government’s air pollution exacts a toll on human health.
LSTM experts say china’s air pollution exacts a tremendous toll on human health.
Transformerbert experts say china’s pollution has a tremendous effect on human health.
EditNTS experts say china’s air pollution can cause human health.
Our Model (cp = 0.6) experts say china’s air pollution is a big problem for human health.
Our Model (cp = 0.7) experts say china ’s air pollution can cause a lot of damage on human health.
Our Model (cp = 0.8) experts say china ’s air pollution is a huge toll on human health.

Table 9: Examples of system outputs. Red marks the errors; blue marks good paraphrases. cp is a soft constraint
that denotes the percentage of words that can be copied from the input.

et al., 2018; Kriz et al., 2019; Dong et al., 2019;
Jiang et al., 2020) at the cost of controllability and
performance as shown in this paper.

Controllable text simplification has been at-
tempted before, but only with limited capability.
Scarton and Specia (2018) and Martin et al. (2020)
added additional tokens to the input representing
grade level, length, lexical, and structural com-
plexity constraints. Nishihara et al. (2019) pro-
posed a loss which controls word complexity, while
Mallinson and Lapata (2019) concatenated con-
straints to each word embedding. Kumar et al.
(2020) proposed a linguistic scoring function to
control the edits to the input.

Another long body of research focuses on a sin-
gle simplification operation and can be broadly di-
vided into three categories: (1) Lexical Simplifica-
tion (Specia et al., 2012; Horn et al., 2014; Glavaš
and Štajner, 2015; Paetzold and Specia, 2017, 2015;
Maddela and Xu, 2018; Qiang et al., 2020), where
complex words are substituted with simpler words.
(2) Syntactic Simplification (Siddharthan, 2006;
Aharoni and Goldberg, 2018; Botha et al., 2018;
Niklaus et al., 2019), which deals exclusively with
sentence splitting, and (3) Sentence Compression
(Filippova et al., 2015; Rush et al., 2015; Nallapati
et al., 2016; See et al., 2017; Baziotis et al., 2019),
where the goal is to shorten the input sentence by
removing its irrelevant content.

6 Conclusion

We proposed a novel hybrid approach for sentence
simplification that performs better and produces
more diverse outputs than the existing systems.
We designed a new data augmentation method
to encourage the model to paraphrase. We cre-
ated a new dataset, NEWSELA-TURK, to evaluate
paraphrasing-focused simplifications. We showed
that our model can control various attributes of the
simplified text, such as number of sentence splits,
length, and number of words copied from the input.
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A Implementation and Training Details

We implemented two separate Transformer models
for neural deletion and split component (§2.1) and
paraphrase generation (§2.3) using the Fairseq12

toolkit. Both the encoder and decoder follow
BERTbase13 architecture, while the encoder is also
initialized with BERTbase checkpoint. For neu-
ral deletion and split component, we used a beam
search of width 10 to generate candidates. The copy
attention mechanism is a feedforward network con-
taining 3 hidden layers, 1000 nodes in each layer
with tanh activation, and a single linear output node
with sigmoid activation. We used Adam optimizer
(Kingma and Ba, 2014) with a learning rate of
0.0001, linear learning rate warmup of 40k steps,
and 100k training steps. We used a batch size of
64. We used BERT WordPiece tokenizer. During
inference, we constrained the beam-search to not
repeat trigrams and emitted sentences that avoided
aggressive deletion (compression ratio ∈ [0.9, 1.2].
We chose the best checkpoint based on the SARI
score (Xu et al., 2016) on the dev set. We saved
a checkpoint after every epoch. We did not per-
form any hyperparameter search and directly used
the hyperparameters of the BERT-initialized Trans-
former described in ?. The model takes 10 hours
to train on 1 NVIDIA GeForce GPU.

Our pairwise ranking model, implemented using
the PyTorch framework, consists of 3 hidden lay-
ers, 100 nodes in each layer, tanh activation, and
a single linear output node. We used Adam opti-
mizer with a learning rate of 0.01 and 10 epochs.
We applied a dropout of 0.2. For Gaussian bin-
ning, we vectorized the numerical features into 10
dimensional vectors. The model takes half hour
to train on 1 NVIDIA GeForce GPU. We do not
perform any extensive hyperparameter tuning. We
just examined few values for learning rate (0.001,
0.01 and 0.1) and chose the best based on the SARI
score on the dev set. We used the original code for
DisSim.14

12https://github.com/pytorch/fairseq
13https://github.com/google-research/

bert
14https://github.com/Lambda-3/

DiscourseSimplification

https://github.com/pytorch/fairseq
https://github.com/google-research/bert
https://github.com/google-research/bert
https://github.com/Lambda-3/DiscourseSimplification
https://github.com/Lambda-3/DiscourseSimplification
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Figure 2: Annotation guidelines for our NEWSELA-TURK corpus along with example questions.
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C System Outputs

System Outputs
Complex This year, the FAA has approved dozens of permits for agricultural drone businesses.
Simple This year, it approved dozens of permits for agricultural drone businesses.
Hybrid-NG this year, the government has approved dozens of drone permits for agricultural businesses.
LSTM this year, the faa has approved dozens of permits for agricultural drone businesses.
Transformerbert this year, the faa has approved dozens of permits for agricultural businesses.
EditNTS this year, the government has approved dozens of permits for drone businesses for no permission.
Our Model (cp = 0.6) this year, the faa has allowed many businesses to use drones.
Our Model (cp = 0.7, 0.8) this year, the faa has approved dozens of permits for drones.
Complex The room echoed with the sounds of song, the beat of drums, the voices of young men.
Simple As she spoke, the building echoed with music and the beat of drums.
Hybrid-NG echoed the room.
LSTM the room echoed with the sounds of song, the voices of young men.
Transformerbert the room echoed with the sound of song, the beat of drums, the voices of young men.
EditNTS the room echoed with the sounds of song, the beat of drums, the voices of young men who are

hungry and legs.
Our Model (cp = 0.6) the sound of the room was full of sounds of young men and the voices of cellos.
Our Model (cp = 0.7) the sound of the room sounded like a lot of music, and the voices of young men.
Our Model (cp = 0.8) the sound of the room sounded like a song, the beat of drums, and the voices of young men.

Table 10: Examples of system outputs by our paraphrase generation model and other baselines. Our model gen-
erates paraphrase-focused simplifications by skipping the splitting and deletion steps and running only the neural
paraphrase generation component. (red marks the errors; blue marks good paraphrases). cp is a soft constraint
that denotes the extent of paraphrasing in terms of number of words that can be copied from the input.

D Additional Evaluation on Newsela

Models SARI add keep del FK SLen OLen CR %split s-BL %new %eq
Complex (input) 20.6 0.0 61.7 0.0 9.2 16.9 17.0 1.0 0.0 100.0 0.0 100.0
Simple (reference) 94.6 93.6 91.4 98.8 8.7 17.9 17.9 1.06 0.0 48.0 29.7 0.0
Hybrid-NG 35.0 2.3 52.7 50.1 7.8 16.1 17.0 1.0 5.6 61.7 9.3 9.1
Transformerbert 35.3 3.4 52.9 49.6 7.0 13.5 15.2 0.91 10.4 60.2 14.4 15.7
EditNTS 37.7 2.0 56.4 54.5 7.6 14.2 15.5 0.93 8.7 69.0 7.1 3.5
Our Model 37.9 4.4 51.3 58.0 6.7 13.6 15.3 0.92 9.7 49.2 19.2 0.9
Our Model (no split; cp = 0.6) 38.3 3.9 53.8 57.3 7.9 16.1 16.7 1.0 0.0 53.4 20.8 3.6
Our Model (no split; cp = 0.7) 39.1 3.7 58.5 55.2 8.3 16.2 16.8 1.0 0.0 67.6 12.4 11.0
Our Model (no split; cp = 0.8) 38.0 3.3 60.3 50.4 8.5 16.4 16.9 1.0 0.0 76.5 8.2 20.3

Table 11: Automatic evaluation results on a subset of Newsela test set that focuses on paraphrasing (8371 complex-
simple sentence with compression ratio > 0.9 and no splits). We control the extent of paraphrasing of our models
by specifying the percentage of words to be copied (cp) from the input as a soft constraint.
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Figure 3: Guidelines provided to the Amazon Mechanical Turk workers for evaluating simplified sentences. Our
interface is based on the one proposed by Kriz et al. (2019).

Figure 4: Guidelines provided to the Amazon Mechanical Turk workers for evaluating simplified sentences specif-
ically for sentence splitting.
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Models SARI add keep del FK SLen OLen CR %split s-BL %new %eq
Complex (input) 25.9 0.0 77.8 0.0 13.4 22.4 22.6 1.0 0.0 100.0 0.0 100.0
Simple (reference) 42.0 20.6 59.9 45.5 10.9 19.1 19.3 0.88 1.1 55.2 15.3 7.8
Hybrid-NG 25.4 0.1 42.7 33.5 9.0 13.3 13.4 0.6 0.8 38.2 1.4 3.1
LSTM 32.6 2.1 59.8 36.0 10.0 17.8 17.8 0.84 0.8 60.0 10.7 15.0
Transformerbert 35.1 4.3 61.8 39.2 10.4 16.7 18.8 0.85 10.9 62.1 11.1 11.1
EditNTS 36.1 2.5 67.4 38.5 11.7 20.9 22.4 1.02 6.4 63.5 13.5 0.0
Our Model 35.9 4.7 63.6 39.6 9.2 14.7 19.8 0.9 33.7 63.2 12.9 9.2
Our Model (no split; cp = 0.6) 36.5 4.9 63.2 41.4 10.8 18.6 19.9 0.89 6.7 61.9 12.4 3.9
Our Model (no split; cp = 0.7) 37.5 4.3 68.8 39.4 11.2 19.1 20.9 0.94 8.9 72.6 8.6 12.3
Our Model (no split; cp = 0.8) 37.0 3.8 72.0 35.3 11.7 19.8 21.7 0.97 8.4 80.4 6.6 24.5

Table 12: Automatic evaluation results on TURK dataset (Xu et al., 2015) that focuses on lexical paraphrasing.

Models SARI add keep del FK SLen OLen CR %split s-BL %new %eq
Complex (input) 20.5 0.0 61.5 0.0 13.4 22.4 22.6 1.0 0.8 100.0 0.0 100.0
Simple (reference) 46.3 20.0 51.0 67.9 9.1 14.8 18.9 0.87 24.2 46.2 20.5 0.6
Hybrid-NG 29.8 0.1 37.0 52.2 9.0 13.3 13.4 0.6 0.8 38.2 1.4 3.1
LSTM 36.1 2.4 51.8 54.2 10.0 17.8 17.8 0.84 0.8 59.9 10.8 14.8
Transformerbert 38.7 5.0 53.5 57.7 10.4 16.7 18.8 0.85 10.9 62.1 11.2 11.1
EditNTS 37.8 2.7 56.0 54.9 11.7 20.9 22.4 1.02 6.4 63.6 13.4 0.0
Our Model 39.7 5.3 55.1 58.8 9.2 14.7 19.8 0.9 33.7 63.1 14.0 8.9

Table 13: Automatic evaluation results on ASSET (Alva-Manchego et al., 2020) dataset that contains all the three
simplification operations.

We use the complex-simple sentence pairs
from WIKI-AUTO (Jiang et al., 2020), which con-
tains 138,095 article pairs and 604k non-identical
aligned and partially-aligned sentence pairs. To
capture sentence splitting, we join the sentences in
the simple article mapped to the same sentence in
the complex article. Similar to Newsela, we remove
the sentence pairs with high (>0.9) and low (<0.1)
BLEU (Papineni et al., 2002) scores. For valida-
tion and testing purposes, we use the following

two corpora: (i) TURK corpus (Xu et al., 2015) for
lexical paraphrasing and (ii) ASSET corpus (Alva-
Manchego et al., 2020) for multiple rewrite op-
erations. While the former corpus has 8 human-
written references for 2000 validation and 359 test
sentences, the latter corpus provides 10 references
for the same sentences. We remove the validation
and test sentences from the training corpus. Tables
12 and 13 show the results on TURK and ASSET

respectively.


