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Abstract

Style transfer has been widely explored in nat-
ural language generation with non-parallel cor-
pus by directly or indirectly extracting a no-
tion of style from source and target domain
corpus. A common shortcoming of existing
approaches is the prerequisite of joint anno-
tations across all the stylistic dimensions un-
der consideration. Availability of such dataset
across a combination of styles limits the exten-
sion of these setups to multiple style dimen-
sions. While cascading single-dimensional
models across multiple styles is a possibility,
it suffers from content loss, especially when
the style dimensions are not completely inde-
pendent of each other. In our work, we re-
lax this requirement of jointly annotated data
across multiple styles by using independently
acquired data across different style dimensions
without any additional annotations. We initial-
ize an encoder-decoder setup with transformer-
based language model pre-trained on a generic
corpus and enhance its re-writing capability to
multiple target style dimensions by employing
multiple style-aware language models as dis-
criminators. Through quantitative and quali-
tative evaluation, we show the ability of our
model to control styles across multiple style di-
mensions while preserving content of the input
text. We compare it against baselines involv-
ing cascaded state-of-the-art uni-dimensional
style transfer models.

1 Introduction

Style transfer is a popular task in natural language
processing and has been studied on attributes like
age or gender (Subramanian et al., 2018), styles
emanating from social construct like formality
(Rao and Tetreault, 2018) and politeness (Madaan
et al., 2020), linguistic styles based on author writ-
ing style (Syed et al., 2020), or psycho-linguistic
styles based on personality types (Mairesse and
Walker, 2011). While early style transfer frame-
works were modeled as a supervised learning task

on a parallel corpus, state-of-the-art models are
semi-supervised/unsupervised and operate on non-
parallel corpus. These models achieve style trans-
fer by aligning source and target distribution of
sentences from non-parallel corpus (Shen et al.,
2017), disentangling content space from style space
in latent representation (Hu et al., 2017) or em-
ploying self-reconstruction (Dai et al., 2019) and
back translation (Lample et al., 2018) objectives
to achieve pseudo-supervision with non-parallel
corpus. Recent works have also modeled this in
a self-supervised manner where rewriting (trans-
fer) is achieved by utilizing corpus from the target
style alone (Syed et al., 2020). These wide stud-
ies have also led to the curation and benchmark-
ing of non-parallel dataset for various style dimen-
sions, such as sentiment (Li et al., 2018), formality
(Rao and Tetreault, 2018), politeness (Danescu-
Niculescu-Mizil et al., 2013), excitement (Sancheti
et al., 2020), etc. But availability of data with joint
tagging across multiple styles is limited and has
restricted the ability of existing approaches to scale
from single-dimensional transfer to multiple style
dimensions. In this paper, we propose a multi-
dimensional style transfer approach that can work
off partially labelled data for style transfer across
multiple dimensions simultaneously.

The work by Subramanian et al. (2018) attempts
style transfer with multiple attributes such as age,
gender, and sentiment simultaneously. However,
their approach avails corpus tagged with each of
these three style dimensions. In contrast to this and
other similar explorations in multi-style transfer,
our approach does not require jointly labelled data
across all the stylistic dimensions in source and/or
target corpus. We focus on the problem where inde-
pendent corpus is available across different stylistic
dimensions (say sentiment and formality) and we
achieve style transfer spanning different stylistic
dimensions (say make a sentence more positive and
formal). While state-of-the-art approaches can be
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extended to achieve this by sequentially transfer-
ring one style after another, it is limited as differ-
ent style dimensions are not necessarily indepen-
dent of each other. In aspects that are not indepen-
dent, changing one style aspect of the text might
affect another aspect considered, making a sequen-
tial brute-force approach non-ideal. As we show
in our experiments later, the cascaded setup also
lacks common grounding between the content from
different styles leading to erratic changes in con-
tent. We circumvent this by grounding our frame-
work on the linguistic understanding of a large
language model. Our model builds understanding
of interplay between the different styles by incor-
porating multiple discriminative language models
(LM) with language model-based encoder-decoder
setup. The key contributions of this paper are:
1) An encoder-decoder setup with multiple lan-
guage models as discriminator, with each entity
harnessing the language understanding from a large
pre-trained transformer model.
2) Relaxing the requirement of jointly labelled
data for multi-style transfer, by leveraging indepen-
dently acquired disjoint corpus for different styles.
3) Achieving better style control with better con-
tent preservation in multi-dimensional style trans-
fer than a cascaded setup of state-of-the-art uni-
dimensional style transfer models.

2 Related Work

One line of work in style transfer attempts to
learn disentangled latent representation for style
and content, and transfer style by manipulating
latent representation of style (Shen et al., 2017).
Although these approaches perform well with one
style at a time, they do not trivially scale to multi-
dimensional style transfer. Several other works
develop unsupervised approach for style transfer
by employing Denoising Autoencoding (DAE) (Fu
et al., 2017) and back-translation (BT) (Lample
et al., 2018) loss to develop interaction and hence
transfer between the source and target domain. Sub-
ramanian et al. (2018) extend this approach to mul-
tiple styles by conditioning on average of embed-
ding of each target attribute and using combina-
tion of DAE and back-translation techniques. DAE
takes as input a sentence x from style s and tries
to reconstruct sentence x from its corrupted ver-
sion x̃. This relies on the assumption that the in-
put sentence x is from a certain style combination
s = {s1, s2, . . . , sk}. Similarly back translation

(BT) objective with input sentence x from style
s, first estimates x′ = f(x, s′), where s 6= s′ and
then reconstruct x from x̃ = f(x′, s). Thus, these
approaches are inherently dependent on knowledge
of annotation of each sentence with all the style
combinations. Dai et al. (2019) achieve state-of-
the-art style transfer in single style dimensions by
employing transformer-based model in conjunction
with classifier-based discriminator. In addition to
discriminator losses, their proposed technique uses
self-reconstruction and cycle reconstruction losses,
which similar to DAE and BT losses are also re-
liant on availability of jointly annotated data to be
extendable to multiple style setup.

Language modeling is integral to several natu-
ral language generation (NLG) tasks like text sum-
marization, spelling correction, image captioning,
etc. The model architecture for these tasks has
evolved from n-gram based methods to Recurrent
Neural Networks to transformer architectures. The
introduction of Transformer-based architecture ac-
companied with generative pre-training (Radford,
2018) capabilities have led to strong improvements
in many downstream generation and GLUE (Wang
et al., 2018) tasks. Generative pre-training aims to
adapt a large Transformer language model to large
unsupervised corpus. This capability of generative
pre-training is exploited in many large language
models like BERT (Devlin et al., 2019), GPT-2
(Radford et al., 2018), ERNIE 2.0 (Sun et al., 2020)
which have the ability to perform tasks like read-
ing comprehension (Xu et al., 2019), summariza-
tion (Liu and Lapata, 2019), question-answering
(Rajpurkar et al., 2016) and translation (Clinchant
et al., 2019) in zero-shot and few-shot settings.

Recently these pre-trained generative language
models have been explored in translation (Con-
neau and Lample, 2019) and style transfer tasks
(Syed et al., 2020). Conneau and Lample (2019)
develop cross-lingual models for unsupervised ma-
chine translation by initializing encoder and de-
coder with a pre-trained language model trained
on Masked Language Modeling (MLM) (Devlin
et al., 2019) objective and fine-tuning the encoder-
decoder framework with adversarial training. Syed
et al. (2020) extend this to stylized re-writing task
by employing DAE during fine-tuning. The joint
encoder-decoder framework learns to reconstruct
sentences in target-domain from its noisy version
using DAE objective. As previously discussed, the
DAE objective is reliant on the corpus being tagged
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for the target domain style (or combination of style)
and restricts the generalization of this setup to mul-
tiple attributes. We overcome this by employing
discriminative language models to assist the de-
coder with feedback for various target styles.

Shen et al. (2017) show that even with non-
parallel data, the content distribution across source
and target style is shared. Based on this, a lan-
guage model trained on target style will have high
perplexity on transferred text if it does not match
target style and low perplexity otherwise. Yang
et al. (2018) exploit this ability of language models
to replace standard binary classifier-based discrim-
inators with an implicitly trained language model
as discriminator. They show that using the lan-
guage model as structured discriminator allows for
more stable training by eliminating the adversarial
step. We extend this idea to a multi-discriminator
approach. Training a LM on combination of tar-
get styles is not possible in absence of jointly la-
belled dataset. Due to this, we attempt to use mul-
tiple discriminators for each of the target styles.
Since with multiple styles, the underlying corpus
is independently acquired, the variation in content
distribution across different styles is more notice-
able. Consequently, an independently trained LM
on one of the target styles might have high per-
plexity even if the transferred sentence fits in the
corresponding target style, due to the content space
of source sentence. To equip discriminative LM
with more generalized notion of content, we use
large transformer-based LM pre-trained on large
unsupervised corpus to establish generic content
distribution before style-oriented fine-tuning.

3 Approach

Our proposed approach has two key elements —
a Transformer-based encoder-decoder model ini-
tialized with a pre-trained Transformer Language
Model and fine-tuned on DAE loss to achieve style
transfer (Section 3.1) and the multiple language
models as discriminators stacked together to en-
able multi-style transfer (Section 3.2).

3.1 Pre-trained LM as Encoder-Decoder

Similar to Syed et al. (2020), we first pre-train a
Transformer-based language model with Masked
Language Modeling (MLM) objective on English
Wikipedia data extracted using WikiExtractor.1

This equips LM with the ability to predict masked
1https://github.com/attardi/wikiextractor

words over a large corpus. Masked Language Mod-
eling leverages bidirectional context of the input,
thus enabling better language understanding. Fol-
lowing Masked Language Modeling objective from
Devlin et al. (2019), we randomly sample 15% of
the tokens from the text stream and replace them
with the [MASK] token 80% of the time, by a
random token 10% of the time and keep them un-
changed 10% of the time, with the objective of
predicting the original identity of the masked word
based on its bidirectional context. To enable style
transfer from a given sentence to target style, we
use independently trained language models (LMs)
to initialize the encoder and decoder and connect
these with randomly initialized attention layers to
arrive at a encoder-decoder setup. As discussed
by Syed et al. (2020), the Transformer architecture
(Vaswani et al., 2017) allows such independent ini-
tialization by implicitly aligning encoder-decoder
layers via attention mechanism.

Pre-training an encoder only transformer on gen-
erative task and then leveraging it to initialize
as both encoder and decoder as opposed to pre-
training a joint encoder-decoder model has sev-
eral advantages. Transformer-based models with
encoder-only (Devlin et al., 2019) or decoder-only
(Radford et al., 2018) blocks have been shown
to perform well in generative pre-training task.
Clearly, pre-training a single transformer block on
generative task and then utilizing it as both en-
coder and decoder blocks has lower computational
cost than training the entire encoder-decoder block
jointly. Moreover, this also enables us to use the
same pre-trained model to initialize both style trans-
fer module and the discriminator models, explained
in the following section. This is not only compu-
tationally more efficient but it also closely ties the
underlying language distribution of the two mod-
ules. This is expected to make the discriminative
feedback more effective while fine tuning the trans-
fer model for multiple styles.

In Syed et al. (2020)’s setup, both encoder and
decoder in the style transfer module are initialized
with the pre-trained language model (trained on
MLM objective). Instead, we initialize the decoder
with the language model fine-tuned with the target
style using Causal Language Modeling (CLM) ob-
jective, before training the joint encoder-decoder
model, as detailed in Section 3.2. The encoder
is initialized with the pre-trained model directly.
Aligning the decoder to the distribution of the tar-
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Figure 1: Model Architecture - Left: Generative pre-training using MLM objective, and Fine-tuning encoder-
decoder LM with multiple discriminative losses and Right: Discriminator fine-tuning with language modeling
(next token prediction) objective. Color for model blocks represents the pre-trained model used for initialization
prior to fine-tuning.

get style helps speed up the fine-tuning process as
decoder is more adept at generating stylized out-
puts. This does not add to computational overhead
as these fine-tuned models are repurposed as dis-
criminators for stylistic feedback (Section 3.2).

To instill style-awareness to the encoder-decoder
setup initialized with pre-trained Transformer mod-
els, we fine-tune it with Denoising Autoencoder
(DAE) loss using the target-domain corpus. In case
of multiple styles, we use a randomized mixture
of target-domain corpus from each of the target
styles. Under the DAE objective, the encoder takes
a noisy masked version x̃ of the text x as input
and attempts to fill in the mask token as per the
MLM objective that it was pre-trained on. In turn,
the decoder re-creates stylistic version of original
sentence from this noisy output from the encoder.
The overall training objective is

LDAE(θG) = Ex∼T [− logPθG(x|x̃)], (1)

where θG are the trainable parameters of the
encoder-decoder model. The noisy version of sen-
tence x from the target corpus T is obtained after
dropping tokens from x with probability pdrop and
masking with a probability of pmask. In conjunc-
tion, the encoder and decoder enable style transfer
to the target style. The noteworthy aspect here is
that the model has no sense of source style and is
trained to generate sentences to match the style of
the target-domain corpus with which it is trained.

3.2 Fine-tuned LM as discriminators

To extend the single-dimensional style transfer
setup above to multi-dimensional setting, we use
language models as discriminators to provide the
feedback to the model for partially annotated na-
ture of input data. As opposed to a classifier-based
discriminator, the language model as discriminator
takes into account the wider language distribution
of the target style. Additionally, such a setup allows
us to use only the target style corpus for training the
transfer model, whereas the classifier would require
both source and target style corpus to distinguish
between a sentence as being from one style or an-
other. Inspired by Yang et al. (2018), we fine-tune
a language model on the target style si, so that the
language model is equipped with language distribu-
tion of target domain data. This entails generating
the probability of next token, given the previous
tokens — also known as Causal Language Model-
ing objective (Conneau and Lample, 2019). The
training loss for the LM for target style si with
corresponding corpus Ti is

Ex∼Ti

[ n∑
t=1

[− logPLM (xt|x1, . . . , xt−1)]

]
(2)

We show in our experiments that such a fine-
tuning step transforms language distribution of this
language model to style si and hence serve as soft-
discriminator for our framework. We exploit this
capability of language models to imbibe style of
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fine-tuning corpus by employing language models
as style discriminators for transferred sentences.
This is based on the idea that if the transferred
sentence does not fit well in the target style, then
the perplexity of language model fine-tuned on that
style will be high (Section 4.1).

For k-dimensional style transfer with target
styles s = {s1, s2, . . . , sk}, we independently fine-
tune k language models on each of the target styles.
As discussed in Yang et al. (2018), we are able to
forgo the adversarial training for the discriminator,
since the fine-tuned discriminative language model
is implicitly capable of assigning high perplexity to
negative samples (out-of-style samples), as shown
in Section 4.1. For the transferred sentence x′, the
training objective for each target style si is,

argmin
θG

Lsi = Ex∼T,x′∼PθG (x)[ n∑
t=1

− logPLM i(x
′
t|x′1, .., x′t−1)

] (3)

This dictates that transferred sentence x′ has low
perplexity on the language model fine-tuned on
style si, for each target style si. However, we can-
not directly find the argminθG using gradient de-
scent because of discrete sampling of x′ ∼ PθG(x).
To account for this, we use a policy gradient rein-
forcement learning approach using REINFORCE
algorithm (Sutton et al., 1999). The reward for an
input sequence x to the style discriminator LMi is
calculated as,

r(x) =
n∑
t=1

logPLM i(xt|x1, .., xt−1) (4)

Using these rewards, the RL objective is to mini-
mize the loss Lsi given by,

Lsi = Ex∼T,x′∼PθG (x)(r(x
′)− r(x))

[− logPθG(x
′|x̃)]

(5)

for style si, where PθG(x|x̃) is as in Equation 1
and r(x′) is the reward in the Equation 4 for the
transferred sentence x′. The rewards r(x) repre-
sents the baseline reward of greedily sampling the
input sequence x by the style discriminator LMi.

For the style combination s = {s1, s2, . . . , sk},
the joint encoder-decoder model is trained on ran-
domized mixture of data from each of the target-
domain corpus. The mixture is thus agnostic of
individual style of each of the sentence and the

discriminative LM for each style guides the gener-
ation towards that specific style by rewarding style
adherence in the transferred sentence. Random-
ized mixture of training corpus across styles allows
for unified and cohesive understanding of multiple
styles by diversifying rewards from different dis-
criminators across samples. The overall training
loss for the joint encoder-decoder model is

L = λDAEEx∼T [− logPθ(x|x̃)] +
k∑
i=1

λiLsi , (6)

where Lsi is as defined in Equation 5, and λDAE
and {λi}ki=1 are hyper-parameters.

The overall training process is summarized
in Figure 1. First, we pre-train a transformer
model with Masked language modeling objective
as shown in Figure 1(Left). We then initialize dis-
criminator model with this pre-trained language
model and fine-tune it with Causal language mod-
eling objective, shown in Figure 1(Right), for each
target style. Finally, we initialize the encoder and
decoder of the style transfer module with the pre-
trained and style-specific fine-tuned language mod-
els, respectively. In case of multiple styles, the
decoder can be initialized with the language model
which is fine-tuned with CLM loss on the mixture
of data from target styles, i.e., CLM loss in Equa-
tion 2 with x ∼ T . The joint encoder-decoder
model (Figure 1(Centre)) is then trained with a
combination of DAE objective and rewards from
fine-tuned discriminators of respective target styles.

4 Experiments

We experiment with a combination of sentiment
and formality styles. For sentiment, we use a mix-
ture of IMDB (Maas et al., 2011) and Yelp dataset
(Li et al., 2018) with 300k examples in the positive
and negative sentiment each. For formality, we use
GYAFC corpus (Rao and Tetreault, 2018) which
has 104k examples in each formal and informal
class. The test set has 3000 and 4849 examples for
sentiment and formality respectively, following the
data split available in Dai et al. (2019); Rao and
Tetreault (2018). For both datasets, the training
corpus is non-parallel and the test corpus has hu-
man written references available, which we use for
content evaluation (Section 4.2).

For pre-training, we use 12-layer Transformer
model with 512 hidden units, 16 heads, a dropout
rate of 0.1 and learned positional embedding. We
train our models with the Adam optimizer, and
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Style/Dimension Sentiment % Formality %

Positive 71.41 67.09
Negative 76.17 75.59

Table 1: Accuracy of sentences generated by model
fine-tuned on style si as % of generated sentences la-
belled as class si by the classifier trained on the corre-
sponding style dimension.

Fine-tuning Test Corpus
corpus Same ↓ Opposite ↑
Positive 6.9275 9.6850
Negative 7.7131 9.9637

Table 2: Perplexity of test corpus on models fine-tuned
positive and negative corpus (rows). The column Same
represents that test corpus is same as fine-tuning cor-
pus, leading to lower perplexities and Opposite repre-
sent test corpus from opposite polarity as fine-tuning
corpus leading to higher perplexity.

a learning rate of 10−4. To handle large vocabu-
lary sizes, we use Byte Pair Encoding (BPE) (Sen-
nrich et al., 2016) learned on the Wikipedia dataset.
The λs in Equation 6 are determined using hyper-
parameter tuning on validation set, with style trans-
fer accuracy (Section 4.2) as search criteria.

4.1 Style-awareness of Language Models
To evaluate style variation across language mod-
els fine-tuned on different styles, we compare the
generations of the fine-tuned models. For single-
dimensional style evaluation, we generate sen-
tences from models fine-tuned on negative corpus
and positive corpus and compare the style accu-
racy of generated sentences. The style accuracy is
evaluated by employing a FastText (Joulin et al.,
2016) classifier trained on the corresponding style
dimension. For instance, the classifier for evalu-
ating sentiment accuracy is trained on sentiment
corpus tagged with positive and negative class in
IMDB and Yelp data. Table 1 shows the accuracy
of sentences generated by a model fine-tuned on
style si as belonging to the class si. For both senti-
ment and formality, the fine-tuned language models
are able to generate text faithful to the target style
dimension. Thus, we conclude that the language
models trained on style si are able to capture the
essence of the corresponding style reasonably well.

These accuracies are an indication of the style
awareness in these fine-tuned LMs. We, there-
fore, employ the perplexities of these fine-tuned
language models to gauge the style of the input text

to guide our style transfer model. As discussed in
discriminative modeling (Section 3.2), the model
fine-tuned with corpus from a certain style is ex-
pected to have high perplexity on sentence not from
that style and low perplexity otherwise. To this end,
we experiment with two models independently fine-
tuned on positive and negative corpus. We calculate
the perplexity of each of these models on the test
corpus from the same style and from the opposite
style. As seen in Table 2, the perplexity for each
model is substantially lower on the same corpus
as compared to that on the opposite corpus. This
implies that a language model fine-tuned on pos-
itive corpus shows higher perplexity for negative
sentences and lower for positive sentences and vice
versa. This corroborates the effectiveness of these
fine-tuned language models to serve as discrimina-
tors for training the style transfer module.

4.2 Evaluation metrics

We measure the performance of our model and the
baselines based on the style control, content preser-
vation and fluency. To measure the accuracy of
style transfer, we train two Fasttext2 classifiers
independently for sentiment and formality using
the train corpus, as described in Section 4.1. These
classifiers have accuracy of 93.74% and 88.95% re-
spectively on test corpus of respective datasets. We
note that formality as a style is more intricately de-
signed, so we also check lexical scoring by Brooke
et al. (2010) to evaluate formality, which uses a for-
mality lexicon to assign formality score between
−1 (informal) and 1 (formal) to each word and av-
erages it. We scale these scores between 0–100,
where higher (100) lexical score signifies formal
style and lower (0) score signifies informal style.
For informal target style, we report lexical score
as 100− n, so that a higher average lexical score
signifies a better transfer for either polarity.

To measure content preservation on transfer,
we calculate the BLEU score (Papineni et al., 2002)
between the transferred sentence and the input sen-
tence (self-BLEU). Besides this, we also calculate
BLEU score between the transferred sentence gen-
erated by our model and the corresponding hu-
man reference transferred sentence, available for
GYAFC and Yelp corpus (ref-BLEU). Since both
these corpus account for transfer across only one
style dimension each, the provided references are
only partial indication of expected outcome. This

2https://github.com/facebookresearch/fastText
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Model
Style Accuracy Content Preservation Fluency

Classifier ↑ Lexical Scoring ↑ BLEU ↑ Perplexity ↓Sentiment Formality Formality -self -ref
Cascaded Style Transformer

72.17 64.08 81.29 0.6066 0.3479 8.8657(Dai et al., 2019)
Adapted Rewriting LM

52.59 36.39 72.21 0.7917 0.4259 6.5963(Syed et al., 2020)
Cascaded Discriminative LM 69.30 48.18 83.02 0.6634 0.3579 6.6846

Joint Discriminative LM 79.78 65.33 85.39 0.7710 0.4136 6.4574

Table 3: Quantitative Comparison of our proposed approach (Joint Discriminative LM) against Cascaded Style
Transformer (Dai et al., 2019), Cascaded Discriminative LM method and multi-style transfer using Adapted Rewrit-
ing LM (Syed et al., 2020). The upward arrow signifies that higher is better and vice versa. Score of near 100 on
formality lexical scoring imply the transferred text is close in formality to the target corpus.

is also apparent from low ref-BLEU scores for our
model as well as baselines. Since, the results are
presented on aggregated dataset from both these
style dimensions, this evaluation is still able to pro-
vide reasonable indication of content preservation.

To measure the fluency of the text, we calculate
perplexity assigned to the generated text sequence
by a language model trained on the train corpus,
as is standard in style transfer literature (Dai et al.,
2019; Subramanian et al., 2018). The perplexity is
the measure of log likelihood of the generated sen-
tence on the language model. A lower perplexity is
indicative of a more fluent sentence. We use a gen-
erative transformer-based language model trained
on the dataset combined from two styles.

4.3 Automatic Evaluation

Dai et al. (2019) use transformer-based model
(Style Transformer) for single-dimensional style
transfer. We train two independent Style Trans-
former models for sentiment and formality transfer
and then perform transfer one after another to com-
pare results with our model. We term this as Cas-
caded Style Transformer setup. The Style Trans-
former model is shown to have state-of-the-art per-
formance in single-dimensional style transfer; thus
it provides an estimate of the performance of se-
quential single style transfer. We also experiment
with Adapted Rewriting LM (Syed et al., 2020) as
another baseline. Their work on style rewriting to
match author-specific style does not require explicit
annotations for the various aspects that constitutes
an author’s style, but is based on the assumption
that the training corpus reflects the target style. In
this context, we train their framework on the mix-
ture of data from the respective target styles and
report the performance. These are the closest base-
lines to our proposed approach, since other works
dealing with multi-style transfer assume presence

of jointly annotated dataset, which is a stronger
assumption that we aim to relax. In addition to
our proposed model with multiple style transfer,
we also train our encoder-decoder architecture with
single discriminative LM for one style at a time and
perform two stage transfer, similar to one with Cas-
caded Style Transformer (Dai et al., 2019) setup.

The results in Table 3 show that our model
achieves better style control than the Cascaded
Style Transformer (Dai et al., 2019) as well as the
joint transfer using Syed et al. (2020) for both sen-
timent and formality. As seen in Table 3, cascaded
style transfer models perform poorly on content
preservation. This is because transferring style
one after other leads to huge loss in content, thus
both the two-stage models score lower on content
preservation metrics, both w.r.t. the input text and
the reference transferred text. This demonstrates
the advantage of using single model to control for
multiple styles. The effect can also be observed in
Table 4 which demonstrates qualitative results for
Cascaded Style Transformer model and our model.
We can see in many cases content loses the under-
lying meaning of source sentence during the two-
stage transfer, whereas our model is able to retain
original meaning of the sentence well, corroborat-
ing the findings of automatic evaluation. Among
the cascaded models, the Discriminative LM scores
marginally better on content preservation than the
Style Transformer model. We attribute this to ini-
tialization with the same pre-trained LM resulting
in shared content space in the underlying single
style transfer models. However, due to independent
training of the two single style transfer models, they
are not able to model interplay between these styles
and hence perform worse on style control than our
proposed model trained jointly on multiple styles.

Our model also scores better on fluency, as seen
in Table 3. This is also apparent from the exam-
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Target style Source sentence Transferred Sentence
Style Transformer Our model (multi-style)

Positive+Formal That’s not funny. I don’t think
she’ll like it.

So funny movie. I really like it. That was very funny. I am sure
she will appreciate it.

Give your brother some money
and tell him to take a hike.

Just give your brother some time
and it will be good again.

Give your brother some money
and request him to leave.

Negative+Formal An intelligent, rewarding film
that I look forward to watching
again.

ludicrous, shallow film that look
forward to watching again.

An unintelligent, poor film that
I would not look forward to
watching again.

super friendly staff, quick ser-
vice and amazing and simple
food was done right!

says wait staff, quick not amaz-
ing before overcooked food
done were okay.

dirty staff and slow service and
simple food was not done right.

Positive+Informal You need to separate the bad
thing and move on.

need to the great thing and move
on.

You need to enjoy the good stuff
and move on.

The evening started out slow. The evening spent in profes-
sional show.

The evening began amazing.

Negative+Informal Great food recommendations
steak and tuna were both great.

terrible food 9am steak and were
both terrible.

Disappointing food recommen-
dations steak and tuna were hor-
rible.

That person in hilarious. You person in worse! That guy in so boring.

Table 4: Qualitative results for transfer to different target style combination across different models. (Differ-
ent colors highlight the transferred segments corresponding to underlined input sentence; Text in bold highlights
adherence to target formality in text generated by our model.)

Model Style Accuracy Content Fluency Transfer
Sentiment Formality Preservation Quality

Cascaded Style Transformer
3.5909 2.7424 3.2803 2.7424 2.9318(Dai et al., 2019)

Joint Discriminative LM 3.8561 3.0379 4.1061 4.1894 4.1091(Our Model)

Table 5: Results for Human Evaluation across different metrics. Each value represents the average of rating
between 1 (Very bad) and 5 (Very good).

ples in Table 4, where sentences generated by Cas-
caded Style Transformer are much less coherent.
Qualitative experiments also highlight the ability
of our model to incorporate intricacies of formality
stylistic dimension (shown in bold) better than the
Cascaded Style Transformer model. Among single
step transfer models (Syed et al. (2020) and our pro-
posed approach), we note that content preservation
is marginally better for Syed et al. (2020)’s model,
however, our model is able to yield much better
style transfer owing to feedback on style control by
multiple discriminators.

4.4 Human evaluation

To augment automatic evaluation results, we con-
duct a human study to evaluate the model outputs
across various dimensions such as content preser-
vation, style control, fluency, and overall trans-

fer quality. Based on comparable style control in
Cascaded Style Transformer and our proposed ap-
proach on automatic metrics, we compare the trans-
fer quality across these two models by a small-scale
human study. We select 40 sentences, with 10 ex-
amples from each combinations of sentiment and
formality as target style, and collect annotations
from 4–5 participants for each example. Out of
resulting annotations, more than 85% annotations
favoured our results over baseline. The average par-
ticipant rating across different dimensions is shown
in Table 5. We test the statistical significance of
these results using z-test statistic. With α = 0.05,
the preferences indicated in human study are sig-
nificant across all metrics. These results are in line
with our automatic evaluations and add confidence
to the efficacy of our proposed approach in achiev-
ing style transfer across multiple dimensions.
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5 Conclusion and Future Work

We propose an approach to extend currently ex-
isting style transfer work to multiple style setting
without imposing any extra constraints on avail-
ability of dataset. Our method makes use of dis-
joint corpus from separate styles to enable one
step transfer across multiple target styles. We
exploit multiple discriminative language models
with an encoder-decoder framework, all emerging
from large transformer-based language models pre-
trained on Masked Language Modeling objective
and fine-tuned separately for transfer and discrimi-
native purposes. We show that unified single step
transfer approach is able to achieve better trans-
fer while offering much better content preservation
which is paramount to any style transfer task.

Further improvements are in scope for adding
modularity to the proposed transfer module. In the
current setup, each version of model is trained for
a specific combination of target style(s). The utility
of such a model increases manifold with added
ease of transfer across multiple style combinations
within a single model. This could be attempted by
employing a controlled language model as a unified
discriminator for multiple styles, which would be
the subject of further research.

Ethics Statement. We recognise the ethical im-
plication of employing large language models
trained on data infused with unchecked biases. As
with any generative task, style transfer too suffers
from the potential misuse for fact distortion, pla-
giarism and more. The paper aims at establish-
ing academic utility of proposed framework. To
meet ethical standards, this solution has to cou-
pled with strict misrepresentation, offensiveness
and bias checks.
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