
Proceedings of the 2021 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, pages 3491–3499

June 6–11, 2021. ©2021 Association for Computational Linguistics

3491

A Context-Dependent Gated Module for Incorporating Symbolic
Semantics into Event Coreference Resolution

Tuan Lai, Heng Ji
University of Illinois at Urbana-Champaign

{tuanml2, hengji}@illinois.edu
Trung Bui, Quan Hung Tran, Franck Dernoncourt, Walter Chang

Adobe Research
{bui, qtran, franck.dernoncourt, wachang}@adobe.com

Abstract
Event coreference resolution is an important
research problem with many applications. De-
spite the recent remarkable success of pre-
trained language models, we argue that it is
still highly beneficial to utilize symbolic fea-
tures for the task. However, as the input for
coreference resolution typically comes from
upstream components in the information ex-
traction pipeline, the automatically extracted
symbolic features can be noisy and contain er-
rors. Also, depending on the specific context,
some features can be more informative than
others. Motivated by these observations, we
propose a novel context-dependent gated mod-
ule to adaptively control the information flows
from the input symbolic features. Combined
with a simple noisy training method, our best
models achieve state-of-the-art results on two
datasets: ACE 2005 and KBP 2016.1

1 Introduction

Within-document event coreference resolution is
the task of clustering event mentions in a text that
refer to the same real-world events (Lu and Ng,
2018). It is an important research problem, with
many applications (Vanderwende et al., 2004; Ji
and Grishman, 2011; Choubey et al., 2018). Since
the trigger of an event mention is typically the word
or phrase that most clearly describes the event, vir-
tually all previous approaches employ features re-
lated to event triggers in one form or another. To
achieve better performance, many methods also
need to use a variety of additional symbolic fea-
tures such as event types, attributes, and arguments
(Chen et al., 2009; Chen and Ji, 2009; Zhang et al.,
2015; Sammons et al., 2015; Lu and Ng, 2016;
Chen and Ng, 2016; Duncan et al., 2017). Previous
neural methods (Nguyen et al., 2016; Choubey and
Huang, 2017; Huang et al., 2019) also use non-
contextual word embeddings such as word2vec

1The code is publicly available at https://github.com/
laituan245/eventcoref.

... we are seeing these soldiers {head out}ev1 ...

... these soldiers were set to {leave}ev2 in January ...
ev1 (Movement:Transport): Modality = ASSERTED
ev2 (Movement:Transport): Modality = OTHER

Table 1: An example of using the modality attribute to
improve event coreference resolution.

(Mikolov et al., 2013) or GloVe (Pennington et al.,
2014).

With the recent remarkable success of language
models such as BERT (Devlin et al., 2019) and
SpanBERT (Joshi et al., 2020), one natural ques-
tion is whether we can simply use these models
for coreference resolution without relying on any
additional features. We argue that it is still highly
beneficial to utilize symbolic features, especially
when they are clean and have complementary in-
formation. Table 1 shows an example in the ACE
2005 dataset, where our baseline SpanBERT model
incorrectly predicts the highlighted event mentions
to be coreferential. The event triggers are semanti-
cally similar, making it challenging for our model
to distinguish. However, notice that the event {head
out}ev1 is mentioned as if it was a real occurrence,
and so its modality attribute is ASSERTED (LDC,
2005). In contrast, because of the phrase “were
set to”, we can infer that the event {leave}ev2 did
not actually happen (i.e., its modality attribute is
OTHER). Therefore, our model should be able to
avoid the mistake if it utilizes additional symbolic
features such as the modality attribute in this case.

There are several previous methods that use con-
textual embeddings together with type-based or
argument-based information (Lu et al., 2020; Yu
et al., 2020). For example, Lu et al. (2020) proposes
a new mechanism to better exploit event type in-
formation for coreference resolution. Despite their
impressive performance, these methods are specific
to one particular type of additional information.

In this paper, we propose general and effective
methods for incorporating a wide range of sym-

https://github.com/laituan245/eventcoref
https://github.com/laituan245/eventcoref


3492

bolic features into event coreference resolution.
Simply concatenating symbolic features with con-
textual embeddings is not optimal, since the fea-
tures can be noisy and contain errors. Also, de-
pending on the context, some features can be more
informative than others. Therefore, we design a
novel context-dependent gated module to extract
information from the symbolic features selectively.
Combined with a simple regularization method that
randomly adds noise into the features during train-
ing, our best models achieve state-of-the-art results
on ACE 2005 (Walker et al., 2006) and KBP 2016
(Mitamura et al., 2016) datasets. To the best of our
knowledge, our work is the first to explicitly focus
on dealing with various noisy symbolic features for
event coreference resolution.

2 Methods

2.1 Preliminaries
We focus on within-document event coreference
resolution. The input to our model is a document
D consisting of n tokens and k (predicted) event
mentions {m1,m2, . . . ,mk}. For each mi, we de-
note the start and end indices of its trigger by si
and ei respectively. We assume the mentions are
ordered based on si (i.e., If i ≤ j then si ≤ sj).

We also assume each mi has K (predicted) cat-
egorical features {c(1)i , c

(2)
i , . . . , c

(K)
i }, with each

c
(u)
i ∈ {1, 2, . . . , Nu} taking one of Nu different

discrete values. Table 2 lists the symbolic features
we consider in this work. The definitions of the
features and their possible values are in ACE and
Rich ERE guidelines (LDC, 2005; Mitamura et al.,
2016). The accuracy scores of the symbolic fea-
ture predictors are also shown in Table 2. We use
OneIE (Lin et al., 2020) to identify event mentions
along with their subtypes. For other symbolic fea-
tures, we train a joint classification model based on
SpanBERT. The appendix contains more details.

2.2 Single-Mention Encoder
Given a document D, our model first forms a con-
textualized representation for each input token us-
ing a Transformer encoder (Joshi et al., 2020). Let
X = (x1, ..., xn) be the output of the encoder,
where xi ∈ Rd. Then, for each mention mi, its
trigger’s representation ti is defined as the average
of its token embeddings:

ti =

ei∑
j=si

xj
ei − si + 1

(1)

Dataset Features
Acc.

(Train)

Acc.

(Dev)

Acc.

(Test)

ACE

2005

Type 0.999 0.945 0.953

Polarity 0.999 0.994 0.988

Modality 0.999 0.856 0.884

Genericity 0.999 0.865 0.872

Tense 0.984 0.802 0.763

KBP

2016

Type 0.960 0.874 0.818

Realis 0.979 0.845 0.840

Table 2: Symbolic features we consider in this work.

Next, by using K trainable embedding matrices,
we convert the symbolic features of mi into K

vectors {h(1)
i ,h(2)

i , . . . ,h(K)
i }, where h(u)

i ∈ Rl.

2.3 Mention-Pair Encoder and Scorer
Given two event mentions mi and mj , we define
their trigger-based pair representation as:

tij = FFNNt
([

ti, tj , ti ◦ tj
])

(2)

where FFNNt is a feedforward network mapping
from R3×d → Rp, and ◦ is element-wise multipli-
cation. Similarly, we can compute their feature-
based pair representations {h(1)

ij ,h
(2)
ij , . . . ,h

(K)
ij }

as follows:

h(u)
ij = FFNNu

([
h(u)
i ,h(u)

j ,h(u)
i ◦ h(u)

j

])
(3)

where u ∈ {1, 2, . . . ,K}, and FFNNu is a feedfor-
ward network mapping from R3×l → Rp.

Now, the most straightforward way to build the
final pair representation fij of mi and mj is to
simply concatenate the trigger-based representation
and all the feature-based representations together:

fij = [tij ,h
(1)
ij ,h

(2)
ij , . . . ,h

(K)
ij ] (4)

However, this approach is not always optimal. First,
as the symbolic features are predicted, they can
be noisy and contain errors. The performance of
most symbolic feature predictors is far from perfect
(Table 2). Also, depending on the specific context,
some features can be more useful than others.

Inspired by studies on gated modules (Lin et al.,
2019; Lai et al., 2019), we propose Context-
Dependent Gated Module (CDGM), which uses
a gating mechanism to extract information from
the input symbolic features selectively (Figure 1).
Given two mentions mi and mj , we use their trig-
ger feature vector tij as the main controlling con-

text to compute the filtered representation h (u)
ij :

h (u)
ij = CDGM(u)

(
tij ,h

(u)
ij

)
(5)



3493

Figure 1: Overall architecture of our mention-pair encoder, which uses CDGMs to incorporate symbolic features.

where u ∈ {1, 2, . . . ,K}. More specifically:

g(u)ij = σ
(
FFNN(u)

g
([

tij ,h
(u)
ij

]))
o(u)ij ,p

(u)
ij = DECOMPOSE

(
tij ,h

(u)
ij

)
h (u)
ij = g(u)ij ◦ o(u)ij +

(
1− g(u)ij

)
◦ p(u)

ij

(6)

where σ denotes sigmoid function. FFNN(u)
g is a

mapping from R2×p → Rp. At a high level, h(u)
ij is

decomposed into an orthogonal component and a
parallel component, and h (u)

ij is simply the fusion
of these two components. In order to find the opti-
mal mixture, gij is used to control the composition.
The decomposition unit is defined as:

Parallel p(u)
ij =

h(u)
ij · tij
tij · tij

tij

Orthogonal o(u)ij = h(u)
ij − p(u)

ij

(7)

where · denotes dot product. The parallel compo-
nent p(u)

ij is the projection of h(u)
ij on tij . It can be

viewed as containing information that is already
part of tij . In contrast, o(u)ij is orthogonal to tij ,
and so it can be viewed as containing new informa-
tion. Intuitively, when the original symbolic feature
vector h(u)

ij is very clean and has complementary
information, we want to utilize the new information
in o(u)ij (i.e., we want g(u)ij ≈ 1), and vice versa.

Finally, after using CDGMs to distill symbolic
features, the final pair representation fij of mi and
mj can be computed as follows:

fij = [tij ,h
(1)
ij ,h

(2)
ij , . . . ,h

(K)
ij ] (8)

And the coreference score s(i, j) of mi and mj is:

s(i, j) = FFNNa(fij) (9)

where FFNNa is a mapping from R(K+1)×p → R.

2.4 Training and Inference

Algorithm 1: Noise Addition for Symbolic Features
Input: Document D
Hyperparameters: {ε1, ε2, · · · , εK}
for i = 1 . . . k do

for u = 1 . . . K do
With prob. εu, replace c(u)i by
ĉ
(u)
i ∼ Uniform(Nu)

end
end

Training We use the same loss function as in
(Lee et al., 2017). Also, notice that the training
accuracy of a feature predictor is typically much
higher than its accuracy on the dev/test set (Table
2). If we simply train our model without any reg-
ularization, our CDGMs will rarely come across
noisy symbolic features during training. Therefore,
to encourage our CDGMs to actually learn to dis-
till reliable signals, we also propose a simple but
effective noisy training method. Before passing a
training data batch to the model, we randomly add
noise to the predicted features. More specifically,
for each document D in the batch, we go through
every symbolic feature of every event mention in
D and consider sampling a new value for the fea-
ture. The operation is described in Algorithm 1 (we
use the same notations mentioned in Section 2.1).
{ε1, ε2, · · · , εK} are hyperparameters determined
by validation. In general, the larger the discrepancy
between the train and test accuracies, the larger ε.

Inference For each (predicted) mention mi, our
model will assign an antecedent ai from all pre-



3494

ACE (Cross-Validation) CoNLL AVG
SSED + SupervisedExtended (2016) 55.23 52.53
SSED + MSEP (2016) 53.80 51.38

ACE (Test Data) CoNLL AVG
Baseline 58.93 55.78
Simple (All Features) 57.55 54.79
CDGM (All Features) 58.99 56.32
Noise (All Features) 60.43 57.85
CDGM + Noise (All Features) 62.07 59.76

Table 3: End-to-end results on ACE 2005 (using pre-
dicted triggers and predicted symbolic features).

System CoNLL AVG
UTD’s system (2015) 32.69 30.08
Joint Learning (2017b) 35.77 33.08
E3C (2020) 41.97 38.66
Baseline 40.57 37.59
Simple (All Features) 41.40 38.58
CDGM + Noise (All Features) 43.55 40.61

Table 4: End-to-end results on KBP 2016 (using pre-
dicted triggers and predicted symbolic features).

ceding mentions or a dummy antecedent ε: ai ∈
Y (i) = {ε,m1,m2 . . . ,mi−1}. Basically, ai =
arg maxj<i s(i, j). The dummy antecedent ε rep-
resents two possible cases: (1) mi is not actually
an event mention (2)mi is indeed an event mention
but it is not coreferent with any previous extracted
mentions. In addition, we fix s(i, ε) to be 0.

3 Experiments and Results

Data and Experiments Setup We evaluate our
methods on two English datasets: ACE2005
(Walker et al., 2006) and KBP2016 (Ji et al., 2016;
Mitamura et al., 2016). We report results in terms
of F1 scores obtained using the CoNLL and AVG
metrics. By definition, these metrics are the sum-
mary of other standard coreference metrics, includ-
ing B3, MUC, CEAFe, and BLANC (Lu and Ng,
2018). We use SpanBERT (spanbert-base-cased) as
the Transformer encoder (Wolf et al., 2020a; Joshi
et al., 2020). More details about the datasets and
hyperparameters are in the appendix. We refer to
models that use only trigger features as [Baseline].
In a baseline model, fij is simply tij (Eq. 2). We
refer to models that use only the simple concatena-
tion strategy as [Simple] (Eq. 4), and models that
use the simple concatenation strategy and the noisy
training method as [Noise].

Overall Results (on Predicted Mentions) Ta-
ble 3 and Table 4 show the overall end-to-end re-
sults on ACE2005 and KBP2016, respectively. We

ACE (Test Data) CoNLL AVG
PAIREDRL (2020) 84.65 -
Baseline 81.62 81.49
Simple (All Features) 75.32 74.94
CDGM + Noise (All Features) 84.76 83.95

Table 5: Results on ACE 2005 using gold triggers and
predicted symbolic features.

ACE (Test Data) CoNLL AVG
Baseline 81.62 81.49
Simple (All Features) 85.75 85.40
CDGM (All Features) 87.90 88.30
CDGM + Noise (All Features) 85.40 85.38

Table 6: Results on ACE 2005 using gold triggers and
ground-truth symbolic features.

use OneIE (Lin et al., 2020) to extract event men-
tions and their types. Other features are predicted
by a simple Transformer model. Overall, our full
model outperforms the baseline model by a large
margin and significantly outperforms state-of-the-
art on KBP 2016. Our ACE 2005 scores are not
directly comparable with previous work, as Peng
et al. (2016) conducted 10-fold cross-validation and
essentially used more training data. Nevertheless,
the magnitude of the differences in scores between
our best model and the state-of-the-art methods
indicates the effectiveness of our methods.

Overall Results (on Ground-truth Triggers)
The overall results on ACE 2005 using ground-
truth triggers and predicted symbolic features are
shown in Table 5. The performance of our full
model is comparable with previous state-of-the-art
result in (Yu et al., 2020). To better analyze the
usefulness of symbolic features as well as the ef-
fectiveness of our methods, we also conduct experi-
ments using ground-truth triggers and ground-truth
symbolic features (Table 6). First, when the sym-
bolic features are clean, incorporating them using
the simple concatenation strategy can already boost
the performance significantly. The symbolic fea-
tures contain information complementary to that in
the SpanBERT contextual embeddings. Second, we
also see that the noisy training method is not help-
ful when the symbolic features are clean. Unlike
other regularization methods such as dropout (Sri-
vastava et al., 2014) and weight decay (Krogh and
Hertz, 1992), the main role of our noisy training
method is not to reduce overfitting in the traditional
sense. Its main function is to help CDGMs learn to
distill reliable signals from noisy features.



3495

Features
AVG

(Simple)
AVG

(CDGM + Noise)
∆AVG

Subtype 56.41 57.02 +0.61
Polarity 56.06 57.03 +0.97
Modality 54.81 58.54 +3.73
Genericity 54.70 57.82 +3.12
Tense 54.28 56.62 +2.34

Table 7: Impact of Symbolic Features (ACE 2005)

Impact of Different Symbolic Features Table 7
shows the results of incorporating different types of
symbolic features on the ACE 2005 dataset. Over-
all, our methods consistently perform better than
the simple concatenation strategy across all feature
types. The gains are also larger for more noisy
features than clean features (feature prediction ac-
curacies were shown in Table 2). This suggests that
our methods are particularly useful in situations
where the symbolic features are noisy.

Comparison with Multi-Task Learning We
also investigate whether we can incorporate sym-
bolic semantics into coreference resolution by sim-
ply doing multi-task training. We train our baseline
model to jointly perform coreference resolution and
symbolic feature prediction. The test AVG score
on ACE 2005 is only 56.5. In contrast, our best
model achieves an AVG score of 59.76 (Table 3).

Qualitative Examples Table 8 shows few exam-
ples from the ACE 2005 dataset that illustrate how
incorporating symbolic features using our proposed
methods can improve the performance of event con-
ference resolution. In each example, our baseline
model incorrectly predicts the highlighted event
mentions to be coreferential.

Remaining Challenges Previous studies suggest
that there exist different types and degrees of event
coreference (Recasens et al., 2011; Hovy et al.,
2013). Many methods (including ours) focus on
the full strict coreference task, but other types of
coreference such as partial coreference have re-
mained underexplored. Hovy et al. (2013) defines
two core types of partial event coreference rela-
tions: subevent relations and membership relations.
Subevent relations form a stereotypical sequence
of events, whereas membership relations represent
instances of an event collection. We leave tackling
the partial coreference task to future work.

4 Related Work

Several previous approaches to within-document
event coreference resolution operate by first ap-

... {Negotiations}ev1 between Washington and ...

... think that this will affect the {elections}ev2 unless ...
ev1 (Contact:Meet)
ev2 (Personnel:Elect)
... since you are not directly {elected}ev1, it would be ...
... Az-Zaman daily that {elections}ev2 should be held ...
ev1 (Personnel:Elect): Polarity = NEGATIVE
ev2 (Personnel:Elect): Polarity = POSITIVE
... told reporters after his {appeal}ev1 was rejected ...
... most junior of the court of {appeal}ev2, and its ...
ev1 (Justice:Appeal): Genericity = SPECIFIC
ev2 (Justice:Appeal): Genericity = GENERIC

Table 8: Examples of using symbolic features to im-
prove event coreference resolution.

plying a mention-pair model to compute pairwise
distances between event mentions, and then they
apply a clustering algorithm such as agglomera-
tive clustering or spectral graph clustering (Chen
et al., 2009; Chen and Ji, 2009; Chen and Ng, 2014;
Nguyen et al., 2016; Huang et al., 2019). In addi-
tion to trigger features, these methods use a vari-
ety of additional symbolic features such as event
types, attributes, arguments, and distance. These
approaches do not use contextual embeddings such
as BERT and SpanBERT (Devlin et al., 2019; Joshi
et al., 2020). Recently, there are several studies
that use contextual embeddings together with type-
based or argument-based information (Lu et al.,
2020; Yu et al., 2020). These methods design net-
works or mechanisms that are specific to only one
type of symbolic features. In contrast, our work is
more general and can be effectively applied to a
wide range of symbolic features.

5 Conclusions and Future Work

In this work, we propose a novel gated module to
incorporate symbolic semantics into event coref-
erence resolution. Combined with a simple noisy
training technique, our best models achieve com-
petitive results on ACE 2005 and KBP 2016. In
the future, we aim to extend our work to address
more general problems such as cross-lingual cross-
document coreference resolution.

Acknowledgement

This research is based upon work supported in part
by U.S. DARPA KAIROS Program No. FA8750-
19-2-1004, U.S. DARPA AIDA Program No.
FA8750-18-2-0014, and Air Force No. FA8650-
17-C-7715. The views and conclusions contained
herein are those of the authors and should not be



3496

interpreted as necessarily representing the official
policies, either expressed or implied, of DARPA,
or the U.S. Government. The U.S. Government is
authorized to reproduce and distribute reprints for
governmental purposes notwithstanding any copy-
right annotation therein.

References
C. Chen and Vincent Ng. 2014. Sinocoreferencer: An

end-to-end chinese event coreference resolver. In
LREC.

Chen Chen and Vincent Ng. 2016. Joint inference
over a lightly supervised information extraction
pipeline: Towards event coreference resolution for
resource-scarce languages. In Proceedings of the
Thirtieth AAAI Conference on Artificial Intelligence,
AAAI’16, page 2913–2920. AAAI Press.

Yubo Chen, Liheng Xu, Kang Liu, Daojian Zeng, and
Jun Zhao. 2015. Event extraction via dynamic multi-
pooling convolutional neural networks. In Proceed-
ings of the 53rd Annual Meeting of the Association
for Computational Linguistics and the 7th Interna-
tional Joint Conference on Natural Language Pro-
cessing (Volume 1: Long Papers), pages 167–176,
Beijing, China. Association for Computational Lin-
guistics.

Zheng Chen and Heng Ji. 2009. Graph-based event
coreference resolution. In Proceedings of the 2009
Workshop on Graph-based Methods for Natural
Language Processing (TextGraphs-4), pages 54–57,
Suntec, Singapore. Association for Computational
Linguistics.

Zheng Chen, Heng Ji, and Robert Haralick. 2009. A
pairwise event coreference model, feature impact
and evaluation for event coreference resolution. In
Proceedings of the Workshop on Events in Emerging
Text Types, pages 17–22, Borovets, Bulgaria. Asso-
ciation for Computational Linguistics.

Prafulla Kumar Choubey and Ruihong Huang. 2017.
Event coreference resolution by iteratively unfold-
ing inter-dependencies among events. In Proceed-
ings of the 2017 Conference on Empirical Methods
in Natural Language Processing, pages 2124–2133,
Copenhagen, Denmark. Association for Computa-
tional Linguistics.

Prafulla Kumar Choubey, Kaushik Raju, and Ruihong
Huang. 2018. Identifying the most dominant event
in a news article by mining event coreference rela-
tions. In Proceedings of the 2018 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies, Volume 2 (Short Papers), pages 340–345, New
Orleans, Louisiana. Association for Computational
Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Chase Duncan, Liang-Wei Chan, Haoruo Peng, Hao
Wu, Shyam Upadhyay, Nitish Gupta, Chen-Tse Tsai,
Mark Sammons, and Dan Roth. 2017. UI CCG TAC-
KBP2017 submissions: Entity discovery and link-
ing, and event nugget detection and co-reference. In
Proceedings of the 2017 Text Analysis Conference,
TAC 2017, Gaithersburg, Maryland, USA, Novem-
ber 13-14, 2017. NIST.

C. Harris, K. J. Millman, S. Walt, Ralf Gommers,
P. Virtanen, D. Cournapeau, E. Wieser, J. Taylor,
S. Berg, Nathaniel J. Smith, R. Kern, Matti Pi-
cus, S. Hoyer, M. Kerkwijk, Matthew Brett, Allan
Haldane, Jaime Fern’andez del R’io, Mark Wiebe,
P. Peterson, Pierre G’erard-Marchant, K. Sheppard,
T. Reddy, W. Weckesser, H. Abbasi, Christoph
Gohlke, and T. E. Oliphant. 2020. Array program-
ming with numpy. Nature, 585 7825:357–362.

Eduard Hovy, Teruko Mitamura, Felisa Verdejo, Jun
Araki, and Andrew Philpot. 2013. Events are not
simple: Identity, non-identity, and quasi-identity. In
Workshop on Events: Definition, Detection, Coref-
erence, and Representation, pages 21–28, Atlanta,
Georgia. Association for Computational Linguistics.

Yin Jou Huang, Jing Lu, Sadao Kurohashi, and Vincent
Ng. 2019. Improving event coreference resolution
by learning argument compatibility from unlabeled
data. In Proceedings of the 2019 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies, Volume 1 (Long and Short Papers), pages 785–
795, Minneapolis, Minnesota. Association for Com-
putational Linguistics.

Heng Ji and Ralph Grishman. 2011. Knowledge base
population: Successful approaches and challenges.
In Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Human
Language Technologies, pages 1148–1158, Portland,
Oregon, USA. Association for Computational Lin-
guistics.

Heng Ji, Joel Nothman, H Trang Dang, and Sydney In-
formatics Hub. 2016. Overview of tac-kbp2016 tri-
lingual edl and its impact on end-to-end cold-start
kbp. Proceedings of TAC.

Mandar Joshi, Danqi Chen, Yinhan Liu, Daniel Weld,
Luke Zettlemoyer, and Omer Levy. 2020. Spanbert:
Improving pre-training by representing and predict-
ing spans. Transactions of the Association for Com-
putational Linguistics, 8(0):64–77.

https://doi.org/10.3115/v1/P15-1017
https://doi.org/10.3115/v1/P15-1017
https://www.aclweb.org/anthology/W09-3208
https://www.aclweb.org/anthology/W09-3208
https://www.aclweb.org/anthology/W09-4303
https://www.aclweb.org/anthology/W09-4303
https://www.aclweb.org/anthology/W09-4303
https://doi.org/10.18653/v1/D17-1226
https://doi.org/10.18653/v1/D17-1226
https://doi.org/10.18653/v1/N18-2055
https://doi.org/10.18653/v1/N18-2055
https://doi.org/10.18653/v1/N18-2055
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://tac.nist.gov/publications/2017/participant.papers/TAC2017.UI_CCG.proceedings.pdf
https://tac.nist.gov/publications/2017/participant.papers/TAC2017.UI_CCG.proceedings.pdf
https://tac.nist.gov/publications/2017/participant.papers/TAC2017.UI_CCG.proceedings.pdf
https://www.aclweb.org/anthology/W13-1203
https://www.aclweb.org/anthology/W13-1203
https://doi.org/10.18653/v1/N19-1085
https://doi.org/10.18653/v1/N19-1085
https://doi.org/10.18653/v1/N19-1085
https://www.aclweb.org/anthology/P11-1115
https://www.aclweb.org/anthology/P11-1115
https://transacl.org/ojs/index.php/tacl/article/view/1853
https://transacl.org/ojs/index.php/tacl/article/view/1853
https://transacl.org/ojs/index.php/tacl/article/view/1853


3497

Anders Krogh and John Hertz. 1992. A simple weight
decay can improve generalization. In Advances in
Neural Information Processing Systems, volume 4.
Morgan-Kaufmann.

Tuan Lai, Quan Hung Tran, Trung Bui, and Daisuke
Kihara. 2019. A gated self-attention memory net-
work for answer selection. In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 5953–5959, Hong Kong,
China. Association for Computational Linguistics.

LDC. 2005. English annotation guidelines for events
version 5.4. 3. Linguistic Data Consortium, 1.

Kenton Lee, Luheng He, Mike Lewis, and Luke Zettle-
moyer. 2017. End-to-end neural coreference reso-
lution. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing,
pages 188–197, Copenhagen, Denmark. Association
for Computational Linguistics.

Ying Lin, Heng Ji, Fei Huang, and Lingfei Wu. 2020.
A joint neural model for information extraction with
global features. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 7999–8009, Online. Association for
Computational Linguistics.

Ying Lin, Liyuan Liu, Heng Ji, Dong Yu, and Jiawei
Han. 2019. Reliability-aware dynamic feature com-
position for name tagging. In Proceedings of the
57th Annual Meeting of the Association for Compu-
tational Linguistics, pages 165–174, Florence, Italy.
Association for Computational Linguistics.

J. Lu and Vincent Ng. 2017a. Learning antecedent
structures for event coreference resolution. 2017
16th IEEE International Conference on Machine
Learning and Applications (ICMLA), pages 113–
118.

Jing Lu and Vincent Ng. 2015. Utd’s event nugget de-
tection and coreference system at KBP 2015. In Pro-
ceedings of the 2015 Text Analysis Conference, TAC
2015, Gaithersburg, Maryland, USA, November 16-
17, 2015, 2015. NIST.

Jing Lu and Vincent Ng. 2016. Event coreference
resolution with multi-pass sieves. In Proceedings
of the Tenth International Conference on Language
Resources and Evaluation (LREC’16), pages 3996–
4003, Portorož, Slovenia. European Language Re-
sources Association (ELRA).

Jing Lu and Vincent Ng. 2017b. Joint learning for
event coreference resolution. In Proceedings of the
55th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
90–101, Vancouver, Canada. Association for Com-
putational Linguistics.

Jing Lu and Vincent Ng. 2018. Event coreference
resolution: A survey of two decades of research.
In Proceedings of the Twenty-Seventh International
Joint Conference on Artificial Intelligence, IJCAI-
18, pages 5479–5486. International Joint Confer-
ences on Artificial Intelligence Organization.

Yaojie Lu, Hongyu Lin, Jialong Tang, Xianpei Han,
and Le Sun. 2020. End-to-end neural event corefer-
ence resolution. arXiv preprint arXiv:2009.08153.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Cor-
rado, and Jeffrey Dean. 2013. Distributed represen-
tations of words and phrases and their composition-
ality. In Proceedings of the 26th International Con-
ference on Neural Information Processing Systems
- Volume 2, NIPS’13, page 3111–3119, Red Hook,
NY, USA. Curran Associates Inc.

Teruko Mitamura, Zhengzhong Liu, and Eduard H.
Hovy. 2016. Overview of TAC-KBP 2016 event
nugget track. In Proceedings of the 2016 Text Analy-
sis Conference, TAC 2016, Gaithersburg, Maryland,
USA, November 14-15, 2016. NIST.

Thien Huu Nguyen, Adam Meyers, and Ralph Grish-
man. 2016. New york university 2016 system for
KBP event nugget: A deep learning approach. In
Proceedings of the 2016 Text Analysis Conference,
TAC 2016, Gaithersburg, Maryland, USA, Novem-
ber 14-15, 2016. NIST.

Adam Paszke, S. Gross, Francisco Massa, A. Lerer,
J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, Alban Desmaison, An-
dreas Köpf, E. Yang, Zach DeVito, Martin Raison,
Alykhan Tejani, Sasank Chilamkurthy, B. Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. 2019.
Pytorch: An imperative style, high-performance
deep learning library. ArXiv, abs/1912.01703.

Haoruo Peng, Yangqiu Song, and Dan Roth. 2016.
Event detection and co-reference with minimal su-
pervision. In Proceedings of the 2016 Conference
on Empirical Methods in Natural Language Process-
ing, pages 392–402, Austin, Texas. Association for
Computational Linguistics.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. GloVe: Global vectors for word
representation. In Proceedings of the 2014 Confer-
ence on Empirical Methods in Natural Language
Processing (EMNLP), pages 1532–1543, Doha,
Qatar. Association for Computational Linguistics.

M. Recasens, E. Hovy, and M. Martí. 2011. Identity,
non-identity, and near-identity: Addressing the com-
plexity of coreference. Lingua, 121:1138–1152.

Mark Sammons, Haoruo Peng, Yangqiu Song, Shyam
Upadhyay, Chen-Tse Tsai, Pavankumar Reddy,
Subhro Roy, and Dan Roth. 2015. Illinois CCG TAC
2015 event nugget, entity discovery and linking, and
slot filler validation systems. In Proceedings of the

https://proceedings.neurips.cc/paper/1991/file/8eefcfdf5990e441f0fb6f3fad709e21-Paper.pdf
https://proceedings.neurips.cc/paper/1991/file/8eefcfdf5990e441f0fb6f3fad709e21-Paper.pdf
https://doi.org/10.18653/v1/D19-1610
https://doi.org/10.18653/v1/D19-1610
https://doi.org/10.18653/v1/D17-1018
https://doi.org/10.18653/v1/D17-1018
https://doi.org/10.18653/v1/2020.acl-main.713
https://doi.org/10.18653/v1/2020.acl-main.713
https://doi.org/10.18653/v1/P19-1016
https://doi.org/10.18653/v1/P19-1016
https://tac.nist.gov/publications/2015/participant.papers/TAC2015.UTD.proceedings.pdf
https://tac.nist.gov/publications/2015/participant.papers/TAC2015.UTD.proceedings.pdf
https://www.aclweb.org/anthology/L16-1631
https://www.aclweb.org/anthology/L16-1631
https://doi.org/10.18653/v1/P17-1009
https://doi.org/10.18653/v1/P17-1009
https://doi.org/10.24963/ijcai.2018/773
https://doi.org/10.24963/ijcai.2018/773
https://tac.nist.gov/publications/2016/additional.papers/TAC2016.KBP_Event_Nugget_overview.proceedings.pdf
https://tac.nist.gov/publications/2016/additional.papers/TAC2016.KBP_Event_Nugget_overview.proceedings.pdf
https://tac.nist.gov/publications/2016/participant.papers/TAC2016.NYU.proceedings.pdf
https://tac.nist.gov/publications/2016/participant.papers/TAC2016.NYU.proceedings.pdf
https://doi.org/10.18653/v1/D16-1038
https://doi.org/10.18653/v1/D16-1038
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.3115/v1/D14-1162
https://tac.nist.gov/publications/2015/participant.papers/TAC2015.UI_CCG.proceedings.pdf
https://tac.nist.gov/publications/2015/participant.papers/TAC2015.UI_CCG.proceedings.pdf
https://tac.nist.gov/publications/2015/participant.papers/TAC2015.UI_CCG.proceedings.pdf


3498

2015 Text Analysis Conference, TAC 2015, Gaithers-
burg, Maryland, USA, November 16-17, 2015, 2015.
NIST.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: A simple way to prevent neural networks
from overfitting. Journal of Machine Learning Re-
search, 15(56):1929–1958.

Lucy Vanderwende, Michele Banko, and Arul
Menezes. 2004. Event-centric summary generation.
In Working notes of the Document Understanding
Conference 2004. ACL.

Christopher Walker, Stephanie Strassel, Julie Medero,
and Kazuaki Maeda. 2006. Ace 2005 multilin-
gual training corpus. Linguistic Data Consortium,
Philadelphia, 57:45.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020a. Trans-
formers: State-of-the-art natural language process-
ing. In Proceedings of the 2020 Conference on Em-
pirical Methods in Natural Language Processing:
System Demonstrations, pages 38–45, Online. Asso-
ciation for Computational Linguistics.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020b. Trans-
formers: State-of-the-art natural language process-
ing. In Proceedings of the 2020 Conference on Em-
pirical Methods in Natural Language Processing:
System Demonstrations, pages 38–45, Online. Asso-
ciation for Computational Linguistics.

Xiaodong Yu, Wenpeng Yin, and Dan Roth. 2020.
Paired representation learning for event and entity
coreference. arXiv preprint arXiv:2010.12808.

Tongtao Zhang, Hongzhi Li, Heng Ji, and Shih-Fu
Chang. 2015. Cross-document event coreference
resolution based on cross-media features. In Proc.
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP2015).

A Appendix

Section A.1 describes our symbolic feature predic-
tors. Section A.2 provides the details of the datasets
we used. Section A.3 describes the hyperparam-
eters and their value ranges that were explored.
Section A.4 presents our reproducibility checklist.

Dataset Train (# Docs) Dev (# Docs) Test (# Docs)
ACE-2005 529 30 40
KBP 2016 509 139 169

Table 9: Basic statistics of the datasets.

A.1 Symbolic Feature Predictors

In an end-to-end setting, we train and use OneIE
(Lin et al., 2020) to identify event mentions along
with their subtypes. For other symbolic features,
we train a simple joint model. More specifically,
given a document, our joint model first forms con-
textualized representations for the input tokens us-
ing SpanBERT (Joshi et al., 2020). Each event men-
tion’s representation is then defined as the average
of the embeddings of the tokens in its trigger. After
that, we feed the mentions’ representations into
classification heads for feature value prediction.
Each classification head is a standard multi-layer
feedforward network with softmax output units.

The event detection performance of OneIE on
the test set of ACE 2005 is 74.7 (Type-F1 score).
OneIE’s performance on KBP 2016 is 55.20 (Type-
F1 score). For reference, the performance of the
event detection component of E3C (Lu et al., 2020)
on KBP 2016 is 55.38 (Type-F1 score).

A.2 Datasets Description

In this work, we use two English within-document
coreference datasets: ACE 2005 and KBP 2016.
The ACE 2005 English corpus contains fine-
grained event annotations for 599 articles from a va-
riety of sources. We use the same split as that stated
in (Chen et al., 2015), where there are 529/30/40
documents in the train/dev/test split. In ACE, a
strict notion of event coreference is adopted, which
requires two event mentions to be coreferential if
and only if they had the same agent(s), patient(s),
time, and location. For KBP 2016, we follow the
setup of (Lu and Ng, 2017a), where there are 648
documents that can be used for training and 169
documents for testing. We train our model on 509
documents randomly chosen from the training doc-
uments and tune parameters on the remaining 139
training documents. Different from ACE, KBP
adopts a more relaxed definition of event corefer-
ence, where two event mentions can be coreferent
as long as they intuitively refer to the same real-
world event. Table 9 summarizes the basic statistics
of the datasets.

http://jmlr.org/papers/v15/srivastava14a.html
http://jmlr.org/papers/v15/srivastava14a.html
https://www.microsoft.com/en-us/research/publication/event-centric-summary-generation/
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6


3499

A.3 Hyperparameters

We use SpanBERT (spanbert-base-cased) as the
Transformer encoder (Wolf et al., 2020a; Joshi
et al., 2020). We did hyperparameter tuning us-
ing the datasets’ dev sets. For all the experiments,
we pick the model which achieves the best AVG
score on the dev set, and then evaluate it on the test
set. For each of our models, two different learning
rates are used, one for the lower pretrained Trans-
former encoder and one for the upper layer. The
optimal hyperparameter values are variant-specific,
and we experimented with the following range of
possible values: {8, 16} for batch size, {3e-5, 4e-5,
5e-5} for lower learning rate, {1e-4, 2.5e-4, 5e-4}
for upper learning rate, and {50, 100} for number
of training epochs. Table 10 shows the value of ε
we used for each symbolic feature type. In general,
the larger the discrepancy between the train and
test accuracies, the larger the value of ε.

Dataset Features
ε (predicted
mentions)

ε (gold
mentions)

ACE 2005

Type 0.00 0.10
Polarity 0.00 0.02
Modality 0.15 0.20
Genericity 0.15 0.20
Tense 0.25 0.30

KBP 2016
Type 0.05 -
Realis 0.10 -

Table 10: The value of ε for each feature type.

A.4 Reproducibility Checklist

We present the reproducibility information of the
paper. Due to license reason, we cannot provide
downloadable links for ACE 2005 and KBP 2016.

Implementation Dependencies Libraries Py-
torch 1.6.0 (Paszke et al., 2019), Transformers 3.0.2
(Wolf et al., 2020b), Numpy 1.19.1 (Harris et al.,
2020), CUDA 10.2.

Computing Infrastructure The experiments
were conducted on a server with Intel(R) Xeon(R)
Gold 5120 CPU @ 2.20GHz and NVIDIA Tesla
V100 GPUs. The allocated RAM is 187G. GPU
memory is 16G.

Average Runtime Table 11 shows the estimated
average run time of our full model.

Number of Model Parameters The number of
parameters in a baseline model is about 109.7M

Dataset
One Training

Epoch

Evaluation

(Dev Set)

Evaluation

(Test Set)

ACE 2005 65.5 seconds 2.3 seconds 2.4 seconds

KBP 2016 103.6 seconds 10.7 seconds 11.8 seconds

Table 11: Estimated average runtime of our full model.

parameters. The number of parameters in a full
model trained on the KBP 2016 dataset is about
111.4M parameters. The number of parameters in
a full model trained on the ACE 2005 dataset is
about 113.8M parameters.

Hyperparameters of Best-Performing Models
Table 12 summarizes the hyperparameter configu-
rations of best-performing models. Note that Table
10 already showed the hyperparameters used for
the noisy training method.

Hyperparameters
ACE 2005

(end-to-end)

KBP 2016

(end-to-end)

ACE 2005

(gold mentions)

Symbolic Features Used All (CDGM) All (CDGM) All (CDGM)

Noisy Training Yes Yes Yes

Lower Learning Rate 4e-5 5e-5 5e-5

Upper Learning Rate 2.5e-4 5e-4 5e-4

Batch Size 16 8 8

Number Epochs 100 50 50

Table 12: Hyperparameters for best-performing models
(refer to Table 10 for the hyperparameters used for the
noisy training method).

Expected Validation Performance We repeat
training five times for each best-performing model.
We show the average validation performance in Ta-
ble 13. Our validation scores on KBP 2016 are not
comparable to that of (Lu et al., 2020), because we
split the original 648 training documents into the
final train set and dev set randomly. We still use
the same test set. For each best-performing model,
we report the test performance of the checkpoint
with the best AVG score in the main paper.

Dataset Avg. CoNLL score Avg. AVG score

ACE 2005

(end-to-end)
60.20 58.80

KBP 2016

(end-to-end)
54.86 48.83

ACE 2005

(gold mentions)
81.9 83.02

Table 13: Average validation performance.


