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Abstract

We study the problem of Event Causality Iden-
tification (ECI) to detect causal relation be-
tween event mention pairs in text. Although
deep learning models have recently shown
state-of-the-art performance for ECI, they are
limited to the intra-sentence setting where
event mention pairs are presented in the same
sentences. This work addresses this issue by
developing a novel deep learning model for
document-level ECI (DECI) to accept inter-
sentence event mention pairs. As such, we pro-
pose a graph-based model that constructs inter-
action graphs to capture relevant connections
between important objects for DECI in input
documents. Such interaction graphs are then
consumed by graph convolutional networks to
learn document context-augmented representa-
tions for causality prediction between events.
Various information sources are introduced to
enrich the interaction graphs for DECI, featur-
ing discourse, syntax, and semantic informa-
tion. Our extensive experiments show that the
proposed model achieves state-of-the-art per-
formance on two benchmark datasets.

1 Introduction

Event Causality Identification (ECI) is an important
problem in Information Extraction that seeks to pre-
dict causal relation between a pair of events men-
tioned in text. For instance, in the sentence “The
building was nearly destroyed by a fire early Tues-
day morning.”, an ECI system should be able to rec-
ognize the causal relation between the two events
triggered by “destroyed” and “fire” (called event
mentions), i.e., “fire” cause−−−→ “destroyed”. ECI finds
its applications for a wide range of problems in
natural language processing (NLP), including ma-
chine reading comprehension (Berant et al., 2014),
future event forecasting (Hashimoto, 2019), and
why-question answering (Oh et al., 2016).

The early approach for ECI has involved feature-
based methods (Do et al., 2011; Hashimoto, 2019;

…
Nugroho told Agence-France Presse : "We have recorded 24 people
dead and 249 people injured", adding that more than 300 buildings
have been damaged1 due to the quake1. Rescuers and other
assistance teams have arrived in Bener Meriah, while the air force
have dispatched a helicopter and a CN-235 aircraft to the region,
Nugroho said. "We are now concentrating on searching for people
who may be trapped under the rubble," said Rusli M . Saleh, the
deputy district chief of Bener Meriah. He said at least 25 of the
injured in his district were hospitalized in intensive care. As the quake
hit, villagers in the area ran out of their homes in panic and screamed
for help. "I see many houses were damaged2 and their roofs fell onto
some people," Bensu Elianita , a 22-year-old resident of Bukit Sama
village in Central Aceh district, said shortly after the quake2 hit.
…
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Figure 1: An example for document-level ECI.

Ning et al., 2018; Gao et al., 2019) while the re-
cent approach has examined deep learning meth-
ods to deliver state-of-the-art performance for this
task (Kadowaki et al., 2019; Liu et al., 2020). De-
spite the good performance, the existing deep learn-
ing methods for ECI are limited in that they only
model the context at the sentence level, assum-
ing the event mention pairs of interest to be in the
same sentences (i.e., intra-sentence setting). On
the one hand, this assumption fails to cover the
inter-sentence scenario where the input pairs of
event mentions can appear in different sentences in
the documents, e.g., in the recent EventStoryLine
dataset for ECI (Caselli and Vossen, 2017). On the
other hand, the sole modeling of sentence context
cannot benefit from the document-level informa-
tion that can provide useful evidence to facilitate
the causality prediction for events. An example
can be seen in Figure 1 where the interested pair
of event mentions involves damaged2 and quake2
in the last (green) sentence. A system that only
considers sentence context might find it challeng-
ing to predict causal relation in this case due to the
long distance and the appearance of many irrele-
vant words between damaged2 and quake2 in the
sentence. However, if a system relies on document-
level information and recognizes the coreference
of the event mention pairs (damaged2, damaged1)
and (quake2, quake1), it can exploit the clear ev-
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idence of “damaged1 due to the quake1” to infer
the causal relation for damaged2 and quake2.

To fill this gap, this work aims to develop a deep
learning model for document-level ECI (DECI)
where input event mentions can reside in different
sentences of an input document. As such, a major
challenge in modeling document-level context with
deep learning involves capturing necessary interac-
tions/connections between relevant objects for ECI.
For instance, in our example in Figure 1, relevant
objects include the event mentions and the impor-
tant context words (i.e., “due to) while necessary
connections involve event coreference and interac-
tions of event mentions with context words (i.e.,
between damaged1, quake1, and “due to”). Moti-
vated by this intuition, we design the graph-based
model for DECI where interaction graphs over rele-
vant objects for documents are explicitly generated
and consumed by Graph Convolutional Networks
(GCN) (Kipf and Welling, 2017; Nguyen and Gr-
ishman, 2018) to induce representation vectors for
prediction. To our knowledge, this is the first work
that employs interaction graphs for documents and
GCNs for ECI.

How can interaction graphs for documents (i.e.,
nodes and edges) be formed to learn effective rep-
resentation vectors for ECI? First, the intuitive ap-
proach to design nodes for interaction graphs is
to leverage relevant objects for ECI in documents.
Accordingly, we employ all the words, event men-
tions and entity mentions in a document to establish
nodes for its interaction graph. Here, we note that
entity mentions (e.g., names, pronouns, nominals)
might also be helpful for ECI as entity mentions
can serve as arguments (participants) of events and
events with the same arguments might have better
chance to involve in the causal relation.

Second, for edges of interaction graphs, we pro-
pose to exploit different knowledge sources or in-
formation types to create different types of con-
nections for the graph nodes. Such connection
types are then combined to produce a single rich
interaction graph for an input document for repre-
sentation learning in ECI. In particular, we focus
on three major types of information for node con-
nections for ECI in this work, i.e., discourse-based,
syntax-based, and semantic-based information. As
such, the discourse-based information explores the
sentence boundary and coreference of entity/event
mentions in documents to link the nodes in inter-
action graphs (motivated by our example in Figure

1). The syntax-based information connects words
based on their syntactic relations in dependency
trees of sentences, suggested by the use of shortest
dependency paths between event mentions as fea-
tures for ECI in prior work (Gao et al., 2019). In
contrast, the intuition for semantic-based informa-
tion is that semantically related words/entity/event
mentions in documents can also provide useful evi-
dences to infer the causal relation for events. For
instance, consider the following sentence:

“The violence in and near the Yida refugee camp,
located 10 miles south of the border, came one day
after bombings were reported in another region
of South Sudan, an attack that provoked strong
condemnation from the U.S. State Department.”

Here, the causal relation between “attack” and
“condemnation” can be easily predicted due to
the direct evidence in the context (i.e., via “pro-
voked”). However, the more complicated and im-
plicit context between “bombings” and “condemna-
tion” would make it more difficult for ECI systems
to realize the causality in this case. Fortunately, the
systems can combine the causal relation between
“attack” and “condemnation” and the close seman-
tic similarity between the two events “bombings”
and “attack” to facilitate the causality prediction
between “bombings” and “condemnation”.

Finally, we propose a novel mechanism to regu-
larize interaction graphs and representation vectors
to further improve the representation learning for
DECI. As such, we aim to constrain the model so
edges with small weights in the generated graphs
have minimized contribution to representation vec-
tors. In this way, we expect the model to be more
robust against irrelevant/noisy edges in the graphs
and still promote useful edges for representation
learning. We conduct extensive experiments on
two datasets for DECI. The results demonstrate the
effectiveness of the proposed model and lead to
state-of-the-art performance for DECI.

2 Model

We formulate DECI as a binary classification prob-
lem. The input to the models include a document
D = w1, w2, . . . , wN (ofN words/tokens) that can
have multiple sentences, and two event mentions of
interest es and et in D. The goal of DECI is to pre-
dict whether there exists a causal relation between
es and et in D. Our model for DECI involves
three major components: (i) Document Encoder
to transform the words into representation vectors,
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(ii) Structure Generation to generate an interaction
graph for D, and (iii) Representation Regulariza-
tion to regularize the representation vectors. We
provide details for these components below.

2.1 Document Encoder
In the first step, we transform each word wi ∈ D
into a representation vector xi using the contex-
tualized embeddings BERT (Devlin et al., 2019)
(i.e., the BERTbase version). In particular, as BERT
might split wi into several word-pieces, we employ
the average of the hidden vectors for the word-
pieces of wi in the last layer of BERT as the rep-
resentation vector xi for wi. To handle long docu-
ments with BERT, we divide D into segments of
512 word-pieces to be encoded separately. The re-
sulting sequence X = x1, x2, . . . , xn for D is then
sent to the next steps for further computation.

2.2 Structure Generation
The goal of this section is to generate an interaction
graph G = {N , E} for D to facilitate representa-
tion learning for DECI. As such, the nodes and
edges in G for our DECI problem are constructed
as follows:

Nodes: The node setN for our interaction graph
G should capture relevant objects for the causal pre-
diction between the two event mentions of interest
es and et in D. As motivated earlier, we consider
all the context words wi, event mentions, and entity
mentions in D as relevant objects for our DECI
problem. Formally, let E = {e1, e2, . . . , e|E|}
and M = {m1,m2, . . . ,m|M |} be the sets of
event mentions and entity mentions in D respec-
tively (i.e., es, et ∈ E). The node set N for G
is thus formed by the union of D, E, and M :
N = D ∪ E ∪M = {n1, n2, . . . , n|N |}. In this
work, we use the provided event mentions in the
datasets for E, following prior work on DECI (Gao
et al., 2019) while the Stanford CoreNLP toolkit is
employed to obtain the entity mentions M .

Edges: To formally represent the edges between
the nodes in N for G, we use the adjacency matrix
A = {aij}i,j=|N | (aij ∈ R). Here, as we aim to
use A as the input for Graph Convolutional Net-
works (GCN) to learn representation vectors for
DECI, the value/score aij between two nodes ni
and nj inN is expected to estimate the importance
(or the level of interaction) of nj for the representa-
tion computation of ni. In this way, ni and nj can
directly interact and influence the representation
computation for each other even if they are sequen-

tially far away from each other in D. As presented
in the introduction, three types of information are
exploited to design the edges E (or compute the in-
teraction scores aij) for G in our model, including
the discourse-based, syntax-based and semantic-
based information.
Discourse-based Edges: As the input document
D can involve multiple sentences and event/entity
mentions, understanding where they span and how
they relate to each other is crucial to effectively
encode the document for DECI. As such, we pro-
pose to exploit three types of discourse information
to obtain the interaction graph G for D, i.e., the
sentence boundary, the coreference structure, and
the mention span for event/entity mentions in D.

Sentence Boundary: The intuition for this type
of information is that two event/entity mentions ap-
pearing in the same sentences tend to be more con-
textually related to each other than those in differ-
ent sentences. This suggests the better usefulness
of event/entity mentions in the same sentences for
the representation computation of each other. To
capture this intuition, we propose to compute the
sentence boundary-based interaction score asentij

for the nodes ni and nj inN where asentij = 1 if ni
and nj are the event/entity mentions of the same
sentences in D (i.e., ni, nj ∈ E ∪M ); and 0 other-
wise. asentij will be used as an input to compute the
overall interaction score aij for G later.

Coreference Structure: Instead of considering
within-sentence information as in asentij , corefer-
ence structure concerns the connection of event
and entity mentions across sentences to enrich their
representations with the contextual information of
the coreferring ones (illustrated in Figure 1). As
such, to enable the interaction of representations
for coreferring event/enity mentions, we compute
the conference-based score acorefij for each pair of
nodes ni and nj to contribute to the overall score
aij for representation learning. Here, acorefij is set
to 1 if ni and nj are coreferring event/entity men-
tions in D, and 0 otherwise. Note that we use the
Stanford CoreNLP toolkit to determine the corefer-
ence of entity mentions while similar to (Gao et al.,
2019), golden event coreference information in the
DECI datasets is utilized in this work.

Mention Span: The sentence boundary and coref-
erence structure scores only model interactions of
event and entity mentions in D based on discourse
information. To further connect event and entity
mentions with context words wi for representation
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learning, we employ the mention span-based inter-
action score aspanij as another input for aij , where
aspanij is only set to 1 (i.e., 0 otherwise) if ni is
a word (ni ∈ D) in the span of the entity/event
mention nj (nj ∈ E ∪ M ) or vice verse. Note
that aspanij is important as it allows representation
vectors for event/entity mentions to be grounded
on the contextual information in D.
Syntax-based Edges: Prior work has leveraged de-
pendency parsing trees of sentences in documents
as an useful source of information to generate fea-
tures for DECI systems, e.g., using the shortest
dependency paths between the two event mentions
of interest (Gao et al., 2019). As such, we expect
the dependency trees of the sentences inD can also
provide beneficial information to connect the nodes
in N to learn effective representation vectors for
DECI. To this end, we propose to employ the de-
pendency relations/connections between the words
inD to obtain a syntax-based interaction score adepij

for each pair of nodes ni and nj in N , serving as
an additional input for aij . In particular, directly
inheriting the graph structures of the dependency
trees of the sentences in D, we set adepij to 1 if ni
and nj are two words in the same sentence (i.e.,
ni, nj ∈ D) and they are connected to each other
in the corresponding dependency tree, and 0 other-
wise. Thus, two words are considered important to
each other for representation learning in DECI if
they are neighbors in the dependency trees1.
Semantic-based Edges: This information exploits
the semantic similarity of the nodes in N to enrich
the overall interaction scores aij for G. The motiva-
tion is that a node ni would contribute more to the
representation vector of another node nj for DECI
if ni is more semantically related to nj (illustrated
in the introduction). To this end, we propose two
complementary methods to compute the seman-
tic similarity between the nodes for aij based on
context-based and knowledge-based information.

Context-based Semantic: In this method, we
seek to first obtain a representation vector vi for
the semantic of each node ni in N based on its
context in D. The context-based semantic simi-
larity acontextij for the nodes is then be computed
via such representation vectors and fed into the
estimation of the overall interaction score aij . In
particular, the context-based representation vector
vi for a word node ni ∈ D is directly inherited
from the contextualized embedding vector xc ∈ X

1We use Stanford CoreNLP to parse the sentences.

(i.e., vi = xc) of the corresponding word wc for ni.
In contrast, for event and entity mentions, their rep-
resentation vectors are computed by max-pooling
the contextualized embedding vectors in X that
correspond to the words in the event/entity men-
tions’ spans. Eventually, the context-based similar-
ity score acontextij for two nodes ni and nj in N is
obtained via the normalized score:

ki = Ukvi, qi = Uqvi

acontext
ij = exp(kiqj)/

∑
u=1..|N|

exp(kiqu) (1)

where Uk and Uq are trainable weight matrices, and
the biases are omitted for brevity in this work.

Knowledge-based Semantic: Instead of using
contextual information, this method leverages the
external knowledge of the nodes from knowledge
bases to capture their semantic for node similarity
computation. We expect the external knowledge for
the nodes to provide complementary information
for the contextual information inD, thus further en-
riching the semantic similarity scores (and overall
interaction scores aij) for the nodes in N . To this
end, we propose to utilize WordNet (Miller, 1995),
a rich knowledge base for word meanings, to obtain
external knowledge for the words in D. As such,
WordNet involves a network of word meanings (i.e.,
synsets) that are connected to each other via vari-
ous semantic relations (e.g., synonyms, hyponyms).
Our first step to generate knowledge-based sim-
ilarity scores involves mapping each word node
ni ∈ D ∩ N to a synset node Mi in WordNet us-
ing a Word Sense Disambiguation (WSD) tool. In
particular, we employ WordNet 3.0 and the state-
of-the-art BERT-based WSD model in (Blevins
and Zettlemoyer, 2020) to perform the word-synset
mapping in this work. Afterward, we compute a
knowledge-based similarity score astructij for each
pair of word nodes ni and nj in D ∩ N using the
structure-based similarity of their linked synsets
Mi and Mj in WordNet (i.e., astructij = 0 if ei-
ther ni or nj is not a word node in D ∩ N ). Ac-
cordingly, the Lin similarity measure (Lin et al.,
1998) for synset nodes in WordNet is utilized for
this purpose: astructij =

2∗IC(LCS(Mi,Mj))
IC(Mi)+IC(Mj)

, where
IC and LCS amount to the information content of
synset nodes and the least common subsumer of
two synsets in the WordNet hierarchy (the most
specific ancestor node) respectively2.

2We use the nltk tool to obtain the Lin similarity:
https://www.nltk.org/howto/wordnet.html.

https://www.nltk.org/howto/wordnet.html
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Structure Combination: Up to now, six
scores have been generated to capture the
level of interactions in representation learning
for each pair of nodes ni and nj in N ac-
cording to different information sources (i.e.,
asentij , acorefij , aspanij , adepij , acontextij and astructij ). For
convenience, we group the six scores for each
node pair ni and nj into a vector dij =

[asentij , acorefij , aspanij , adepij , acontextij , astructij ] of size
6. To unify the scores in dij to form an overall rich
interaction score aij for ni and nj in G, we use the
following normalization:

aij = exp(dijq
T )/

∑
u=1..|N|

exp(diuq
T ) (2)

where q is a learnable vector of size 6.
As mentioned above, given the combined inter-

action graph G with the adjacency matrix A =
{aij}i,j=|N |, we use GCNs to induce represen-
tation vectors for the nodes in N for DECI. In
particular, the GCN model in our work takes
the context-based representation vectors vi of the
nodes ni ∈ N as the input. For convenience,
we organize vi into rows of the input matrix
H0 = [v1, . . . , v|N |]. The GCN model then in-
volves G layers that generate the matrix Hl at the
l-th layer for the nodes in N (1 ≤ l ≤ G) via:
Hl = ReLU(AHl−1Wl) (Wl is the weight ma-
trix for the l-th layer). The output of the GCN
model after G layers is HG whose rows are de-
noted by HG = [h1, . . . , h|N |], serving as more
abstract representation vectors for the nodes ni for
causality prediction. This GCN-based computa-
tion of HL is written as HG = [h1, . . . , h|N |] =
GCN(H0, A,G) for convenience.

2.3 Representation Regularization

Our model so far renders G as a fully connected
graph for representation learning whose edge
weights are induced and recorded in the adjacency
matrix A = {aij}i,j=1..|N | (0 < aij < 1). How-
ever, it is intuitive that not all the edges in G are
relevant/necessary for the representation vectors
in DECI. Some edges might even introduce noisy
information if they are preserved in the graph.
As such, we hypothesize that edges with small
weights/scores assigned by the learning process
in A are mostly noisy edges and should have mini-
mal contribution to the induced representation vec-
tors. To this end, we propose to obtain a sparser
version G′ of G where edges with small weights

are completely eliminated. In particular, we em-
ploy a threshold α (0 < α < 1) and compute the
adjacency matrix A′ = {a′ij}i,j=1..|N | for G′ via:
a′ij = aij if aij > α; and 0 otherwise.

To explicitly encourage the minimal contribu-
tion of small-weight edges, our goal is to en-
force that the representation vectors learned by
the sparse graph G′ are still close to those learned
by the full graph G (i.e., the removal of small-
weight edges in G′ does not have much effect
on representation learning). To implement this
idea, we first apply our GCN model over the
sparse graph G′ to learn another version of GCN-
based representation vectors for the nodes in N :
H ′G = [h′1, . . . , h

′
|N |] = GCN(H0, A

′,G′). Af-
terward, we seek to minimize the difference Lreg

between representation vectors of corresponding
nodes in HG and H ′G in the overall loss function:
Lreg = 1/|N |

∑
i=1..|N | ||hi − h′i||22.

Finally, let ns′ and nt′ be the two nodes in N
that correspond to the two event mentions of inter-
est es and et for DECI. An overall representation
vector V = [hs′ , ht′ , h

′
s′ , h

′
t′ ] is formed (from both

HL and H ′L) and fed into a two-layer feed-forward
network with softmax in the end to produce the dis-
tribution P (.|D, es, et) over the two possible types
for our DECI problem (whether there is a causal
relation between es and et or not). The negative
log-likelihood function Lpred is then computed by:
Lpred = − logP (y∗|D, es, et) (y∗ is the golden
type for DECI). The overall loss function to train
our model is thus: L = Lpred + γLreg where γ is
a trade-off parameter.

3 Experiments

3.1 Datasets and Hyperparameters

Following prior work (Gao et al., 2019; Liu et al.,
2020), we evaluate our models on two bench-
mark datasets for ECI, i.e., EventStoryLine and
Causal-TimeBank. In particular, EventStoryLine
(i.e., version 0.9) is introduced in (Caselli and
Vossen, 2017), involving 258 documents, 22 topics,
4316 sentences, 5334 event mentions, 7805 intra-
sentence and 46521 inter-sentence event mention
pairs (1770 and 3855 of them are annotated with
a causal relation respectively). Following (Gao
et al., 2018), we group documents according to
their topics and put the topics in the order based
on their topic IDs. The documents in the last two
topics are used for the development data while the
remaining 20 documents are employed for a 5-fold
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Intra-sentence Inter-sentence Intra + Inter
Model P R F1 P R F1 P R F1
OP (Caselli and Vossen, 2017) 22.5 98.6 36.6 8.4 99.5 15.6 10.5 99.2 19.0
LSTM (Cheng and Miyao, 2017) 34.0 41.5 37.4 13.5 30.3 18.7 17.6 33.9 23.2
Seq (Choubey and Huang, 2017) 32.7 44.9 37.8 11.3 29.5 16.4 15.5 34.3 21.4
KnowDis* (Zuo et al., 2020) 39.7 66.5 49.7 - - - - - -
LR+ (Gao et al., 2019) 37.0 45.2 40.7 25.2 48.1 33.1 27.9 47.2 35.1
LIP (Gao et al., 2019) 38.8 52.4 44.6 35.1 48.2 40.6 36.2 49.5 41.9
BERT* (our implementation) 39.2 49.3 43.7 22.3 29.2 25.3 27.3 35.3 30.8
Know* (Liu et al., 2020) 41.9 62.5 50.1 - - - - - -
RichGCN* (proposed) 49.2 63.0 55.2 39.2 45.7 42.2 42.6 51.3 46.6

Table 1: Model’s performance on EventStoryLine. The performance improvement of RichGCN over the baselines is significant
with p < 0.01. * designates models that use BERT embeddings.

cross-validation evaluation, using the same data
split in (Gao et al., 2019; Liu et al., 2020). For
Causal-TimeBank (Mirza, 2014a), this dataset con-
sists of 184 documents, 6813 events, and 318 of
7608 event mention pairs annotated with a causal
relations. Following (Liu et al., 2020), we do a
10-fold cross-validation evaluation using the same
data split for this dataset. Note that as in (Liu et al.,
2020), we only evaluate the ECI performance for
intra-sentence events in Causal-TimeBank as the
number of inter-sentence event mention pairs with
the causal relation is very small (i.e., only 18 pairs).

We tune the hyperparameters for our model on
the development data of EventStoryLine and use
the chosen parameters to train the models for both
EventStoryLine and Causal-TimeBank. The se-
lected values from the tuning process include: 1e-5
for the learning rate of the Adam optimizer; 8 for
the mini-batch size; 128 hidden units for all the
feed-forward network and GCN layers; 2 layers for
the GCN model (G = 2), α = 0.5 for the weight
threshold, and γ = 0.2 for the trade-off parameter
in the loss function L. Finally, as mentioned earlier,
we use the BERTbase model (of 768 dimensions)
for the pre-trained word embeddings (updated dur-
ing the training) in this work.

3.2 Main Results

We compare our model (called RichGCN) with the
state-of-the-art models for ECI in each benchmark
dataset as follows.

EventStoryLine: For this dataset, the follow-
ing baselines are chosen for comparison: (i) OP: a
dummy model used in (Caselli and Vossen, 2017)
that assigns a causal relation to every pair of event
mentions; (ii) LSTM (Gao et al., 2019): a depen-
dency path based sequential model that is adopted
from (Cheng and Miyao, 2017); (iii) Seq (Gao
et al., 2019): another dependency path based se-

quential model that is originally developed for
temporal relation prediction from (Choubey and
Huang, 2017) and applied to ECI; (iv) BERT: a
baseline method that takes the embedding vectors
from BERT and performs ECI in (Liu et al., 2020).
Note that (Liu et al., 2020) only reports the perfor-
mance on intra-sentence events of EventStoryLine
for this model. We reimplement and fine-tune the
model to obtain its performance for inter-sentence
events. Our reimplemented model for BERT
achieves higher performance on intra-sentence ECI
than those in (Liu et al., 2020); (v) KnowDis (Zuo
et al., 2020): a BERT-based model that leverages
additional data from distant supervision; (vi) LR+
and LIP (Gao et al., 2019): document structure-
based models that have the current state-of-the-
art performance for inter-sentence ECI; and (vii)
Know (Liu et al., 2020): a BERT-based model that
exploits ConceptNet and achieves the state-of-the-
art performance for intra-sentence ECI. Table 1
shows the performance of the models.

Model P R F1
RB (Mirza, 2014b) 36.8 12.3 18.4
ML (Mirza, 2014a) 67.3 22.6 33.9
BERT* (Liu et al., 2020) 30.3 41.1 34.9
Know* (Liu et al., 2020) 36.6 55.6 44.1
RichGCN* (proposed) 39.7 56.5 46.7

Table 2: Model’s performance on Causal-TimeBank (for
intra-sentence events). RichGCN is significantly better than
the baselines with p < 0.01. * indicates BERT-based models.

Causal-TimeBank: We use the following base-
lines for this dataset: (i) RB: a rule-based system
in (Mirza, 2014b); (ii) ML: a feature-based model
for ECI in (Mirza, 2014a); and (iii) BERT and
Know (Liu et al., 2020): These are the same mod-
els BERT and Know (respectively) for EventSto-
ryLine (both are based on BERT). We use the re-
ported performance for the two models in (Liu
et al., 2020) for a fair comparison. Know has the
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current state-of-the-art performance for this dataset
in our 10-fold cross-validation setting. Note that
the BERT model essentially corresponds to our
RichGCN model when the interaction graphs G
and G′ (thus the GCN model) are completely ex-
cluded. Table 2 presents the performance of these
models on Causal-TimeBank.

The most important observation from the tables
is that the proposed model RichGCN significantly
outperforms all the baselines for both intra- and
inter-sentence events on both EventStoryLine and
Causal-TimeBank (p < 0.01), thus clearly demon-
strating the effectiveness of the proposed model
for DECI. In addition, we also see that BERT per-
forms much worse than the document structure-
based models LR+, LIP and RichGCN. The se-
quential modeling of the context in BERT is thus
not effective for document-level ECI, necessitat-
ing better mechanisms to encode document context
(e.g., via the interaction graph of relevant objects as
we do). Finally, the significant better performance
of RichGCN over Know for intra-sentence ECI in
different datasets confirms our intuition in the in-
troduction that capturing context beyond sentences
(i.e., document context as in RichGCN) is helpful
for causal prediction of intra-sentence event pairs.

3.3 Ablation Study

This section analyzes the contribution of each
component in the proposed model with an ab-
lation study. In particular, we examine the
following ablated models: (i) “RichGCN - x”
where x is one of the six interaction scores gen-
erated to compute the unified score aij (i.e.,
asentij , acorefij , aspanij , adepij , acontextij and astructij ). For

instance, “RichGCN - acorefij ” refers to the
RichGCN model where the coreference-based in-
teraction score acorefij is excluded in the compu-
tation of the overall score aij in Equation 2; (ii)
“RichGCN - Entity Nodes”: the entity mention
nodes in M are not included in the construction of
interaction graph G in this model (i.e.,N = D∪E
only); (iii) “RichGCN - Event Nodes”: the event
mention nodes in E do not appear in the node
set N of the interaction graph G in RichGCN
(i.e., N = D ∪ M ). We directly use the repre-
sentation vectors vi for the event mentions in the
overall representation vector V for prediction in
this model. Note that the interaction matrix A
is also adapted accordingly in the ablated mod-
els “RichGCN - Entity Nodes” and “RichGCN

- Event Nodes”; (iv) “RichGCN - GraphCombi-
nation”: this model does not combine the six gener-
ated interaction scores to compute an overall score
aij for A in Equation 2. Instead, it considers each
of the six generated interaction scores as forming a
separate interaction graph, thus generating six dif-
ferent graphs. The GCN model is then applied over
these six graphs (using the same input representa-
tion vectors vi for the nodes ni in N ). The outputs
of the GCN model for the same node ni (with dif-
ferent graphs) are then concatenated to produce the
final representation vector for ni (i.e., serving as
hi in the model). Note that we still employ the
sparse graph idea (with G′ and the loss Lreg) in
this model; (v) “RichGCN - G” and “RichGCN -
G’”: these models exclude the full graphs G or G′
from RichGCN (respectively). The regularization
loss Lreg is thus not used and the vectors generated
by the excluded graphs are not employed in the
final vector V (i.e., hs′ , ht′ , h′s′ , h

′
t′) for prediction

in these cases; and (vi) “RichGCN - Lreg”: this
model removes the regularization term Lreg from
the overall loss function L.

Intra Inter Intra
Model +Inter
RichGCN (full) 59.5 43.3 48.3
RichGCN - asentij 55.8 40.3 44.9
RichGCN - acorefij 57.2 37.6 43.0
RichGCN - aspanij 49.2 35.8 39.5
RichGCN - adepij 54.1 39.5 43.5
RichGCN - acontextij 57.7 42.2 46.9
RichGCN - astructij 57.5 41.5 46.3
RichGCN - GraphCombination 54.7 41.1 44.7
RichGCN - Entity Nodes 51.6 38.7 42.8
RichGCN - Event Nodes 52.0 38.4 42.5
RichGCN - G 53.7 39.9 44.3
RichGCN - G′ 54.6 40.5 44.8
RichGCN - Lreg 56.8 41.3 46.3

Table 3: Performance of models (F1) on the development
data of EventStoryLine.

Table 3 shows the performance of the models
on the development data of EventStoryLine. As
can be seen from the table, all the components
are helpful for the proposed model RichGCN as
eliminating any of them degrades the performance
significantly for both intra- and inter-sentence ECI.
Notably, the worse performance of “RichGCN -
G” suggests that only using the sparse graph G’ for
GCN to completely cancel small-weight edges in
G is suboptimal as it might unexpectedly remove
some useful (though small-weight) edges. Instead,
the sparse graph should be exploited in conjunction
with the full graph to minimize the overall contribu-
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tion of small-weight edges as we do in RichGCN.

3.4 Cross-Topic Evaluation

To further demonstrate the benefits of document
context modeling with GCN for intra-sentence ECI,
we perform a cross-topic evaluation on EventSto-
ryLine as in (Liu et al., 2020). In particular, as
documents in different topics tend to mention dif-
ferent events in EventStoryLine, this section aims
to train the models on a source topic, but evalu-
ate them on other topics (i.e., the target topics)
to reveal the topic generalization. Following (Liu
et al., 2020), we choose topics T8, T13, and T18
in EventStoryLine as the source topics. For each
of these source topics, the other topics are ranked
according to their similarity with the source topic.
As such, the similarity score between two topics
t1 and t2 is based on δ =

Et1∩Et2
Et1∪Et2

, where Et is
the set of lemmas of event trigger words in topic
t. Afterward, topics with the lowest, medium and
highest similarity scores with the source topic are
chosen as the target topics for evaluation. Table 4
present the intra-sentence ECI performance (i.e.,
F1 scores) of LIP, Know (Liu et al., 2020) and
the proposed model RichGCN for this cross-topic
experiment.

Setting Source Target δ LIP Know RichGCN
(Train) (Test) (Proposed)

Low
T8 T35 0% 2.8 44.7 47.0
T13 T12 0% - 25.1 42.7
T18 T30 0% - 19.5 28.2

Medium
T8 T3 1.7% 6.7 30.9 38.0
T13 T41 0.1% 4.5 28.6 41.6
T18 T35 2.8% 17.1 44.5 50.0

High
T8 T19 12.4% 19.4 45.1 54.0
T13 T14 17.1% 27.4 46.0 50.5
T18 T33 27.2% 32.2 49.0 53.1

Table 4: Cross-topic performance (F1) for inter-sentence ECI.
δ =

Et1
∩Et2

Et1
∪Et2

is the topic similarity score.

It is clear from the table that RichGCN is signifi-
cantly better than the baselines LIP and Know over
different cross-topic settings, thereby further testi-
fying to the generalization advantages of capturing
document-level context via GCN for intra-sentence
ECI in the proposed model.

3.5 Error Analysis

To suggest potential directions for future research,
we analyze the errors made by the proposed model.
In particular, we sample 100 event mention pairs
in the development data of EventStoryLine whose
causal relation cannot be predicted correctly by

RichGCN. Afterward, we manually categorize
these examples into different types that are de-
scribed below:

(i) Implicit causal relation: 33% of the errors
in our model is due to the implicit indication of the
causal relation between two event mentions in the
context, necessitating common-sense knowledge
to make correct causality prediction. For instance,
consider the following document:

“South Sudan warns of war after Sudan bombs
refugee camp. Military aircraft from Sudan crossed
the new international border with South Sudan and
dropped bombs Thursday in and around a camp
filled with refugees, officials said. A government
official initially reported deaths, but an American
activist who spoke to aid workers at the camp later
said there were no casualties.”

RichGCN cannot recognize the causal relation
between two events “bombs” and “deaths” in this
document. The reason is that there is no explicit
context in the document to hint such a relation. The
models need to rely on the common-sense causal
order of “bombs” and “deaths” to correctly predict
the label in this case.

(ii) Preprocessing toolkit: Our model leverages
several toolkit to obtain information to construct
the interaction graph G, including the dependency
parser, the entity mention detection and coreference
(i.e., from Stanford CoreNLP), and the word sense
disambiguation model. 18% errors in our model
originate from the errors in such toolkit that intro-
duce noise into our model. For instance, Stanford
CoreNLP incorrectly considers “South Sudan” and
“Sudan” as the same entity in some of the examples.

(iii) Lack of factuality modeling: Our model
fails in this error type as it does not consider the
factuality of the causal relation, treating hypotheti-
cal relations as the actual ones. This accounts for
5% of the errors. For instance, in the document
above, the proposed model predicts the causal rela-
tion between “war” and “bombs”; however, this is
incorrect (not factual) due to the appearance of the
word “warns”.

(iv) Lack of fine-grained distinction: The er-
rors in this type (accounting for 23%) are due
to the failure to capture the fine-grained distinc-
tion of event mentions in the context, causing the
confusion and incorrect predictions for the model.
For instance, in the sentence “Updated : July 02
, 2013 15:50 IST A 6. 1-magnitude earthquake
which hit the Indonesian province of Aceh on Tues-
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day killed a child, injured dozens and destroyed
buildings, sparking panic in a region devastated by
the quake-triggered tsunami of 2004.”, our model
incorrectly predict “killed” and “injured” as hav-
ing a causal relation with “quake” (underlined).
This stems from the strong connection between the
underlined “quake” and the “1-magnitude earth-
quake” in the same sentence (i.e., due to the sen-
tence boundary- and semantic-based interaction
scores). Such strong connection leads the model to
believe that “killed” and “injured” are also caused
by the underlined “quake” as the “1-magnitude
earthquake”. The model would need to better en-
code the fine-grained distinction between the under-
lined “quake” and the “1-magnitude earthquake”
(i.e., of the year 2004 and 2013 respectively) to
address this issue. Finally, our analysis shows that
the other errors have to do with annotation errors
(6%) and more complicated issues that cannot be
categorized clearly.

4 Related Work

The early feature-based methods for ECI has ex-
plored different features and resources to improve
the performance, including lexical and syntac-
tic patterns (Hashimoto, 2019; Gao et al., 2019),
causality cues/markers (e.g., “because”) (Riaz and
Girju, 2014a; Hidey and McKeown, 2016), statis-
tical co-occurrence of events (Beamer and Girju,
2009; Do et al., 2011; Hu et al., 2017), temporal
patterns (Mirza, 2014a; Ning et al., 2018), lexical
semantics of events (Riaz and Girju, 2013, 2014b),
and weakly supervised data (Hashimoto, 2019). Al-
though we also apply related features and resource
for ECI (e.g., syntax, WordNet), our model em-
ploys such resources to build interaction graphs
for documents to induce more abstract represen-
tations with GCNs. Recently, deep learning has
been applied to solve ECI, leveraging advanced
language models (e.g., BERT) (Kadowaki et al.,
2019; Zuo et al., 2020) and common-sense knowl-
edge resources (i.e., ConceptNet) (Liu et al., 2020)
to produce state-of-the-art performance. However,
none of these deep learning models has explored
document-context modeling with rich information
for graph construction and GCNs as we do.

Recently, there have been much interest in de-
signing task-specific graphs to learn representa-
tion vectors for different NLP tasks, including
sentence-level graphs for event factuality identifica-
tion (Pouran Ben Veyseh et al., 2019) and event ar-

gument extraction (Pouran Ben Veyseh et al., 2020;
Nguyen and Nguyen, 2021), and document-level
graphs for relation extraction (Christopoulou et al.,
2019; Nan et al., 2020; Tran et al., 2020) and event
argument extraction (Veyseh et al., 2021). Our
model is different from such related work in that
we design document-level interaction graphs that
are tailored to our ECI task. In addition, our model
is also the first model that employs the inherent
structure of external knowledge graphs (i.e., Word-
Net) to augment interaction graphs for documents
in representation learning.

5 Conclusion

We present a novel deep learning model for
document-level ECI to address the limitation of
prior deep learning models that only focus on
causal prediction for inter-sentence event mention
pairs. Our model designs interaction graphs to cap-
ture important objects and connections for input
documents, leveraging GCNs to induce represen-
tation vectors for causal prediction. We introduce
several information sources to enrich the interac-
tion graphs based on discourse, syntax, and se-
mantic information. The experiments confirm the
effectiveness of the proposed information sources
and models for DECI. In the future, we plan to
extend our model to other related tasks, e.g., event
coreference resolution (Nguyen et al., 2016).
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