
Proceedings of the 2021 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, pages 3002–3017

June 6–11, 2021. ©2021 Association for Computational Linguistics

3002

Action-Based Conversations Dataset:
A Corpus for Building More In-Depth Task-Oriented Dialogue Systems

Derek Chen†, Howard Chen†, Yi Yang†, Alexander Lin†, Zhou Yu‡
†ASAPP, New York, NY 10007
‡Columbia University, NY

†{dchen,hchen,yyang,alin}@asapp.com, zy2461@columbia.edu

Abstract
Existing goal-oriented dialogue datasets focus
mainly on identifying slots and values. How-
ever, customer support interactions in reality
often involve agents following multi-step pro-
cedures derived from explicitly-defined com-
pany policies as well. To study customer ser-
vice dialogue systems in more realistic set-
tings, we introduce the Action-Based Con-
versations Dataset (ABCD), a fully-labeled
dataset with over 10K human-to-human di-
alogues containing 55 distinct user intents
requiring unique sequences of actions con-
strained by policies to achieve task success.

We propose two additional dialog tasks, Ac-
tion State Tracking and Cascading Dialogue
Success, and establish a series of baselines in-
volving large-scale, pre-trained language mod-
els on this dataset. Empirical results demon-
strate that while more sophisticated networks
outperform simpler models, a considerable
gap (50.8% absolute accuracy) still exists to
reach human-level performance on ABCD. 1

1 Introduction

The broad adoption of virtual assistants and cus-
tomer service chatbots in recent years has been
driven in no small part by the usefulness of these
tools, whereby actions are taken on behalf of the
user to accomplish their desired targets (Ama-
zon, 2019; Google, 2019). Research into task-
oriented dialogue has concurrently made tremen-
dous progress on natural language understanding
of user needs (Wu et al., 2019; Rastogi et al.,
2020b; Liang et al., 2020). However, selecting
actions in real life requires not only obeying user
requests, but also following practical policy limi-
tations which may be at odds with those requests.
For example, while a user may ask for a refund on
their purchase, an agent should only honor such a
request if it is valid with regards to the store’s re-
turn policy. Described in actions, before an agent

1All code and data will be available at this location.

Figure 1: An interaction from ABCD (left) starts with
the customer receiving a prompt (top right) to ground
the dialogue. The agent follows the guidelines (bottom
right) to identify the customer intent and to assist them
in resolving the issue through a series of actions.

can [Offer Refund], they must first [Validate Pur-
chase]. Furthermore, resolving customer issues
often concerns multiple actions completed in suc-
cession with a specific order since prior steps may
influence future decision states. (See Figure 1)

To more closely model real customer service
agents, we present the Action-Based Conversa-
tions Dataset (ABCD) consisting of 10,042 con-
versations containing numerous actions with pre-
cise procedural requirements. These actions dif-
fer from typical dialogue acts because tracking
them necessitates striking a balance between ex-
ternal user requests and internally-imposed guide-
lines. Thus, the major difference between
ABCD and other dialogue datasets, such as Mul-
tiWOZ (Budzianowski et al., 2018), is that it asks
the agent to adhere to a set of policies while simul-
taneously dealing with customer requests.

While the prevalent data collection paradigm
involves Wizard-of-Oz techniques, our situation

https://github.com/asappresearch/abcd

3003

containing asymmetric speakers compelled the de-
sign of a novel Expert Live Chat system. Our
dataset includes asymmetric speakers because, un-
like customers, agents must undergo extensive
training to be able to navigate the Agent Guide-
lines during real-time conversations. This makes
a naive pairing process untenable since arbitrary
matching might lead to chats containing two users
who share the same role.

Based on the unique aspects of ABCD, we pro-
pose two new tasks. To start, Action State Track-
ing (AST) closely mirrors the format of Dialogue
State Tracking where the user intent is inferred
from the dialogue history. AST then differs since
the correct state must also be reconciled with the
requirements outlined in the Agent Guidelines. As
a second task, Cascading Dialogue Success (CDS)
extends this notion across the entire conversation.
At each turn, the agent decides to take an action,
respond with an utterance or end the chat. As
needed, the agent should also predict the right ac-
tion or select the best utterance.

For each task, we build various models to es-
tablish baseline performance and to highlight the
importance of each constraint. Experiments show
that in addition to conversation history, condition-
ing on the Agent Guidelines further boosts perfor-
mance, with top models relying on both aspects
to reach 31.9% accuracy. Additional results show
removing action context hurts performance, im-
plying the importance of taking into account the
sequential nature of actions. Lastly, human eval-
uation reaches 82.7%, demonstrating ample room
for future improvement.

The contribution of this work is three-fold: (1)
We provide a novel, large-scale dataset containing
context-dependent, procedural actions along with
corresponding Agent Guidelines. (2) We establish
a new technique called Expert Live Chat for cap-
turing natural dialogue between two unequal inter-
locutors. (3) We propose two metrics, Action State
Tracking and Cascading Dialogue Success, for
measuring dialogue comprehension with policy
constraints. Finally, we build on pretrained neural
models to serve as baselines for these tasks.

2 Related Work

Traditional Dialogue Datasets In recent years,
dialogue datasets have grown in size from hun-
dreds of conversations to the tens of thou-
sands (Henderson et al., 2014; Budzianowski

et al., 2018; Peskov et al., 2019). Unlike open-
domain chatbots often built for entertainment,
task-oriented dialogue systems trained on such
datasets are intended for solving user issues. The
resolution of these issues implicitly requires tak-
ing actions, where an action is a non-utterance
decision that depends on both user and system
inputs. Despite the tremendous number of dia-
logues, examples in previous benchmarks fixate
on the single knowledge base (KB) lookup action
where the agent searches for an item that matches
the user’s desires and is available in the KB. By
sticking to this sole interaction, conversations can
be generated through rules (Weston et al., 2016),
paraphrased from templates (Byrne et al., 2019)
or taken from static text scenarios (Zhang et al.,
2018), leading to dialogues that are predominantly
homogeneous in nature.

Many datasets have scaled to more domains
as well (Eric et al., 2017; Budzianowski et al.,
2018; Peskov et al., 2019) Since each new domain
introduces a KB lookup requiring different slot-
values, the number of unique actions grows as a
linear function of the number of domains covered.
Rather than expanding wider, ABCD instead fo-
cuses deeper by increasing the count and diversity
of actions within a single domain.

Exploring Other Avenues Multiple aspects are
explored by conversational datasets attempting to
mimic reality. Rashkin et al. (2019) studies the
ability of a dialogue model to handle empathy,
while Zhou et al. (2018) focuses on common-
sense reasoning. Another approach is to aug-
ment dialogues with multi-modality including au-
dio (Castro et al., 2019) or visual (Das et al.,
2017a) components. Other researchers have ex-
plored grounding conversations with external data
sources such as personas (Zhang et al., 2018), on-
line reviews (Ghazvininejad et al., 2018) or large
knowledge bases (Dinan et al., 2019). Intricate
dialogues can also appear when studying collab-
oration (He et al., 2017; Kim et al., 2019) or nego-
tiation (Lewis et al., 2017; He et al., 2018) which
strongly encourage interaction with the other par-
ticipant. In comparison, ABCD aims to make di-
alogue more realistic by considering distinct con-
straints from policies.

Dialogues with Policies Procedural actions fol-
lowing strict guidelines naturally emerge in dia-
logue research geared towards real-world appli-

3004

Subflows

recover-username,1 recover-password,1 reset-2fa,1 status-service-added,2 status-service-removed,2 status-
shipping-question,2 status-credit-missing,2 manage-change-address,2 manage-change-name,2 manage-change-
phone,2 manage-payment-method,2 status-mystery-fee,3 status-delivery-time,3 status-payment-method,3 status-
quantity,3 manage-upgrade,3 manage-downgrade,3 manage-create,3 manage-cancel,3 refund-initiate,4 refund-
update,4 refund-status,4 return-stain,4 return-color,4 return-size,4 bad-price-competitor,5 bad-price-yesterday,5

out-of-stock-general,5 out-of-stock-one-item,5 promo-code-invalid,5 promo-code-out-of-date,5 mistimed-billing-
already-returned,5 mistimed-billing-never-bought,5 status,6 manage,6 missing,6 cost,6 boots,7 shirt,7 jeans,7 jacket,7

pricing,8 membership,8 timing,8 policy,8 status-active,9 status-due-amount,9 status-due-date,9 manage-pay-bill,9

manage-extension,9 manage-dispute-bill,9 credit-card,10 shopping-cart,10 search-results,10 slow-speed10

Actions

verify-identity, ask-the-oracle, validate-purchase, make-password, promo-code, subscription-status, offer-refund,
make-purchase, record-reason, enter-details, shipping-status, update-order, pull-up-account, update-account, send-
link, notify-team, membership, search-faq, try-again, log-out-in, instructions, search-jeans, search-shirt, search-
boots, search-jacket, search-pricing, search-membership, search-timing, search-policy, select-faq

Table 1: Full ontology of Agent Guidelines decomposable into high-level flows describing the overall category
and subflows defining a unique set of intents. All actions are also shown. Upper script numeral indicates the flow
that the subflow belongs to. 1: account access, 2: manage account, 3: order issue, 4: product defect, 5: purchase
dispute, 6: shipping issue, 7: single item query, 8: storewide query, 9: subscription inquiry, 10: troubleshoot site

cations. Hybrid Code Networks encode busi-
ness logic through masking templates since vari-
ous behaviors become nonsensical in certain sit-
uations (Williams et al., 2017). Research from
Moiseeva et al. (2020) studies multi-purpose vir-
tual assistants that attempt to distinguish among
thirteen explicit actions. The closest prior work
to ABCD is the Schema Guided Dialogue (SGD)
dataset, which contains dozens of API calls that
can be interpreted as individual actions send-
ing commands to a SQL engine (Rastogi et al.,
2020b). The functionality of these actions is occa-
sionally restricted to reflect constraints of real-life
services. The action restrictions within ABCD are
made explicit by the Agent Guidelines manual.

3 Action-Based Conversation Dataset

In this section, we describe the task setting of
ABCD by following along with the example di-
alog shown in Figure 1.

3.1 Customer

During data collection, customers are given a sim-
ple prompt (such as “You want to keep your sub-
scription another year.”) instead of step-by-step
instructions, which reflects how real-world cus-
tomers innately understand their own issue, but
only have a rough idea of how to resolve said is-
sue. Accordingly, customers within ABCD remain
oblivious towards what values apply to which ac-
tions, nor are they aware that actions exist in first
place. This ambiguity forces the agent and cus-
tomer to collaboratively uncover the correct latent
intent through back and forth communication, nat-
urally leading to longer dialogues.

3.2 Customer Service Agent

Following the standard dialog setup, the agent
starts by parsing the dialogue history to capture the
customer intent, which in Figure 1 is a subscrip-
tion extension. ABCD then diverges as the next
step involves interpreting the Agent Guidelines, a
document representing the internal policies of a
company in the online retail domain (See Table 1).
Using the guidelines, the trained agent should find
the one unique subflow corresponding to the cus-
tomer intent. Each subflow in turn is defined by
exactly one unique sequence of actions.

While identifying a subflow may seem straight-
forward, information asymmetry prevents the cus-
tomers from directly revealing the name of their
intent. For example, a customer might inquire
about the status of their recent purchase, but an
agent has over a dozen different subflows related
to order statuses, so selecting the right one sud-
denly becomes highly non-trivial.

In our case, the agent eventually figures out
the correct subflow and begins to execute actions,
which consists of recording values given by the
customer, namely the customer’s full name or ac-
count ID in order to [Pull up Account]. As the
third action, the guidelines instruct the agent to
ask for the customer’s membership level. After the
customer supplies this information, the agent en-
ters the “guest” value into the agent dashboard by
clicking the [Membership] button. Buttons have
variable slots that may or may not need to be filled,
depending on the context (See Table 1 for a full
list). Dialogue success demands that agents exe-
cute a chain of such actions in the right order with
the right values, while simultaneously engaging
the customer in natural language conversation.

3005

There are three reasons that make carrying out
a series of actions more difficult than the task lets
on. To start, the permitted actions in a given state
are determined not only by Agent Guidelines, but
also by the user’s desire, which may be in conflict.
For example, the customer in Figure 1 wanted to
extend their subscription, but the guidelines pre-
vented the agent from doing so. Secondly, actions
must be completed in order. This procedural re-
quirement comes from the realization that com-
pleting actions out of order (or with missing steps)
do not make sense in many real-world scenarios.
For example, it is critical to [Verify Identity] be-
fore resetting someone’s password, not after. Fi-
nally, actions themselves induce stochastic out-
comes, preventing agents from memorizing pat-
terns of subflow resolution. As an example, [Ask
the Oracle] often determines if a customer com-
plaint was valid. In the case of a company error,
the agent is compelled to immediately resolve the
issue, whereas a misunderstanding made by the
customer warrants a different set of responses.

4 Data Collection Methodology

This section outlines how we collect and annotate
our dataset with context-dependent actions.

4.1 Agent Training

Managing complex guidelines requires filtering
for top agents, which we do by certifying Mechan-
ical Turk (MTurk) workers through an extensive
20-question quiz touching on all aspects of task
completion. Keeping the bar high, we set a mini-
mum threshold of 80% accuracy of the quiz which
resulted in a low 20% pass rate. After passing the
exam, we offered the answer key to agents which
further improved understanding. We also created
short, 10-minute tutorial videos to showcase how
to handle the most difficult aspects of the task.
A group chat app was also deployed to offer live
feedback for agents, simulating how supervisors
coach customer service representatives in real life.
Finally, we carefully designed an incentive struc-
ture that rewards agents for correctly identifying
the user intent to encourage clarification behavior.
(Appendix A covers more details.)

4.2 Expert Live Chat

Rather than utilizing Wizard-of-Oz techniques
(such as in MultiWOZ), we developed Expert
Live Chat which contains three unique aspects:

(1) Conversations are conducted continuously in
real-time. (2) Users involved are not interchange-
able. (3) Players are informed that all participants
are human – no wizard behind the scenes.

4.2.1 Synchronous Two-person Dialogue
Normal human conversations occur in real-time,
but coordinating multiple users in this manner
is resource-intensive, so other datasets often em-
ployed workarounds to avoid this difficulty. For
example, other works have applied rules (Bordes
et al., 2017), templates (Byrne et al., 2019) or
paraphrasing (Shah et al., 2018) to produce con-
versations. Wizard-of-Oz (WoZ) techniques in-
corporate humans into the mix by allowing one
of them to play the system role as a wizard
behind the scenes (Kelley, 1984). In particu-
lar, (Budzianowski et al., 2018) decomposed di-
alogues into individual turns, where for each turn
a new author is responsible for reading the con-
text and generating the next plausible response.
Despite the time-consuming nature, some datasets
have produced synchronous dialogues between
two humans (Lewis et al., 2017). However, the
skill sets of ABCD workers are notably unequal,
exacerbating the matching problem.

4.2.2 Pairing Users of Unequal Capability
Expert Live Chat matches a highly trained agent
with a knowledgeable, yet otherwise average cus-
tomer in real-time. Since the backgrounds are
uneven, unlike other datasets with concurrent
users (Lewis et al., 2017; Zhang et al., 2018; Das
et al., 2017b), incoming Turkers cannot simply be
randomly assigned a role. In other words, having
twenty participants does not necessarily equate to
ten conversations since it’s possible that only a
quarter of them are qualified as agents. When such
an imbalance inevitably arises, one group must
wait until someone from the other side becomes
available. However, leaving either side waiting for
too long leads to serious consequences since idle
time directly affects their pay rate.

To minimize the likelihood of such an outcome,
we first ensure that a reasonable pool of agents
are always available. Then, we increase the num-
ber of active customers by methodically inviting a
subset of customers one batch at a time. To do so,
we established a qualification exam for customers
to ensure their availability during a specified time
period. Finally, we also redesigned the chat appli-
cation to make the waiting room experience more

3006

Figure 2: The Agent Dashboard is split into three sec-
tions. KB Query actions always have system output,
while actions in the Interaction Zone require user input.
The FAQ/Policy section is associated with describing
company policies and technical troubleshooting.

palatable. (See Appendix B for full breakdown.)
With these changes, we successfully increased the
pairing rate from 18 out of 80 active users up to
72 out of 83, an increase of nearly 400%, while
maintaining wait times under 10 minutes.

4.2.3 Interaction Framework
Besides pairing, we increased the likelihood of
collecting rich dialogues without the need for ex-
tensive instructions by optimizing the chat experi-
ence itself. In particular, we observed the greatest
gains by grounding the conversation to the relat-
able scenario of online shopping, which provided
immediate context to participants without requir-
ing any extra training.

For example, the Agent Dashboard was ar-
ranged to closely reflect actual agent workspaces
(Figure 2). On the customer side, scenarios in the
Customer Panel included an image of the product
being discussed, along with other meta-data such
as the brand or price to match a true shopping ex-
perience as much as possible (Appendix H). We
also explicitly told customers the other speaker
was human to encourage natural responses over
confined commands meant for machines. Most
importantly, customers were given dynamically
generated, natural-language prompts that did not
include information about the values needed to re-
solve their issue. As a general framework, Ex-

pert Live Chat can be applied in any real-world
scenario involving an expert and novice. Indeed,
increasing the verisimilitude of the experience is
precisely what allowed higher quality dialogues to
be generated by the workers.

4.3 Annotation of Actions and Values

The flows and subflows are automatically anno-
tated since we have the provenance of each intent
when generating the customer prompt. Addition-
ally, given the ground truth subflow of each con-
versation, we can deterministically map them to
the correct section within the Agent Guidelines
outlining the correct actions. Calculating accu-
racy then becomes a simple exercise to align the
predicted actions with the ones required by the
manual. In this way, we capture a key benefit of
machine-generated text (Shah et al., 2018) without
sacrificing the benefit of engaging real users.

5 Dataset Statistics and Analysis

We validate all dialogues to pass quality thresh-
olds such as including a minimum number of ac-
tions and avoiding copy/paste behavior. After fil-
tering, we end up with 10,042 total conversations
with an average of 22.1 turns – the highest turn
count among all compared datasets. Unsurpris-
ingly, ABCD includes more actions per dialogue
than other datasets, by at least a factor of two.
ABCD also contains a lower absolute number of
tokens, but also has the highest variance in the
number of tokens per turn. (See Table 2.)

Since each subflow represents a unique cus-
tomer intent, ABCD contains 55 user intents
evenly distributed through the dataset. By in-
terpreting buttons as domains, the dataset con-
tains 30 domains and 231 associated slots, com-
pared to 7 domains and 24 slots within Multi-
WOZ (Budzianowski et al., 2018).

By grounding to the relatable scenario of chat-
ting with customer support of an online retail
company, speakers often showcase various forms
of natural dialogue, such as offering diverse rea-
sons for shopping or asking detailed follow-up
questions. Furthermore, the unconstrained nature
of Expert Live Chat allows users to chat with each
other in a free-form style. Dialogues exhibited
normal texting behavior such as users speaking for
many turns in a row or fixing typos with a star in
the subsequent line. Other examples of linguistic
phenomenon can be observed in Table 5.

3007

Metric DSTC2 M2M KVRET MultiWOZ SGD MultiDoGO ABCD
Num of Dialogues 1,612 1,500 2,425 8,438 16,142 40,576 8,034
Num of Turns 23,354 14,796 12,732 113,556 329,964 813,834 177,407
Num of Tokens 199,431 121,977 102,077 1,490,615 3,217,369 9,901,235 1,626,160
Avg. Turns / Dialogue 14.49 9.86 5.25 13.46 20.44 20.06 22.08
Avg. Tokens / Turn 8.54 8.24 8.02 13.13 9.75 12.16 9.17
Std Dev. Tokens / Turn 2.95 5.99 6.07 6.19 6.48 –* 6.80
Avg. Actions / Dialogue 1.0 1.0 1.0 1.81 1.24 –* 3.73
No. Unique Tokens 986 1,008 2,842 23,689 30,352 70,003 23,686
No. Unique Slots 8 14 13 24 214 73 231
No. Slot Values 212 138 1,363 4,510 14,139 55,816 12,047
No. Domains 1 2 3 7 16 6 30

Table 2: Comparison of ABCD to similar dialogue datasets. Numbers reported are for the train split on all datasets,
with bold values indicating the top score for each metric. *MultiDoGO is not public, unable to calculate new stats.

6 ABCD as a Dialogue Benchmark

The novel features in ABCD brings two new di-
alog tasks, Action State Tracking and Cascading
Dialogue Success. We also build baseline systems
that are variants of standard dialogue models and
report their results on ABCD.

6.1 Action State Tracking

Action State Tracking (AST) aims at detecting
the pertinent intent by interpreting customer utter-
ances while taking into account constraints from
the Agent Guidelines, an aspect not considered in
traditional dialog state tracking (DST). For exam-
ple, a conceivable dialogue task might entail help-
ing a customer [Reset Password] once this intent
has been identified. In contrast, the appropriate
next step within AST is governed by the Agent
Guidelines, which might require [Verify Identity]
of the customer first, or any number of other ac-
tions, before executing the password reset.

Each series of actions is considered a unique
subflow that belongs to a number of high-level
conversational flows. Each individual action in-
cludes the active button b to click and its corre-
sponding slots s and values v. The task consists
of executing an action, which constitutes a sin-
gle agent turn. More specifically, given a context
Ct = [x1, x2, . . . , xt] where xt can be a customer
utterance xct , an agent utterance xat , or a prior ac-
tion xbt , a model should predict the button of the
current action as well as the relevant slots and val-
ues, if any exist {xbt+1 = (b, s, v) ∈ B × S × V}.

This structure is designed to mimic DST where
each user intent is broken down into domains,
slots and values (d, s, v). For both AST and DST,
the higher level domain or button can have vary-

ing slots. The reverse is also true – a given slot
can be associated with multiple domains or but-
tons. Lastly, both contain values that can be enu-
merable (i.e. payment types or shipping statuses)
or non-enumerable (phone numbers or email ad-
dresses). Following the pattern set by Rastogi
et al. (2020b), enumerable values are given in the
ontology to be accessible by a model, whereas the
non-enumerable items are not.

Despite the similar structure, AST deviates
from DST since predicting the right action re-
quires not only parsing the customer utterance,
but also adhering to Agent Guidelines. Suppose
a customer is entitled to a discount which will be
offered by issuing a [Promo Code]. The customer
might request 30% off, but the guidelines stipulate
only 15% is permitted, which would make “30”
a reasonable, but ultimately flawed slot-value. To
measure a model’s ability to comprehend such nu-
anced situations, we adopt overall accuracy as the
evaluation metric for AST.

6.2 Cascading Dialogue Success

Since the appropriate action often depends on
the situation, we propose the Cascading Dialogue
Success (CDS) task to measure a model’s ability
to understand actions in context. Whereas AST
assumes an action occurs in the current turn, CDS
gives an agent the additional options of respond-
ing with an utterance or ending the conversation.
Moreover, proficiency is no longer measured as
success over isolated turns but rather as success
over sequences of consecutive turns.

Formally, given Ct = [x1, x2, . . . , xt] as a con-
text composed of utterances xc, xa ∈ U and ac-
tions xb ∈ A, a model should predict all remain-
ing steps x>t along with their realized forms. Pos-

3008

sible next steps are to take an action, respond with
text or end the task. When the next step is an
action xbt+1, the model should predict the button
with its slots and values as in AST. If the agent
speaks in the next step xat+1, the model should
rank the true utterance highest, as measured by re-
call metrics.1 Finally, the model should recognize
when to end the conversation.

Rewarding the model only when it predicts ev-
ery step correctly is counter-productive because
minor variations in sentence order do not alter
overall customer satisfaction. Therefore, CDS is
scored using a variation on Cascading Evalua-
tion (Suhr et al., 2019). Rather than receiving a
single score for each conversation, cascaded eval-
uation allows the model to receive “partial credit”
whenever it successfully predicts each successive
step in the chat. This score is calculated on ev-
ery turn, and the model is evaluated based on the
percent of remaining steps correctly predicted, av-
eraged across all available turns. (See Appendix C
for more details.)

6.3 Baseline Models

We also run several baselines on these new tasks.
The backbone of all our baseline systems is a
pre-trained Transformer-based model acting as a
context encoder. More specifically, given the di-
alogue history as a series of utterances, we first
join the utterances together with a [SEP] token
and then tokenize the entire input using Word-
Piece (Schuster and Nakajima, 2012). Next, we
feed the entire input into a BERT model and per-
form a learned pooling on the hidden states in the
final layer, which results in a fixed-length latent
vector henc ∈ R128 (Wolf et al., 2019). After-
wards, we attach a variety of prediction heads con-
ditioned on the henc vector to generate the final
output. Details of the prediction heads for the two
proposed tasks are described next.

We break down Action State Tracking (AST)
into two sub-problems, button-slot prediction and
value-filling. Given the ontology, button predic-
tion is a straightforward classification task over
231 known options, so the prediction head is just a
linear classifier with a softmax activation for nor-
malization: Pb·slot = Softmax(Wah

>
enc + ba).

To handle value-filling, we further decompose

1Sentences with similar semantics may be formulated in
several ways, so we opt for response retrieval over text gen-
eration since common metrics (i.e. BLEU score) tend to be-
come unreliable in these situations (Liu et al., 2016).

the task into predicting enumerable and non-
enumerable values. The ontology lists out all |E|
enumerable values, so the prediction head penum

simply maps the hidden state henc into the ap-
propriate dimensions. To handle non-enumerable
values, we follow the insight from (Ma et al.,
2019) which notes that practically all such values
are stated by the customer in conversation, so a
model can copy these values from the tokenized
context. During pre-processing, we extract up to
|N | unique tokens from the natural language cus-
tomer utterances, where pcopy then represents the
distribution over these possible options.2

We imitate the TRADE architecture from (Wu
et al., 2019), where conditioned on the action, the
model chooses to either copy from the context
pcopy or select from the enumerable entities penum
based on a gating mechanism. The gate is condi-
tioned on the hidden state henc as well as a learned
context vector ci. Concretely,

penum = Softmax(Weh
>
enc + be) ∈ R|E|

pcopy = Softmax(Wch
>
enc + bc) ∈ R|N |

ci = W>c · pcopy ∈ Rhid

pgate = σ(Wg · [henc; ci]) ∈ R1

Pval = [pgate × pcopy; (1− pgate)× penum] ∈ R|E+N |

where σ represents the Sigmoid function and [·; ·]
is the concatenation operation. The final value
predictions are the argmax of Pval which merge
the probabilities of penum and pcopy together.

For Cascading Dialogue Success (CDS), we
also tackle next step selection, utterance ranking,
and intent classification. Next step selection is a
choice between retrieve utterance, take action and
end conversation. Intent classification consists of
choosing from the 55 available subflows. Given
this basic setting, both tasks use the same setup of
a linear layer followed by a softmax, albeit with
their own respective weights WNS ∈ R3×hid and
WIC ∈ R55×hid. When the next step is to take
action, the AST model is reused to determine the
button-slot and value. When end conversation is
selected, all future predictions are ignored, much
like an <EOS> symbol signifies stopping.

This leaves us with utterance ranking, which is
only evaluated when retrieve utterance is chosen
as the next step. Our ranker reproduces the design

2Choosing larger |N | leads to higher recall, but lower pre-
cision. We found N = 100 to work well in practice.

3009

from (Guu et al., 2020), where the encoded con-
text hctx is compared against each encoded candi-
date response hcand to produce a ranking score.
To embed each jth candidate dj we first create
its input dinputj . Following standard practice, we
prepend the candidate text dj with [CLS], sepa-
rate the individual utterances ui within the candi-
date response using a [SEP] token, and append
a final [SEP] token afterwards. (Devlin et al.,
2019). This input dinputj is then fed into a static
pretrained BERT model to get an initial hidden
state, which is finally projected using a learned
weight Wdj ∈ R128×hid to produce hcand. To
obtain hctx we start with the hidden state henc
from before and apply a projection matrix WUR ∈
R128×hid to reach the desired dimensionality.

dinputj = [CLS]u1[SEP]u2[SEP]...[SEP]un[SEP]

hcand = WdjBERTbase(d
input
j)> ∈ R128

hctx = WUR h
>
enc ∈ R128

f(xi, dj) = h>ctx hcand

P rank
j =

exp(f(xi, dj))

Σd′j
exp f(xi, d′j)

The final rank is given by normalizing each jth

score against all other candidate scores. We use
the training objective from (Henderson et al.,
2019) to calculate the loss:

J =

M=100∑
j=1

P (xi, dj)−
M∑
i=1

log

M∑
j=1

expf(xi,dj)

where M is the size of the total candidate set.

6.4 Experiments

We performed experiments on the two newly pro-
posed tasks, AST and CDS. AST consists of two
subtasks, button-slot prediction and value-filling,
while CDS builds on this with three additional
subtasks of next step selection, utterance ranking,
and intent classification. For both tasks, we exper-
imented with two types of frameworks, a pipeline
version and an end-to-end version. The pipeline
version trains each subtask separately while the
end-to-end optimizes all tasks jointly (Liang et al.,
2020; Rastogi et al., 2020a; Ham et al., 2020).

The pipeline model uses a BERT model trained
with the RAdam optimizer (Liu et al., 2020).
To test the performance of different pretrained
models under the end-to-end framework, we

Metric Pipeline BERT AlBERT RoBERTa
B-Slot 86.7% 89.9% 90.9% 93.6%
Value 42.1% 61.6% 61.0% 67.2%
Action 32.3% 59.5% 59.2% 65.8%

Table 3: Metrics for Action-State Tracking. Pipeline
values come from models trained on individual sub-
tasks, other models are trained jointly end-to-end.

experiment with three additional encoders, Al-
BERT (Lan et al., 2020), RoBERTa (Liu et al.,
2019) and RoBERTa-Large. AlBERT model has
an inter-sentence coherence task and a lighter
memory footprint compared to BERT, while
RoBERTa model has substantially more data and
hyper-parameter tuning in pretraining than BERT.
In the future, we also plan to include GPT-based
models, such as DialoGPT (Zhang et al., 2020) in
our comparison.

6.5 Results

For both tasks, moving from the pipeline archi-
tecture to a jointly trained method displayed no-
ticeable improvement in accuracy. As hinted at
in prior works (Liang et al., 2020), we suspect
the group effort gives each subtask extra super-
vision from other subtasks for more data efficient
training. In the AST task, we found steady im-
provements as we move from the older to the
newer models with vanilla BERT at 59.5% accu-
racy and RoBERTa doing the best at 65.8%. For
the CDS task, we found a similar trend where
RoBERTa-Large outperforms BERT, but only by
a mere 0.6%. We hypothesize this small gap be-
tween models is due to the fact that none were par-
ticularly trained on dialogue data which impacts
their ability to produce a useful encoding (Wu and
Xiong, 2020).

Separately, we evaluate CDS subtask difficulty
by asking human volunteers to select the correct
label from a list of possible options. As an ex-
ample, workers would be presented with 55 dif-
ferent classes for Intent Classification and asked
to choose the right one. Since humans typically
struggle when choosing from large collections of
items, fine-tuned models performed roughly on
par or better compared to humans in this unnat-
ural setting. On the other hand, human evaluation
for the overall CDS task was judged by measuring
the success rate in a standard conversational sce-
narios where behavioral instincts are activated, so
humans were able to excel on this environment.

3010

Model Intent Nextstep B-Slot Value Recall@1/5/10 Cascading Eval
Human 85.5% 84.0% 79.0% 77.5% N/A 82.7%
Pipeline 90.4% 83.8% 86.7% 42.1% 26.2/51.7/63.1 18.2%
BERT-base 89.3% 87.6% 85.9% 73.1% 21.7/46.6/58.7 31.3%
AlBERT 88.5% 87.2% 86.1% 70.4% 22.1/47.4/58.9 31.2%
RoBERTa 89.7% 87.8% 87.6% 73.1% 21.6/46.7/58.6 31.5%
RoBERTa-Large 90.5% 87.5% 88.5% 73.3% 22.0/47.8/59.1 31.9%
BERT-base w/o Action Info 88.4% 76.8% 83.7% 63.4% 18.6/43.0/57.9 29.2%
BERT-base w/ Guidelines 83.2% 87.5% 85.6% 72.4% 21.8/46.9/58.5 30.6%
BERT-base w/ Intent Info 100% 88.6% 88.9% 73.8% 22.2/47.6/59.1 32.3%
BERT-base w/ Intent + Guide 100% 89.2% 89.3% 74.0% 22.6/48.1/59.4 32.7%

Table 4: Cascading dialogue success task performance with breakdown of all five subtasks. Numbers displayed
are the average of three seeds. Human evaluation conducted with size of 100 samples per person.

6.6 Ablation Study

We perform an ablation study to test the signif-
icance of the key features in ABCD. Recall, ac-
tions are characterized by their dual nature of re-
quiring signals from both the customer and the
company guidelines. To that end, we provided the
ground truth intent to measure the impact of the
customer side. Conversely, we also test the com-
pany side by masking out invalid buttons based on
the insight that the Agent Guidelines are useful for
narrowing down the range of possible actions. In
both situations, we would expect that providing
such oracle guidance would boost performance.
Lastly, note that the appropriate action depends on
the outcomes of prior actions, so for a final exper-
iment we removed prior actions and their explana-
tions from the context to test their impact on task
success. (See Appendix E for details.)

We observe that supplying the intent informa-
tion to the BERT model causes a noticeable boost
in dialog success, bringing the score to 32.3%.
However, augmenting the model with knowledge
of the guidelines unexpectedly dropped perfor-
mance down to 30.6%. Further analysis revealed
the imperfect intent classifier would occasionally
mask out valid buttons, leaving only incorrect
ones to choose from. As a result, the downstream
action predictor would be prevented from doing
its job, causing errors to accumulate. To test this
hypothesis, we ran another model (Intent+Guide)
which had access to guidelines along with an ora-
cle intent classifier. This model reached the peak
observed performance of 32.7%, highlighting the
importance of both components. As a final result,
removing action information away from action-
based conversations unsurprisingly causes a major
performance drop (Table 4).

7 Conclusion and Future Work

In conclusion, we have presented ABCD which
includes over 10K dialogues that incorporate pro-
cedural, dual-constrained actions. Additionally,
we established a scalable method for collecting
live human conversations with unequal partners.
We found that pre-trained models perform decent
on Action State Tracking, but there is a large gap
between humans agents and the top systems for
Cascading Dialogue Success.

We plan to incorporate GPT-related mod-
els (Hosseini-Asl et al., 2020), as alternate forms
of preprocessing have shown promise in other
NLP tasks. Other techniques could also be used
to incorporate speaker info, action semantics and
other meta-data. Wholly new systems that attend
to the Agent Guidelines in a fully differentiable
manner are also worth exploring. By grounding
dialogues to in-depth scenarios with explicit poli-
cies, we hope to have pushed towards a better un-
derstanding of dialogue success.

Acknowledgments

The authors would like to thank Tao Lei, Felix
Wu and Anmol Kabra for their feedback and sup-
port. We would also like to thank the anonymous
NAACL 2021 reviewers for pointing out specific
areas of confusion in our submission, which we
have tried our best to clarify.

Ethical Considerations

This paper presents a new dataset which was col-
lected through the use of crowdworkers. All agent
workers were compensated a fair wage based on
their local standard of living, where their loca-
tion was determined during the vetting process.
(Please refer to Appendix A for more details.)

3011

References
Amazon. 2019. Alexa Skills Kit.

Antoine Bordes, Y-Lan Boureau, and Jason Weston.
2017. Learning end-to-end goal-oriented dialog. In
ICLR. OpenReview.net.

Pawel Budzianowski, Tsung-Hsien Wen, Bo-Hsiang
Tseng, Iñigo Casanueva, Stefan Ultes, Osman Ra-
madan, and Milica Gasic. 2018. Multiwoz - a large-
scale multi-domain wizard-of-oz dataset for task-
oriented dialogue modelling. In Proceedings of the
2018 Conference on Empirical Methods in Natural
Language Processing, Brussels, Belgium, October
31 - November 4, 2018, pages 5016–5026. Associa-
tion for Computational Linguistics.

Bill Byrne, Karthik Krishnamoorthi, Chinnadhurai
Sankar, Arvind Neelakantan, Ben Goodrich, Daniel
Duckworth, Semih Yavuz, Amit Dubey, Kyu-Young
Kim, and Andy Cedilnik. 2019. Taskmaster-1: To-
ward a realistic and diverse dialog dataset. In Pro-
ceedings of the 2019 Conference on Empirical Meth-
ods in Natural Language Processing and the 9th In-
ternational Joint Conference on Natural Language
Processing, EMNLP-IJCNLP 2019, Hong Kong,
China, November 3-7, 2019, pages 4515–4524. As-
sociation for Computational Linguistics.

Santiago Castro, Devamanyu Hazarika, Verónica
Pérez-Rosas, Roger Zimmermann, Rada Mihalcea,
and Soujanya Poria. 2019. Towards multimodal sar-
casm detection (an obviously perfect paper). In
Proceedings of the 57th Conference of the Asso-
ciation for Computational Linguistics, ACL 2019,
Florence, Italy, July 28- August 2, 2019, Volume
1: Long Papers, pages 4619–4629. Association for
Computational Linguistics.

Abhishek Das, Satwik Kottur, Khushi Gupta, Avi
Singh, Deshraj Yadav, José MF Moura, Devi Parikh,
and Dhruv Batra. 2017a. Visual dialog. In Proceed-
ings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 326–335.

Abhishek Das, Satwik Kottur, José MF Moura, Stefan
Lee, and Dhruv Batra. 2017b. Learning cooperative
visual dialog agents with deep reinforcement learn-
ing. In Proceedings of the IEEE International Con-
ference on Computer Vision, pages 2951–2960.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, NAACL-HLT 2019, Minneapolis, MN,
USA, June 2-7, 2019, Volume 1 (Long and Short Pa-
pers), pages 4171–4186. Association for Computa-
tional Linguistics.

Emily Dinan, Stephen Roller, Kurt Shuster 0001, An-
gela Fan, Michael Auli, and Jason Weston. 2019.

Wizard of wikipedia: Knowledge-powered conver-
sational agents. In ICLR. OpenReview.net.

Mihail Eric, Lakshmi Krishnan, Francois Charette, and
Christopher D. Manning. 2017. Key-value retrieval
networks for task-oriented dialogue. In SIGDIAL
Conference, pages 37–49. Association for Compu-
tational Linguistics.

Marjan Ghazvininejad, Chris Brockett, Ming-Wei
Chang, Bill Dolan, Jianfeng Gao, Wen-tau Yih, and
Michel Galley. 2018. A knowledge-grounded neural
conversation model. In Thirty-Second AAAI Confer-
ence on Artificial Intelligence.

Google. 2019. Actions on Google Assistant.

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasu-
pat, and Ming-Wei Chang. 2020. Realm: Retrieval-
augmented language model pre-training. CoRR,
abs/2002.08909.

Donghoon Ham, Jeong-Gwan Lee, Youngsoo Jang,
and Kee-Eung Kim. 2020. End-to-end neural
pipeline for goal-oriented dialogue system using
gpt-2. In Proc. of the 34th AAAI Conference on Ar-
tificial Intelligence. ACL.

He He, Anusha Balakrishnan, Mihail Eric, and Percy
Liang. 2017. Learning symmetric collaborative dia-
logue agents with dynamic knowledge graph embed-
dings. In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics, ACL
2017, Vancouver, Canada, July 30 - August 4, Vol-
ume 1: Long Papers, pages 1766–1776. Association
for Computational Linguistics.

He He, Derek Chen, Anusha Balakrishnan, and Percy
Liang. 2018. Decoupling strategy and generation in
negotiation dialogues. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, Brussels, Belgium, October 31 -
November 4, 2018, pages 2333–2343. Association
for Computational Linguistics.

Matthew Henderson, Blaise Thomson, and Jason D
Williams. 2014. The second dialog state tracking
challenge. In Proceedings of the 15th Annual Meet-
ing of the Special Interest Group on Discourse and
Dialogue (SIGDIAL), pages 263–272.

Matthew Henderson, Ivan Vulic, Daniela Gerz, Iñigo
Casanueva, Pawel Budzianowski, Sam Coope,
Georgios Spithourakis, Tsung-Hsien Wen, Nikola
Mrksic, and Pei-Hao Su. 2019. Training neural re-
sponse selection for task-oriented dialogue systems.
In Proceedings of the 57th Conference of the Asso-
ciation for Computational Linguistics, ACL 2019,
Florence, Italy, July 28- August 2, 2019, Volume
1: Long Papers, pages 5392–5404. Association for
Computational Linguistics.

Ehsan Hosseini-Asl, Bryan McCann, Chien-Sheng Wu,
Semih Yavuz, and Richard Socher. 2020. A simple
language model for task-oriented dialogue. arXiv
preprint arXiv:2005.00796.

https://developer.amazon.com/en-US/alexa/alexa-skills-kit
https://developers.google.com/actions/overview

3012

John F Kelley. 1984. An iterative design methodol-
ogy for user-friendly natural language office infor-
mation applications. ACM Transactions on Infor-
mation Systems (TOIS), 2(1):26–41.

Jin-Hwa Kim, Nikita Kitaev, Xinlei Chen, Marcus
Rohrbach, Byoung-Tak Zhang, Yuandong Tian,
Dhruv Batra, and Devi Parikh. 2019. Codraw: Col-
laborative drawing as a testbed for grounded goal-
driven communication. In Proceedings of the 57th
Annual Meeting of the Association for Computa-
tional Linguistics, pages 6495–6513.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2020. Albert: A lite bert for self-supervised learn-
ing of language representations. In ICLR. OpenRe-
view.net.

Mike Lewis, Denis Yarats, Yann N. Dauphin, Devi
Parikh, and Dhruv Batra. 2017. Deal or no
deal? end-to-end learning of negotiation dialogues.
In Proceedings of the 2017 Conference on Em-
pirical Methods in Natural Language Processing,
EMNLP 2017, Copenhagen, Denmark, September
9-11, 2017, pages 2443–2453. Association for Com-
putational Linguistics.

Weixin Liang, Youzhi Tian, Chengcai Chen, and Zhou
Yu. 2020. Moss: End-to-end dialog system frame-
work with modular supervision. In AAAI, pages
8327–8335. AAAI Press.

Chia-Wei Liu, Ryan Lowe, Iulian Serban, Michael
Noseworthy, Laurent Charlin, and Joelle Pineau.
2016. How not to evaluate your dialogue system:
An empirical study of unsupervised evaluation met-
rics for dialogue response generation. In Proceed-
ings of the 2016 Conference on Empirical Meth-
ods in Natural Language Processing, EMNLP 2016,
Austin, Texas, USA, November 1-4, 2016, pages
2122–2132. The Association for Computational Lin-
guistics.

Liyuan Liu, Haoming Jiang, Pengcheng He, Weizhu
Chen, Xiaodong Liu, Jianfeng Gao, and Jiawei Han.
2020. On the variance of the adaptive learning rate
and beyond. In Proceedings of the Eighth Inter-
national Conference on Learning Representations
(ICLR 2020).

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. CoRR, abs/1907.11692.

Yue Ma, Zengfeng Zeng, Dawei Zhu, Xuan Li, Yiy-
ing Yang, Xiaoyuan Yao, Kaijie Zhou, and Jianping
Shen. 2019. An end-to-end dialogue state tracking
system with machine reading comprehension and
wide & deep classification. CoRR, abs/1912.09297.

Alena Moiseeva, Dietrich Trautmann, and Hinrich
Schütze. 2020. Multipurpose intelligent process

automation via conversational assistant. CoRR,
abs/2001.02284.

Denis Peskov, Nancy Clarke, Jason Krone, Brigi Fodor,
Yi Zhang, Adel Youssef, and Mona Diab. 2019.
Multi-domain goal-oriented dialogues (multidogo):
Strategies toward curating and annotating large scale
dialogue data. In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP), pages 4518–4528.

Hannah Rashkin, Eric Michael Smith, Margaret Li, and
Y-Lan Boureau. 2019. Towards empathetic open-
domain conversation models: A new benchmark and
dataset. In Proceedings of the 57th Conference of
the Association for Computational Linguistics, ACL
2019, Florence, Italy, July 28- August 2, 2019, Vol-
ume 1: Long Papers, pages 5370–5381. Association
for Computational Linguistics.

Abhinav Rastogi, Xiaoxue Zang, Srinivas Sunkara,
Raghav Gupta, and Pranav Khaitan. 2020a.
Schema-guided dialogue state tracking task at dstc8.
arXiv preprint arXiv:2002.01359.

Abhinav Rastogi, Xiaoxue Zang, Srinivas Sunkara,
Raghav Gupta, and Pranav Khaitan. 2020b. Towards
scalable multi-domain conversational agents: The
schema-guided dialogue dataset. In AAAI, pages
8689–8696. AAAI Press.

Mike Schuster and Kaisuke Nakajima. 2012. Japanese
and korean voice search. In 2012 IEEE Interna-
tional Conference on Acoustics, Speech and Signal
Processing, ICASSP 2012, Kyoto, Japan, March 25-
30, 2012, pages 5149–5152. IEEE.

Pararth Shah, Dilek Hakkani-Tür, Gökhan Tür, Ab-
hinav Rastogi, Ankur Bapna, Neha Nayak, and
Larry P. Heck. 2018. Building a conversational
agent overnight with dialogue self-play. CoRR,
abs/1801.04871.

Alane Suhr, Claudia Yan, Jacob Schluger, Stanley Yu,
Hadi Khader, Marwa Mouallem, Iris Zhang, and
Yoav Artzi. 2019. Executing instructions in situ-
ated collaborative interactions. In Proceedings of
the 2019 Conference on Empirical Methods in Nat-
ural Language Processing and the 9th International
Joint Conference on Natural Language Processing,
EMNLP-IJCNLP 2019, Hong Kong, China, Novem-
ber 3-7, 2019, pages 2119–2130. Association for
Computational Linguistics.

Jason Weston, Antoine Bordes, Sumit Chopra, and
Tomas Mikolov. 2016. Towards ai-complete ques-
tion answering: A set of prerequisite toy tasks. In
4th International Conference on Learning Represen-
tations, ICLR 2016, San Juan, Puerto Rico, May 2-4,
2016, Conference Track Proceedings.

Jason D. Williams, Kavosh Asadi, and Geoffrey Zweig.
2017. Hybrid code networks: practical and efficient

http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1912.09297
http://arxiv.org/abs/1912.09297
http://arxiv.org/abs/1912.09297
http://arxiv.org/abs/2001.02284
http://arxiv.org/abs/2001.02284
https://doi.org/10.1109/ICASSP.2012.6289079
https://doi.org/10.1109/ICASSP.2012.6289079
http://arxiv.org/abs/1801.04871
http://arxiv.org/abs/1801.04871
http://arxiv.org/abs/1502.05698
http://arxiv.org/abs/1502.05698

3013

end-to-end dialog control with supervised and rein-
forcement learning. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics, ACL 2017, Vancouver, Canada, July 30
- August 4, Volume 1: Long Papers, pages 665–677.
Association for Computational Linguistics.

Thomas Wolf, Victor Sanh, Julien Chaumond, and
Clement Delangue. 2019. Transfertransfo: A trans-
fer learning approach for neural network based con-
versational agents. CoRR, abs/1901.08149.

Chien-Sheng Wu, Andrea Madotto, Ehsan Hosseini-
Asl, Caiming Xiong, Richard Socher, and Pascale
Fung. 2019. Transferable multi-domain state gen-
erator for task-oriented dialogue systems. In Pro-
ceedings of the 57th Conference of the Association
for Computational Linguistics, ACL 2019, Florence,
Italy, July 28- August 2, 2019, Volume 1: Long Pa-
pers, pages 808–819. Association for Computational
Linguistics.

Chien-Sheng Wu and Caiming Xiong. 2020. Probing
task-oriented dialogue representation from language
models. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Pro-
cessing, Virtual Online, November 16 - November
20, 2020, pages 5036–5051, Online. Association for
Computational Linguistics.

Saizheng Zhang, Emily Dinan, Jack Urbanek, Arthur
Szlam, Douwe Kiela, and Jason Weston. 2018. Per-
sonalizing dialogue agents: I have a dog, do you
have pets too? In Proceedings of the 56th Annual
Meeting of the Association for Computational Lin-
guistics, ACL 2018, Melbourne, Australia, July 15-
20, 2018, Volume 1: Long Papers, pages 2204–2213.
Association for Computational Linguistics.

Yizhe Zhang, Siqi Sun, Michel Galley, Yen-Chun
Chen, Chris Brockett, Xiang Gao, Jianfeng Gao,
Jingjing Liu, and Bill Dolan. 2020. Dialogpt: Large-
scale generative pre-training for conversational re-
sponse generation. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics: System Demonstrations, ACL 2020, On-
line, July 5-10, 2020, pages 270–278. Association
for Computational Linguistics.

Hao Zhou, Tom Young, Minlie Huang, Haizhou Zhao,
Jingfang Xu, and Xiaoyan Zhu 0001. 2018. Com-
monsense knowledge aware conversation generation
with graph attention. In Proceedings of the Twenty-
Seventh International Joint Conference on Artificial
Intelligence, IJCAI 2018, July 13-19, 2018, Stock-
holm, Sweden, pages 4623–4629. ijcai.org.

http://arxiv.org/abs/1901.08149
http://arxiv.org/abs/1901.08149
http://arxiv.org/abs/1901.08149
https://www.aclweb.org/anthology/2020.emnlp-main.409
https://www.aclweb.org/anthology/2020.emnlp-main.409
https://www.aclweb.org/anthology/2020.emnlp-main.409
http://www.ijcai.org/proceedings/2018/
http://www.ijcai.org/proceedings/2018/
http://www.ijcai.org/proceedings/2018/

3014

A Agent Training Details

Optimizing agents performance can be split into
preparation before the HIT (Human Intelligence
Task), improving HIT itself, and ongoing training
afterwards. Starting with the pre-HIT phase, the
major steps largely center around multiple rounds
of qualifications to filter for the highest quality
workers available. During the post-HIT phase, ef-
fort shifts to ensuring that each worker becomes
increasingly comfortable with the task.

Pre-HIT Phase Qualifications take the form of
online quizzes which serve the purpose of train-
ing motivated workers in addition to simply re-
moving unqualified ones. When designing the
qualification, the number and style of questions
were iterated on to limit the feeling of a tight
time constraint, while still remaining quite diffi-
cult. In fact, some agents who had previously
had actual customer service jobs mentioned they
felt like they were right back at the office. This
difficulty resulted in a high rejection rate, which
was costly because we paid Turkers $2 regardless
of passing the exam (with a larger $8 bonus for
passing). Although, the cost was well worth the
trade-off since having high quality agents would
pay dividends down the road.

To move efficiently, we leaned heavily on mul-
tiple choice questions and MTurk APIs to help au-
tomate grading and assignment of qualifications.
Finally, we learned that including screenshots of
the Agent Dashboard in the quizzes was a great
way to familiarize the agents with the platform
before performing the actual task.

During-HIT Phase The HIT itself was priced
at $1.50 for completing the conversation with an
extra $1.00 bonus for identifying the correct cus-
tomer intent at the end-of-chat survey. Since
agents are naturally focused on getting done as
quickly as possible, they would often only take the
customer’s requests into account, bypassing a key
characteristic of what makes ABCD unique. How-
ever, by encouraging agents to focus on the cus-
tomer intent, they were forced to peruse the Agent
Guidelines for the associated subflow. Thus, we
found this incentive critical for aligning agent be-
haviors with optimal outcomes.

Post-HIT Phase For ongoing training, we be-
gan producing small lists of bulletpoints to the
agents on areas they could improve on. Fur-

Figure 3: Crowdworker feedback in chat platform after
the completion of the final batch of data collection.

thermore, we would highlight examples of good
and bad decision-making and appropriate behav-
ior when representing the fictitious “AcmeBrands”
retail company. Finally, we also recorded videos
which gave agents a view of how an “ideal” agent
would behave at every step of the chat. We found
that by engaging with the Turkers through the
group chat and respecting their feedback, they
were very willing to work on improving despite
not having extra monetary incentive to do so.

In total, the agents were quite wonderful to
work with and their end-of-task feedback strongly
suggests they enjoyed the process as well. (See
Figure 3) We credit this to the training details
mentioned in this section and the development of
the Expert Live Chat procedure.

3015

B Optimizing Available Workers

In a regular Mechanical Turk (MTurk) setup, HITs
are made available to a large audience who can
pick up as many or as few as they want. Expert
Live Chat dictates a dialogue between two speak-
ers, so we need two types of workers: agents and
customers. Let us consider the number of agents
available as A and the number of customers avail-
able as C. Given budget constraints, we can only
pay some maximum number of workers M . Si-
multaneously, given time constraints, we need a
minimum number of conversations collected per
week, which is a function of the number of avail-
able workers N = f(A,C). This leads to three
issues that must be considered in conjunction:

N < A+C < M Operating the Agent Dashboard
requires a highly skilled worker, so efficient data
collection is limited by the number of available
agents. Although the customer side of ABCD is a
simpler task, there is still a minimum bar to be met
to prevent (a) customers who spam with random
text (b) customers who fake scenarios or (c) cus-
tomers who hoard HITs and never show up to the
chat. Thus, there needs to be a sufficient amount
of both agent A and customers C qualified and
available in order to surpass the minimum thresh-
old set by N . However, simply paying more per
HIT bumps up against the limits set by M .

C >> A Since training agents is more resource
intensive than training customers, it makes sense
to simply have more of the latter. Yet by doing
so leads to an issue where customers wait around
for agents when they arrive in the waitroom. In
a typical scenario, a customer might leave the tab
open to work on other tasks, but when they are
eventually paired, the customer is often busy do-
ing something else, leaving the chat to flounder.
In the worst case, the customer starts to verbally
abuse the agent about the long wait time when
they are finally paired.

A >> C Finding as many agents as possible
is not the solution either because now the agents
will end up waiting around for customers. If the
waiting periods are too long, agents will abandon
the task and disparage your reputation on various
forms of social media. Since the task is difficult,
the pool of workers who may eventually qualify
as agents is finite, so too many poor interactions
can halt the data collection process completely.

To resolve this situation, we begin with the
maximum number of workers M as the starting
constraint given a fixed budget. If we qualify too
many workers, then we will not have enough bud-
get left for the actual conversations, so instead we
qualify workers in mini-batches. Since the pool of
potential workers who may meet the strict require-
ments for agents A is more limited than customer
candidates C, we start on the agent side. Given
some amount of qualified agents, only a percent-
age of them will show up at the desired time slot
to perform the task. Thus, we increment the batch
size until the number of available workers passes
the minimum A > N/2.

To limit the number of customers who show up,
we filter for users by location, number of com-
pleted HITS, and sufficient rating. We also estab-
lish an exam that is purposely very easy (to min-
imize costs), but just hard enough to deter bots
and spammers. To raise the likelihood that the
customer will show up, we include a question in
the quiz which simply asks when the customer is
available to perform the HIT. We really emphasize
this question and make it required, so workers are
aware of its significance. This allows us to tune
the customer count such that C ≈ A.

Note that due to the higher pay rate, agents are
more likely to show up than customers. Therefore,
there needs to be a higher ratio of customers to
account for this imbalance. For some intuition on
where to start, we found that a good rule of thumb
was to consider the appearance ratio as inversely
proportional to the ratio of pay. One final insight
is to make the HITs heavily dependent on bonus
pay, with base pay very low. This will keep spam-
mers away since they will end up with a pittance
when attempting to game the system.

To improve the waitroom experience, we added
a feature where a user’s place in the queue would
be updated live, along with a timer indicating the
expected wait. For Turkers willing to wait around,
helpful and encouraging messages would also be
displayed to keep them occupied. Alternatively,
for Turkers who were multi-tasking, visual and
audio notifications were added to signify the start
of a chat, allowing them to attend to other tasks in
the meantime. We believe our modifications have
only scratched the surface and that improving the
user experience for data collection offers an inter-
esting line of HCI research to explore.

3016

C Cascading Evaluation

To motivate cascading dialogue success (CDS)
over typical other accuracy metrics, consider the
scenario where a model gets 80% of turns correct,
while still achieving 0% accuracy on the conver-
sation level because it always messes up some-
where right at the end of the dialogue. A turn-
based metric would over-estimate performance
since such a metric fails to capture the model’s
consistent shortcomings in closing conversations.
On the other hand, conversation-based metrics
under-estimate the model’s performance because
such measures fail to account for the fact that the
system is mostly successful. Moreover, each eval-
uation would be limited to occurring only once
per conversation, which makes inefficient use of
scarce data as a resource.

Instead, cascading dialogue success creates an
evaluation example for the remainder of each con-
versation starting from each turn. For example,
suppose a chat contained 4 turns: [A, B, C, and
D], training instances can be created with this data
that include: [A, B, C, D], [B, C, D], [C, D]
and [D] by itself. Now imagine the model con-
sistently predicted turn C incorrectly, and every-
thing else correct. Then its scores would be 2/4,
1/3, 0 and 1, respectively. Averaging across all
turns would yield a final cascading success rate
of 45.8%. A turn-based metric would yield 75%
while a conversation-based metric would yield
0%. Thus, CDS allows a model to earn partial
credit on what it has learned without severe penal-
ties in either direction.

D Model Training Hyperparameters

When training the best model for Action State
Tracking, we ended up with a learning rate of
3e-5, hidden dimension of 1024, weight decay
of 0.05 and a batch size of 10 examples. Train-
ing lasted for 14 epochs, where we early stopped
if overall accuracy failed to improve for three
epochs in a row. The RAdam optimizer had
a linear warm-up for three epochs, with hyper-
parameters kept at their defaults of 0.9 and 0.999.
We also add the delexicalized slots into the vocab-
ulary of the tokenizer.

For Cascading Dialogue Success, our best
model had a 1e-5 learning rate, 1024 hidden di-
mension and no weight decay. The batch size was
shrunk to 3 examples, but this was due purely to
memory rather than performance reasons. Train-

ing was set to 21 epochs, and again we early
stopped if overall accuracy failed to improve for
three epochs in a row. Finally, the optimizer again
had a linear warm-up for three epochs with hyper-
parameters kept at their defaults.

E Intent Info and Guidelines

We augment the model with access to intent infor-
mation in two ways. First, the subflow is trans-
lated into an index which is concatenated to all
input contexts so the model can leverage this in-
formation. Second, the intent classifier is directly
fed the solution, which is what allows it to trivially
reach perfect accuracy.

We leverage the Agent Guidelines by using it
to mask invalid action predictions. More specif-
ically, given a predicted subflow, the guidelines
outline all possible actions and values within that
subflow. With this information, a mask is created
before training and applied during evaluation to
only allow valid actions.

F Conversation Examples

Since ABCD was collected using Expert Live
Chat rather than templates, we observe various
linguistic diversity in the chats. These phenomena
limit the ability of models to memorize artificial
patterns when making predictions.

Co-reference
CUS: I’d like to return something
AGT: OK
AGT: Can I get your full name
AGT: Also user name, email address, order id
AGT: Membershp level and reason for return
CUS: Alessandro Phoenix, aphoenix872@email.com, order ID is 4024067912
CUS: I’m at the Gold level. I’m returning it because it’s the wrong size
Chit-Chat
AGT: Do you need any more help?
CUS: a break, I need a coffee break
CUS: but no, nothing from you
CUS: thanks for the save
AGT: Haha have a good break! And have an even better day.
Emotion
AGT: Ok, there was a mistake made. Do you have the Shipping Status?
CUS: It’s in transit
AGT: Ok, that means it’s already out for shipment
CUS: so two are being sent?
AGT: Yes. Unfortunately that means when you get the item you will

need to call back and make a return
CUS: oh you gotta be kidding me!

Table 5: Examples of linguistic phenomenon.

G Agent Guidelines

(screenshot on following page)

H Customer Panel

(screenshot on following page)

3017

Figure 4: A example subflow Status - Service Added under the Mange Account Flow in the Agent Guidelines

Figure 5: The customer chat interface (left) shows an on-going conversation with customer messages in grey, agent
messages in blue, and actions in green. The customer prompt (right top) grounds the customer to a specific issue
and backstory. The info sections (right middle and bottom) contains values that the customer has to provide in the
conversation as well as other meta-data such as product information.

