
Proceedings of the 2021 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, pages 2923–2935

June 6–11, 2021. ©2021 Association for Computational Linguistics

2923

Supertagging-based Parsing
with Linear Context-free Rewriting Systems

Thomas Ruprecht and Richard Mörbitz
Faculty of Computer Science

Technische Universität Dresden
01062 Dresden, Germany

{thomas.ruprecht,richard.moerbitz}@tu-dresden.de

Abstract

We present the first supertagging-based parser
for linear context-free rewriting systems
(LCFRS). It utilizes neural classifiers and out-
performs previous LCFRS-based parsers in
both accuracy and parsing speed by a wide
margin. Our results keep up with the best (gen-
eral) discontinuous parsers, particularly the
scores for discontinuous constituents establish
a new state of the art. The heart of our ap-
proach is an efficient lexicalization procedure
which induces a lexical LCFRS from any dis-
continuous treebank. We describe a modifica-
tion to usual chart-based LCFRS parsing that
accounts for supertagging and introduce a pro-
cedure that transforms lexical LCFRS deriva-
tions into equivalent parse trees of the origi-
nal treebank. Our approach is evaluated on the
English Discontinuous Penn Treebank and the
German treebanks Negra and Tiger.

1 Introduction

In NLP, constituency parsing is a task that assigns
– usually tree-shaped – syntactic structures to sen-
tences. Formalisms such as context-free grammars
(CFG) are used in this setting because they are
conceptually simple, interpretable, and parsing is
tractable (cubic in sentence length).

Discontinuous constituents span non-contigu-
ous sets of positions in a sentence. The result-
ing phrase structures do not take the shape of a
tree anymore, as they contain crossing branches
(cf. the left of Fig. 1), and cannot be modeled by
CFG. As a countermeasure, many treebanks, e.g.
the Penn Treebank (PTB; Marcus et al., 1994), de-
note these phrase structures as trees nevertheless
and introduce designated notations for discontinu-
ity, which is then often ignored in parsing. How-
ever, discontinuity occurs in about 20 % of the
sentences in the PTB and to an even larger ex-
tent in German treebanks such as Negra and Tiger.
For parsing discontinuous constituents, so-called

mildly context-sensitive grammar formalisms have
been investigated, e.g. tree-adjoining grammars
(TAG; Joshi et al., 1975) and linear context-free
rewriting systems (LCFRS; Vijay-Shanker et al.,
1987). An LCFRS derivation of a discontinuous
phrase is shown in the right of Fig. 1. The in-
creased expressiveness of these formalisms comes
at the cost of a higher parsing complexity: given
a sentence of length n, parsing is in O(n6) for
TAG and O(n3·fo(G)) for a binary LCFRS G. The
grammar-specific fanout fo(G) indicates that G can
parse constituents spanning up to n non-contiguous
sets of positions. TAG have the same expressive-
ness as LCFRS with fanout 2 (Seki et al., 1991),
which accounts for 96.67 % of the sentences in Ne-
gra and 96.83 % of the sentences in Tiger (Maier
and Søgaard, 2008). Previous publications have
established mildly context-sensitive formalisms
in the field of statistical constituent parsing, and
found methods to tame the high parsing complex-
ity (Evang and Kallmeyer, 2011; Kallmeyer and
Maier, 2013; Angelov and Ljunglöf, 2014; van Cra-
nenburgh, 2012).

One approach for making parsing with mildly
context-sensitive grammars tractable is supertag-
ging, which was originally introduced for lexical
TAG (Bangalore and Joshi, 1999). A TAG is lexical
if each rule contains exactly one lexical item, i.e.
word in the parsed language. The supertagger is
a (often discriminative) classifier that selects for
each position of the input sentence a subset of the
rules of the TAG; these are the so-called supertags.
Parsing is then performed with the much smaller
grammar of supertags. Research on supertagging
has also been conducted in the context of combi-
natory categorial grammars (CCG; Clark, 2002),
but not yet for LCFRS. The use of recurrent neu-
ral networks (RNN) as classifiers in supertagging
has improved their accuracy by far (Vaswani et al.,
2016; Kasai et al., 2017; Bladier et al., 2018; Kadari
et al., 2018).

2924

A hearing is scheduled on the issue today

VP

VP

NP

NP

DT NN

PP

IN

NP

DT NNVBN

NP

NNVBZ

NP2 → (x1, y1) (NP,PP)

NP→ (x1y1) (DT,NN)

DT→ (A) NN→ (hearing)

PP→ (x1y1) (IN,NP)

IN→ (on) NP→ (x1y1) (DT,NN)

DT→ (the) NN→ (issue)

Figure 1: A discontinuous phrase structure tree of the sentence A hearing is scheduled on the issue today (left) and
a corresponding LCFRS derivation of the discontinuous noun phrase A hearing on the issue (right).

Recently, Mörbitz and Ruprecht (2020) intro-
duced a lexicalization procedure for probabilistic
LCFRS1, paving the way to employ supertagging
for parsing with this formalism. Early experiments
showed that the approach is infeasible in realis-
tic settings: the set of rules explodes in a step of
the construction where new rules are introduced
for pairs of terminals in the grammar. To miti-
gate this problem, we conduct the procedure for
single derivations. Consequently, we only have
to construct rules for pairs of terminals that oc-
cur in sibling nodes of a derivation (cf. step (4)
in Section 4). Moreover, we consider unweighted
LCFRS, as weights of underlying grammar struc-
tures are usually not considered in supertagging-
based approaches.

In this paper, we present the first supertagging-
based parser for LCFRS. Section 3 extends the
usual chart-based parsing approach for LCFRS
to account for supertagging with lexical LCFRS.
Section 4 adapts the lexicalization procedure by
Mörbitz and Ruprecht (2020) to efficiently induce
a lexical LCFRS from any given treebank. We im-
plemented and evaluated the approach. Section 5
describes the experimental setups of our evaluation
using three discontinuous treebanks (one English
and two German). Section 6 compares our results
to recent LCFRS-based parsers and other state-of-
the-art parsers for discontinuous constituents. The
implementation of our approach is published on
GitHub.2

1Their work is an instance of the lexicalization of (un-
weighted) multiple context-free tree grammars by Engelfriet
et al. (2018).

2https://github.com/truprecht/
lcfrs-supertagger

2 Notation

We start by introducing some basic notation that
will be used throughout Sections 3 and 4. The set
of non-negative (resp. positive) integers is denoted
by N (resp. N+). We abbreviate {1, ..., n} by [n];
for each n < N+, the set [n] is the empty set. An
alphabet Σ is a finite and non-empty set; the set of
(finite) strings over Σ is denoted by Σ∗. The symbol
ε denotes an empty string or sequence.

Compositions. Linear context-free rewriting sys-
tems (LCFRS) extend the rule-based string rewrit-
ing mechanism of CFG to string tuples; we describe
the generation process by compositions. Let k ∈ N
and s1, . . . , sk, s ∈ N+; one can think of k as the
number of arguments of a function mapping string
tuples of the sizes s1, . . . , sk to a string tuple of size
s. A Σ-composition is a tuple (u1, . . . , us) where
each u1, . . . , us is a non-empty string over Σ and
variables of the form x j

i with i ∈ [k] and j ∈ [si].
Each of these variables must occur exactly once
in u1 · · · us and they are ordered such that x1

i oc-
curs before x1

i+1 and x j
i occurs before x j+1

i for each
i ∈ [k − 1] and j ∈ [si − 1]. The set of all such
compositions is denoted by CΣ

(s1···sk ,s).
As usual in the literature, we will only consider

binary compositions (where k ≤ 2) in the following.
Variables of the form xi

1 and x j
2 are abbreviated by

xi and y j, respectively.
We associate with each composition

(u1, . . . , us) ∈ CΣ
(s1···sk ,s) a function from k

string tuples, where the i-th tuple is of arity si, to a
string tuple of arity s. This function is denoted by
~(u1, . . . , us)�. Intuitively, it replaces each variable
of the form xi in u1, . . . , us by the i-th component
of the first argument, and y j by the j-th component
of the second argument. The identity composition
(x1, . . . , xs) is denoted by ids.

https://github.com/truprecht/lcfrs-supertagger
https://github.com/truprecht/lcfrs-supertagger

2925

A

hearing

is

scheduled

on

the

issue

today po
s-

ta
gg

er
+

su
pe

rt
ag

ge
r(

1)

DT

NN

VBZ

VBN

IN

DT

NN

NP+NN

enriched preterminals

NP→ (1 x1) (NPR)

NPR → (2)

VP→ (x1 3 x2) (VP2)

VP2 → (x1, 4 x2y1) (NP2,VP|2
−)

NP2 → (x1, 5 y1) (NP,PP+)

PP+ → (6 x1) (NP+)

NP+ → (7)

VP|2
− → (8)

supertags/LCFRS rules (2)

pa
rs

er
(3

)

VP→ (x1 3 x2) (VP2)

VP2 → (x1, 4 x2y1) (NP2,VP|2
−)

NP2 → (x1, 5 y1) (NP,PP+)

NP→ (1 x1) (NPR)

NPR → (2)

PP+ → (6 x1) (NP+)

NP+ → (7)

VP|2
− → (8)

back transformation (4)

A hearing is scheduled on the issue today

VP

VP

NP

NP

DT NN

PP

IN

NP

DT NNVBN

NP

NNVBZ

Figure 2: An overview over the supertagging-based parsing procedure. A sequence tagger predicts k (here, k = 1)
supertags and one enriched preterminal (cf. step (4) in Section 4) for each sentence position. The supertags are
rules of a uni-lexical LCFRS (the annotation of the nonterminals is explained in Section 4). The terminal of each
rule is the sentence position it was predicted for (rather than the word at that position). The range of sentence
positions is parsed and finally the resulting derivation is transformed into a parse tree. The transformation requires
the predicted nonterminals, which are used as preterminals.

Let c ∈ CΣ
s1···sk ,s be a composition where k ∈ [2],

i ∈ [k] such that si = 1, and w ∈ Σ∗ . We obtain
the partial application of c to w as i-th argument,
denoted by ~c�i(w) as follows:
• ~c�2(w) ∈ CΣ

(s1,s) is obtained from c by replac-
ing y1 by w and
• ~c�1(w) is obtained from c by replacing x1 by
w and each variable y j by x j. If k = 1, then
~c�1(w) ∈ CΣ

ε,s, otherwise ~c�1(w) ∈ CΣ
s2,s.

LCFRS. A (binary) LCFRS is a tuple G =

(N, Σ, S ,R) where
• N is a finite set (nonterminals) where each

nonterminal A ∈ N has a fanout fo(A) ∈ N+,
• Σ is an alphabet (terminals),
• S ⊆ N (initial nonterminals) such that

fo(A) = 1 for each A ∈ S , and
• R is a finite set (rules); each rule in R

is of the form A → c(B1, . . . , Bk), where
k ∈ {0, 1, 2}, A, B1, . . . , Bk ∈ N, and c ∈
CΣ

(fo(B1)··· fo(Bk),fo(A)). The function ~c� maps
k string tuples (of sizes fo(B1), . . . , fo(Bk)) to
a string tuple of size fo(A). We call A the left-
hand side (lhs), B1, . . . , Bk the right-hand side
(rhs) and c the rule’s composition. We drop
the parentheses around the rhs if k = 0.

In our examples, whenever the fanout of a non-
terminal is greater than 1, the fanout is the subscript
of the nonterminal. For instance, VP2 denotes a
verbal phrase with fanout 2. The fanout of G is
fo(G) = maxA∈N fo(A).

Rules of the form A → c, A → c(B), and
A → c(B1, B2) are called terminating, monic,
and branching, respectively. A rule is called
(uni-/double-)lexical, if its composition contains
at least one terminal (resp. exactly one termi-
nal/exactly two terminals). The LCFRS G is called
(uni-)lexical, if each rule is (uni-)lexical.

A derivation in G (starting with A ∈ N) is a tree
over rules d = r(d1, . . . , dk) such that r is of the
form A→ c(B1, . . . , Bk) and each di is a derivation
in G starting with Bi. The set of derivations in
G is denoted by DG. The string tuple computed
by d is defined recursively as w = ~c�(w1, . . . , wk)
where w1, . . . , wk are the string tuples computed
by d1, . . . , dk; in the following we also call d a
derivation for w.

3 Supertagging-based parsing

Our parsing model consists of two components: a
uni-lexical LCFRS and a discriminative sequence

2926

tagger which we henceforth call supertagger. The
LCFRS is induced from a treebank by an adaptation
of the construction of Mörbitz and Ruprecht (2020);
the interested reader may find a detailed description
of this procedure in Section 4. After the induction,
we replace every terminal of the LCFRS by the
wildcard symbol “ ”, and we refer to the resulting
rules as supertags.

Our parsing pipeline is depicted in Fig. 2.
(1) Given a sentence w, the supertagger predicts

for each position of w the k best supertags, where k
constitutes a hyperparameter of our approach.

(2) We combine the predicted supertags to a new
LCFRS which we call Gw. In doing so, we replace
the wildcard of each supertag by the sentence posi-
tion it was predicted for.

(3) We employ a usual chart-based parsing algo-
rithm to parse the sequence 1 2 · · · |w| of sentence
positions with Gw.

(4) We transform the resulting derivation in Gw

into a parse tree of the same form as those in the
original treebank.

As Gw only resembles a fraction of all supertags,
this approach shifts a huge amount of work from
parsing with grammars to predicting the rules.
Thus its success is mainly determined by the quality
of the supertagger.

4 Inducing Lexical LCFRS

Our lexicalization scheme is based on Mörbitz and
Ruprecht (2020). However, we ignore all weights
and perform lexicalization on individual deriva-
tions rather than on a grammar induced from the
entire treebank. More specifically, we directly read
off a set of uni-lexical rules from each tree in the
treebank; then the union of these rules forms our
uni-lexical LCFRS Glex. In contrast to that, Mörb-
itz and Ruprecht (2020) first induce an LCFRS
G from the entire treebank and then lexicalize G.
Thus Glex may have a different language than the
lexicalization of G.

We obtain a set of uni-lexical rules from each
tree t in the treebank by the following procedure.

(1) Binarize the tree. The symbol | is appended
to constituents that result from binarization (this
reflects Markovization with a vertical context of 1
and a horizontal context of 0).

(2) Transform the tree into an LCFRS deriva-
tion using the standard technique for induction of
LCFRS (Maier and Søgaard, 2008).

(3) Collapse every chain of monic rules; the

nonterminals of each chain are combined to a new
nonterminal.

(4) Remove every terminating rule that has a
parent and insert the terminal from its composition
into the parent.

(5) Propagate terminals from double-lexical ter-
minating rules into non-lexical branching rules. All
rules in the resulting derivation are lexical.

(6) Split all remaining double-lexical terminat-
ing rules into two uni-lexical rules. All rules in the
resulting derivation are uni-lexical. The resulting
derivation is called dlex(t).

(7) Read off the rules of dlex(t); call them R(t).
These steps are defined such that in the LCFRS

formed by R(t), dlex(t) is a derivation for the sen-
tence of t. Moreover, we are able to reconstruct t
from dlex(t) by reverting steps (6) to (1) (we will
give the details later).

Finally, we obtain the uni-lexical LCFRS Glex
by combining the rules R(t) for each tree t. The
initial nonterminals of Glex are all left-hand sides
of roots of dlex(t).

Let t be a tree in the treebank. Steps (1) and (2)
and their reversal are standard techniques for trees
and LCFRS. After applying them to t, we obtain
an LCFRS derivation in which each occurring rule
is either of the form
• A → (σ), where σ is a terminal and A is the

part-of-speech tag of σ,
• A → c(B1) where fo(A) = fo(B) and c =

idfo(A), or
• A→ c(B1, B2) where c contains no terminals

and none of B1, B2 is an initial nonterminal.
Let us denote this derivation by d.

In the following, we describe steps (3) to (6)
of the above procedure in more detail (showing
examples in Figs. 3 to 6) and also glimpse at how
the individual steps are reverted.

Step (3). We repeatedly replace parts in d of
the form A → c(B)

(
B → c′

)
by A+B → c′,

and A → c(B)
(
B → c′(C1,C2)

(
. . .
))

by A+B →
c′(C1,C2)

(
. . .
)
, until there is no monic rule in d

left. If the occurrence of A→ c(B) is not the root
of d, then the corresponding nonterminal in the par-
ent’s rhs is replaced by A+B.3 After this step, there
are only branching rules and terminating rules in d.
Figure 3 shows an example for this step.

This step is easy to reverse, as the composition
of every removed rule is c = idfo(B). We give the

3Note that root nodes in the derivation may be collapsed,
this is why we use LCFRS with multiple initial nonterminals.

2927

VP|2 → (x1, y1)(VBN,NP)

VBN→ (scheduled) NP→ (x1)(NN)

NN→ (today)

+

(a) A derivation for scheduled today. Gray arrows show how
the bottom-most composition is chained with the monic rule
on top.

VP|2 → (x1, y1)(VBN,NP+NN)

VBN→ (scheduled) NP+NN→ (today)

(b) The derivation resulting from applying step (3) to the
derivation in Fig. 3a.

Figure 3: Example for step (3).

formal description in Appendix A.3.

Step (4). We remove every non-root occurrence
r of a terminating rule A → (σ) in d. Let r be the
ith child of its parent (with i ∈ [2]), then we replace
the parent’s composition c by ~c�i(σ) and remove
the ith nonterminal in the parent’s rhs.

We note that the parent becomes lexical, and
after this step, every rule in d is either branching or
lexical. Moreover, every terminal rule in d is either
double-lexical (if both children were removed) or
the root of d (and thus its only node). Figure 4
shows an example for this step.

NP2 → (x1, y1) (NP,PP)

NP→ (x1y1) (DT,NN)

DT→ (A) NN→ (hearing)

PP→ (x1y1) (IN,NP)

IN→ (on) NP→ (x1y1) (DT,NN)

DT→ (the) NN→ (issue)

(a) A derivation for the string tuple (A hearing, on the issue).
Gray arrows show the terminals that are put into binary non-
lexical rules during step (4).

NP2 → (x1, y1) (NP,PP)

NP→ (A hearing) PP→ (on x1) (NP)

NP→ (the issue)

(b) The derivation resulting from applying step (4) to the
derivation in Fig. 4a.

Figure 4: Example for step (4).

Clearly, this step loses information, namely the
left-hand sides of the removed rules. These non-
terminals are part-of-speech tags (that may be en-
riched with nonterminals of collapsed monic rules

from the previous step). For the reversal of this step,
we opted to predict them along with the supertags
as part of the supertagger. The formal description
of the reversal is given in Appendix A.2.

Step (5). For each occurrence r of a branching
rule A→ c(A1, A2) in d, let us consider the occur-
rence t of the leftmost terminating rule (i.e. t is a
leaf) that is reachable via the second successor of
r. For example, in Fig. 5a, the two binary rules (r)
are end points of gray arrows; these arrows start at
the mentioned leaves (t). Our goal is to remove one
terminal from t and propagate it all the way up to
r. For this, at each node s on the path from t to r
(from bottom up):
• If s is t, we remove the leftmost terminal in

the rule’s composition at s.
• If s is neither t nor r, we insert the last re-

moved terminal right before the variable x1
and then remove the leftmost terminal in the
rule’s composition at s.
We note that if the rule at s is monic and the
variable x1 occurs right of the terminal in its
composition, then we propagate a different
terminal than the one received from the child.
In order to be able to reverse this step, we need
to remember whether the terminal in the rule’s
composition stayed the same or was swapped
with the terminal received from the child. In
the following, we consider this information as
part of the rule (cf. the gray annotation swapped

in Fig. 5).
• If s is r, we insert the last removed terminal

right before the variable y1 in the rule’s com-
position at s.

If s , r, let s′ be the parent of s and s the ith child
of s′. If, after removal of a terminal at s, the first
component in the composition is empty:
• we annotate the lhs nonterminal at s and the

ith rhs nonterminal at s′ with − and remove
the empty component, and
• if i = 1 (resp. i = 2), we remove x1 (resp. y1)

and replace every other occurrence of xi by
xi−1 (resp. y j by y j−1) at s′.

Otherwise, we annotate the nonterminals with +.
We note that the rule at r is uni-lexical and

branching now, the rule at t is uni-lexical and ter-
minating, and the number of terminals in each rule
between them did not change. After this step, every
rule in d is lexical. Figure 5 shows an example for
this step.

There is a suitable leaf t for every branching rule

2928

r. Intuitively, this holds since (a) after step (4) every
leaf of d is a double-lexical rule and (b) for each
branching rule we first go to its second successor
and then follow the path of first successors until
we reach a leaf. Here, (a) guarantees that there
exists a double-lexical rule for each branching rule
and (b) guarantees that each double-lexical rule is
“assigned” to at most one branching rule, thus at
most one terminal is removed from it. We refer
the more interested reader to consult the proof of
correctness by Engelfriet et al. (2018); this proof
also applies to our method.

VP2 → (x1, y1x2y2) (NP2,VP|2)

NP2 → (x1, y1) (NP,PP)

NP→ (A hearing) PP→ (on x1) (NP)

NP→ (the issue)

VP|2 → (scheduled, today)

(a) A derivation for the string tuple (A hearing,
scheduled on the issue today). Gray arrows show how
terminals will be propagated through the derivation to
lexicalize branching rules during step (5).

VP2 → (x1, scheduled x2y1) (NP2,VP|2
−)

NP2 → (x1, on y1) (NP,PP+)

NP→ (A hearing)
PP+ → (the x1) (NP+)swapped

NP+ → (issue)

VP|2
− → (today)

(b) The derivation resulting from applying step (5) to the
derivation in Fig. 5a. A gray annotation swapped marks a monic
rule whose terminal changed.

Figure 5: Example for step (5).

The reversal of this step removes all annotation
(+, −, and swapped) and restores each composition
in d to its original form. We note that the original
composition can be obtained deterministically; the
construction is given in Appendix A.1.

Step (6). We replace the rightmost terminal σ2 in
the composition of each double-lexical terminating
rule by a variable and add a new nonterminal AR to
the rule’s right-hand side (making it a uni-lexical
monic rule). Then we insert the rule AR → (σ2)
as a child. After this step, every rule in d is uni-
lexical. Figures 5b and 6 show an example for this
step. The reversal of this step is straightforward.

VP2 → (x1, scheduled x2y1) (NP2,VP|2
−)

NP2 → (x1, on y1) (NP,PP+)

NP→ (A x1) (NPR)

NPR → (hearing)

PP+ → (the x1) (NP+)swapped

NP+ → (issue)

VP|2
− → (today)

Figure 6: The derivation resulting from applying
step (6) to the derivation in Fig. 5b. Each rule in the
derivation contains exactly one terminal.

5 Experiments

Implementation. The induction of uni-lexical
LCFRS and parsing was implemented by extending
disco-dop (van Cranenburgh et al., 2016), from
which we could borrow the generic LCFRS extrac-
tion and statistical parsing implementation. More-
over, we used the computation of evaluation scores
in disco-dop.

The supertagger was implemented using the
flair framework (Akbik et al., 2019). We report
results for three types of architectures:
• bert – the output of the four topmost layers

of a pretrained BERT4 model (Devlin et al.,
2019), which is fine-tuned during training,
• flair – the concatenation of language-specific

fasttext (Mikolov et al., 2018) and flair em-
beddings (Akbik et al., 2018), which is fed
through a two layered Bi-LSTM (Hochreiter
and Schmidhuber, 1997), and
• supervised (small/large) – word embeddings

(one-hot embeddings and character-based Bi-
LSTM outputs) are trained with the model,
and fed through a two layered Bi-LSTM. The
small model adopts its size parameters from
Stanojević and Steedman (2020); Coavoux
and Cohen (2019) and the large model from
Corro (2020).

On top of each of those, there are two linear layers
in parallel: one for the supertags and one for the
nonterminals that were removed in step (4) of our
lexicalization scheme (i.e. part-of-speech tags plus
nonterminals from collapsed monic rules). The se-
quence tagger is trained to predict the gold supertag
and the removed nonterminal for each sentence po-
sition via the sum of cross-entropy losses. More

4We used language-specific flavors of bert-base that
were available in huggingface’s transformers library;
bert-base-german-cased for Tiger and Negra, and
bert-base-cased for DPTB.

https://github.com/andreasvc/disco-dop
https://huggingface.co/transformers/pretrained_models.html

2929

details with respect to hyperparameters for all mod-
els are shown in Appendix B.

During parsing, the predicted supertags are inter-
preted as a probabilistic grammar. At each sentence
position, the weight of the rules is the softmax
of the supertag’s score among the k best scores.
The parsing implementation that we borrow from
disco-dop supports heuristics and early-stopping
to speed-up the parsing process. For each interme-
diate parse that does not span all sentence positions,
we use the best supertag probability for each posi-
tion that does not belong to the parse as a heuristic
to estimate the weight of a complete parse.

We extended the parser with a fallback mecha-
nism that deals with parse fails, i.e. when it is not
able to find parse trees for the whole sentence. It
picks the largest partial derivations (for parts of
the sentence) that it was able to find and combines
them as children of artificial NOPARSE nodes. This
is especially beneficial in settings with small k as
there are many parse fails (cf. Table 1 column cov.).
For example, if we did not use this mechanism, we
would obtain prec. = 95.53, rec. = 46.21 and F1
= 62.29 for the development set of Negra and k = 1
(cf. first row in Table 1).

We use only the highest-scoring nonterminal pre-
dicted for the reversal of step (4).

Data. Following Coavoux and Cohen (2019), we
use three treebanks for discontinuous constituent
parsing in our evaluations: Negra (Skut et al.,
1998), Tiger (Brants et al., 2004), and a discontin-
uous version of the Penn treebank (DPTB; Evang
and Kallmeyer, 2011). The treebanks were split
according to the usual standards into training, de-
velopment and test sets.5 During development, the
lexicalization, tagging and parsing were mostly
tested and optimized using Negra. We binarized
each training set before extracting the LCFRS and
supertags. Markovization with horizontal context
h = 0 and vertical context v = 1 has yielded the
best results; we thus extracted 3275 supertags from
the training set of Negra, 4614 from Tiger and 4509
from DPTB. More context in Markovization lead to
a blowup in the number of supertags which proved
to be disadvantageous.

Baselines. We report labeled F1-scores, ob-
tained from predicted and gold parse trees us-

5We use the split for Negra by Dubey and Keller (2003),
for Tiger by Seddah et al. (2013), and the standard split for
DPTB (sections 2–21 for training, 22 for development, 23 for
testing).

ing disco-dop (with the usual parameters in
proper.prm), for all constituents (F1) and all dis-
continuous constituents (Dis-F1). Additionally to
the scores, parse speed6 is reported in sentences
per second (sent/s).

Our scores are compared to recent state-of-the-
art parsers for discontinuous constituent trees in
four categories:
• grammar-based parsers (van Cranenburgh

et al., 2016; Gebhardt, 2020; Versley, 2016) –
that directly rely on an underlying (probabilis-
tic) grammar,
• chart-based parsers (Corro, 2020; Stanojević

and Steedman, 2020) – that share parsing al-
gorithms with LCFRS, but lack an explicit set
of rules,
• transition systems (Coavoux and Cohen, 2019;

Coavoux et al., 2019), and
• neural systems (Fernández-González and

Gómez-Rodrı́guez, 2020; Vilares and Gómez-
Rodrı́guez, 2020) – all other recent parsing
approaches using neural classifiers.

Our approach is in the first category, as the su-
pertags are clearly constructed from a grammar
that was extracted from the treebank. Therefore,
the local relations in the predicted derivations are
restricted to those occurring in the treebank. The
approaches by Corro (2020) and Stanojević and
Steedman (2020), on the other hand, rank spans
in the sentence for occurrence in the predicted
parse tree and predict their nonterminal; both inde-
pendently from previous spans and nonterminals.
Hence, they allow any combination of parent/child
nonterminals in the resulting derivations.

6 Results

Table 1 shows statistics of our parser on the devel-
opment sets for different amounts (k) of supertags
per sentence position. Specifically, we report the
parsing speed (sent/s), the rate of sentence posi-
tions where the gold supertag was among the k
predicted supertags (tag accuracy), the rate of sen-
tences that was completely parsed (coverage) and
parsing scores (labeled precision, recall and F1).

We see that the parsing speed gradually drops
with rising k, but for k > 10 there are barely any
gains in terms of parsing scores. As expected, with
rising k, the recall increases drastically. The preci-

6We measured the parsing speed on a system with an
Nvidia GeForce RTX 2080, two Intel Xeon Silver 4114 (20
cores/40 threads at 2.2 GHz) and 256 GB RAM.

2930

Table 1: Results for different values for k, i.e. how
many supertags for each sentence position are used for
parsing, on development sets after training. Includes
only the results for our bert model.

k Negra
sent/s tag acc. cov. prec. rec. F1

1 78 87.37 64.60 93.10 57.16 70.83
2 75 93.35 85.80 91.27 78.73 84.54
3 71 94.88 92.10 91.22 84.87 87.93
5 69 96.23 96.80 91.15 89.32 90.23
10 63 97.50 99.20 91.30 91.00 91.15
15 58 98.19 99.80 91.37 91.27 91.32
20 53 98.52 99.90 91.56 91.44 91.50

k Tiger

1 75 89.38 73.26 94.23 67.14 78.42
2 72 94.96 92.00 92.65 85.18 88.76
3 67 96.33 96.14 92.53 88.83 90.65
5 66 97.45 98.32 92.66 90.79 91.71
10 61 98.48 99.67 92.74 91.79 92.27
15 56 98.83 99.88 92.73 91.88 92.30
20 53 99.04 99.98 92.80 91.97 92.38

k DPTB

1 95 90.00 58.88 91.95 59.84 72.50
2 90 95.92 90.06 93.89 87.21 90.43
3 82 97.21 95.35 93.92 91.41 92.65
5 79 98.24 97.88 94.07 93.05 93.56
10 72 98.98 99.29 94.03 93.81 93.92
15 66 99.23 99.82 94.09 94.01 94.05
20 61 99.38 99.94 94.11 94.05 94.08

Table 2: Our results compared to other published su-
pertaggers. (†) Bladier et al. (2018) used a slightly dif-
ferent split of Tiger. (‡) Tian et al. (2020) use CCGbank
instead of DPTB, which is a digest of PTB specifically
for CCG parsing. Recent publications for CCG parsing
use a slightly different split (sec. 0 instead of sec. 22 for
development) for CCGbank than we do for DPTB.

Model Tiger DPTB ‡
tags tag acc. tags tag acc.

Bladier et al., 2018 3426 88.51† – –
Kasai et al., 2017 – – 4727 89.71
ours (sup., small) 4614 74.35 4509 83.06
ours (sup., large) 4614 78.96 4509 86.73
ours (flair) 4614 81.50 4509 88.55
ours (bert) 4614 85.40 4509 90.14
Tian et al., 2020 – – 1284 96.39

sion, on the other hand, only changes slightly. The
drop in precision using Negra and Tiger may be
explained by a significant decrease in parse fails
from k = 1 to k = 2, then the effects of fewer parse
fails and considering lower-scored supertags seem
to balance each other out. We found k = 10 to be a
good parameter for the rest of our experiments.

Table 3 shows the parsing scores and speed of
our trained models on the test set compared to the
scores reported in other recent publications on dis-
continuous constituent parsing. The experiments
suggest that parsing using LCFRS can greatly ben-
efit from supertagging with respect to both speed
and accuracy. This, however requires a strong dis-
criminative classifier for the sequence tagger to
predict useful rules. Most notably, the prediction
accuracy for discontinuous constituents seems to
strongly benefit from pretrained word embeddings.

Compared to other parsing approaches, we ob-
tain results that are on par with the state of the art;
recently, this is rather unusual for grammar-based
constituent parsing. We would like to especially
highlight our results for discontinuous constituents,
which surpass the previous state of the art by a wide
margin.

Unfortunately, we can only compare our results
to those of other supertagging-based parsers to a
very limited extent, as authors seem to either report
no parsing scores at all (Bladier et al., 2018), or
give attachment scores for dependency relations
(Kasai et al., 2017; Tian et al., 2020). However,
Table 2 compares the accuracy of our supertagger
to some recent publications. The CCG community
is very active in the field of neural supertagging,
achieving an improvement from 91.3% (Lewis and
Steedman, 2014) to 96.4% accuracy (Tian et al.,
2020) for predicted supertags in the last 6 years.
We can not compete with those numbers, but this
may be due to the fact that there are far fewer su-
pertags trained in these approaches than in ours. In
the case of TAG, the supertagger by Bladier et al.
(2018) achieves a better accuracy than ours. But
again, there are fewer tags to predict. Compared
to Kasai et al. (2017), our models with pretrained
embeddings seem to be on par in both the number
of tags and the accuracy.

7 Conclusion

We described an approach to utilize supertagging
for parsing discontinuous constituents with LCFRS
and evaluated it. Compared to other parsers for the

2931

Table 3: Our results on test sets compared to other published constituent parsers. (†) Van Cranenburgh et al.
(2016) use a different split for Tiger. (‡) Parsing speeds marked with this symbol were measured on our system as
processing times were not reported by the authors.

Model Negra Tiger DPTB
F1 Dis-F1 sent/s F1 Dis-F1 sent/s F1 Dis-F1 sent/s

Grammar-based systems

van Cranenburgh et al., 2016 76.8 – 2‡ 78.2† – 1‡ 87.0 – <1‡
Gebhardt, 2020 81.7 43.5 – 77.7 40.7 – – – –
ours (supervised, small) 77.59 28.28 136 78.38 44.73 103 87.24 64.84 103
ours (supervised, large) 82.72 49.03 136 82.53 55.91 101 90.08 72.87 95
ours (flair) 86.54 61.89 104 85.12 61.00 80 91.77 76.14 86
ours (bert) 90.94 72.58 68 88.34 69.02 60 93.32 80.53 57
Versley, 2016 – – – 79.50 – – – – –

Chart-based systems

Corro, 2020 (supervised) 86.3 56.1 478 85.2 51.2 474 92.9 64.9 355
Corro, 2020 (bert) 91.6 66.1 – 90.0 62.1 – 94.8 68.9 –
Stanojević and Steedman, 2020 83.3 50.7 15‡ 83.4 53.5 9‡ 90.5 67.7 –

Transition systems

Coavoux and Cohen, 2019 84.0 54.0 – 87.6 52.5 64 91.4 70.9 38
Coavoux et al., 2019 83.2 54.6 – 82.7 55.9 126 91.0 71.3 80

Neural systems

Fernández-G. and Gómez-R., 2020 86.1 59.9 12‡ 86.3 60.7 11‡ – – –
Vilares and Gómez-R., 2020 (bilstm) 77.1 36.5 715 79.2 40.1 568 89.1 41.8 611
Vilares and Gómez-R., 2020 (bert) 84.2 46.9 81 84.7 51.6 80 91.7 49.1 80

same grammar formalism, we achieve state-of-the-
art results, i.e. we are more accurate and also faster
(cf. Table 3, Grammar-based systems). In contrast
to previous parsers utilizing LCFRS, we can even
keep up with other (neural) parsing approaches and
establish a new state of the art for discontinuous
constituents (cf. Table 3, columns for Dis-F1).

Recent publications by Corro (2020) and Stano-
jević and Steedman (2020) address discontinuous
constituent parsing using approaches that share an
algorithmic foundation with LCFRS parsing, but
do not use an underlying grammar. Both of them
restrict constituents to two non-contiguous spans
(equivalent to an LCFRS with fanout 2), we have
no such limitation. Considering the margin be-
tween our discontinuous F1-score and theirs, we
suppose that this restriction is only benefiting the
complexity, not the accuracy.

Future Work. Compared to previous approaches
for supertagging, we utilize large sets of supertags.
We are confident that the accuracy of the supertag-
ger can be improved by appropriately reducing
these sets. The approach how terminals are trans-
ported in derivations during step (5) of the extrac-
tion is quite technical and chosen such that there
is no impact on the fanout of the grammar (Mörb-
itz and Ruprecht, 2020). Alternative techniques

could conceivably result in smaller sets of supertags
and/or improve parsing results.

To validate the benefit of LCFRS (compared
to using TAG or CCG) for supertagging-based
approaches to constituent paring, we aim for an
in-depth comparison of our work to previous ap-
proaches. However, currently, these approaches
lack of publicly available implementations for con-
stituent parsing.

Acknowledgements

We thank Alex Ivliev for conducting early exper-
iments during the development of our parser, and
our colleague Kilian Gebhardt as well as the anony-
mous reviewers for their insightful comments on
drafts of this paper.

References
Alan Akbik, Tanja Bergmann, Duncan Blythe, Kashif

Rasul, Stefan Schweter, and Roland Vollgraf. 2019.
FLAIR: An easy-to-use framework for state-of-the-
art NLP. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics (Demonstrations), pages
54–59, Minneapolis, Minnesota. Association for
Computational Linguistics.

Alan Akbik, Duncan Blythe, and Roland Vollgraf.
2018. Contextual string embeddings for sequence

https://doi.org/10.18653/v1/N19-4010
https://doi.org/10.18653/v1/N19-4010
https://www.aclweb.org/anthology/C18-1139

2932

labeling. In Proceedings of the 27th International
Conference on Computational Linguistics, pages
1638–1649, Santa Fe, New Mexico, USA. Associ-
ation for Computational Linguistics.

Krasimir Angelov and Peter Ljunglöf. 2014. Fast sta-
tistical parsing with parallel multiple context-free
grammars. In Proceedings of the 14th Conference
of the European Chapter of the Association for Com-
putational Linguistics, pages 368–376, Gothenburg,
Sweden. Association for Computational Linguistics.

Srinivas Bangalore and Aravind K. Joshi. 1999. Su-
pertagging: An approach to almost parsing. Compu-
tational linguistics, 25(2):237–265.

Tatiana Bladier, Andreas van Cranenburgh, Younes
Samih, and Laura Kallmeyer. 2018. German and
French neural supertagging experiments for LTAG
parsing. In Proceedings of ACL 2018, Student Re-
search Workshop, pages 59–66, Melbourne, Aus-
tralia. Association for Computational Linguistics.

Sabine Brants, Stefanie Dipper, Peter Eisenberg, Sil-
via Hansen-Schirra, Esther König, Wolfgang Lezius,
Christian Rohrer, George Smith, and Hans Uszkor-
eit. 2004. TIGER: Linguistic interpretation of a Ger-
man corpus. Research on language and computa-
tion, 2(4):597–620.

Stephen Clark. 2002. Supertagging for combinatory
categorial grammar. In Proceedings of the Sixth In-
ternational Workshop on Tree Adjoining Grammar
and Related Frameworks (TAG+ 6), pages 19–24.

Maximin Coavoux and Shay B. Cohen. 2019. Discon-
tinuous constituency parsing with a stack-free tran-
sition system and a dynamic oracle. In Proceed-
ings of the 2019 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 1
(Long and Short Papers), pages 204–217, Minneapo-
lis, Minnesota. Association for Computational Lin-
guistics.

Maximin Coavoux, Benoı̂t Crabbé, and Shay B. Cohen.
2019. Unlexicalized transition-based discontinuous
constituency parsing. Transactions of the Associa-
tion for Computational Linguistics, 7:73–89.

Caio Corro. 2020. Span-based discontinuous con-
stituency parsing: a family of exact chart-based al-
gorithms with time complexities from O(nˆ6) down
to O(nˆ3). In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 2753–2764, Online. Associa-
tion for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),

pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Amit Dubey and Frank Keller. 2003. Probabilistic pars-
ing for German using sister-head dependencies. In
Proceedings of the 41st Annual Meeting of the As-
sociation for Computational Linguistics, pages 96–
103, Sapporo, Japan. Association for Computational
Linguistics.

Joost Engelfriet, Andreas Maletti, and Sebastian
Maneth. 2018. Multiple context-free tree gram-
mars: Lexicalization and characterization. Theoreti-
cal Computer Science, 728:29–99.

Kilian Evang and Laura Kallmeyer. 2011. PLCFRS
parsing of English discontinuous constituents. In
Proceedings of the 12th International Conference on
Parsing Technologies, pages 104–116, Dublin, Ire-
land. Association for Computational Linguistics.

Daniel Fernández-González and Carlos Gómez-
Rodrı́guez. 2020. Discontinuous constituent parsing
with pointer networks. In Proceedings of the
34th AAAI Conference on Artificial Intelligence.
Association for the Advancement of Artificial
Intelligence.

Kilian Gebhardt. 2020. Advances in using grammars
with latent annotations for discontinuous parsing. In
Proceedings of the 16th International Conference on
Parsing Technologies and the IWPT 2020 Shared
Task on Parsing into Enhanced Universal Dependen-
cies, pages 91–97, Online. Association for Computa-
tional Linguistics.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Aravind K. Joshi, Leon S. Levy, and Masako Takahashi.
1975. Tree adjunct grammars. Journal of Computer
and System Sciences, 10(1):136–163.

Rekia Kadari, Yu Zhang, Weinan Zhang, and Ting Liu.
2018. CCG supertagging via bidirectional LSTM-
CRF neural architecture. Neurocomputing, 283:31–
37.

Laura Kallmeyer and Wolfgang Maier. 2013. Data-
driven parsing using probabilistic linear context-
free rewriting systems. Computational Linguistics,
39(1):87–119.

Jungo Kasai, Bob Frank, Tom McCoy, Owen Ram-
bow, and Alexis Nasr. 2017. TAG parsing with neu-
ral networks and vector representations of supertags.
In Proceedings of the 2017 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1712–1722, Copenhagen, Denmark. Association for
Computational Linguistics.

Mike Lewis and Mark Steedman. 2014. Improved
CCG parsing with semi-supervised supertagging.
Transactions of the Association for Computational
Linguistics, 2:327–338.

https://www.aclweb.org/anthology/C18-1139
https://doi.org/10.3115/v1/E14-1039
https://doi.org/10.3115/v1/E14-1039
https://doi.org/10.3115/v1/E14-1039
https://www.aclweb.org/anthology/J99-2004.pdf
https://www.aclweb.org/anthology/J99-2004.pdf
https://doi.org/10.18653/v1/P18-3009
https://doi.org/10.18653/v1/P18-3009
https://doi.org/10.18653/v1/P18-3009
https://doi.org/10.1007/s11168-004-7431-3
https://doi.org/10.1007/s11168-004-7431-3
https://www.aclweb.org/anthology/W02-2203.pdf
https://www.aclweb.org/anthology/W02-2203.pdf
https://doi.org/10.18653/v1/N19-1018
https://doi.org/10.18653/v1/N19-1018
https://doi.org/10.18653/v1/N19-1018
https://doi.org/10.1162/tacl_a_00255
https://doi.org/10.1162/tacl_a_00255
https://www.aclweb.org/anthology/2020.emnlp-main.219
https://www.aclweb.org/anthology/2020.emnlp-main.219
https://www.aclweb.org/anthology/2020.emnlp-main.219
https://www.aclweb.org/anthology/2020.emnlp-main.219
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.3115/1075096.1075109
https://doi.org/10.3115/1075096.1075109
https://www.aclweb.org/anthology/W11-2913
https://www.aclweb.org/anthology/W11-2913
https://doi.org/10.1609/aaai.v34i05.6275
https://doi.org/10.1609/aaai.v34i05.6275
https://doi.org/10.18653/v1/2020.iwpt-1.9
https://doi.org/10.18653/v1/2020.iwpt-1.9
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1016/S0022-0000(75)80019-5
https://doi.org/10.1016/j.neucom.2017.12.050
https://doi.org/10.1016/j.neucom.2017.12.050
https://doi.org/10.1162/COLI_a_00136
https://doi.org/10.1162/COLI_a_00136
https://doi.org/10.1162/COLI_a_00136
https://doi.org/10.18653/v1/D17-1180
https://doi.org/10.18653/v1/D17-1180
https://doi.org/10.1162/tacl_a_00186
https://doi.org/10.1162/tacl_a_00186

2933

Wolfgang Maier and Anders Søgaard. 2008. Treebanks
and mild context-sensitivity. In Proceedings of the
13th conference on Formal Grammar, pages 61–76,
Hamburg, Germany. CSLI Publications.

Mitch Marcus, Grace Kim, Mary Ann Marcinkiewicz,
Robert MacIntyre, Ann Bies, Mark Ferguson, Karen
Katz, and Britta Schasberger. 1994. The penn tree-
bank: annotating predicate argument structure. In
Proceedings of the workshop on Human Language
Technology, pages 114–119, Plainsboro, New Jersey.
Association for Computational Linguistics.

Tomas Mikolov, Edouard Grave, Piotr Bojanowski,
Christian Puhrsch, and Armand Joulin. 2018. Ad-
vances in pre-training distributed word representa-
tions. In Proceedings of the Eleventh International
Conference on Language Resources and Evaluation
(LREC 2018), Miyazaki, Japan. European Language
Resources Association (ELRA).

Richard Mörbitz and Thomas Ruprecht. 2020. Lexical-
ization of probabilistic linear context-free rewriting
systems. In Proceedings of the 16th International
Conference on Parsing Technologies and the IWPT
2020 Shared Task on Parsing into Enhanced Univer-
sal Dependencies, pages 98–104, Online. Associa-
tion for Computational Linguistics.

Djamé Seddah, Reut Tsarfaty, Sandra Kübler, Marie
Candito, Jinho D. Choi, Richárd Farkas, Jen-
nifer Foster, Iakes Goenaga, Koldo Gojenola Gal-
letebeitia, Yoav Goldberg, Spence Green, Nizar
Habash, Marco Kuhlmann, Wolfgang Maier, Joakim
Nivre, Adam Przepiórkowski, Ryan Roth, Wolfgang
Seeker, Yannick Versley, Veronika Vincze, Marcin
Woliński, Alina Wróblewska, and Eric Villemonte
de la Clergerie. 2013. Overview of the SPMRL
2013 shared task: A cross-framework evaluation of
parsing morphologically rich languages. In Proceed-
ings of the Fourth Workshop on Statistical Parsing of
Morphologically-Rich Languages, pages 146–182,
Seattle, Washington, USA. Association for Compu-
tational Linguistics.

Hiroyuki Seki, Takashi Matsumura, Mamoru Fujii,
and Tadao Kasami. 1991. On multiple context-
free grammars. Theoretical Computer Science,
88(2):191–229.

Wojciech Skut, Thorsten Brants, Brigitte Krenn, and
Hans Uszkoreit. 1998. A linguistically interpreted
corpus of German newspaper text. In Proceedings
of the ESSLLI Workshop on Recent Advances in Cor-
pus Annotation, Saarbrücken, Germany.

Miloš Stanojević and Mark Steedman. 2020. Span-
based LCFRS-2 parsing. In Proceedings of the 16th
International Conference on Parsing Technologies
and the IWPT 2020 Shared Task on Parsing into
Enhanced Universal Dependencies, pages 111–121,
Online. Association for Computational Linguistics.

Yuanhe Tian, Yan Song, and Fei Xia. 2020. Su-
pertagging Combinatory Categorial Grammar with

attentive graph convolutional networks. In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
6037–6044, Online. Association for Computational
Linguistics.

Andreas van Cranenburgh. 2012. Efficient parsing with
linear context-free rewriting systems. In Proceed-
ings of the 13th Conference of the European Chap-
ter of the Association for Computational Linguistics,
pages 460–470, Avignon, France. Association for
Computational Linguistics.

Andreas van Cranenburgh, Remko Scha, and Rens Bod.
2016. Data-oriented parsing with discontinuous con-
stituents and function tags. Journal of Language
Modelling, 4(1):57–111.

Ashish Vaswani, Yonatan Bisk, Kenji Sagae, and Ryan
Musa. 2016. Supertagging with LSTMs. In Pro-
ceedings of the 2016 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
232–237, San Diego, California. Association for
Computational Linguistics.

Yannick Versley. 2016. Discontinuity (re)2-visited: A
minimalist approach to pseudoprojective constituent
parsing. In Proceedings of the Workshop on Discon-
tinuous Structures in Natural Language Processing,
pages 58–69, San Diego, California. Association for
Computational Linguistics.

Krishnamurti Vijay-Shanker, David Jeremy Weir, and
Aravind K. Joshi. 1987. Characterizing structural
descriptions produced by various grammatical for-
malisms. In Proceedings of the 25th Annual Meet-
ing on Association for Computational Linguistics,
ACL ’87, pages 104–111, Stroudsburg, PA, USA.
Association for Computational Linguistics.

David Vilares and Carlos Gómez-Rodrı́guez. 2020.
Discontinuous constituent parsing as sequence la-
beling. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Process-
ing (EMNLP), pages 2771–2785, Online. Associa-
tion for Computational Linguistics.

https://web.stanford.edu/group/cslipublications/cslipublications/FG/2008/maier.pdf
https://web.stanford.edu/group/cslipublications/cslipublications/FG/2008/maier.pdf
https://www.aclweb.org/anthology/H94-1020.pdf
https://www.aclweb.org/anthology/H94-1020.pdf
https://www.aclweb.org/anthology/L18-1008
https://www.aclweb.org/anthology/L18-1008
https://www.aclweb.org/anthology/L18-1008
https://doi.org/10.18653/v1/2020.iwpt-1.10
https://doi.org/10.18653/v1/2020.iwpt-1.10
https://doi.org/10.18653/v1/2020.iwpt-1.10
https://www.aclweb.org/anthology/W13-4917
https://www.aclweb.org/anthology/W13-4917
https://www.aclweb.org/anthology/W13-4917
https://doi.org/10.1016/0304-3975(91)90374-B
https://doi.org/10.1016/0304-3975(91)90374-B
https://arxiv.org/abs/cmp-lg/9807008
https://arxiv.org/abs/cmp-lg/9807008
https://doi.org/10.18653/v1/2020.iwpt-1.12
https://doi.org/10.18653/v1/2020.iwpt-1.12
https://www.aclweb.org/anthology/2020.emnlp-main.487
https://www.aclweb.org/anthology/2020.emnlp-main.487
https://www.aclweb.org/anthology/2020.emnlp-main.487
https://www.aclweb.org/anthology/E12-1047
https://www.aclweb.org/anthology/E12-1047
https://doi.org/10.15398/jlm.v4i1.100
https://doi.org/10.15398/jlm.v4i1.100
https://doi.org/10.18653/v1/N16-1027
https://doi.org/10.18653/v1/W16-0907
https://doi.org/10.18653/v1/W16-0907
https://doi.org/10.18653/v1/W16-0907
https://doi.org/10.3115/981175.981190
https://doi.org/10.3115/981175.981190
https://doi.org/10.3115/981175.981190
https://www.aclweb.org/anthology/2020.emnlp-main.221
https://www.aclweb.org/anthology/2020.emnlp-main.221

2934

A Unlexicalizing Derivations

In this Appendix we formally describe the reversal
of selected steps of our lexicalization scheme (cf.
Section 4). In each instance we assume a derivation
like it would be obtained right after applying the
corresponding step.

A.1 Reversal of step (5).
This step is applied to each occurrence r of branch-
ing rules of the form A → c(A1, A2) from the bot-
tom to the top (i.e. it was already done for branch-
ing rules in the subtrees below a node before it is
applied to the node itself). Let t be the leftmost
occurrence of a terminating rule that is reachable
from the second child of r. At each node s on the
path from r to t (i.e. from top down) we perform
three steps. (1) We transform the composition back
into the original composition, (2) we remove all
annotation (+, −, and swapped), and (3) we pass a
terminal to the child (if s is not t).

Obtaining the original composition. The com-
position at each node s is transformed back into
the original composition depending on the type of
the rule. We note that if s is a branching rule and
s , r, the composition at s was already changed
previously in this step and we leave it as it is.

Branching rule Let B→ (u1, . . . , us) (B1, B2)
be the rule at s and σ be the terminal in (u1, . . . , us).

• If B2 is annotated with − (i.e., its first compo-
nent was removed during step (5)), we replace
σ with y0, and replace every occurrence of yi

by yi+1.

• Otherwise, σ is removed from (u1, . . . , us).

Moreover, if s occurs as a successor of the right
child of some other branching rule, then the nonter-
minals B and B1 have annotation as well.

• If B1 and B are annotated with −, then we
replace (u1, . . . , us) by (x0, u1, . . . , us).

• If B1 is annotated with − and B with +, then
we replace (u1, . . . , us) by (x0u1, . . . , us).

If B1 is annotated with −, we replace every occur-
rence of xi by xi+1 afterwards.

Monic rule Let B → c′(B1) be the rule at s
with c′ of the form (u1, . . . , us), σ1 be the terminal
received from the parent, and σ2 be the terminal in
c′.

1. If B is annotated with −, then c′ is replaced by
(ε, u1, . . . , us).

2. If B1 is annotated with −, then x0 is inserted
as the first symbol in the first component in c′.
After that, every occurrence of xi is replaced
by xi+1.

3. If the terminal was swapped during step (5),
the terminal σ2 is removed from c′ and σ1 is
added as the first symbol in the first compo-
nent of c.

We remark that if B is annotated with −, then it
must be the case that B1 is annotated with − as well
or the terminal was swapped during step (5). Hence
we do not add empty components here.

Terminating rule Let B → (σ2) be the rule
at s and σ1 be the terminal received from the par-
ent. We replace the rule by B → (σ1, σ2) if B is
annotated with − and by B→ (σ1σ2) otherwise.

Passing the terminal to the child.

• If s is r, let σ be the terminal in c. We pass σ
to the next node on the path to t.

• If s is neither r nor t, and there is a branching
rule at s, we pass the terminal received from
the parent to the next node on the path to t.

• If there is a monic rule of the form B→ c′(B1)
at s, we let σ1 be the terminal reveived from
the parent and σ2 the terminal in c′. If the ter-
minal in this rule was swapped during step (5),
we pass σ2 to the next node on the path to t,
otherwise we pass σ1.

A.2 Reversal of step (4).
We recall that during step (4), certain nonterminals
that occurred as the lhs of terminating rules were
removed. For reverting this step, we assume that
these nonterminals are predicted by an oracle. We
replace every occurrence of a terminating rule of
the form

• A→ (σ1σ2) by
A → (x1y1)(A1, A2)

(
A1 → (σ1), A2 → (σ2)

)
and

• A→ (σ1, σ2) by
A→ (x1, y1)(A1, A2)

(
A1 → (σ1), A2 → (σ2)

)
,

where A1 and A2 are the predicted nonterminals for
σ1 and σ2, respectively.

We replace every subderivation d′ of the form
A→ c(B)

(
d′1
)
, where σ is the terminal in c and A1

the predicted nonterminal for σ, as follows:

2935

Table 4: Hyperparameters for the sequence tagger.

Parameter supervised (small/large) flair bert

word embeddings one-hot (32d/300d) + character-based (100d/100d) fasttext + flair top 4 bert layers
Bi-LSTM 2 layers, each 200/800 states 2 layers, each 800 states no
linear layer no. of supertags + no. of pos tags same same
dropout 0.5 0.5 0.1
loss cross entropy (supertags + pos tags) same same
optimizer Adam (β1 = 0.9, β2 = 0.999) same same
base learning rate (lr) 10−3 10−3 5 · 10−5

weight decay 0 0 0.1
lr scheduler reduce on plateau (half lr if dev. F1 score decreases) same as sup. constant
batch size 32 32 32
training epochs max. 100, or if lr < 10−4 same as sup. 5
k-best supertags 10 10 10

• if σ is the first symbol in c, then c′ is obtained
from c by replacing, for each i ∈ [fo(B)], xi

with yi and σ with x1; d′ is replaced by A→
c′(A1, B)

(
A1 → (σ), d′1

)
,

• otherwise, c′ is obtained from c by replac-
ing σ with y1; d′ is replaced by A →

c′(B, A1)
(
d′1, A1 → (σ)

)
.

The composition c′ is constructed such that
~c′�1(σ) = c in the first case and ~c′�2(σ) = c
in the second case.

A.3 Reversal of step (3).
We repeatedly replace every occurrence r of the
form A+B→ c(. . .)

(
. . .
)

by

A→ idfo(B) (B)
(
B→ c(. . .)

(
. . .
))
,

until there are no nonterminals of the form A+B
left in the derivation. If r has a parent, then we
replace the corresponding nonterminal A+B in the
parent’s rhs by A.

B Model parameters

Table 4 shows detailed parameters for our three
reported models. The architecture of the super-
vised (small) models is the same as Stanojević and
Steedman (2020); Coavoux and Cohen (2019), and
supervised (large) the same as Corro (2020), to
allow fair comparisons.

Note, that the time needed to train the models
varies heavily: As the BERT embeddings are only
fine-tuned for a small amount of iterations, training
the bert model took less than an hour using the
Negra corpus. The bilstm model benefits from the
fixed word embeddings as they are only computed
once; training it took ca. an hour. Both supervised
models train a lot slower, training for each of those
took ca. 6 hours.

