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Abstract

Domain classification is the fundamental task
in natural language understanding (NLU),
which often requires fast accommodation to
new emerging domains. This constraint makes
it impossible to retrain all previous domains,
even if they are accessible to the new model.
Most existing continual learning approaches
suffer from low accuracy and performance
fluctuation, especially when the distributions
of old and new data are significantly differ-
ent. In fact, the key real-world problem is
not the absence of old data, but the ineffi-
ciency to retrain the model with the whole old
dataset. Is it potential to utilize some old data
to yield high accuracy and maintain stable per-
formance, while at the same time, without in-
troducing extra hyperparameters? In this paper,
we proposed a hyperparameter-free continual
learning model for text data that can stably
produce high performance under various en-
vironments. Specifically, we utilize Fisher in-
formation to select exemplars that can “record”
key information of the original model. Also, a
novel scheme called dynamical weight consol-
idation is proposed to enable hyperparameter-
free learning during the retrain process. Ex-
tensive experiments demonstrate that baselines
suffer from fluctuated performance and there-
fore useless in practice. On the contrary, our
proposed model CCFI significantly and con-
sistently outperforms the best state-of-the-art
method by up to 20% in average accuracy,
and each component of CCFI contributes ef-
fectively to overall performance.

1 Introduction

Catastrophic forgetting is the well-known Achilles’
heel of deep neural networks, that the knowledge
learned from previous tasks will be forgotten when
the networks are retrained to adapt to new tasks. Al-
though this phenomenon has been noticed as early
as the birth of neural networks (French, 1999; Mc-
Closkey and Cohen, 1989), it didn’t attract much

attention until deep neural networks have achieved
impressive performance gains in various applica-
tions (LeCun et al., 2015; Krizhevsky et al., 2012).

Domain classification is the task that mapping
the spoken utterances to natural language under-
standing domains. It is widely used in intelligent
personal digital assistant (IPDA) devices, such as
Amazon Alexa, Google Assistant, and Microsoft
Cortana. As many IPDAs now allow third-party
developers to build and integrate new domains (Ku-
mar et al., 2017), these devices are eager to con-
tinual learning technologies that can achieve high
performance stably (Kim et al., 2018a,b). How-
ever, most traditional IPADs only work with well-
separated domains built by specialists (Tur and
De Mori, 2011) or customized designed for spe-
cific datasets (Li et al., 2019).

There is still a lack of continual learning methods
that capable of general domain classification. Most
previous approaches capable of continual learning
focus on the scenario that the new model should
be retrained without any access to old data (Li and
Hoiem, 2016; Kirkpatrick et al., 2017; Lopez-Paz
and Ranzato, 2017). However, these methods of-
ten involve more parameters that require extensive
efforts in expert tuning. And when data distribu-
tions of new tasks are obviously different from
the original task (e.g. class-incremental learning),
these approaches can hardly maintain good accu-
racy for both tasks and may suffer from fluctuations
in performance. On the other hand, old data are not
unavailable in many practical cases. The main con-
cerns arise from the tremendous cost in memory
and computation resources, if the model is updated
with huge previous datasets. Also, most continual
learning approaches are applied to image data that
little attention has been paid to text data. Is it possi-
ble to develop a desirable model capable of contin-
ual learning that satisfies the following qualities? 1)
High accuracy with limited old data. Compared
to the extreme cases that no access or full access to
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old data, it is more practical to put models under the
setting with a limited amount of old data available
(e.g., no more than 10% of original data). In this
case, models can achieve good performance with-
out too much additional cost in physical resources
and can be conveniently renewed with periodical
system updates. 2) High stability with zero extra
parameters. Many continual learning models can
perform well only under restricted experiment set-
tings, such as specific datasets or carefully chosen
parameters. However, practical datasets are usu-
ally noisy and imbalanced distributed, and inex-
perienced users can’t set suitable parameters in
real-world applications. Therefore, it is desirable to
develop a hyperparameter-free model that can work
stably under various experimental environments.

To achieve these goals, we proposed a Conti-

nous learning model based on weight Consolida-

tion and Fisher Information sampling (CCFI), with
application to domain classification. The main chal-
lenge is how to “remember” information from orig-
inal tasks, not only the representative features from
data, but also the learned parameters of the model
itself. This is a non-trivial contribution since “un-
controllable changes” will happen to neural net-
work parameters whenever the feature changes.
To avoid such “uncontrollable changes”, previous
work iCarL even discards deep neural networks
as its final classifier and turns to k-nearest neigh-
bors algorithm for actual prediction (Rebuffi et al.,
2017). Our work demonstrates that these changes
are “controllable” with exemplar selected by Fisher
information and parameters learned by Dynamical
Weight Consolidation. Our contributions can be
summarized as follows.

• Fisher information sampling. Good exemplars
are required to “remember” key information of
old tasks. Unlike previous work using simple
mean vectors to remember the information of old
data, exemplars selected by Fisher information
record both the features of data and the informa-
tion of the original neural network.

• Dynamical weight consolidation. The need
for hyperparameter is an inherited problem of
regularization-based continual learning. Previ-
ous works search for this hyperparameter by
evaluating the whole task sequence, which is sup-
posed not to be known. This work provides a sim-
ple auto-adjusted weighting mechanism, making
the regularization strategy possible for a practical
application. Also, traditional weight consolida-

tion methods such as EWC (Kirkpatrick et al.,
2017) are designed for sequential tasks with sim-
ilar distributions. We extend it to the incremen-
tal learning scenario and add more regularity to
achieve better stability.

• Extensive experimental validation. Most exist-
ing continual learning methods are designed for
image data, while few previous attempts working
on text data are often limited to specific usage
scenarios and rely on fine-tuned parameters. Our
proposed CCFI model is a general framework
that can be efficiently applied to various environ-
ments with the least efforts in parameter tuning.
Our extensive experimental results demonstrate
the proposed CCFI can outperform all state-of-
the-art methods, and provide insights into the
working mechanism of methods.

2 Related Work

Although most of the existing approaches are not
directly applicable to our problem, several main
branches of research related to this work can
be found: exemplar selection, regularization of
weights, and feature extraction or fine-tune method
based on pre-trained models.

Our problem is closest to the setting of exemplar
selection methods (Rebuffi et al., 2017; Li et al.,
2019). These approaches store examples from orig-
inal tasks, and then combine them together with
the new domain data for retraining. iCarL (Rebuffi
et al., 2017) discards the classifier based on neural
network to prevent the catastrophic forgetting, and
turns to traditional K-nearest neighbor classifier.

To avoid large changes of important parameters,
regularization models (Kirkpatrick et al., 2017; Li
and Hoiem, 2016; Zenke et al., 2017) add con-
straints to the loss function. They usually intro-
duce extra parameters requiring careful initializa-
tion. And it has been shown that their performance
will drop significantly if the new tasks are drawn
from different distributions (Rebuffi et al., 2017).
On the contrary, our proposed CCFI is a parameter-
free model that can produce stable performance
under various experimental environments.

Feature extraction methods utilize pre-trained
neural networks to calculate features of input data
(Donahue et al., 2014; Sharif Razavian et al., 2014).
They make little modifications to the original net-
work but often result in a limited capacity for learn-
ing new tasks. Fine-tuning models (Girshick et al.,
2014) can modify all the parameters in order to
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achieve better performance in new tasks. Although
starting with a small learning rate can indirectly
preserve the knowledge learned from the original
task, fine-tuning method will eventually tend to
new tasks. Adapter tuning (Houlsby et al., 2019)
can be viewed as the hybrid of fine-tune and fea-
ture extraction. Unlike our model that makes no
changes to the backbone model, the Adapter tun-
ing method increases the original model size and
introduces more parameters by inserting adapter
modules to each layer.

3 Our CCFI Model

Given data stream D = {xi, yi}Ni=1, the classifi-
cation tasks in deep learning neural networks are
equal to find the best parameter set ⇥ that can max-
imize the probability of the data p(D|⇥). Namely,
the classifier can make predictions Ŷ that best re-
produce the ground truth labels Y . Under the con-
tinual learning setting, new data Dn of additional
classes will be added to the original data stream Do

in an incremental form. Our goal is to update the
old parameters ⇥o (trained on original data stream
Do) to the new parameters ⇥n, which can work
well on both new data Dn and old data Do.

In this paper, the initial model is trained with
the original data set Do, and will output the trained
model ⇥o. In this training process, Fisher Infor-
mation Sampling is conducted to select the most
representative examples that can help to “remem-
ber” the parameters of the initial trained model.
In the retraining process, the renewed model is
learned based on Dynamical Weight Consolida-
tion, and evaluated on the training set consisted of
new classes and the old exemplars.

3.1 Fisher Information Sampling

The critical problem of exemplar set selection is:
what are good examples that can “maintain” the per-
formance of old tasks? The state-of-the-art method
iCaRL (Rebuffi et al., 2017) selects examples close
to mean feature representation, and CoNDA (Li
et al., 2019) follows the same scheme to domain
adaptation on text data. To utilize the advantage
of the mean feature and avoid catastrophic forget-
ting, iCaRL chooses k-nearest neighbors algorithm
as the classifier rather than deep neural networks,
although the latter is proved to be a much better
performer. Is there any exemplar selection method
that can utilize the powerful deep learning models
as the classifier, and at the same time, “remember”

the key information of old tasks?
Fisher information measures how much infor-

mation that an observable random variable carries
about the parameter. For a parameter ✓ in the net-
work ⇥ trained by data D, its Fisher information
is defined as the variance of the gradient of the
log-likelihood:

I(✓) = V ar (s(✓)) (1)
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Fisher information can be calculated directly, if the
exact form of log p(D|✓) is known. However, the
likelihood is often intractable. Instead, empirical
Fisher information Î(✓) is computed through data
di 2 D drawn from p(D|✓):

Î(✓) =
1

N

NX

i=1

✓
@

@✓
log p(di|✓)

◆✓
@

@✓
log p(di|✓)

◆T

.

(2)
From another point of view, when log p(D|✓) is

twice differentiable with respect to ✓, Fisher infor-
mation can be written as the second derivative of
likelihood:

I(✓) = �E


@
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�
. (3)

According to Equation 3, three equivalent indica-
tions can be made to a high value in Fisher infor-
mation I(✓):
• a sharp peak of likelihood with respect to ✓,
• ✓ can be easily inferred from data D,
• data D can provide sufficient information about

the correct value for parameter ✓.
Jointly thinking about the calculation form intro-
duced by empirical Fisher information (Equation
2) and the physical meaning of Fisher information
revealed by the second derivative form (Equation
3), we can find a way to measure how much in-
formation each data di carries to the estimation
of parameter ✓, which we call as empirical Fisher
information difference:

�Îi(✓) =
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@
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log p(di|✓)
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log p(di|✓)

◆T

.

(4)
Instead of simple mean feature vectors used in pre-
vious work (Rebuffi et al., 2017; Li et al., 2019),
we use the empirical Fisher information difference
to select exemplar set. Specifically, CCFI model
makes use of BERT (Devlin et al., 2019) for text



2672

classification. The base BERT model is treated as
feature extractor � : X ! H , which takes input
token sequences X , and outputs the hidden repre-
sentations H . To predict the true label Y , a softmax
classifier is added to the top of BERT:

p(Ŷ |X,⇥) = �(W T ·H) = �(W T ·�(X)), (5)

where W is the task-specific parameter matrix for
classification. The trained parameters ⇥ can there-
fore be split into the fixed feature extraction part
� and variable weight parameter W . In continual
learning setting, we denote W

k 2 R
h⇥k as the

most up-to-date weight matrix, where k is the num-
ber of classes that have been so far observed, and
h is the size of the final hidden state H .

Remember that, for the classification task, the
best parameters that can maximize the probabil-
ity of the data p(D|⇥) are also the parameters that
make predictions Ŷ closest to the ground truth label
Y . Therefore, we can take Equation 5 into Equa-
tion 4, in order to get the practical computation
of empirical Fisher information difference for data
di on parameter ✓. Since the parameters of feature
extractor � are fixed, only empirical Fisher infor-
mation difference of parameters in weight matrix
wj 2 W are calculated:

�Îi(wj) =

✓
@

@wj
log [�(W T · �(xi))]

(yi)
◆2

,

(6)
where the likelihood p(di|✓) is calculated via the
log-probability value of the correct label yi of in-
put xi. And the total empirical Fisher informa-
tion difference data di carrying is the sum over
all wj 2 W :

�Îi =
h⇥kX

j=1

�Îi(wj). (7)

Algorithm 1 describes the exemplar selecting pro-
cess. Within each class k, the samples top ranked
by empirical Fisher information difference are se-
lected as exemplars, till the targeted sample rate
(e.g., 1%) is met.

3.2 Dynamical Weight Consolidation
The main goal of retraining process is: how to
achieve good performance for both new and old
tasks? EWC (Kirkpatrick et al., 2017) is proved
to be a good performer that can balance the per-
formance of old and new task. However, rather

Algorithm 1: Construction of exemplar set
Input: original data stream Do

Input: trained neural network ⇥o = {�,W o}
Input: sample rate r

1 for each data di do
2 for each parameter wj 2W o do
3 calculate �Îi(wj) using Equation 6

4 calculate �Îi using Equation 7
5 for each class k do
6 rank the samples di by �Îi
7 select the top |Dk|⇥ r examples as Ek

Output: exemplar set E  {E1, ..., Ek}

than incremental learning problem studied in this
paper, EWC is designed for the tasks with same
class number but different in data distributions. Fur-
thermore, EWC requires careful hyperparameter
setting, which is unrealistic to be conducted by in-
experienced users. In this section, we introduce a
scheme named Dynamical Weight Consolidation,
which can avoid the requirement of such hyperpa-
rameter setting. Also, this scheme is demonstrated
to perform more stably than traditional EWC in the
experimental part.

Specifically, our loss function during the retrain-
ing process can be viewed the sum of two parts:
loss `n calculated by the correct class indicators of
new data and loss `e to reproduce the performance
of old model:

`n = �
X

y2Y n

y log ŷ, (8a)

`e = �
X

y2E
y log ŷ +

�

2
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Î(wj)(ŵ
n
j � w

o
j )

2
.

(8b)

The loss function `e can be further divided into two
parts: the cross entropy of exemplar set, and the
consolidation loss caused by modifying parameters
with high Fisher information. In traditional EWC
model, the weight � that balances cross entropy
and consolidation loss is a fixed value. In our CCFI
model, � is updated dynamically based on current
values of cross entropy and consolidation loss:

� =

66666664
lg

�
P

y2Y n
y log ŷ

h⇥(ko+kn)P
j=1

Î(wj)(ŵn
j � w

o
j )

2

77777775
. (9)

Note that, the Î(wj) is the element in the updated
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(a) Overall accuracy. (b) New task accuracy. (c) Old task accuracy.
Figure 1: Performance of class-incremental learning on the 73-domain dataset. The observable ratio of old data
is kept as 1%, 43 out of 73 domains are used for initial training, and then 30 domains are added one-by-one for
retraining.

parameter information table Tn. The details can be
found in the section 3.3.2.

3.3 Overall Process
This part describes the overall process of the CCFI
model. First we list the outputs of the old tasks, then
we introduce the detailed implements of retraining.

3.3.1 Initial training
After training the model with old data (ko classes),
the outputs of the old task include:1) trained model
⇥o; 2) exemplars E of old data, and 3) parameter
information table T

o. Each element in the param-
eter information table T

o is the empirical Fisher
information Î(wo

j ) of the old task, which can be
computed through Equation 2 during the initial
training process.

3.3.2 Retraining
The retraining process can be described as follows:
1. Load freeze feature extractor: The feature ex-

tractor � is kept unchanged, which means the
BERT encoder with transformer blocks and self-
attention heads are freezed.

2. Update variable weight matrix: To adopt the
new classes data X

n, the original variable
weight matrix W

ko is extended to W
ko+kn 2

R
h⇥(ko+kn), where the first ko columns are kept

the same with the original model and the new kn

columns are initialized with random numbers.
3. Update parameter information table: Similar

to variable weight matrix, parameter informa-
tion table T o is a matrix with dimension h⇥ ko.
To adopt the new data, it is extended to the
new matrix T

n with dimension h⇥ (ko + kn),
where the first ko columns are same with T

o and
the new kn columns are initialized with zero. In
this way, the new model can freely update the
the new kn columns to lower classification loss,

but will receive penalty when modifying impor-
tant parameters in the original ko columns.

4 Experiment

In this section, the CCFI model is first compared
with the state-of-the-art methods under a continual
setting. And further evaluations are conducted to
examine the effectiveness of the individual compo-
nents within CCFI model.

4.1 Experiment Settings
Datasets. We evaluated our proposed CCFI and
comparison methods on public available 150-class
dataset (Larson et al., 2019) and real-world (even
product) 73-domain dataset The details of datasets
can be found in Appendix A.1.
Baselines. iCaRL (Rebuffi et al., 2017) and
CoNDA (Li et al., 2019), are the closest continual
learning approaches to CCFI, which are designed
for the scenario with access to old data. We also add
fine-tune and the fixed feature method as baselines.
To make fair comparisons, CCFI and all the base-
lines use the same BERT backbone (Devlin et al.,
2019), and observe the same amount of old data in
all learning tasks. The implementation details can
be found in Appendix A.2.

In the main body of experiments, we report
the results with the framework consisted of BERT
backbone and one-layer linear classifier. We also
conducted experiments with a multiple-layer clas-
sifier, which can be found in Appendix A.3.

4.2 Quantitative Evaluation
Two key factors play in the performance of con-
tinual learning: 1) the number of new classes for
retraining, and 2) the amount of old observable
data. In this section, we first validate our model
through a class-incremental learning task, by keep-
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(a) Overall accuracy. (b) New task accuracy. (c) Old task accuracy.
Figure 2: Performance of class-incremental learning on the 150-class dataset. The observable ratio of old data is
kept as 10%, 90 out of 150 classes are used for initial training, and then 30 domains are added as additional classes.

ing the amount of old observable data fixed and
changing the number of new classes. We also study
the effects of different exemplars by keeping the
number of new classes unchanged but varying old
observable data.
Class-incremental Learning. In this part, we
conduct the class-incremental learning evaluation
on both 150-class and 73-domain dataset. Class-
incremental learning can be viewed as the bench-
mark protocol for continual learning with access
to old data (Rebuffi et al., 2017; Li et al., 2019).
Specifically, after the initial training, new domains
will be added in random order. After adding each
batch of new data, the results are evaluated on the
current data set, considering all classes have been
trained so far.

Figure 1 and Figure 2 show the performance of
class-incremental learning on 73-domain dataset
and 150-class dataset. CCFI outperforms other
methods in all tasks on both datasets. Specifically,
several observations can be made as follows.
• Overall performance. Under the same new

class number, CCFI always achieves the best
overall accuracy among all methods. And this
performance gap is enlarged with more new
classes added for retraining.

• Performance fluctuations. Fine-tune method is
unstable in performance. It is the second per-
former on the 73-domain dataset. However, it
quickly drops to almost zero and displays fluctu-
ations on the 150-class dataset, even if the exper-
iment conducted on the 150-class dataset is set
with a higher observable ratio of old data.

• Accuracy stage. Both the fixed feature method
and CoNDA display the pattern of “perfor-
mance stage” with more new classes added, and
CoNDA enjoys a “larger” stage than the fixed
feature method. For example, as shown in Figure
1a, CoNDA maintains stable performance with

5 to 12 newly added classes varying and then
suddenly drops.

• Predictable performance. Both CCFI and
iCaRL display linear patterns in overall perfor-
mance. It means the possibility to predict and es-
timate class-incremental learning performance,
which is a preferable feature in many applica-
tions. But iCaRL starts at a lower accuracy and
drops much faster than CCFI, probably because
it discards the neural network and tunes to the
simple k-nearest neighbors algorithm as the fi-
nal classifier. This phenomenon also confirms
that CCFI can enjoy the excellent performance
of neural network classifiers and overcome its
drawback of catastrophic forgetting.

4.2.1 Different Exemplar Size

To provide insight into the working mechanism of
models capable of continual learning, we conduct
experiments by varying the exemplar set’s size with
the number of new classes fixed. Figure 3 shows
the model performance under the effect of different
exemplar sizes by changing the observable ratios
of old data.
• Overall pattern. CCFI continues to beat base-

lines with obvious advantages in performance.
Especially, CCFI can achieve high accuracy with
a minimal amount (e.g.,1%) of old data, although
all methods can obtain performance improve-
ment by increasing the ratio of old observable
data. A dramatic performance gain can also be
observed from all models when the observable
ratio of old data increases from zero to non-zero
values. This phenomenon further confirms that
our experimental setting with limited access to
old data is practically useful.

• Consistent improvement. CCFI, CoNDA, and
iCarL obtain consistent improvements when in-
creasing the ratio of old observable data. How-
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(a) 73-domain dataset. (b) 150-class dataset.
Figure 3: Effect of Differential Exemplar on the 73-domain dataset and 150-class dataset. For the 73-domain
dataset, the observable ratio of old data is changed from zero to 5%, while the number of new classes is fixed: 68
domains are used for initial training, and five domains are used as the additional new classes. For the 150-class
dataset, the observable ratio of old data is changed from zero to 10%, while the number of new classes is fixed: 90
domains are used for initial training, and 30 domains are used as the additional new classes.

ever, the fixed feature method doesn’t get ap-
parent benefits with more old data. This phe-
nomenon indicates more observations of old data
are not the guarantee for better performance. And
it further confirms the necessity of developing
continual learning methods that can effectively
utilize the information learned from exemplars.

4.3 Ablation Study

Our proposed CCFI outperforms all the state-of-
the-art methods. To provide further insights into
its working mechanism, additional experiments are
conducted to examine individual aspects of CCFI.

4.3.1 Dataset and Experimental Setting

In order to avoid the occasionalities introduced
by data and model complexity, components are
examined on a synthetic data set by simple neural
networks with fixed weight initialization.

Specifically, we generate a synthetic dataset of
10 completely separable classes, and each class in-
cludes 1,000 examples. As the setting for continual
learning, we use six classes for initial training, and
four classes as additional new classes for retraining.
The neural network used in this section is a simple
network with two fully-connected layers. The first
layer is served as a feature extractor, which is fixed
after the initial training. The second layer is used
as a classifier that can be tuned during retrain. To
ensure other parts won’t affect the component to be
validated, the neural networks are initialized with
the same weight matrix generated by a fixed ran-
dom seed. With these settings, the results can best
reflect the true contribution of components.

4.3.2 Dynamical Weight Consolidation
First, we analyze the effectiveness of the dynamical
weight consolidation component. Figure 4 plots the
consolidation loss (second part in Equation 8b)
of model using traditional fixed weight and our
proposed dynamical weight consolidation. Several
observations can be made as follows.
• Fixed weight with big value. When the weight

(� in Equation 8b) is set by a big value (e.g., 1025

in Figure 4a), the consolidation loss is hard to
converge and suffers from fluctuations.

• Fixed weight with small value. Oppositely, if
the weight is initialized with a relatively small
value (e.g., 102 in Figure 4b), the consolidation
loss is too small to be effective. In fact, as can be
observed from Figure 4b, under the small weight
setting, the consolidation loss even experiences
an increase first before it slowly decreases. The
increase in consolidation indicates that the neu-
ral network tends to sacrifice consolidation loss
to lower the overall loss. Furthermore, this phe-
nomenon happens when the new model modifies
the important parameters learned by the original
model, which are supposed to be kept with the
least changes for the continual learning purpose.

• Dynamical weight consolidation. In contrast
to the unstable performance of the traditional
method, as shown in Figure 4c, consolidation
loss converges fast and stable by using our pro-
posed dynamical weight consolidation.

4.3.3 Fisher Information Sampling
The second set of experiments validate whether
Fisher information sampling is indeed beneficial
to the overall performance, compared with using
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(a) (b) (c)
Figure 4: Consolidation loss under different weight strategies. Figure 4a: Fixed weight strategy initiated by a big
value 1025. Figure 4b: Fixed weight strategy initiated by a small value 100. Figure 4c: Dynamic weight strategy
using weight calculated by Equation 9.

(a) Sampling rate 0.5% (b) Sampling rate 1%

(c) Sampling rate 2% (d) Sampling rate 5%
Figure 5: Accuracy of the old task during retraining.
Blue lines denote the accuracy using exemplars ran-
domly selected, while red lines reflect the performance
of exemplars generated by Fisher sampling.

randomly selected examples.
To examine how much improvement can be ob-

tained by Fisher sampling alone, we remove the
weight consolidation component in this section.
Thus the results reported here are outputs of the
simple two-layer model by using exemplars dur-
ing retraining. From another point of view, these
results show the amount of information the exem-
plars carrying from the original model.

Figure 5 plots the accuracy of the old task dur-
ing the retraining process. Although the network
is retrained with only a small set of old data, the
accuracy is computed over all old data to fully ex-
amine the quality of exemplars. Since the classes
in synthetic data are fully separable, the accuracy
will be 100% eventually. Therefore, the quality of
exemplars is demonstrated by the converging speed.
A faster converge speed provided by an exemplar
set is of great significance in three aspects:
• Better computational efficiency. With the

same amount of old data for retraining, the most

obvious benefit indicated by the faster converge
speed is, the better computational efficiency
since the model requires less retraining time.

• Less “damage” to original model. A faster con-
verge speed indicates less “damage” to the orig-
inal model. All weight consolidation schemes
act like “buffers” for the old parameter. With
these schemes, old parameters will slow down
their changes when new tasks come. To best cope
with the consolidation schemes, good exemplars
should achieve comparable good performance
with fewer retraining epochs, since more retrain-
ing epochs mean that the new model has modi-
fied more parameters from the original network.

• More information of original dataset. As men-
tioned above, under the synthetic data is fully
separable, the accuracy will be 100% eventually.
In this case, a faster speed can be “converted”
to more information, as experiments with more
data always require fewer epochs to reach the
states of convergence. For example, as shown in
Figure 5, much more epochs are needed under
sampling rate 0.5% than that of 1%.

Figure 5 shows, exemplars generated by Fisher
sampling can achieve much faster converge speed
than randomly selected exemplars, which proves
Fisher sampling alone can contribute contribution
effectively to the overall performance.

5 Conclusion

This paper proposes a hyperparameter-free model
called CCFI for continuous domain classification.
CCFI can record information of old models via
exemplars selected by Fisher information sampling,
and conduct efficient retraining through dynamical
weight consolidation. The comparison against the
existing models reveals CCFI is the best performer
under various experimental environments, without
additional efforts in hyperparameter searching.
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Finetune Feature Extraction CoNDA CCFI
classifier Initial training Retrain Initial training Retrain Initial training Retrain Initial training Retrain

One-layer 0.9671 0.7232 0.9671 0.8556 0.9566 0.9116 0.9614 0.9426
Two-layer 0.9592 0.2387 0.9592 0.6495 0.9522 0.9366 0.9541 0.9408

Table 1: Effect of classifier layer number on the 150-class dataset. 90 out of 150 classes are used for initial training,
and then additional data of 10 domains plus 10% of old data (90-class) are used for retraining.

Finetune Feature Extraction CoNDA CCFI
classifier Initial training Retrain Initial training Retrain Initial training Retrain Initial training Retrain

One-layer 0.9561 0.6322 0.9561 0.2839 0.9349 0.4375 0.9587 0.7378
Two-layer 0.9422 0.0751 0.9422 0.1193 0.9314 0.6868 0.9472 0.7134

Table 2: Effect of classifier layer number on the 73-domain dataset. 43 out of 73 classes are used for initial training,
and then additional data of 10 domains plus 1% of old data (43-class) are used for retraining.

A Appendix

A.1 Dataset Statistics

The general statistics of the 150-class dataset 1 and
73-domain dataset are listed below.
• 150-class dataset: balanced dataset with 150 in-

tents that can be grouped into 10 general do-
mains. Each intent has 100 training queries, 20
validation, and 30 testing queries.

• 73-domain dataset: imbalanced dataset with 73
domains. Each domain contains 512 examples
on average. However, this dataset is highly im-
balanced that the largest domain includes 1,771
examples, while the smallest domain only has 27
examples.

In both datasets, we split examples of each class
into 90% for training, 5% for validation, and 5%
for testing. All classification accuracy results are
evaluated on the test set.

A.2 Implement Details

Specific settings. In our implement of CoNDA, we
pick up hyperprameter �pos = 0.5 and �neg =
0.3. The fixed-feature method freezes 12 layers of
BERT after the initial training. Only the parameters
in the new classifier layer are allowed for tuning,
which in a way provides the function of continual
learning. Fine-tune method can modify parameters
in all 12 layers of BERT, which can be viewed as
the network with little prevention of catastrophic
forgetting.
General settings. Adam optimizer is used in all
learning processes, and the learning rate is al-
ways set to be 0.00001. All runs are trained on
4 V100 GPUs with a batch size of 32. Our exam-

1https://github.com/clinc/oos-eval

ple code can be found at: https://github.com/
tinghua-code/CCFI

A.3 Multi-layer Classifier Results
To examine the effect of classifier layer number
(amount of retrainable parameters), we run experi-
ments under two frameworks. The first framework
is the same as the one used in the main experimen-
tal part, which consists of a 12-layer BERT feature
extractor and a one-layer linear classifier. The sec-
ond framework keeps the BERT feature extractor
unchanged and adds one more layer to the classifier.
The results are listed in Table 1 and 2, and several
observations can be made as follows.
• CCFI still remains the best performer. Our pro-

posed CCFI model produces good performance
regardless of the number of layers in the classi-
fier. This phenomenon further confirms its effec-
tiveness and stability.

• CoNDA is the second-best performer in both
frameworks. Notably, the retraining performance
of CoNDA increases when we increase the num-
ber of layers.

• BERT finetune and feature extraction method
become worse when increasing the number of
layers. These two baselines are sensitive to the
structure of the classifier, which indicates the
superficial variations of pre-trained models are
not enough for continual learning.

• One-layer classifier works well enough with
BERT. As can be seen from Table 1 and 2, the ini-
tial training results of all methods degrade when
increasing the number of classifier layers. There-
fore, we report the results based on a one-layer
linear classifier in the main body of the paper.

https://github.com/tinghua-code/CCFI
https://github.com/tinghua-code/CCFI
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