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Abstract

Representation learning approaches for knowl-
edge graphs have been mostly designed for
static data. However, many knowledge graphs
involve evolving data, e.g., the fact (The Presi-
dent of the United States is Barack Obama) is
valid only from 2009 to 2017. This introduces
important challenges for knowledge represen-
tation learning since the knowledge graphs
change over time. In this paper, we present
a novel time-aware knowledge graph em-
bebdding approach, TeLM, which performs
4th-order tensor factorization of a Temporal
knowledge graph using a Linear temporal reg-
ularizer and Multivector embeddings. More-
over, we investigate the effect of the temporal
dataset’s time granularity on temporal knowl-
edge graph completion. Experimental results
demonstrate that our proposed models trained
with the linear temporal regularizer achieve
the state-of-the-art performances on link pre-
diction over four well-established temporal
knowledge graph completion benchmarks.

1 Introduction

Numerous large-scale knowledge graphs (KGs)
including DBpedia (Auer et al., 2007), Free-
Base (Bollacker et al., 2008) and WordNet (Miller,
1995) have been established in recent years. Such
KGs abstract knowledge from the real world into
a complex network graph consisting of billions of
triples. Each triple is denoted as (s, r, o), where s
is the subject entity, o is the object entity, and r is
the relation between the entities.

Knowledge graph completion is one of the main
challenges in the KG field since most KGs are in-
complete. To tackle this problem, knowledge graph
embedding (KGE) approaches embed entities and
relations into a low-dimensional embedding space

and measure the plausibility of triples by inputting
embeddings of the entities and their relation to a
score function (Wang et al., 2017). For instance,
ComplEx (Trouillon et al., 2016) has been proven
to be a highly effective KGE model, where entities
and relations are represented as complex embed-
dings, and the score of a triple (s, r, o) is computed
with the asymmetric Hermitian dot product.

Some KGs involve temporal facts, e.g., the
triple (Barack Obama, presidentOf, USA) is only
valid in a specific time period [2009, 2017].
Temporal KGs like Wikidata (Erxleben et al.,
2014), YAGO3 (Mahdisoltani et al., 2013) and
ICEWS (Lautenschlager et al., 2015) incorporate
time information into triples. Triples attached with
time information are represented as quadruples,
shaped like (s, r, o, T ), where T denotes the times-
tamp. Traditional KGE models disregard time in-
formation, leading to an ineffectiveness of perform-
ing link prediction on TKGs involving temporary
relations, e.g., (?, presidentOf, USA, 2010). Re-
cent researches show that the temporal knowledge
graph embedding (TKGE) models, which encode
time information in their embeddings, have better
performances on link prediction over TKGs than
traditional KGE models (Dasgupta et al., 2018;
García-Durán et al., 2018; Xu et al., 2019; Goel
et al., 2020; Lacroix et al., 2020).

In this paper, we present a novel temporal KG
embedding approach TeLM. We move beyond
the complex-valued representations and introduce
more expressive multivector embeddings from 2-
grade geometric algebras to model entities, rela-
tions, and timestamps for TKGE. At a high level,
our approach performs 4th-order tensor factoriza-
tion of a temporal KG, using the asymmetric geo-
metric product. The geometric product provides a
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greater extent of expressiveness compared to the
complex Hermitian operator.

Specially, each relation is represented as a pair
of dual multivector embeddings used to handle the
beginning and the end of the relation. In this way,
TeLM can adapt well to datasets where time anno-
tations are represented in the various forms: time
points, begin or end time, time intervals.

Moreover, we develop a new linear temporal reg-
ularization function for time representation learn-
ing which introduces a bias component in the tem-
poral smoothing function and empirically study the
effect of the time granularity for a TKG dataset on
the performance of our models.

Experimental results on four well-established
TKG datasets show that our approach outperforms
the state-of-the-art TKGE models, and the linear
temporal regularization function improves the per-
formance of our model compared to three common
temporal regularization functions.

2 Related Work

Tensor decomposition-based KGE approaches have
led to good results in static KG completion. Such
approaches (Yang et al., 2014; Trouillon et al.,
2016; Kazemi and Poole, 2018; Zhang et al., 2019;
Xu et al., 2020b) model a static KG as a low-
dimensional 3rd-order tensor and consider knowl-
edge graph completion as a tensor decomposi-
tion problem. A typical tensor decomposition
model ComplEx (Trouillon et al., 2016) has been
proven to be fully expressive with complex em-
beddings. Apart from tensor decomposition ap-
proaches, distance-based KGE models are also
commonly used for KG completion. However,
distance-based KGE models like TransE (Bordes
et al., 2013) and its variants (Wang et al., 2014;
Lin et al., 2015; Nayyeri et al., 2019, 2020) have
been proven to have limitations in modeling var-
ious relation patterns which does not lead to the
state-of-the-art results on the current benchmarks.

The above KGE approaches achieve satisfac-
tory results on link prediction over static KGs.
Recent research on TKG completion shows that
the inclusion of time information can improve
the performances of KGE models on TKGs.
TTransE (Leblay and Chekol, 2018), HyTE (Das-
gupta et al., 2018), ATiSE and TeRo (Xu et al.,
2019, 2020a) propose scoring functions which
incorporate time representations into a distance-
based score function in different ways. Further-

more, RTGE (Xu et al., 2020c) introduces the con-
cept of temporal smoothness to optimize and learn
the hyperplanes of adjacent time intervals jointly
on the basis of HyTE. García-Durán et al. (2018)
utilize recurrent neural networks to learn time-
aware representations of relations and use stan-
dard scoring functions from the existing KG em-
bedding model, e.g. TransE and DistMult. DE-
SimplE (Goel et al., 2020) uses diachronic entity
embeddings to represent entities at different time
steps and exploit the same score function as Sim-
plE to score the plausibility of a quadruple. TIME-
PLEX (Jain et al., 2020) and TComplEx (Lacroix
et al., 2020) extend the time-agnostic ComplEx
model in different ways. Among them, TCom-
plEx performs a 4th-order tensor decomposition
of a TKG using the quadranomial Hermitian prod-
uct which involves the embedding of timestamp
T . Similarly to RTGE, TComplEx also uses the
temporal smoothness to improve its performance.
Thanks to the strong expressiveness provide by the
complex embeddings and the 4th-order tensor de-
composition, TComplEx achieves state-of-the-art
results on TKG completion.

3 Geometric Algebras

In this section, we provides a brief introduction to
the 2-grade Geometric Algebra G2. The contents
are sufficient to understand the rest of the work.

Members of G2 are called 2-grade multivectors.
The multivector space G2 is build with vectors from
the vector space R2. Let {e1, e2} be an orthonor-
mal basis of R2. The multivector space G2 is based
on two rules: e1e1 = e2e2 = 1 and e1e2 = −e2e1.
The multivector space G2 is 4-dimensional with ba-
sis:

1 spans 0-vectors, scalars,

{e1, e2} spans 1-vectors, vectors, and

{e1e2} spans 2-vectors, bivectors.

A 2-grade multivector M ∈ G2 can be written as
M = a0 + a1e1 + a2e2 + a12e1e2. Noteworthly,
the unit bivectors from G2 has similar algebraic
properties as the imaginary unit i, i.e.,

(e1e2)2 = −e1e1e2e2 = −1 = i2.

Thus, the complex numbers C ∈ C can be embed-
ded into a subalgebra of G2 which are formed with
scalars and bivectors. In other words, a 2-grade
multivector M = a0 + a12e1e2 consisting of a
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scalar plus a bivector is isomorphic to a complex
number C = a0 + a12i.

The norm of a multivector M ∈ G2 is equal
to the root of the square sum of real values of
its all elements. Taking a 2-grade multivector
as an example, its norm is defined as: ||M || =√
a2

0 + a2
1 + a2

2 + a2
12.

Geometric algebra also introduces a new prod-
uct geometric product denoted as ×n where n is
the grade of multivectors, as well as three multi-
vector involutions, space inversion, reversion and
Clifford conjugation.

The geometric product of two 2-grade mul-
tivectors comprises of multiplications between
scalars, vectors and bivectors. The product of two
2-grade multivectors Ma = a0 + a1e1 + a2e2 +
a12e1e2 andMb = b0+b1e1+b2e2+b12e1e2 from
G2 is equal to

Ma ×2 Mb = a0b0 + a1b1 + a2b2 − a12b12

+ (a0b1 + a1b0 − a2b12 + a12b2)e1+

(a0b2 + a1b12 + a2b0 − a12b1)e2

+ (a0b12 + a1b2 − a2b1 + a12b0)e1e2,

(1)

The Clifford conjugation of a 2-grade multivec-
tor M is a subsequent composition of space inver-
sion M∗ and reversion M † as M = M †∗, where
space inversion M∗ is obtained by changing ei to
−ei and reversion is obtained by reversing the or-
der of all products i.e. changing e1e2 to e2e1. Thus,
the Clifford conjugation of an 2-grade multivec-
tor Ma = a0 +a1e1 +a2e2 +a12e1e2 is computed
asMa = a0−a1e1−a2e2−a12e1e2. Note that the
product of a multivector Ma and its conjugation
M2 is a scalar, i.e., given a 2-grade multivector
Ma = a0 + a1e1 + a2e2 + a12e1e2, we have

Ma ×2 Ma = a2
0 − a2

1 − a2
2 + a2

12, (2)

producing a real number.

4 Our Method

4.1 TeLM Model

Let E denote the set of entities,R denote the set of
relations. A TKG denoted as Ω is a collection of
numerous quadruples shaped like (s, r, o, T ) where
s, o ∈ E , r ∈ R and T denotes the timestamp. The
timestamp T can be represented as various forms,
e.g., a time interval [tb, te], a begin time [ts,−] or
an end time [−, te] and a time point t. A time point
t can be denoted as a special time interval [tb, te]

where t = tb = te. We extend the relation set R
of a TKG to a pair of dual relation sets, Rb and
Re. A relation rb ∈ Rb is used to handle the be-
gin of relation r, meanwhile a relation re ∈ Re
is used to handle the end of relation r. By doing
this, we score a fact (s, r, o, [tb, te]) as the mean
value of scores of two quadruples, (s, rb, o, tb) and
(s, re, o, te) which represent the begin and the end
of this fact respectively, i.e., f(s, r, o, [tb, te]) =
1
2(f(s, rb, o, tb) + f(s, re, o, te)). For a fact miss-
ing the begin time or the end time, e.g., (s, r, o,
[tb, −]) or (s, r, o, [−, te]), the score of this fact is
equal to the score of the quadruple involving the
known time, i.e., f(s, r, o, [tb,−]) = f(s, rb, o, tb),
f(s, r, o, [−, te]) = f(s, re, o, te). We construct a
set of time steps T for a TKG. For any time t ap-
pearing in the TKG, we can find a time step τ ∈ T
to represent t. The time set T changes with time
granularity of the TKG.

Our approach TeLM embeds a TKG in a
multiple-dimensional 2-grade multivector space
G2×k where k is the dimension of embeddings, and
score a quadruple with an element-wise geometric
product. TeLM embeds each entity, relation and
time step as a k-dimensional 2-grade multivector
embedding M where each component is a multivec-
tor, i.e., M = [M1, . . . ,Mk], i = 1, . . . , k,Mi ∈
G2. We can define the score function of TeLM as

f(s, r, o, t) = 〈Sc(Ms ⊗2 Mrτ ⊗2 Mo), 1〉, (3)

where τ is the time step corresponding to time t,
Mrτ = Mr ⊗2 Mτ , Ms, Mr, Mo and Mτ denote
the k-dimensional multivector embeddings of s,
r, o and τ respectively. ⊗2 denotes the element-
wise geometric product between 2-grade multi-
vector embeddings, e.g., Mr ⊗2 Mτ = [Mr1 ×2

Mτ1 , · · · ,Mrk ×2 Mτk ]. Sc(·) denotes the real-
valued vector of the scalar component of a multi-
vector embedding, 1 denotes a k × 1 vector hav-
ing all k elements equal to one, M denotes the
element-wise conjugation of multivectors i.e. M =
[M1, . . . ,Mk]. and 〈a, b〉 :=

∑
k akbk is the dot

product.
In our approach, the total number of parame-

ters increases linearly with embedding dimension
k, i.e., the space complexity of a TeLM model is
O(k). Since the score is computed with an asym-
metric quadranomial geometric product between
k-dimensional multivector embeddings, the time
complexity is also equal to O(k), which are the
same as some common KGE models, e.g., TransE
and DistMult.



2572

4.2 Loss Function
Using full multiclass log-softmax loss function and
N3 regularization has been proven to be helpful in
boosting the performances of tensor decomposition-
based (T)KGE models (Lacroix et al., 2018; Xu
et al., 2020b; Lacroix et al., 2020; Jain et al., 2020).
In this work, we follow such setting for TeLM and
utilize the reciprocal learning for simplifying the
training process.

For each relation r, we create an inverse relation
r−1 and create a quadruple (o, r−1, s, t) for each
training quadruple (s, r, o, t). At the evaluation
phase, queries of the form (?, r, o, t) are answered
as (o, r−1, ?, t). By doing this, the multiclass log-
loss of a training quadruple ω = (s, r, o, t) can be
defined as follows,

Lω = −log(
exp(f(s, r, o, t))∑

s′∈E exp(f(s′ , r, o, t))
)

− log(
exp(f(o, r−1, s, t))∑

o′∈E exp(f(o′ , r−1, s, t))
) (4)

+ λω
∑k

i=1
(||Msi ||33 + ||Mrτi ||33 + ||Moi ||33),

where λω denotes the N3 regularization weight.

4.3 Temporal Regularization
A common approach to leverage the temporal as-
pect of temporal graphs is to use time as a regu-
larizer to impose a smoothness constraint on time
embeddings. RTGE (Xu et al., 2020c) and TCom-
plEx (Lacroix et al., 2020) introduce the temporal
smoothness between hyperplanes and embeddings
of adjacent time steps, respectively, based on the
assumption that the neighboring time steps should
have close representations. The smoothing tempo-
ral regularizer is defined as,

LT =

nτ−1∑
i=1

||Mτi+1 −Mτi ||pp, (5)

where nτ is the number of time steps and p = 3 in
this work since we use N3 regularization.

Apart from the basic temporal smoothness, vari-
ous temporal regularization methods are used for
learning temporal embeddings. Singer et al. (2019)
add a rotation projection to align the neighboring
temporal embeddings. The loss of such projective
temporal regularization can be defined as,

LT =

nτ−1∑
i=1

||Mτi+1 −Mw ⊗2 Mτi ||pp, (6)

where Mw is the rotation embedding. Yu et
al. (2016) propose an autoregressive temporal reg-
ularizer based on the assumption that the change
of temporal embeddings fits an AR model. This
autoregressive temporal regularizer is defined as,

LT =

nτ−m∑
i=1

||Mτi+m−
m−1∑
j=0

Mj⊗2Mτi+j ||pp, (7)

where m = 3 is the order of the AR model
used in our work, and Mj denote the weight of
the embeddings of previous time steps which are
learned during the training process.

In this work, we develop a novel linear temporal
regularizer by adding a bias component between
the neighboring temporal embeddings, which can
be defined as,

LT =

nτ−1∑
i=1

||Mτi+1 −Mτi −Mb||pp. (8)

where Mb denotes the bias embedding which are
randomly initialized and then learned from the
training process. This linear regularizer promotes
that the difference between embeddings of two ad-
jacent time steps is smaller than the difference be-
tween embeddings of two distant time steps, i.e.,
||Mτi+m−Mτi || > ||Mτi+1−Mτi ||whenm� 1.
This formulation can be helpful for effectively clus-
tering and ordering time embeddings Mτi .

The total loss Lb of a training batch Ωb is the
sum of the quadruple loss and the temporal regular-
ization term, i.e.,

Lb =
1

b

∑
ω∈Ωb

Lω + λT LT . (9)

where λT denotes the coefficient of the temporal
regularizer. In this work, we use the linear temporal
regularizer for TeLMand compare its performance
with other three temporal regularizers.

5 Experiments

5.1 Datasets
To compare our model with baselines, we used
the following three datasets, namely ICEWS14,
ICEWS05-15, and YAGO11k, released by (Das-
gupta et al., 2018) and (García-Durán et al., 2018).

ICEWS14 and ICEWS05-15 are the two most
common TKG benchmarks extracted from the
large-scale event-based database, Integrated Crisis
Early Warning System (ICEWS) (Lautenschlager
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Dataset #Entities #Relations Period(year) #Train #Valid #Test
ICEWS14 6,869 230 201 72,826 8,941 8,963
ICEWS05-15 10,094 251 2005-2015 368,962 46,275 46,092
YAGO11k 10,623 10 -431-2844 16,406 2,050 2,051
Wikidata12k 12,554 24 19-2020 32,497 4,062 4,062

Table 1: Statistics of datasets.

et al., 2015). ICEWS is a repository that con-
tains political events with specific time annotations,
e.g. (Barack Obama, Make a visit, Ukraine, 2014-
07-08). It is noteworthy that time annotations in
ICEWS are all time points. ICEWS14 contains
events in 2014, and ICEWS05-15 contains events
occurring between 2005-2015. These two datasets
are filtered by only selecting the most frequently
occurring entities in the graph.

YAGO3 (Mahdisoltani et al., 2013) and Wiki-
data (Erxleben et al., 2014) are two temporal KGs
where time annotations are represented in various
forms, i.e., time points like [2003-01-01, 2003-01-
01], beginning or end time like [2003, ##], and
time intervals like [2003, 2005]. YAGO15k, Wiki-
data11k (García-Durán et al., 2018), YAGO11k
and Wikidata12k (Dasgupta et al., 2018) are sub-
sets of YAGO3 and Wikidata. In YAGO15k and
Wikidata11k, time information is represented as
either begin time or end time of each fact and some
facts do not include time annotations. In this paper,
we focus on performing link prediction on time-
aware facts where time annotations are represented
as various forms. Based on this consideration, we
use YAGO11k and Wikidata12k as datasets, where
all of facts involve time annotations.

The statics of datasets are listed in Table 1.
All datasets can be downloaded from https:
//github.com/soledad921/ATISE.

5.2 Time granularity

In the previous work (García-Durán et al., 2018;
Goel et al., 2020; Lacroix et al., 2020), the time
granularity of ICEWS14 and ICEWS05-15 was set
as 1 day. For YAGO11k and Wikidata12k, Das-
gupta et.al (2018) and Xu et.al (2019) dropped the
month and day information. They took care of the
unbalance that might occur in terms of number of
facts in a particular interval by clubbing neighbor-
ing years which are less frequently mentioned into
the same time step and applying a minimum thresh-
old of 300 facts per interval during construction.
To illustrate, in Wikidata12k, there were time steps
like [1596-1777], [1791-1815] with a large span as

the facts occurring on those years were relatively
less in KG. The years like 2013 being highly fre-
quent were self-contained. This setting was used to
alleviate the effect of the long-tail property of time
data in YAGO11k and Wikidata12k. As shown in
Figure 1, the time distribution of facts in ICEWS14
is relatively uniform, while the frequency distri-
bution of time data in YAGO11k has a long tail.

Figure 1: Time distribution of facts in TKGs.

In this work, we study the effect of time granular-
ity on TKG completion. For ICEWS datasets, we
test our model with different time units, denoted as
u, in a range of {1, 2, 3, 7, 14, 30, 90 and 365} days.
Dasgupta et al. (2018) and Xu et al. (2019) applied
a minimum threshold of 300 triples per interval dur-
ing construction for YAGO11k and Wikidata12k.
We follow their time-division approaches for these
two datasets and test different minimum thresholds,
denoted as tr, amongst {1, 10, 100, 1000, 10000}
for grouping years into different time steps. The
change of time granularity will reconstruct the set
of time steps T . To illustrate, the total number of
time steps in ICEWS14 is 365 with u = 1. When
the time unit u changes from 1 to 2, the set of time
steps T will be reconstructed and include 188 dif-
ferent time steps. In YAGO11k, there are totally
388 different time steps when tr = 1. Years like
-453, 100 and 2008 are taken as independent time
steps. When tr for YAGO11k rises to 100, the num-
ber of time steps drops to 118 and years between
-431 and 100 are clubbed into a same time step.

5.3 Evaluation Metrics
We evaluate our models on link prediction over the
above-mentioned TKG benchmarks. To perform

https://github.com/soledad921/ATISE
https://github.com/soledad921/ATISE
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ICEWS14 ICEWS05-15
Metrics MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

ComplEx-N3� .47 .35 .54 .71 .49 .37 .55 .73
TTransE* .255 .047 - .601 .271 .084 - .616

HyTE .297 .108 .416 .655 .316 .116 .445 .681
TA-TransE .275 .095 - .625 .299 .096 - .668

TA-DistMult .477 .363 - .686 .474 .346 - .728
DE-SimplE .526 .418 .592 .725 .513 .392 .578 .748

ATiSE .550 .436 .629 .750 .519 .378 .606 .794
TeRo .562 .468 .621 .732 .586 .469 .668 .795

TIME-PLEX(base) .589 .499 - .761 .632 .542 - .802
TComplEx .61 .53 .66 .77 .66 .59 .71 .80

TeLM .625 .545 .673 .774 .678 .599 .728 .823

Table 2: Link prediction results on ICEWS14 and ICEWS05-15. *: results are taken from (García-Durán et al.,
2018). �: results are taken from (Lacroix et al., 2020). Dashes: results are not reported in the responding literature.
Other results are taken from the original papers. The best results among all models are written bold.

a time-aware link prediction query (s, r, ?, T ), we
first generate the candidate list C = {(s, r, o′, T ) :
o′ ∈ E}. Following the time-wise filtered set-
ting used in most previous TKGE-related work,
e.g., TComplEx (Lacroix et al., 2020), we then re-
move the candidate quadruples appearing in the
train Ωtrain, valid Ωtrain and test set Ωtrain from the
candidate list. The filtered candidate list is denoted
as C = {ω : ω ∈ C, ω /∈ Ωtrain∪Ωvalid∪Ωtest}. We
get the rank of test quadruple (s, r, o, T ) among the
candidate quadruples C by sorting their scores. We
use Mean Reciprocal Rank (MRR) and Hits@N
as evaluation metrics. The Mean Reciprocal Rank
(MRR) is the average of the reciprocal values of all
computed ranks. The percentage of testing quadru-
ples which are ranked lower than N is considered
as Hits@N.

5.4 Baselines

We compare our models with the state-of-
the-art KGE model, ComplEx-N3 (Lacroix
et al., 2018) and several existing TKGE ap-
proaches including TTransE (Leblay and Chekol,
2018), HyTE (Dasgupta et al., 2018), TA-
TransE, TA-DistMult (García-Durán et al., 2018),
ATiSE (Xu et al., 2019), TeRo (Xu et al.,
2020a), DE-SimplE (Goel et al., 2020), TIME-
PLEX(base) (Jain et al., 2020) and TCom-
plEx (Lacroix et al., 2020). We do not use the
complete TIME-PLEX model and the TNTCom-
plEx model as baselines since the former incor-
porates additional temporal constraints for some
specific relations and the latter is designed for mod-
elling a KG where some facts involve time informa-
tion and others do not. Among the existing TKGE

approaches, TComplEx achieves state-of-the-art
results on TKG completion.

5.5 Experimental Setup

We implement our proposed model TeLM in Py-
Torch. We use the Adagrad optimizer with a learn-
ing rate of 0.1 to train both models. The batch size b
is fixed as 1000. The regularization weights λω and
λT are tuned in a range of {0, 0.001, 0.0025, 0.005,
0.0075, 0.01,. . . , 0.1}. To avoid too much mem-
ory consumption, we follow the setting in (Lacroix
et al., 2020) to make the maximum embedding no
more than 2000. The above experimental setup is
also used for evaluating TComplEx on YAGO11k
and Wikidata12k. Notably, the time granularity
parameters u and tr are also regraded as hyperpa-
rameters for TeLM as mentioned in the previous
section. The optimal hyperparameters for TeLM
are as follows: λω = 0.0075, λT = 0.01, u = 1
on ICEWS14; λω = 0.0025, λT = 0.1, u = 1 on
ICEWS05-15; λω = 0.025, λT = 0.001, tr = 100
on YAGO11k; λω = 0.025, λT = 0.0025, tr = 1
on Wikidata12k. The optimal embedding dimen-
sion is k = 2000 in all cases. The training
processes of a TeLM model with k = 2000 on
ICEWS14, YAGO11K and Wikidata12k all cost
less than half an hour with a GeForce RTX 2080
GPU. On ICEWS05-15, It takes about 2 hours to
train a 2000-dimensional TeLM model.

6 Results and Analysis

6.1 Link Prediction

Table 2 and 3 list the link prediction results of
our models and all baseline models on four TKG
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YAGO11k Wikidata12k
Metrics MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

ComplEx-N3† .181 .115 - .311 .248 .143 - .489
TTransE◦ .108 .020 .150 .251 .172 .096 .184 .329

HyTE† .136 .033 - .298 .253 .147 - .483
TA-DistMult† .155 .098 - .267 .230 .130 - .461

TeRo .187 .121 .197 .319 .299 .198 .329 .507
ATiSE .185 .126 .189 .301 .252 .148 .288 .462

TIME-PLEX(base) .184 .110 - .319 .324 .220 - .528
TComplEx4 .185 .127 .183 .307 .331 .233 .357 .539

TeLM .191 .129 .194 .321 .332 .231 .360 .542

Table 3: Link prediction results on YAGO11k and Wikidata12k. †: results are taken from (Jain et al., 2020). ◦:
results are taken from (Xu et al., 2019). 4: results are obtained from our experiments. Dashes: results are not
reported in the responding literature. Other results are taken from the original papers. The best results among all
models are written bold.

datasets. As shown in Table 2, TeLM surpasses all
baseline models on ICEWS datasets regarding all
metrics. Compared to TComplEx, TeLM obtains
the improvements of 1.5 MRR points on ICEWS14
and 1.8 MRR points on ICEWS05-15.

TA-TransE is not included in Table 3 since there
is no literature reporting the results of TA-TransE
on YAGO11k and Wikidata12k and the perfor-
mances of TA-TransE are worse than most baseline
models on other TKG datasets. The results of DE-
SimplE on YAGO11k and Wikidata12k can not be
obtained since DE-SimplE mainly focuses on event-
based datasets and cannot model time intervals or
time annotations missing moth and day information
which are common in YAGO and Wikidata. On
YAGO11k, TeLM outperforms all baseline mod-
els other than TA-TransE and DE-SimplE regard-
ing MRR, Hits@1 and Hits@10, though performs
slightly worse than TeRo on Hits@3. Addition-
ally, TeLM also achieves the state-of-the-art results
except the the Hits@1 of TComplEx is 0.1 point
higher than TeLM.

6.2 Effect of Linear Temporal Regularizer

We compare the performances of the TeLM model
trained with various temporal regularizers men-
tioned before, e.g., the smoothing temporal reg-
ularizer, the projective temporal regularizer, the 3-
order autoregressive temporal regularizer, and our
proposed linear temporal regularizer. As shown
in Figure 2, the TeLM model trained with the lin-
ear temporal regularizer outperforms the TeLM
model trained with other temporal regularizer on
ICEWS14. Compared to the smoothing tempo-
ral regularizer, the linear temporal regularizer im-
proves MRR by 0.2 point and Hits@1 by 0.3 point.

Figure 2: Results of TeLM trained with different tem-
poral regularizers on ICEWS14.

And the linear temporal regularizer is also less
sensitive to the temporal regularization weight λT
amongst the range of {0.001, ..., 0.1} since its bias
component is learned during the training process
and thus can be partly adaptive to different λT .

In Figure 3, In we show 2-d PCA projections of
the 2000-dimensional time embeddings of TeLM
models trained with/without a linear temporal regu-
larizer. Adjacent time embeddings of TeLM trained
without the temporal regularization naturally come
together. However, the time embeddings represent-
ing time points in different months are not well
divided. By contrast, time embeddings of TeLM
trained with the linear temporal regularizer are
forming good clusters in chronological order. Over-
all, the linear temporal regularizer provides good
geometric meanings of time embeddings by effec-
tively retaining the time sequence information in
temporal KGs and thus improves the performances
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Figure 3: The figure illustrates 2-d PCA projection of the 2000 dimensional time embeddings which are obtained
after training TeLM on ICEWS14 with a smoothing temporal regularizer and a linear temporal regularizer. Time
points in different months are represented with different colors

Figure 4: Results of TeLM with different time granularities and embedding dimensions on TKGs.

of TeLM.

6.3 Effect of Time Granularity and
Embedding Dimension

In this work, we analyze the effect of the change
of the time granularity on the performance of our
model. As mentioned in the previous section,
we adopt two different time-division approaches
for event-based datasets, i.e., ICEWS datasets,
and time-wise KGs involving time intervals, i.e.,
YAGO11k as well as Wikidata12k. As shown in
Figure 4(a), on ICEWS14 where time distribution
of facts is relatively uniform, the performance of
TeLM decreases with the time unit u increasing,
since representing time with a small time granular-
ity can provide more abundant time information.

On the other hand, Figure 4(b) illustrates that us-
ing the smallest time granularity is non-optimal
for YAGO11k due to the long-tail property of time
data. An appropriate minimum threshold used for
generating time steps, e.g., tr = 100, can improve
the link prediction results of TeLM by alleviating
the effect of the long-tail property of time data and
decrease the memory usage with fewer time steps.
Meanwhile, using overly coarse-grained time units
always leads to low performances since the time
information is not fully expressed in these cases.

Figure 4(c) and (d) show that the perfor-
mances on ICEWS14 and YAGO11k of TGe-
omE2 improve with the increasing of the
embedding dimension in a range of k =
{20, 50, 100, 200, 500, 1000, 2000}. TeLM with
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k = 500 has fewer adjustable parameters than
TComplEx with k = 1740 used in (Lacroix
et al., 2020) but performs closely (0.612 vs 0.61
on MRR). It will still be interesting to explore
the performances of TeLM models with higher-
dimensional embeddings, e.g., Ebisu et al. (2018)
use 10000-dimensional embeddings for TorusE, al-
though it would bring more memory pressure.

7 Conclusion

We propose a new time-aware approach for TKG
completion, TeLM, which performs 4th-order ten-
sor factorization of a temporal knowledge graph us-
ing multivector embeddings for knowledge graph
representation and a linear temporal regularizer
for learning time embeddings. Compared to real-
valued and complex-valued embeddings, multivec-
tor embeddings provides better generalization ca-
pacity and richer expressiveness with higher degree
of freedom for TKGE. Moreover, the linear tem-
poral regularizer provides better geometric mean-
ings for time embeddings and improves the perfor-
mances of TeLM compared to the temporal smooth-
ness. Additionally, two time division methods are
used for different types of TKG datasets to study
the effect of the time granularity on TKG comple-
tion. Our proposed models trained with the linear
temporal regularizer achieve the state-of-the-art
results on time-wise link prediction over four well-
known datasets involving various forms of time
information, e.g., time points, begin or end time,
and time intervals. Experimental results also show
that choosing a reasonable time division method
with an appropriate time granularity is helpful for
TKG completion.
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