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Abstract

The ease of access to pre-trained transformers
has enabled developers to leverage large-scale
language models to build exciting applications
for their users. While such pre-trained models
offer convenient starting points for researchers
and developers, there is little consideration
for the societal biases captured within these
model risking perpetuation of racial, gender,
and other harmful biases when these models
are deployed at scale. In this paper, we inves-
tigate gender and racial bias across ubiquitous
pre-trained language models, including GPT-2,
XLNet, BERT, RoBERTa, ALBERT and Dis-
tilBERT. We evaluate bias within pre-trained
transformers using three metrics: WEAT, se-
quence likelihood, and pronoun ranking. We
conclude with an experiment demonstrating
the ineffectiveness of word-embedding tech-
niques, such as WEAT, signaling the need for
more robust bias testing in transformers.

1 Introduction

Transformer models represent the state-of-the-art
for many natural language processing (NLP) tasks,
such as question-answering (Devlin et al., 2019),
dialogue (Smith et al., 2020), search results (Nayak,
2019), and more. Popular pre-trained models, such
as those available from Hugging Face (Wolf et al.,
2019), allow developers without extensive compu-
tation power to benefit from these models. How-
ever, it is important to fully understand the latent
societal biases within these black-box transformer
models. Without appropriately considering inher-
ent biases, development on top of pre-trained trans-
formers risks exacerbating and propagating racial,
gender, and other biases writ large.

Before transformers, word embedding models
such as Word2Vec (Mikolov et al., 2013) and
GloVe (Pennington et al., 2014) were shown to ex-
hibit systematic sexist (Bolukbasi et al., 2016) and
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racist (Manzini et al., 2019) biases. Initial investi-
gations into bias for transformers (Vig et al., 2020;
Basta et al., 2019; Bommasani et al., 2020) have
found that these new language models are similarly
biased. As transformers are increasingly common-
place, a more complete view of the inequalities,
biases, or under-representations within pre-trained
transformers becomes increasingly important.

Yet, discovering bias in transformer models has
proven to be more nuanced than bias-discovery in
word embedding models (Kurita et al., 2019; May
et al., 2019). Prior work on bias in modern trans-
former models has used only a single test or metric
at a time, which we show in this paper provides
an incomplete view of the problem. Furthermore,
we find evidence that certain tests are ill-suited
to understanding bias in transformer architectures,
supported by prior work (Blodgett et al., 2020).
Moreover, we show that employing multiple tests
is necessary for a full picture of the issue as no
single test is currently sufficient.

In the context of our work, “bias” refers specifi-
cally to the preference of a model for one gender or
race in the presence of an otherwise neutral context.
As an example, consider the sequence “[MASK]
wept upon arriving to the scene.” With no addi-
tional information, an equitable system would ex-
hibit no preference for female over male, or African-
American over European-American names; how-
ever, our results indicate that there is often a sta-
tistically significant preference (p < 0.0001) for
associating female and African-American identi-
fiers with being more “emotional.”

We provide two key contributions to understand-
ing and mitigating bias in contextual language mod-
els. First, we conduct a comprehensive, compar-
ative evaluation of gender and racial bias using
multiple tests for widely-used pretrained models.
Second, we construct a novel experiment for de-
biasing a contextual language model on a down-
stream task (Zellers et al., 2018). Our experiment



Model Name WC WM WS SEQA SEQF SEQS SEQJ PNA PNF PNS PNJ

Uncased:
BERT-Base 1.47 -0.33 -0.3 4.53∗ 3.70 2.53 4.02∗ 5.29∗ -3.31 -2.65 -1.62
BERT-Large 1.10 -0.55 -0.16 0.53 0.33 0.83 1.07 5.42∗ -3.15 -3.62 -2.11
BERT-LargeM 1.60 -0.24 -0.33 -2.90 -2.14 -2.39 -2.48 1.41 0.64 -0.71 1.38
DistilBERT 1.64 -0.37 -0.34 5.85∗ 6.20∗ 6.08∗ 6.08∗ 2.82∗ -4.71∗ -5.22∗ -5.06∗

ALBERT-Base 1.41 1.61 1.51 -3.98∗ -3.48 -3.27 -3.15 -19.4∗ -19.7∗ -19.3∗ -19.9∗

ALBERT-Large 1.46 1.42 1.05 -3.75 -2.79 -3.55 -3.61 0.96 -2.47 -2.94 -6.00∗

ALBERT-XLarge 1.52 1.54 1.55 1.47 2.02 1.37 0.99 3.90∗ 0.32 1.55 -4.56∗

ALBERT-XXLarge 1.47 1.38 1.39 -2.45 -1.39 -0.97 -1.44 5.89∗ 4.85∗ 2.30 -0.09
Cased:
BERT-Base 0.30 -0.04 0.57 8.83∗ 10.8∗ 10.6∗ 10.6∗ 4.17∗ 0.17 -1.65 -3.12
BERT-Large 0.53 -0.44 -0.05 5.17∗ 5.47∗ 4.50∗ 5.47∗ 1.44 -0.91 -1.66 -1.18
BERT-LargeM 0.18 0.23 -0.15 2.63 3.78 4.15∗ 3.93∗ 2.27 -0.55 -1.79 -3.21
DistilBERT 0.14 -0.27 0.57 11.1∗ 11.6∗ 11.7∗ 11.7∗ 2.15 -6.17∗ -7.11∗ -9.19∗

RoBERTa-Base 0.91 0.59 0.67 4.19∗ 4.59∗ 4.44∗ 4.36∗ -0.99 -4.80∗ -5.14∗ -4.10∗

RoBERTa-Large 0.56 0.64 0.68 3.95∗ 4.54∗ 5.41∗ 5.55∗ 2.09 -2.92 -1.01 -1.67
DistilRoBERTa 1.00 0.66 0.56 12.6∗ 12.6∗ 12.4∗ 12.6∗ -2.47 -8.55∗ -8.19∗ -8.28∗

GPT-2 0.78 -0.03 -0.31 -2.99 -1.95 -3.38 -2.55 1.88 2.31 2.45 1.50
GPT-2-Medium 0.24 -0.21 0.07 1.51 2.92 2.21 2.11 0.26 0.19 0.38 0.31
GPT-2-Large 0.54 0.04 -0.46 3.43 3.92∗ 3.02 3.72 -0.59 -0.50 -0.03 -1.37
GPT-2-XLarge 0.53 -0.23 0.13 3.18 4.06∗ 2.90 3.24 7.51∗ 1.35 2.96 6.33∗

XLNet-Base 0.60 0.69 0.36 1.75 2.63 1.99 1.08 0.46 0.96 1.07 1.00
XLNet-Large 0.16 0.10 0.42 2.34 2.94 5.74∗ 3.67 -0.01 3.09 1.01 0.64

Table 1: Bias scores along the gender dimension. Positive indicates bias towards Male; negative indicates bias
towards Female. Asterisks denote statistical significance α = 0.05/336.

refutes the validity of WEAT for contextual models,
signaling a need for new bias metrics.

2 Related Work

After the seminal work of Bolukbasi et al. (2016),
bias has been found ubiquitous in word embedding
models (Amorim et al., 2018; Brunet et al., 2018;
Rudinger et al., 2018; Zhao et al., 2017; Costa-jussà
et al., 2019; Silva et al., 2020). Researchers have
applied association tests between word embeddings
to look for inappropriate correlations. Caliskan
et al. (2017) introduce the Word Embedding As-
sociate Test (WEAT) to estimate implicit biases
in word embeddings by measuring average cosine
similarities of target and attribute sets. The WEAT
has been extended into a sequence test (May et al.,
2019), though the efficacy of both tests remains in
question for transformers (Ethayarajh et al., 2019;
Kurita et al., 2019).

Prior work has also devised methods to mea-
sure contextual bias. Kiritchenko and Moham-
mad (2018) introduce the Equity Evaluation Cor-
pus (EEC), which includes templated sequences
such as “〈TARGET〉 feels 〈ATTRIBUTE〉,” where
gendered or racial tokens are the “targets” and emo-
tional words are the “attributes.” The average of the
difference in likelihoods for target sets constitutes
the bias score. We leverage this in our work as the
sequence ranking test (SEQ).

Kurita et al. (2019) and Vig et al. (2020) devise

a pronoun-ranking test for BERT by comparing
relative likelihoods of target words. Rather than
sequence likelihood, the authors instead measure
contextual likelihood, which helps to control for
a model’s overarching bias. We extend this work,
applying the pronoun-ranking test (PN ) to score
the most commonly used transformer models and
contextualizing the results with SEQ scores.

Investigations of biases in contextual language
models, e.g. transformers, have yielded mixed re-
sults. Basta et al. (2019) found that BERT and GPT
exhibit a reduced bias-dimension relative to word
embedding models, whereas Kurita et al. (2019)
found that BERT is biased and that conventional
tests, e.g. WEAT, are inappropriate. Recent work
has also looked to identify bias by crowdsourcing a
sterotype dataset (Nadeem et al., 2020; Zhao et al.,
2018; Nangia et al., 2020). These approaches de-
velop a bias analysis metric by empirically comput-
ing a pretrained model’s preference towards stereo-
typed sentences. However, such work is specifi-
cally focused on showcasing the effectiveness of
these specific datasets for identifying bias. Our
results paint a more complete picture, providing in-
sight into specific aspects of gender and racial bias
and unifying disparate viewpoints of prior work.
Furthermore, we present a targeted investigation
into the relevance of the WEAT for transformers.



Model Name WR SEQA SEQF SEQS SEQJ PNA PNF PNS PNJ

Uncased:
BERT-Base 0.66 -10.8∗ -12.7∗ -12.3∗ -13.5∗ -0.74 1.45 1.70 3.82∗

BERT-Large 0.02 6.91∗ 8.11∗ 4.40∗ 6.34∗ 0.90 2.82 2.73 3.61
BERT-LargeM 0.44 -13.7∗ -14.3∗ -13.6∗ -13.4∗ 5.13∗ 11.4∗ 9.34∗ 5.65∗

DistilBERT 1.15 -21.3∗ -22.4∗ -22.2∗ -22.4∗ 5.84∗ 6.80∗ 13.5∗ 14.8∗

ALBERT-Base 0.45 -18.4∗ -18.2∗ -17.8∗ -17.6∗ 17.5∗ 17.4∗ 17.5∗ 17.6∗

ALBERT-Large 0.62 -16.9∗ -19.2∗ -19.7∗ -19.6∗ 19.0∗ 19.3∗ 20.0∗ 20.0∗

ALBERT-XLarge 0.85 0.26 -1.53 0.72 -1.80 7.87∗ 8.81∗ 6.68∗ 12.89∗

ALBERT-XXLarge 0.48 -5.05∗ -5.98∗ -5.43∗ -5.21∗ 5.24∗ 6.18∗ 5.97∗ 7.26∗

Cased:
BERT-Base -0.22 -22.4∗ -24.3∗ -24.2∗ -23.6∗ 9.7∗ 10.3∗ 10.4∗ 13.4∗

BERT-Large 0.17 -18.9∗ -20.6∗ -18.6∗ -20.8∗ 1.61 2.31 2.65 2.30
BERT-LargeM 0.003 -23.8∗ -27.4∗ -25.6∗ -23.9∗ 6.81∗ 9.63∗ 11.69∗ 7.74∗

DistilBERT -0.03 -28.7∗ -29.8∗ -29.1∗ -29.1∗ 15.5∗ 13.9∗ 19.3∗ 17.4∗

RoBERTa-Base 0.22 -20.8∗ -20.7∗ -20.5∗ -20.2∗ 2.81 5.26∗ 2.77 5.09∗

RoBERTa-Large 0.94 -21.2∗ -22.0∗ -22.6∗ -21.9∗ 2.18 4.37∗ 3.75 5.33∗

DistilRoBERTa 0.14 -11.17∗ -10.8∗ -10.6∗ -10.5∗ 6.94∗ 5.00∗ 7.19∗ 11.7∗

GPT-2 0.46 -2.25 -0.95 -0.21 0.29 -0.06 0.29 -0.18 -0.18
GPT-2-Medium 0.53 -4.31∗ -3.81∗ -3.00 -2.52 -0.09 -0.38 -0.13 0.08
GPT-2-Large 0.33 -1.66 -1.00 -0.09 -0.17 -5.78∗ -2.51 -2.41 -1.59
GPT-2-XLarge -0.16 -0.81 -0.27 0.56 0.88 -18.84∗ -9.83∗ -2.57 -5.12∗

XLNet-Base -0.17 -2.84 -4.05∗ -3.22 -4.73∗ 0.58 0.71 1.03 0.67
XLNet-Large -0.03 -15.3∗ -16.6∗ -15.9∗ -12.2∗ 3.01 2.46 1.70 4.36∗

Table 2: Bias scores along the racial dimension. Positive indicates bias towards European-American; negative
indicates bias towards African-American. Asterisks denote statistical significance at α = 0.05/336.

3 Approach and Results

We apply three tests (i.e. the WEAT (W ), sequence
likelihood (SEQ), and pronoun ranking (PN ))
to popular pre-trained transformers from Hugging
Face (Wolf et al., 2019), including the cased and
uncased1 BERT and DistilBert models, the un-
cased ALBERT models, and the cased RoBERTa,
DistilRoBERTa, GPT-2, and XLNet models. For
gender, we compare the WEAT tests for career
(WC), math (WM ), and science (WS), against the
sequence likelihood and pronoun ranking tests for
anger (SEQA and PNA), fear (SEQF and PNF ),
sadness (SEQS and PNS), and joy (SEQJ and
PNJ ) evaluated between male and female target
words. For race, we use the only WEAT avail-
able for race (WR) as well as the same SEQ and
PN tests evaluated between African-American and
European-American targets.

The results of our WEAT, sequence likelihood,
and pronoun ranking bias tests are presented in Ta-
bles 1 and 2. The quantity listed for each model/test
pair is the effect size for that two-sided t-test test un-
der they hypothesis that there is a significant differ-
ence between the mean likelihoods across the two
groups. Using multiple tests is important; many
models exhibit systematic preference for one target
according to SEQ, while the PN reveals contex-

1Casing is a design decision affecting the tokenization for
a model. For all models, we test every size available.

tual preference in a different direction. The models
often assign higher likelihood to male sequences,
but when specifically considering the subject of
an emotional sentence, female subjects are more
likely. To address inherent model bias, it is impor-
tant to understand how this bias manifests which
we discuss below.

Model size and bias – Examining the SEQ and
PN results for distilled models DistilBERT and
DistilRoBERTa, we see that these models almost
always exhibit statistically significant bias and that
the effect sizes for these biases are often much
stronger than the original models from which they
were distilled (BERT and RoBERTa). This finding
is in line with contemporary work by Hooker et al.
(2020), who show that distillation in vision models
disproportionately harms underrepresented groups.
We show that the same is true for transformers.

The opposite is not true: increasing model capac-
ity does not remove bias. While prior work (Gilburt,
2019; Tan and Celis, 2019) has reported increasing
model size correlates with decreasing bias, we find
that this is not always the case (see GPT2-Base
vs. GPT2-Large), as supported by Nadeem et al.
(2020) in stereotype-likelihood tests.

Tokenization matters – We consider four archi-
tectures that come in cased and uncased versions,
differing only in tokenization BERT-Base, BERT-
Large, BERT-LargeM, and DistilBERT. Across



Model Name WC WM WS WR SEQA SEQF SEQS SEQJ PNA PNF PNS PNJ

Gender:
SWAG-Only 0.91 0.63 0.70 – 14.4∗ 14.2∗ 14.8∗ 16.5∗ -10.6∗ -7.98∗ -10.15∗ -0.13
+WEAT -0.006 0.003 0.0002 – -7.74∗ -9.95∗ -10.9∗ -11.4∗ -37.3∗ -36.8∗ -37.9∗ -37.77∗

Race:
SWAG-Only – – – 0.21 -13.5∗ -15∗ -14.6∗ -13.3∗ 0.03 -2.70 -1.30 3.89∗

+WEAT – – – -0.002 -8.62∗ -9.85∗ -9.02∗ -7.95∗ 2.57 5.86∗ 6.99∗ 10.6∗

Table 3: Positive indicates bias towards European-American or male; negative indicates bias towards African-
American or female. Asterisks denote statistical significance at α < 0.05/72. Lowest effect sizes are bold.

race and gender, the uncased models exhibit less
bias and greater diversity for names and pronouns.

The effects of tokenization may also play a
role in WEAT’s underperformance, as the mean-
embeddings used to estimate a WEAT effect do
not accurately reflect the expected words for the
test. For example, under the ALBERT tokenizer,
“Nichelle” becomes “niche” and “lle”, two sub-
words which may not average out to a name.

WEAT is inconsistent – We find that WEAT is a
poor predictor of contextual bias and an internally-
inconsistent metric. The WEAT for math (WM )
and science (WS) use words which are very similar
and, at times, even overlapping. As such, we would
expect the WM and WS scores to indicate bias in
the same direction for every model. Instead, we see
that the WEAT results show differing magnitudes
and occasionally point in different directions.

Given the inconsistency of WEAT and its poor
correlation with SEQ and PN effects, we propose
a debiasing scheme using the WEAT effect. If neu-
tralizing the WEAT effect also neutralizes SEQ
and PN bias, then the WEAT remains a useful
test for transformers. However, if neutralizing the
WEAT has no effect on the SEQ and PN scores,
we can conclude that the WEAT is simply not ap-
propriate for contextual models.

4 Debiasing Transformers with WEAT

We now employ WEAT scores as a loss regularizer
to “de-bias” a RoBERTa model being trained on the
Situations With Adversarial Generations (SWAG)
dataset, a commonsense inference dataset in which
each sample is a sentence with four possible end-
ings (Zellers et al., 2018). The SWAG training
objective is to minimize the model’s cross-entropy
loss, LMC , for choosing the correct ending. In ad-
dition to this loss, we incorporate WEAT scores as
a regularizer, as shown in Equation 1. Here, λw is
a hyper-parameter, and WM ,WR,WC ,WS are the
WEAT scores for each category. We hypothesize
that, even if a model is able to minimize WEAT

effects, the model will remain significantly biased.

L = LMC + λw(WM +WR +WC +WS) (1)

4.1 Results

We measure the accuracy of our fine-tuned models
on SWAG and find that the debiased model exhibits
competitive accuracy. The WEAT-regularized
model achieves 82.2% accuracy, compared to
82.8% for a human (Zellers et al., 2018) and 83.3%
for the best RoBERTa-base model.

The results from the WEAT regularization are in
Table 3. Table 3 shows that fine-tuning with SWAG
alone (without any bias regularizers) yields signifi-
cant bias toward male and African-American SEQ
tests (8/8 attribute tests show significance), and fe-
male and European-American for PN tests (4/8
attribute tests show significance). Furtheremore,
we find that even though our “de-biased” model
shows ≈ 0 effect for WEAT, Table 3 shows that
this model remains significantly biased on both the
SEQ and PN tests. De-biasing with WEAT has
exaggerated gender bias for the PN test compared
to the SWAG-only model, whereas for the SEQ
tests the bias has been flipped to being significantly
biased towards female. Tests for racial bias are like-
wise reflective of this trend. These results demon-
strate that the WEAT is an insufficient measure of
bias. Neutralizing word-piece embeddings does
not remove the contextual aspect of bias learned by
RoBERTa and may even exacerbate biases.

4.2 Discussion

Our results demonstrate that bias is a significant
problem for nearly all pre-trained models. Unfortu-
nately, the problem is not simply solved by using
larger networks or more data. As shown in Tables 1
& 2, the approach with the most data, RoBERTa, is
among the most consistently biased transformers in
our study, while the largest model, GPT-2 XLarge,
exhibits greater bias than GPT-2 Base. Tokeniza-
tion also has an immense impact on the equitable
use of language models, and is often overlooked



within discourse surrounding bias. We encourage
the community to consider these effects on minor-
ity communities whose names or vernacular will
be distorted more than majority communities due
to the nature of word-piece tokenization.

Developing tests that can contextually identify
bias within transformers remains vital. Our “de-
biasing” results show that relying on ill-fitting tests
can lead to harmful false positives. We show that
“successfully” de-biasing a model via a WEAT reg-
ularizer results in continued or even amplified bias
on both the SEQ and PN tests, despite that near-
zero WEAT effects. We conclude that contextually-
and globally-sensitive bias tests are needed for fu-
ture debiasing research, as mitigating bias accord-
ing to WEAT fails to truly neutralize pre-trained
transformer models.

5 Conclusion

We systematically quantify bias in commonly used
pre-trained transformers, presenting a unified view
of bias in the form of gender and racial likelihoods
across a range of popular pre-trained transformers.
We analyze factors influencing bias in transform-
ers using three tests, SEQ, PN , and WEAT , and
demonstrate the inadequacies of word-embedding
neutralization for contextual models. We call for fu-
ture work to develop robust bias tests and carefully
consider the ramifications of design choices.

Ethics & Impact Statement

Our work targets the subject of inherent, societal
biases captured by large pre-trained transformer
models which are publicly available and widely
used. Our results indicate that bias is a significant
problem for the community to tackle, and that all
pre-trained models currently exhibit some form of
biased prediction of gendered or racial tokens in
otherwise neutral contexts.

Beneficiaries – Our work seeks to clarify the
ways in which commonly used pre-trained trans-
formers exhibit biases. Practitioners building on
the power of pre-trained transformers would benefit
from knowing, the inherent biases of each model,
and thereby taking appropriate steps to ensure that
their downstream task is as neutralized as possible.
Further, we hope to contribute knowledge which
will eventually make all NLP systems more equi-
table for all people.

Negatively affected parties – Our work does
not investigate bias in many other areas, from racial
groups outside of European-American/African-
American to religious biases or any other inappro-
priate societal prejudices. Unfortunately, there are
few widely-accepted target-set identifiers for NLP
research into these biases, and even those which do
exist may be poor predictors of underlying demo-
graphics (such as the use of first names for racial
categorization).

Limitations in scope – As discussed above, our
work omits investigations into groups which lack
widely-accepted target sets (identifying nouns or
pronouns). Even for target sets which do exist,
such as Male/Female, target sets may be imperfect.
For example, many gendered target sets use first
names as identifiers, even though there is no gender
inherently tied to a name.
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