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Abstract

Many NLP models operate over sequences of
subword tokens produced by hand-crafted to-
kenization rules and heuristic subword induc-
tion algorithms. A simple universal alterna-
tive is to represent every computerized text
as a sequence of bytes via UTF-8, obviat-
ing the need for an embedding layer since
there are fewer token types (256) than dimen-
sions. Surprisingly, replacing the ubiquitous
embedding layer with one-hot representations
of each byte does not hurt performance; ex-
periments on byte-to-byte machine translation
from English to 10 different languages show
a consistent improvement in BLEU, rivaling
character-level and even standard subword-
level models. A deeper investigation reveals
that the combination of embeddingless models
with decoder-input dropout amounts to token
dropout, which benefits byte-to-byte models in
particular.1

1 Introduction

Neural NLP models often operate on the subword
level, which requires language-specific tokenizers
(Koehn et al., 2007; Adler and Elhadad, 2006) and
subword induction algorithms, such as BPE (Sen-
nrich et al., 2016; Kudo, 2018). Instead, working
at the byte level by representing each character as
a variable number of Unicode (UTF-8) bytes, does
not require any form of preprocessing, allowing
the model to read and predict every computerized
text using a single vocabulary of 256 types. While
previous work found that byte-level models tend
to underperform models based on subword tokens
(Wang et al., 2019), byte-based models exhibit an
interesting property: their vocabulary is smaller
than the number of latent dimensions (256 < d).
In this work, we demonstrate that this property
allows us to remove the input and output embed-
ding layers from byte-to-byte translation models,

1Our code is publicly available at: https://github.
com/UriSha/EmbeddinglessNMT

and in doing so, improve the models’ performance
consistently.

We replace the dense trainable embedding ma-
trix with a fixed one-hot encoding of the vocabulary
as the first and last layers of a standard transformer
model. Machine translation experiments on 10 lan-
guage pairs show that byte-to-byte models without
an embedding layer achieve higher BLEU scores
than byte-based models with parameterized em-
beddings (+0.5 on average), thus closing the perfor-
mance gap with subword and character models. We
observe this result consistently throughout a wide
variety of target languages and writing systems.

The fact that removing parameters improves per-
formance is counter-intuitive, especially given re-
cent trends in machine learning that advocate for
increasingly larger networks. We further investi-
gate why embeddingless models yield better re-
sults and find implicit token dropout (commonly
referred to as “word dropout”) as the main source
of that boost. While prior work shows that ran-
domly masking tokens from the decoder input can
improve the performance of language generation
models (Bowman et al., 2016), we find that this
effect is amplified when operating at the byte level.
Overall, our results suggest that, even without addi-
tional parameters, byte-based models can compete
and potentially outperform subword models, but
that they may require alternative optimization tech-
niques to achieve that goal.

2 Byte Tokenization

Modern software typically represents text using
Unicode strings (UTF-8), which allows one to en-
code virtually any writing system using a variable
number of bytes per token; English characters are
typically represented by a single byte, with other
writing systems taking two (e.g. Arabic), three (e.g.
Chinese), or four (e.g. emojis) bytes per character.
By treating each byte as a separate token, we can
encode any natural language text using a single uni-

https://github.com/UriSha/EmbeddinglessNMT
https://github.com/UriSha/EmbeddinglessNMT
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Original Text Будь здоров.
Subwords (BPE) Бу@ дь здо@ ров .
Characters Б у д ь з д о р о в .
Bytes (UTF-8) D0 91 D1 83 D0 B4 D1 8C 20 D0 B7 D0 B4 D0 BE D1 80 D0 BE D0 B2 2E

Figure 1: Subword (BPE), character, and byte tokens of the string “Будь здоров.” UTF-8 uses two bytes to
represent each character in the Cyrillic script, making the byte sequence longer than the number of characters.

versal vocabulary of only 256 token types. More-
over, byte tokenization obviates the need for any
heuristic preprocessing, such as splitting spaces,
punctuation, and contractions. Figure 1 illustrates
subword, character, and byte tokenization.

3 Embeddingless Model

Our model is based on the original transformer
encoder-decoder (Vaswani et al., 2017) with one
main difference: we eliminate the input and output
token embedding layers. These layers typically use
a common parameter matrix E ∈ R|V |×d that con-
tains a d-dimensional embedding vector for each
source and target vocabulary item in V .2

Instead, we use a fixed one-hot representation
of our byte vocabulary. For instance, the character
“R” could be represented as a vector with 1 at di-
mension 82 and 0 elsewhere. Since it is standard
practice to use representations of more than 256
dimensions, every possible byte can be represented
by such one-hot vectors. To predict the next token
for a decoder input of n tokens, we take the output
of the last transformer decoder layer, Y ∈ Rn×d,
and apply a softmax across each vector’s dimen-
sions. Formal expressions of the input and output
of our model are detailed in Figure 2.

Omitting the embedding layer reduces the num-
ber of parameters by a factor of O(|V | · d).3 We do
add a total of 3 parameters to scale the encoder and
decoder’s (one-hot) inputs and the decoder’s output
(before the softmax). We initialize all three with√
d, akin to the constant scaling factor typically

applied to the input embedding layer in transform-
ers. Despite the reduction in model size, memory

2One could argue that the first layer of each transformer
stack (the key, query, and value matrices) qualify as some
form of multi-head multi-purpose embedding layer, where
each token type is effectively represented by 3h different
vectors (h being the number of attention heads) in the encoder
and 3h additional vectors in the decoder. This is very different
from the standard notion of embeddings, where each token
type has a universal representation that can be shared across
the encoder input, decoder input, and decoder output.

3For subword tokenization, this accounts for a significant
portion of the parameter budget, but for byte-based models
the added parameter cost is negligible.

Original Embeddingless

Input XE + Pn X + Pn

Output softmax|V |
(
Y E>) softmaxd (Y )

Figure 2: The main differences between the original
encoder-decoder model and the new embeddingless
model. X ∈ Rn×|V | is the one-hot representation of n
input tokens (bytes); Pn are the positional embeddings
up to length n.

consumption increases when working on longer se-
quences, since the space complexity of transform-
ers is O(n2+n ·d). In our case, d (512) is typically
larger than n (see Table 1), entailing an increase
in memory consumption that is roughly linear in
the sequence length n, and a similar decrease in
processing speed when compared to character and
subword models.

In addition to replacing the embedding layers,
we also remove the dropout layers on the encoder
input and decoder output, since zeroing out entries
of one-hot vectors is equivalent to randomly mask-
ing out input tokens or deleting significant parts
of the model’s predicted distribution. The dropout
on the decoder input (prefix of the target fed with
teacher forcing) remains intact at this point and is
applied throughout our main experiments. Further
analysis shows that decoder input dropout is in fact
a significant source of performance gains, which
we further investigate in Section 6.

4 Experiments

We train byte-tokenized embeddingless models for
machine translation and compare them to standard
byte, character, and subword-based models on a
diverse set of languages. We adopt a standard ex-
perimental setup that was designed and tuned for
the subword baseline and limits our hyperparame-
ter tuning to dropout probabilities.

Datasets We use the IWSLT4 datasets of English
TED talks translated into other languages (Cettolo

4All languages used the IWSLT2014 data except for Viet-
namese (IWSLT2015) and Japanese (IWSLT2017).
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Language ID #Sentences Average length
BPE Char Byte

Chinese zh 166k 20.9 32.4 90.1
Spanish es 167k 25.4 100.2 100.2
Arabic ar 166k 24.4 79.3 142.2
Russian ru 164k 26.3 93.9 169.7
German de 159k 26.6 106.5 107.9
Japanese ja 215k 20.9 42.4 115.3
Turkish tr 143k 24.1 93.6 102.0
Vietnamese vi 124k 26.9 99.8 132.5
Farsi fa 100k 27.4 93.1 165.9
Hebrew he 171k 23.0 72.8 129.2
English en - 25.6 97.0 97.1

Table 1: Languages from the IWSLT dataset, along
with the number of sentence pairs in the training set and
the average sequence length per tokenization method.

et al., 2014), selecting 10 additional languages with
varying characteristics5 (see Table 1). For each one,
we train translation models from English to the tar-
get language (the original direction of translation
), and also in the opposite direction for complete-
ness. We clean the training data for every language
pair by first removing sentences longer than 800
bytes, and then the sentences with the largest byte-
length ratio between source and target such that we
remove a total of 5% of the training examples.

Baselines In addition to the byte-based embed-
dingless transformer, we train standard transformer
encoder-decoder models as baselines, each one us-
ing a different tokenization scheme: subword, char-
acter, and byte. For subword tokenization, we apply
the Moses tokenizer (Koehn et al., 2007) followed
by BPE (Sennrich et al., 2016). Both character and
byte tokenizations apply no additional preprocess-
ing at all and include whitespaces as valid tokens.

Hyperparameters The code for our model and
baselines is based on Fairseq (Ott et al., 2019) im-
plementation of the transformer encoder-decoder
model. During preprocessing we use 10,000 merg-
ing steps when building the BPE vocabulary for
every language pair. The vocabularies and embed-
dings are always shared among source and target
languages. In every transformer we use 6 encoder
and decoder layers, 4 attention heads, a hidden di-
mension of 512, and a feed-forward dimension of
1024. We optimize with Adam (Kingma and Ba,
2014), using the inverse square root learning rate
scheduler with 4000 warmup steps and a peak learn-

5While in this work we prioritized language and writing
system diversity, there is room to test embedingless models
on larger datasets in future work.

Benchmark Embedding-based Models Embed-less
Src Tgt Subword Char Byte Byte

en zh 19.9 20.8 20.2 21.0
en es 36.8 36.3 36.3 36.8
en ar 12.5 12.5 12.3 12.9
en ru 18.1 17.6 17.4 18.2
en de 29.4 28.6 28.7 29.1
en ja 12.0 12.5 12.5 13.1
en tr 13.6 13.7 13.8 14.1
en vi 29.7 28.2 28.0 28.7
en fa 11.5 11.7 12.0 12.1
en he 26.1 26.9 26.4 26.7

zh en 16.8 16.6 15.6 16.1
es en 39.6 38.5 38.4 38.8
ar en 31.5 30.2 30.3 30.8
ru en 22.7 21.9 22.0 22.0
de en 35.4 34.0 34.1 34.5
ja en 13.1 12.6 11.4 12.2
tr en 23.3 22.5 22.3 23.3
vi en 26.8 25.0 24.7 25.3
fa en 23.5 22.4 22.1 22.6
he en 37.8 36.9 37.0 37.4

Table 2: Test BLEU scores of the baseline and embed-
dingless models on the IWSLT dataset.

ing rate of 5× 10−4, label smoothing of 0.1, and
weight decay of 1× 10−4. We train each model
for 50k steps and average the top 5 checkpoints
according to the validation loss. We tune dropout
(0.2 or 0.3) on the validation set. We set the batch
size according to a maximum of 64,000 bytes per
batch, which controls for the number of batches per
epoch across different tokenization methods.

Evaluation We evaluate our models using Sacre-
BLEU, case-sensitive, with the 13a tokenizer for
all languages except Chinese (ZH tokenizer) and
Japanese (MeCab tokenizer). We use the raw text
as the reference for all of our experiments, instead
of using the default tokenized-detokenized version,
which normalizes the text and gives an artificial
advantage to text processed with Moses.

5 Results

Table 2 shows our experiments’ results. Every row
describes the test BLEU scores of our model and
the three baselines trained on a different language
pair. We discuss the implications of these below.

Are embeddings essential? The results show
that it is indeed possible to train embeddingless
machine translation models that perform competi-
tively. The performance gaps between models with
different tokenization schemes are relatively small.
Except for Vietnamese, the difference between
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the embeddingless model and the best embedding-
based model is always under 1 BLEU.

In the most controlled setting, where we compare
byte-based models with and without learnable em-
beddings, models without embeddings consistently
achieve higher BLEU scores in 19 of 20 cases (and
an equal score for ru-en), with a boost of about
0.5 BLEU on average. When compared to models
based on character embeddings, the embeddingless
byte-to-byte approach yields higher BLEU scores
in 17 out of 20 cases, though the average difference
is quite small in practice (0.3 BLEU).

Is subword tokenization superior to bytes or
characters? Previous work in machine transla-
tion shows that subword models consistently out-
perform character or byte-based models (Gupta
et al., 2019; Wang et al., 2019; Gao et al., 2020).
However, our results indicate that this is not nec-
essarily the case. When translating from English
to a foreign language, the original direction of the
IWSLT dataset, embeddingless byte-to-byte mod-
els achieve performance that is equal or better than
subword embedding models’ in 8 out of 10 cases.
We observe a different trend when translating into
English, where subword models surpass other mod-
els for every source language; the fact that Moses
is a particularly good tokenizer for English – and
less so for other languages – is perhaps related to
this phenomenon. Whereas prior work proposed
closing the performance gap by adding layers to
the basic architecture, under the assumption that
character-based models lack capacity or expres-
siveness, our results show that actually removing
a component from the model can improve perfor-
mance under certain conditions. It is possible that
character and byte-based transformer models en-
counter an optimization issue rather than one of
capacity or expressivity.

6 Analysis

Why does removing the embedding matrix improve
the performance of byte-based models? As men-
tioned in Section 3, the embeddingless models do
not use dropout on the encoder input and decoder
output, but do apply dropout on the decoder input
while training. Since the embeddingless decoder’s
inputs are fixed one-hot vectors, using dropout im-
plicitly drops out complete tokens. In prior work,
token dropout (“word dropout”) has been shown to
have a consistently positive effect (Bowman et al.,
2016). We, therefore, rerun our experiments while

Embedding-based Models Embed-less
Subword Char Byte Byte

en→xx +0.33 +0.53 +0.42 +0.62
xx→en +0.69 +0.67 +0.92 +0.83

Table 3: The validation set performance gain of token
dropout (0.2), averaged across languages and model
dropout values.

controlling for token dropout (p = 0.2) to deter-
mine its effect on our results.

Table 3 shows that decoder-side token dropout
improves the performance of all models, with a
larger impact on byte-based models and embeddin-
gless models in particular. This effect is largely
consistent, with only 7 out of 160 cases in which
token dropout decreased performance on the valida-
tion set. We suspect that dropping out target tokens
softens the effects of exposure bias by injecting
noise into the ground-truth prefix.

Given the benefits of token dropout on the base-
line models, we re-evaluate the results from Sec-
tion 5, while allowing for token dropout as a poten-
tial hyperparameter. Table 4 shows that, when trans-
lating from the original English text to a foreign
language, the different models perform roughly
on par, with no single tokenization method domi-
nating the others. Furthermore, byte-level models
with and without embeddings achieve almost iden-
tical results. In contrast, when translating in the
opposite direction, subword models consistently
outperform the other methods with an average gap
of 0.76 BLEU from the next best model. Also,
removing the embeddings from byte-based mod-
els decreases performance by an average of 0.45
BLEU when generating English. This discrepancy
might stem from artifacts of reverse translation, or
perhaps from the English-centric nature of subword
tokenization, which is based on Moses preprocess-
ing and BPE. Overall, these results suggest that de-
spite the greater number of parameters in subword
models, character and byte models can perform
competitively, but may require slightly different
optimization techniques to do so.

7 Related Work

There is prior work on replacing language-specific
tokenizers with more universal tokenization ap-
proaches. Schütze (2017) shows how character
n-gram embeddings can be effectively trained by
segmenting text using a stochastic process. Sen-
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Benchmark Embedding-based Models Embed-less
Src Tgt Subword Char Byte Byte

en zh 20.3 21.2 20.8 21.0
en es 36.7 36.8 36.8 36.8
en ar 12.7 13.1 12.7 12.9
en ru 18.5 18.2 17.7 18.2
en de 29.8 29.3 29.2 29.1
en ja 12.4 13.1 12.5 13.1
en tr 13.9 14.3 14.4 14.1
en vi 30.0 29.1 28.9 28.7
en fa 11.5 12.2 12.1 12.1
en he 26.8 27.1 27.1 26.7

zh en 17.3 17.2 16.3 16.1
es en 40.0 39.1 39.1 38.8
ar en 32.0 31.1 31.2 30.8
ru en 22.9 22.4 22.5 22.0
de en 35.6 34.9 35.0 34.5
ja en 13.5 12.8 12.3 11.2
tr en 24.3 23.3 23.7 23.3
vi en 27.4 25.9 25.9 25.3
fa en 24.5 23.2 23.3 22.6
he en 38.2 37.8 37.4 37.4

Table 4: Test BLEU scores of the baseline and embed-
dingless models on the IWSLT dataset, when decoder-
side token dropout is considered as a potential hyperpa-
rameter setting.

tencePiece (Kudo and Richardson, 2018) tokenizes
raw Unicode strings into subwords using BPE (Sen-
nrich et al., 2016) or unigram LM (Kudo, 2018).
Byte BPE (Wang et al., 2019) extends Senten-
cePiece to operate at the byte level. While this
approach is indeed more language-agnostic than
heuristic tokenizers, it does suffer from perfor-
mance degradation when no pre-tokenization (e.g.
splitting by whitespace) is applied.6 Moreover, the
assumption that subword units must be contigu-
ous segments does not hold for languages with
non-concatenative morphology such as Arabic and
Hebrew.

Character and byte-based language models (Lee
et al., 2017; Al-Rfou et al., 2019) treat the raw
text as a sequence of tokens (characters or bytes)
and do not require any form of preprocessing or
word tokenization, and Choe et al. (2019) even
demonstrate that byte-based language models can
perform comparably to word-based language mod-
els on the billion-word benchmark (Chelba et al.,
2013). Although earlier results on LSTM-based
machine translation models show that character to-
kenization can outperform subword tokenization
(Cherry et al., 2018), recent literature shows that

6https://github.com/google/
sentencepiece/blob/master/doc/
experiments.md

the same does not hold for transformers (Gupta
et al., 2019; Wang et al., 2019; Gao et al., 2020). To
narrow the gap, recent work suggests using deeper
models (Gupta et al., 2019) or specialized architec-
tures (Gao et al., 2020). Our work deviates from
this trend by removing layers to improve the model.
This observation contests the leading hypothesis in
existing literature – that the performance gap re-
sults from reduced model capacity – and suggests
that the problem may be one of optimization.

8 Conclusions

This work challenges two key assumptions in neu-
ral machine translation models: the necessity of em-
bedding layers, and the superiority of subword tok-
enization. Experiments on 10 different languages
show that, despite their ubiquitous usage, compet-
itive models can be trained without any embed-
dings by treating text as a sequence of bytes. Our
investigation suggests that different tokenization
methods may require revisiting the standard opti-
mization techniques used with transformers, which
are primarily geared towards sequences of English
subwords.
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