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Abstract

Transformer has achieved great success in the
NLP field by composing various advanced
models like BERT and GPT. However, Trans-
former and its existing variants may not be
optimal in capturing token distances because
the position or distance embeddings used by
these methods usually cannot keep the precise
information of real distances, which may not
be beneficial for modeling the orders and re-
lations of contexts. In this paper, we pro-
pose DA-Transformer, which is a distance-
aware Transformer that can exploit the real
distance. We propose to incorporate the real
distances between tokens to re-scale the raw
self-attention weights, which are computed by
the relevance between attention query and key.
Concretely, in different self-attention heads
the relative distance between each pair of to-
kens is weighted by different learnable pa-
rameters, which control the different prefer-
ences on long- or short-term information of
these heads. Since the raw weighted real dis-
tances may not be optimal for adjusting self-
attention weights, we propose a learnable sig-
moid function to map them into re-scaled coef-
ficients that have proper ranges. We first clip
the raw self-attention weights via the ReLU
function to keep non-negativity and introduce
sparsity, and then multiply them with the re-
scaled coefficients to encode real distance in-
formation into self-attention. Extensive exper-
iments on five benchmark datasets show that
DA-Transformer can effectively improve the
performance of many tasks and outperform the
vanilla Transformer and its several variants.

1 Introduction

Transformer (Vaswani et al., 2017) has achieved
huge success in the NLP field in recent
years (Kobayashi et al., 2020). It serves as the ba-
sic architecture of various state-of-the-art models
like BERT (Devlin et al., 2019) and GPT (Rad-
ford et al., 2019), and boosts the performance of

many tasks like text generation (Koncel-Kedziorski
et al., 2019), machine translation (Vaswani et al.,
2017), and reading comprehension (Xu et al., 2019).
Thus, the improvement on the Transformer archi-
tecture would be beneficial for many NLP-related
fields (Wu et al., 2020a).

A core component of Transformer is multi-head
self-attention, which is responsible for modeling
the relations between contexts (Yang et al., 2019;
Guo et al., 2019). However, self-attention is
position-agnostic since it does not distinguish the
orders of inputs. Thus, in the vanilla Transformer,
position encoding is applied to the input to help
Transformer capture position information. How-
ever, in contrast to recurrent and convolutional neu-
ral networks, it is difficult for vanilla Transform-
ers to be aware of the token distances (Shaw et al.,
2018), which are usually important cues for context
modeling. Thus, several works explored to incor-
porate token distance information into Transformer.
For example, Shaw et al. (2018) proposed to com-
bine the embeddings of relative positions with at-
tention key and value in the self-attention network.
They restricted the maximum relative distance to
only keep the precise relative position information
within a certain distance. Yan et al. (2019) pro-
posed a variant of self-attention network for named
entity recognition, which incorporates sinusoidal
embeddings of relative position to compute atten-
tion weights in a direction- and distance-aware way.
However, the distance or relative position embed-
dings used by these methods usually cannot keep
the precise information of the real distance, which
may not be beneficial for the Transformer to cap-
ture word orders and the context relations.

In this paper, we propose a distance-aware Trans-
former (DA-Transformer), which can explicitly ex-
ploit real token distance information to enhance
context modeling by leveraging the relative dis-
tances between different tokens to re-scale the raw
attention weights before softmax normalization.
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More specifically, since global and local context
modeling usually have different distance prefer-
ences, we propose to learn a different parameter in
different attention heads to weight the token dis-
tances, which control the preferences of attention
heads on long or short distances. In addition, since
the weighted distances may not have been restricted
to a proper range, we propose a learnable sigmoid
function to map the weighted distances into re-
scaled coefficients. They are further multiplied
with the raw attention weights that are clipped by
the ReLU function for keeping the non-negativity
and introducing sparsity. We conduct extensive
experiments on five benchmark datasets for dif-
ferent tasks, and the results demonstrate that our
approach can effectively enhance the performance
of Transformer and outperform its several variants
with distance modeling.

The main contributions of this paper include:

• We propose a distance-aware Transformer that
uses the real token distances to keep precise
distance information in adjusting attention
weights for accurate context modeling.

• We propose to use different parameters to
weight real distances in different attention
heads to control their diverse preferences on
short-term or long-term information.

• We propose a learnable sigmoid function to
map the weighted distances into re-scaled co-
efficients with proper ranges for better adjust-
ing the attention weights.

• We conduct extensive experiments on five
benchmark datasets and the results validate
the effectiveness of our proposed method.

2 Related Work

2.1 Transformer

To make this paper self-contained, we first briefly
introduce the architecture of Transformer, which
was initially introduced to the machine translation
task (Vaswani et al., 2017). It has become an im-
portant basic neural architecture of various state-of-
the-art NLP models like BERT (Devlin et al., 2019)
and GPT (Radford et al., 2019). The core compo-
nent of Transformer is multi-head self-attention. It
has h attention heads, where the parameters in each
head are independent. For the i-th attention head,
it takes a matrix H as the input. It first uses three

independent parameter matrices W(i)
Q , W(i)

K , and

W
(i)
V to respectively transform the input matrix H

into the input query Q(i), key K(i) and value V(i),
which is formulated as follows:

Q(i),K(i),V(i) = HW
(i)
Q ,HW

(i)
K ,HW

(i)
V . (1)

Then, it uses a scaled dot-product attention head to
process its query, key and value, which is formu-
lated as follows:

Attention(Q(i),K(i),V(i)) = softmax(
Q(i)K(i)>
√
d

)V(i),

(2)

where d is the dimension of the vectors in the query
and key. The outputs of the h attention heads are
concatenated together and the final output is a lin-
ear projection of the concatenated representations,
which is formulated as follows:

Multihead(Q,K,V) = Concat(head1, ..., headh)WO,

where headi = Attention(Q(i),K(i),V(i)),
(3)

where WO is an output projection matrix. In the
standard Transformer, a position-wise feed-forward
neural network is further applied to the output of
multi-head self-attention network. Its function is
formulated as follows:

FFN(x) = max(0,xW1 + b1)W2 + b2, (4)

where W1, W2, b1, b2 are kernel and bias param-
eters. Transformer also employs layer normaliza-
tion (Ba et al., 2016) and residual connection (He
et al., 2016) techniques after the multi-head self-
attention and feed-forward neural networks, which
are also kept in our method.

Since self-attention network does not distinguish
the order and position of input tokens, Transformer
adds the sinusoidal embeddings of positions to the
input embeddings to capture position information.
However, position embeddings may not be opti-
mal for distance modeling in Transformer because
distances cannot be precisely recovered from the
dot-product between two position embeddings.

2.2 Distance-aware Transformer
Instead of directly using the sinusoidal position
embedding (Vaswani et al., 2017) or the absolute
position embedding (Devlin et al., 2019), several
variants of the Transformer explore to use the rela-
tive positions to better model the distance between
contexts (Shaw et al., 2018; Wang et al., 2019; Dai
et al., 2019; Yan et al., 2019). For example, Shaw
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et al. (2018) proposed to add the embeddings of
relative positions to the attention key and value to
capture the relative distance between two tokens.
They only kept the precise distance within a certain
range by using a threshold to clip the maximum
distance to help generalize to long sequences. Dai
et al. (2019) proposed Transformer-XL, which uses
another form of relative positional encodings that
integrate content-dependent positional scores and
a global positional score into the attention weights.
Yan et al. (2019) proposed direction-aware sinu-
soidal relative position embeddings and used them
in a similar way with Transformer-XL. In addition,
they proposed to use the un-scaled attention to bet-
ter fit the NER task. However, relative position
embeddings may not be optimal for modeling dis-
tance information because they usually cannot keep
the precise information of real token distances. Dif-
ferent from these methods, we propose to directly
re-scale the attention weights based on the mapped
relative distances instead of using sinusoidal po-
sition embeddings, which can explicitly encode
real distance information to achieve more accurate
distance modeling.

3 DA-Transformer

In this section, we introduce our proposed distance-
aware Transformer (DA-Transformer) approach,
which can effectively exploit real token distance
information to enhance context modeling. It uses
a learnable parameter to weight the real distances
between tokens in each attention head, and uses
a learnable sigmoid function to map the weighted
distances into re-scaled coefficients with proper
ranges, which are further used to adjust the raw at-
tention weights before softmax normalization. The
details of DA-Transformer are introduced in the
following sections.

3.1 Head-wise Distance Weighting

Similar with the standard Transformer, the input
of our model is also a matrix that contains the
representation of each token, which is denoted as
H = [h1,h2, ...,hN ], where N is the length of
the sequence. We denote the real relative distance
between the i-th and j-th positions as Ri,j , which
is computed by Ri,j = |i − j|. We can then ob-
tain the relative distance matrix R ∈ RN×N that
describes the relative distance between each pair of
positions. In each attention head, we use a learn-
able parameter wi to weight the relative distance

Figure 1: The curves of our learnable sigmoid function
under different vi.

by R(i) = wiR, which will be further used to
adjust the self-attention weights. In our method,
we stipulate that a more positive R(i) will amplify
the attention weights more strongly while a more
negative R(i) will diminish them more intensively.
Thus, a positive wi means that this attention head
prefers to capture long-distance information, while
a negative wi means that it focuses more on lo-
cal contexts. By learning different values of wi,
different attention heads may have different prefer-
ences on capturing either short-term or long-term
contextual information with different intensity.

3.2 Weighted Distance Mapping

Since the raw weighted distances may not be in the
proper range for adjusting the attention weights,
we need to map them into the re-scaled coefficients
via a function R̂(i) = f(R(i)) that is suitable for
adjusting the self-attention weights. However, it is
not a trivial task to design the function f(·) because
it needs to satisfy the following requirements: (1)
f(0) = 1. We stipulate that zero distances do not
influence the self-attention weights. (2) The value
of f(R(i)) should be zero when R(i) → −∞. This
requirement is to guarantee that if an attention head
prefers to capture local information (wi < 0), the
long-distance information should be surpassed.1

(3) The value of f(R(i)) should be limited when
R(i) → +∞. This requirement is to ensure that
the model is able to process long sequences with-
out over-emphasize distant contexts. (4) The scale
of f(·) needs to be tunable. This aims to help the
model better adjust the intensity of distance infor-
mation. (5) The function f(·) needs to be mono-

1Although the raw negative attention weights may be
raised to 0 by f(·), the model can still surpass these atten-
tion weights after softmax by increasing the scale of other
attention weights.
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tone. To satisfy the five requirements above, we
propose a learnable sigmoid function to map the
weighted relative distances R(i), which is formu-
lated as follows:

f(R(i); vi) =
1 + exp(vi)

1 + exp(vi −R(i))
, (5)

where vi is a learnable parameter in this head that
controls the upperbound and ascending steepness
of this function. The curves of our learnable sig-
moid function under several different values of vi
are plotted in Fig. 1. We can see that the proposed
function satisfies all the requirements above. In
addition, from this figure we find that if vi is larger,
the upperbound of the curve is higher, which means
that distance information is more intensive. When
vi = 0, it is in fact identical to the standard sigmoid
function except for the scaling factor of 2. By map-
ping the weighted distances R(i) via the function
f(·), we can obtain the final re-scaled coefficients
R̂(i) in a learnable way. Several illustrative exam-
ples of the re-scaled coefficients under wi = ±1
and vi = ±1 are respectively shown in Figs. 2(a)-
2(d). We can see that if wi is positive, long-distance
contexts are preferred while short-term contexts are
surpassed. The situation is reversed if wi turns to
negative. In addition, the coefficients in Fig. 2(c)
have larger dynamic ranges than the coefficients in
Fig. 2(a), indicating that long-distance information
is more dominant in Fig. 2(c). Moreover, the co-
efficients in Fig. 2(d) are “sharper” than those in
Fig. 2(b), which indicates that the model tends to
capture shorter distances.

3.3 Attention Adjustment

Then, we use the re-scaled coefficients to adjust the
raw attention weights that are computed by the dot-
product between the query and key, i.e., Q(i)K(i)>

√
d

.
Different from existing methods that add the query-
key dot-product with position or distance repre-
sentations, in our approach we propose to multi-
ply the re-scaled coefficients with the query-key
dot-product. This is because for the tokens whose
relations are very weak, if their re-scaled coeffi-
cients are large, their final attention weights will
be over-amplified if we simply add the re-scaled
coefficients to their raw attention weights. This
is not optimal for modeling contextual informa-
tion because the attention weights of irrelevant con-
texts cannot be fully surpassed. However, there
are also some problems if we directly multiply the
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Figure 2: The re-scaled coefficient matrices under dif-
ferent values of wi and vi. Dark regions indicate that
the corresponding attention weights are promoted.

re-scaled coefficients R̂(i) and the raw attention
weights Q(i)K(i)>

√
d

. This is because the sign of atten-

tion weights Q(i)K(i)>
√
d

is indefinite and the multi-
plied results cannot accurately reflect the influence
of distance information. Thus, we propose to add
a ReLU (Glorot et al., 2011) activation function to
the raw attention weights to keep non-negativity. In
this way, the final output O(i) of an attention head
can be formulated as follows:

O(i) = softmax(
ReLU(Q(i)K(i)>) ∗ R̂(i)

√
d

)V(i), (6)

where ∗ represents element-wise product. The
ReLU function can also introduce sparsity to the
self-attention because only the positive attention
weights can be amplified by the re-scaled coeffi-
cients, which makes the attention weights in our
method sharper. We concatenate the output from
the h independent attention heads, and project it
into a unified output. In addition, we keep the
same layer normalization and residual connection
strategy as the standard Transformer.

3.4 Computational Complexity Analysis
Compared with the standard Transformer, the ma-
jor additional time cost is brought by computing
the re-scaled coefficients R̂(i) and using them to
adjust the attention weights. The theoretical time
complexity of the two operations in each head is
O(N2), which is much smaller than the time com-
plexity of computing the attention weights, i.e.,
O(N2 × d). In addition, both Eq. (5) and Eq. (6)
in our approach can be computed in a vectorized
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manner. Thus, the additional time consumption of
our method is very light. Besides, the increase of
parameters is also minimal because we only intro-
duce 2h additional parameters, which are usually
ignorable compared with the projection matrices
like W

(i)
Q . Thus, our approach inherits the effi-

ciency of the Transformer architecture.

4 Experiments

4.1 Datasets and Experimental Settings

Our experiments are conducted on five benchmark
datasets for different tasks. Four of them are bench-
mark NLP datasets. The first one is AG’s News2

(denoted as AG), which is a news topic classifica-
tion dataset. The second one is Amazon Electron-
ics (He and McAuley, 2016) (denoted as Amazon),
which is a dataset for review rating prediction. The
third one is Stanford Sentiment Treebank (Socher
et al., 2013) (denoted as SST). We use the binary
classification version of this dataset. The fourth one
is Stanford Natural Language Inference (Bowman
et al., 2015) (SNLI) dataset, which is a widely used
natural language inference dataset. The detailed
statistics of these datasets are summarized in Ta-
ble 1. In addition, we also conduct experiments on
a benchmark news recommendation dataset named
MIND (Wu et al., 2020c), aiming to validate the
effectiveness of our approach in both text and user
modeling. It contains the news impression logs of 1
million users from Microsoft News3 from October
12 to November 22, 2019. The training set contains
the logs in the first five weeks except those on the
last day which are used for validation. The rest logs
are used for test. The key statistics of this dataset
are summarized in Table 2.

Dataset # Train # Dev. # Test # Classes Avg. len.
AG 108k 12k 7.6k 4 44
Amazon 40k 5k 5k 5 133
SST 8k 1k 2k 2 19
SNLI 55k 10k 10k 2 22

Table 1: Statistics of AG, Amazon, SST and SNLI
datasets.

# Users 1,000,000 Avg. title len. 11.52
# News 161,013 # Click samples 5,597,979
# Impressions 500,000 # Non-click samples 136,162,621

Table 2: Statistics of the MIND dataset.

2https://www.di.unipi.it/en/
3https://www.msn.com/en-us

In our experiments, we use the 300-dimensional
Glove (Pennington et al., 2014) embeddings for
word embedding initialization.4 The number of at-
tention head is 16, and the output dimension of each
attention is 16. We use one Transformer layer in all
experiments. On the AG, SST and SNLI datasets,
we directly apply Transformer-based methods to
the sentences. On the Amazon dataset, since re-
views are usually long documents, we use Trans-
formers in a hierarchical way by learning sentence
representations from words via a word-level Trans-
former first and then learning document represen-
tations from sentences via a sentence-level Trans-
former. On the MIND dataset, following (Wu et al.,
2019, 2020b) we also use a hierarchical model ar-
chitecture that first learns representations of histor-
ical clicked news and candidate news from their
titles with a word-level Transformer, then learns
user representations from the representations of
clicked news with a news-level Transformer, and
final matches user and candidate news representa-
tions to compute click scores.5 We use the same
model training strategy with negative sampling
techniques as NRMS (Wu et al., 2019). On all
datasets we use Adam (Kingma and Ba, 2015) as
the optimization algorithm and the learning rate is
1e-3. On the AG, Amazon, SST and SNLI datasets,
accuracy and macro-Fscore are used as the per-
formance metric. On the MIND dataset, follow-
ing (Wu et al., 2019) we use the average AUC,
MRR, nDCG@5 and nDCG@10 scores of all ses-
sions as the metrics. Each experiment is repeated
5 times independently and the average results with
standard deviations are reported.

4.2 Performance Evaluation

We compare our proposed DA-Transformer method
with several baseline methods, including: (1) Trans-
former (Vaswani et al., 2017), the vanilla Trans-
former architecture, where sinusoidal positional
embeddings are used. (2) Transformer-RPR (Shaw
et al., 2018), a variant of Transformer with relative
position representations. (3) Transformer-XL (Dai
et al., 2019), a variant of Transformer that consists
of a segment-level recurrence mechanism and a
sinusoidal relative position encoding scheme. (4)
Adapted Transformer (Yan et al., 2019), a variant

4We do not use contextualized embeddings generated by
language models like BERT because we mainly focus on
validating the effectiveness of our Transformer architecture.

5Both the word-level and news-level Transformers contain
one self-attention layer.
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Methods AG Amazon
Accuracy Macro-F Accuracy Macro-F

Transformer 93.01±0.13 93.00±0.13 65.15±0.40 42.14±0.41
Transformer-RPR 93.14±0.12 93.13±0.13 65.29±0.38 42.40±0.40
Transformer-XL 93.35±0.10 93.34±0.11 65.50±0.40 42.88±0.43
Adapted Transformer 93.28±0.13 93.27±0.14 65.47±0.39 42.69±0.42
*DA-Transformer 93.72±0.11 93.70±0.12 66.38±0.39 44.29±0.40

Table 3: Results on AG and Amazon. *Improvement over the underlined second best results is significant at
p < 0.05.

Methods SST SNLI
Accuracy Macro-F Accuracy Macro-F

Transformer 89.67±0.22 89.59±0.24 81.45±0.30 81.42±0.31
Transformer-RPR 89.94±0.19 89.90±0.20 82.20±0.31 82.18±0.31
Transformer-XL 90.06±0.20 90.02±0.21 83.19±0.29 83.15±0.30
Adapted Transformer 90.15±0.19 90.10±0.1 82.35±0.28 82.31±0.30
*DA-Transformer 90.49±0.17 90.43±0.19 84.18±0.27 84.16±0.29

Table 4: Results on SST and SNLI. *Improvement over the underlined second best results is significant at p < 0.05.

Methods AUC MRR nDCG@5 nDCG@10

Transformer 67.76±0.18 33.05±0.16 35.94±0.19 41.63±0.20
Transformer-RPR 67.81±0.16 33.10±0.17 35.98±0.20 41.65±0.21
Transformer-XL 67.92±0.16 33.15±0.16 36.04±0.20 41.70±0.19
Adapted Transformer 67.70±0.22 33.01±0.20 35.89±0.17 41.58±0.23
*DA-Transformer 68.32±0.15 33.36±0.16 36.34±0.14 42.07±0.17

Table 5: Results on the MIND dataset. *Improvement over the underlined second best results is significant at
p < 0.05.

of Transformer that uses direction- and distance-
aware position encoding. The results of our ap-
proach and these methods on the five datasets are
respectively shown in Tables 4 and 5. From the
results, we have several observations.

First, compared with the vanilla Transformer,
the compared methods that consider distance infor-
mation consistently achieve better performance. It
shows that distance information is very important
in context modeling. Second, among the meth-
ods with distance information, the performance of
Transformer-RPR is lower than the others. This
may be because Transformer-RPR does not keep
the precise long-distance information. Third, by
comparing Transformer-XL and Adapted Trans-
former, we find that the performance of Adapted
Transformer is better on the SST dataset, while
Transformer-XL is better on other datasets. This
is probably because Adapted Transformer is more
suitable for modeling local contexts and the sen-
tences in the SST dataset are usually short, while

Transformer-XL may be more appropriate for mod-
eling long sequences. Fourth, our method con-
sistently achieves better performance on the five
datasets, and its improvement over the second best
method is statistically significant (t-test p<0.05).
This is because our method can explicitly encode
real distance information rather than using posi-
tional encoding, making the modeling of distance
more accurate.

We further compare the performance of different
methods in a rating regression task on the Amazon
dataset. The results are shown in Fig. 3. From
Fig. 3 we observe similar patterns with the results
in classification tasks, which validate the generality
of our DA-Transformer in different genres of tasks.

4.3 Influence of Different Mapping Functions

Next, we study the influence of using different map-
ping functions f(·) for computing the re-scaled
coefficients. We compare the performance of our
method w.r.t. several different f(·), including: (1)
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Figure 3: Performance comparison of rating regression
on Amazon. Lower scores indicate better performance.

f(x) = min(x, T ) (clip), using a threshold T to
clip the weighted distance; (2) f(x) = kix+bi (lin-
ear), using a linear transformation to the weighted
distance; (3) f(x) = exp(x) (exponent), using an
exponent function to map the weighted distance;
(4) f(x) = 1

1+exp(−x) (sigmoid), using the sig-
moid function to activate the weighted distance;
and (5) f(x; vi) =

1+exp(vi)
1+exp(vi−x) , our learnable sig-

moid function. Due to space limitation, we only
present the results on the AG, Amazon and MIND
datasets in Fig. 4. From these results, we find that
clip is not optimal for mapping the weighted dis-
tance. This is because it cannot keep the precise
distance information beyond a certain range. In
addition, simply using the linear transformation is
also insufficient. This may be because our attention
adjustment method requires f(·) to be positive, but
linear transformation cannot guarantee. Besides,
we find that the sigmoid function and our proposed
function are better than the exponential function.
This may be because long sequences will lead to
the problem of exponent explosion, which is harm-
ful to context modeling. Moreover, our proposed
learnable sigmoid function is better than the stan-
dard sigmoid function. It shows that adjusting the
activation function in a learnable way can better
map the raw distances into re-scaled coefficients.

4.4 Influence of Different Attention
Adjusting Methods

Then, we explore the influence of different meth-
ods for adjusting the raw attention weights. We
consider four different kinds of methods, includ-
ing: (1) adding the re-scaled coefficients to the at-
tention weights normalized by softmax (late add);
(2) multiplying the re-scaled coefficients with the
attention weights normalized by softmax (late mul-
tiply); (3) adding the re-scaled coefficients to the
raw attention weights before normalization (early

add), which is widely used in existing methods like
Transformer-XL; (4) multiplying the re-scaled coef-
ficients with the raw attention weights activated by
ReLU, which is the method used in our approach
(early multiply). The results on the AG, Amazon
and MIND datasets are shown in Fig. 5. According
to these results, we find that early adjustment is
better than late adjustment. This may be because
the late adjustment methods will change the total
amount of attention, which may not be optimal.
In addition, we find that multiplying is better than
adding for both early and late adjustment. This
may be because adding large re-scaled coefficients
may over-amplify some attention weights. For ex-
ample, if a raw attention weight is relatively small,
it is not suitable to add large re-scaled coefficients
to it because the corresponding contexts may not
have close relations. In contrast, multiplying the
re-scaled coefficients will not over-amplify the low
attention weights. Moreover, in our early multi-
ply method we further propose to use the ReLU
function to introduce sparsity to make the Trans-
former more “focused”. Thus, our method is better
than the existing early add method in adjusting the
attention weights.

4.5 Model Interpretation
Finally, we interpret our proposed method by visu-
alizing its key parameters and the attention weights.
we first visualize the parameters wi and vi in our
method, which control the preferences of attention
heads on long-term or short-term information and
the shape of the learnable sigmoid function, re-
spectively. The visualization results on the AG and
MIND datasets are respectively shown in Figs. 6
and 7.6 From Fig. 6, we find it is very interest-
ing that half of the parameters wi are positive and
the rest of them are negative. It indicates that half
of the attention heads mainly aim to capture local
contexts, while the rest ones are responsible for
modeling long-distance contexts. It may be be-
cause both short-term and long-term contexts are
useful for understanding news topics. In addition,
we find that most attention heads have negative vi
while the rest are positive. It shows that on the AG
dataset the intensity of attention adjustment is mild
in most attention heads. From Fig. 7(a), we find
long-term information is somewhat more important
than local information in modeling news texts for

6We show the average results of 5 runs. The values of wi

and vi in these figures are sorted and are not corresponding to
the head orders.
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Figure 4: Influence of using different mapping functions.
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Figure 5: Influence of using different attention adjusting methods.
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Figure 6: The weights learned by different attention
heads on the AG dataset.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Attention Head i

-0.03

-0.02

-0.01

0.00

0.01

0.02

0.03

(a) Word-level wi.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Attention Head i

-0.40

-0.30

-0.20

-0.10

-0.00

0.10

0.20

0.30

(b) News-level wi.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Attention Head i

0.00

0.02

0.04

0.06

0.08

0.10

0.12

(c) Word-level vi.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Attention Head i

0.00

0.01

0.02

0.03

0.04

0.05

0.06

(d) News-level vi.

Figure 7: The distance weights learned by different at-
tention heads on the MIND dataset.

news recommendation. However, from Fig. 7(b)
we find an interesting phenomenon that only one

head has a strong negative wi while the values of
wi in all the rest heads are positive. It means that
only one attention head tends to capture short-term
user interests while all the other heads prefer to
capture long-term user interests. This is intuitive
because users usually tend not to intensively click
very similar news and their long-term interests may
have more decisive influence on their news clicks.
In addition, we find it is interesting that on MIND
all values of vi are positive. It may indicate that
distance information has a strong impact on the
attention weights. These visualization results show
that DA-Transformer can flexibly adjust its prefer-
ence on short-term or long-term information and
the intensity of attention adjustment by learning
different values of wi and vi according to the task
characteristics.7

We then visualize the attention weights produced
by the vanilla Transformer and the distance-aware
attention weights in our DA-Transformer method.
The attention weights of a sentence in the AG
dataset computed by four different attention heads
are respectively shown in Figs. 8(a) and 8(b). From
Fig. 8(a), we find it is difficult to interpret the self-
attention weights because they are too “soft”. In
addition, it is difficult for us to understand the dif-

7We do not observe significant correlations between the
sequence length and the signs of wi. This may indicate that
the values of wi depend more on the task characteristics rather
than text lengths.
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(a) Vanilla Transformer.

(b) DA-Transformer. The first two heatmaps are produced by heads with wi < 0 and others are produced by heads with wi > 0.

Figure 8: The self-attention weights learned by the vanilla Transformer and our proposed DA-Transformer method.

ferences between the information captured by dif-
ferent attention heads. Different from the vanilla
Transformer, from Fig. 8(b) we find that the at-
tention weights obtained by our method are more
sparse, indicating that the attention mechanism in
our method is more focused. In addition, it is
easier for us to interpret the results by observing
the attention heatmap. For example, the first two
heatmaps in Fig. 8(b) are produced by the two atten-
tion heads with preferences on short-term contexts.
We can see that they mainly capture the relations
among local contexts, such as the relations between
“biotech” and “sector”. Differently, in the latter
two heatmaps obtained by the two attention heads
that prefer long-term contexts, we can observe that
the model tends to capture the relations between
a word (e.g., “biotech”) with the global contexts.
These results show that different attention heads in
our method are responsible for capturing different
kinds of information, and their differences can be
directly observed from the self-attention weights.
Thus, our method can be better interpreted than
vanilla Transformers.

5 Conclusion

In this paper, we propose a distance-aware Trans-
former, which can leverage the real distance be-
tween contexts to adjust the self-attention weights
for better context modeling. We propose to first
use different learnable parameters in different at-
tention heads to weight the real relative distance
between tokens. Then, we propose a learnable sig-
moid function to map the weighted distances into
re-scaled coefficients with proper ranges. They are
further multiplied with the raw attention weights
that are activated by the ReLU function to keep
non-negativity and produce sharper attention. Ex-
tensive experiments on five benchmark datasets
show that our approach can effectively improve the
performance of Transformer by introducing real
distance information to facilitate context modeling.
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