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Abstract

Opinion target extraction and opinion term
extraction are two fundamental tasks in As-
pect Based Sentiment Analysis (ABSA). Many
recent works on ABSA focus on Target-
oriented Opinion Words (or Terms) Extraction
(TOWE), which aims at extracting the corre-
sponding opinion words for a given opinion
target. TOWE can be further applied to Aspect-
Opinion Pair Extraction (AOPE) which aims
at extracting aspects (i.e., opinion targets)
and opinion terms in pairs. In this paper,
we propose Target-Specified sequence label-
ing with Multi-head Self-Attention (TSMSA)
for TOWE, in which any pre-trained language
model with multi-head self-attention can be in-
tegrated conveniently. As a case study, we also
develop a Multi-Task structure named MT-
TSMSA for AOPE by combining our TSMSA
with an aspect and opinion term extraction
module. Experimental results indicate that
TSMSA outperforms the benchmark methods
on TOWE significantly; meanwhile, the perfor-
mance of MT-TSMSA is similar or even better
than state-of-the-art AOPE baseline models.

1 Introduction

Aspect-Based Sentiment Analysis (ABSA) (Pon-
tiki et al., 2014) has attracted much attention of
researchers in recent years. In ABSA, aspect (or
called opinion target) extraction and opinion term
extraction are two fundamental tasks. Aspect is
the word or phrase in the reviews referring to the
object towards which users show attitudes, while
opinion terms are those words or phrases represent-
ing users’ attitudes (Wu et al., 2020). For example,
in the sentence “The dim sum is delicious.”, the
phrase “dim sum” is an aspect and the word “de-
licious” is an opinion term. See the upper part of
Table 1 for more examples. Plenty of works based
on neural networks have been done in both aspect

∗The corresponding author.

Reviews:
“Soooo great! The food is delicious and
inexpensive, and the environment is in a nice.
The only problem is that the soup and dessert
are ordinary."
Aspect-Opinion Pairs:
food : [delicious, inexpensive] (one-to-many)
environment : [nice] (one-to-one)
soup, dessert : [ordinary] (many-to-one)

Table 1: The upper part is a restaurant review and
the lower part shows the corresponding aspect-opinion
pairs. Extracted aspects and opinion terms are marked
in red and blue, respectively.

and opinion term extraction (Liu et al., 2015; Po-
ria et al., 2016; Xu et al., 2018); moreover, some
studies combine these two tasks into a multi-task
structure to extract aspects and opinion terms simul-
taneously (Wang et al., 2016, 2017; Li and Lam,
2017; Dai and Song, 2019).

However, one critical deficiency in the re-
searches mentioned above is that they ignore the
relation of aspects and opinion terms, which leads
to the birth of Target-oriented Opinion Words (or
Terms) Extraction (TOWE) (Fan et al., 2019) for ex-
tracting the corresponding opinion terms of a given
opinion target. Subsequently, Aspect-Opinion
Pair Extraction (AOPE) (Chen et al., 2020) and
Pair-wise Aspect and Opinion Terms Extraction
(PAOTE) (Zhao et al., 2020) have emerged, which
both aim at extracting aspects and opinion terms
in pairs. AOPE and PAOTE are exactly the same
task, only named differently. In the following, we
use AOPE to denote this task for simplicity. It
can be considered that AOPE contains aspect and
opinion word extraction and TOWE. Since aspect
extraction has been fully studied and satisfactory
results have been obtained, TOWE, which aims at
mining the relation between aspects and opinion
terms, is the key to the AOPE task. As shown in
the lower part of Table 1, the relational structure of
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the aspect-opinion pairs within a sentence can be
complicated, including one-to-one, one-to-many,
and many-to-one.

The challenge of TOWE is the learning of rep-
resentations of the given opinion target accurately
and a few works focus on this task. For instance,
Fan et al. (2019) propose an Inward-Outward
LSTM to pass target information to the left con-
text and the right context of the target respectively,
and then they combine the left, right, and global
context to encode the sentence. Recently, SDRN
(Chen et al., 2020) and SpanMlt (Zhao et al., 2020)
both adopt a pre-trained language model to learn
contextual representations for AOPE. In SDRN, a
double-channel recurrent network and a synchro-
nization unit are applied to extract aspects, opinion
terms and their relevancy. In SpanMlt, the terms
are extracted under annotated span boundaries with
contextual representations, and then the relations
between every two span combinations are iden-
tified. However, apart from hyper-parameters in
the pre-trained language model, these two meth-
ods introduce many other hyper-parameters (e.g.,
the hidden size, thresholds and recurrent steps in
SDRN, and the span length, top k spans and the bal-
anced factor of different tasks in SpanMlt). Some
of these hyper-parameters have a significant impact
on the model performance.

Motivated by the previous work and to address
the challenges mentioned above, we propose a
Target-Specified sequence labeling method based
on Multi-head Self-Attention (Vaswani et al., 2017)
(TSMSA). The sentence is first processed in the for-
mat “[SEP] Aspect [SEP]” (e.g., “The [SEP] food
[SEP] is delicious.”), which is inspired by Soares
et al. (2019) who utilized a special symbol “[SEP]”
to label all entities and output their corresponding
representations. Then we develop a sequence la-
beling model based on multi-head self-attention to
identify the corresponding opinion terms. By using
the special symbol and self-attention mechanism,
TSMSA is capable of capturing the information of
the specific aspect. To improve the performance of
our model, we apply pre-trained language models
like BERT (Devlin et al., 2019) which contain a
multi-head self-attention module as the encoder.
As a case study, we integrate aspect and opinion
term extraction, and TOWE into a Multi-Task ar-
chitecture named MT-TSMSA to validate the ef-
fectiveness of our method on the AOPE task. In
addition, apart from hyper-parameters in the pre-

trained language model, we only need to adjust the
balanced factor of different tasks in MT-TSMSA.
In summary, our main contributions are as follows:

• We propose a target-specified sequence la-
beling method with multi-head self-attention
mechanism to perform TOWE, which gener-
ates target-specific context representations for
different targets in the same review with the
special symbol and multi-head self-attention.
Pre-trained language models can be conve-
niently applied to improve the performance.

• For our TSMSA and MT-TSMSA, only a
small amount of hyper-parameters need to
be adjusted when using pre-trained language
models. Compared to the existing models for
TOWE and AOPE, we alleviate the tradeoff
issue between a model’s complexity and per-
formance.

Extensive experiments validate that our TSMSA
can achieve the best performance on TOWE, and
MT-TSMSA performs quite competitive on AOPE.
The rest of this paper is organized as follows. Sec-
tion 2 introduces the existing studies on TOWE and
AOPE, respectively. Section 3 details the proposed
TSMSA and MT-TSMSA. Section 4 presents our
experimental results and discussions. Finally, we
draw conclusions in Section 5.

2 Related Works

2.1 Target-oriented Opinion Words
Extraction

Plenty of works have been carried out for aspect
extraction and opinion term extraction. Early re-
searches can be divided into unsupervised/semi-
supervised methods (Hu and Liu, 2004; Zhuang
et al., 2006; Qiu et al., 2011) and supervised meth-
ods (Jakob and Gurevych, 2010; Shu et al., 2017).
With the development of neural networks, deep
learning methods (Liu et al., 2015; Yin et al., 2016;
Poria et al., 2016; Xu et al., 2018) have made im-
pressive progress in recent years. Several works
integrate aspect extraction and opinion term ex-
traction into a co-extraction process. Qiu et al.
(2011) expand the list of aspects and opinion terms
in a bootstrapping method by double propagation.
Some other works adopt the co-extraction structure
in neural networks with multi-task learning (Wang
et al., 2016, 2017; Li and Lam, 2017).

However, the above methods ignore the relation
between aspects and opinion terms and only a few
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works focus on this field. Rule-based methods (Hu
and Liu, 2004; Zhuang et al., 2006) are proposed to
select corresponding opinion terms with distance
rule and syntactic rule templates based on depen-
dency parsing trees. However, the performance
of these methods heavily relies on expert knowl-
edge and these rules usually cover only a small
amount of cases. Fan et al. (2019) carry out TOWE
by extracting the corresponding opinion terms for
a given aspect, and then utilize Inward-Outward
LSTM to generate implicit representations of as-
pects. Nevertheless, this approach is not capable
of applying powerful pre-trained language models
like BERT as the encoder to perform better. Our
model aims to extract corresponding opinion terms
of the given aspect with explicit representations, in
addition to boost performance by employing BERT
as the encoder.

2.2 Aspect-Opinion Pair Extraction

Aspect-Opinion Pair Extraction (AOPE) (Chen
et al., 2020) and Pair-wise Aspect and Opinion
Terms Extraction (PAOTE) (Zhao et al., 2020) both
aim at extracting aspects and opinion terms in pairs.
AOPE and PAOTE are essentially the same task
with different names, and they can be split into
aspect extraction and TOWE. Chen et al. (2020)
propose a Synchronous Double-channel Recurrent
Network (SDRN) which consists of an opinion en-
tity extraction unit, a relation detection unit, and a
synchronization unit for pair extraction. Zhao et al.
(2020) develop a span-based multi-task learning
framework (SpanMlt) where the terms are extracted
under annotated span boundaries, so as to identify
the relations between every two span combinations.

However, SDRN contains a lot of hyper-
parameters and SpanMlt generates a great many of
candidate spans if the value of maximal length of a
span is large or the sentence is too long. The advan-
tage of our methods is that only a small amount of
hyper-parameters adjustment is required and simi-
lar or even better performance can be achieved.

3 Methodology

3.1 Task Description

Given a sentence s = {w1, w2, ..., wn} consist-
ing of n words, an aspect (opinion target) a =
{wi, wi+1, ..., wi+k}, and an opinion term o =
{wj , wj+1, ..., wj+m} (a and o are substrings of s),
the probabilities of target-oriented opinion terms
are defined as p(o|s, a) in the TOWE task and the

probabilities of aspect-opinion pairs are defined as
p(〈a, o〉|s) = p(a|s)× p(o|s, a) in the AOPE task.
The BIO tagging scheme (Ramshaw and Marcus,
1995) and a special symbol “[SEP]” are applied to
this task, where each word wi in the sentence s is
tagged as yi ∈ {B, I, O, [SEP]} (B: Beginning, I:
Inside, O: Others, [SEP]: the tag of an aspect).

3.2 Framework
The structures of our Target-Specified sequence la-
beling method based on Multi-head Self-Attention
(TSMSA) and the Multi-Task version (MT-
TSMSA) are shown in Figure 1 (c) and (d). As
aforementioned, we first use a special symbol
“[SEP]” to label each aspect. Next, the multi-head
self-attention method is applied to capture the con-
text representations of the specific aspect explicitly,
then they are passed to a projection layer and a
Conditional Random Field (CRF) (Lafferty et al.,
2001) layer for sequence labeling. Furthermore,
the aspect and opinion words extraction (task 0) as
well as the target-oriented opinion words extrac-
tion (task 1) are combined for multi-task learning.
These two tasks share the parameters of encoder
but differ in projection and CRF layers.

3.3 Multi-Head Self-Attention
We describe the multi-head self-attention approach
according to Vaswani et al. (2017) with the details
shown in Figure 1 (a) and (b). For each attention
head in the above approach, we first compute the
scaled dot-product attention. Particularly, the input
consists of a set of queries, keys, and values, where
dk stands for the dimension of queries and keys,
and dv represents the dimension of values. Then
they are packed together into matrices Q, K, and
V , respectively. The scaled dot-product attention
is calculated as follows:

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V.

(1)
Next, given the number of attention heads h, we

can get the dimension of output dmodel = h× dv.
Finally, the multi-head attention is described as
follows:

MH(I, h) = Concat(head1, ..., headh)W
O,
(2)

headi = Attention(IWQ
i , IW

K
i , IW

V
i ), (3)

where I = {~i1, ~i2, ..., ~in} (the dimension of ~i is
dmodel) indicates the input and n is the sequence
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Figure 1: The structures of our TSMSA and MT-TSMSA base models are presented in (c) and (d). For clarity, the
details about Multi-head Attention are shown in (a) and (b).

length. The parameter matrices of projections are
WQ

i ∈ Rdmodel×dk , WK
i ∈ Rdmodel×dk , W V

i ∈
Rdmodel×dv , and WO

i ∈ Rdmodel×dmodel .

3.4 Target-Specified Encoder

To start with, the input vector of each word is
generated by utilizing a word embedding lookup
table Lw ∈ Rr×dw and a positional embedding
lookup table Lp ∈ Rn×dp , where dw is the dimen-
sion of word embeddings, r is the vocabulary size,
and dp is the dimension of positional embeddings.
These embedding lookup tables will map s =
{w1, ..., wn} to {~e1w, ..., ~enw} and {~e1p, ..., ~enp},
respectively. For our base models (not using a
pre-trained language model), ~eiw will be projected
to a low dimensional vector ~eilow which is cal-
culated as follows: ~ei

low = σ(W e~ei
w), where

W e ∈ Rdlow×dw (dlow < dw) denotes the matrix
of projection and σ(·) is the activation function. In
this case, ~ti in the input T = {~t1, ..., ~tn} is rep-
resented by [~ei

low; ~ei
p] and dmodel = dlow + dp.

For a pre-trained language model like BERT (De-
vlin et al., 2019), ~ti equals the sum of ~eiw, ~eip,
and ~eis, where es = {~e1s, ..., ~ens} (the dimension
of ~eis is dp) represents segment embeddings, and
dmodel = dp = dw.

Then, the input vector T is passed to multi-
head self-attention modules, where a feed-forward
network and an add-norm network are combined
in sequence to generate the context representa-
tion of each layer H = {H1, ...,H l}, where l
is the number of multi-head attention layers and
H i = { ~H1

i
, ..., ~Hn

i}. H i can be calculated as

follows:
Oi =MH(H i−1, h), (4)

FFN i = max(0, OiW i
1 + bi1)W

i
2 + bi2, (5)

H i = LN(H i−1 + FFN i), (6)

where h is the number of attention heads, H0 =
T , the matrices W i

1 ∈ Rdmodel×dff and W i
2 ∈

Rdff×dmodel represent mappings from dmodel to
dff and back to dmodel. LN(·) is a layer normaliza-
tion method applying to sequential data (Ba et al.,
2016). Finally, the output of the encoder is H l, i.e.,
the last layer of H .

3.5 Decoder and Training
Given a sequential representation H l and a sequen-
tial label Y = {y1, ..., yn} (yi ∈ {B, I, O, [SEP]}
or yi ∈ {B-ASP, I-ASP, B-OP, I-OP, O}1), we can
use H l to compute p(Y |H l). Greedy decoding or
CRF can be adopted in the decoding process. CRF
is chosen as our decoding strategy because CRF
has the ability to capture the correlations between
tokens and labels and the correlations between ad-
jacent labels simultaneously. Given a new sentence,
we use Viterbi algorithm (Viterbi, 1967) to predict
the label sequence by maximizing the conditional
probability p(Y |H l) in the decoding process.

3.5.1 Single-Task Version
The single-task version of our approaches is
TSMSA. Given a predicted label sequence Y and

1B-ASP: beginning of an aspect, I-ASP: inside of an as-
pect, B-OP: beginning of an opinion term, I-OP: inside of an
opinion term, and O: others.
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a sequential representation H l, the score function
S(H l, Y ) can be defined as follows:

S(H l, Y ) =
n∑

i=1

Qyi−1,yi +
n∑

i=1

Pi,yi , (7)

P = H lWp + bp, (8)

where the matrix Q ∈ Rk×k captures the relation
of adjacent labels, the matrix P ∈ Rn×k learns
the relation of tokens and labels, and the matri-
ces Wp ∈ Rdmodel×k and bp ∈ Rn×k indicate a
projection operation from dimension dmodel to di-
mension k. In the above, k means the dimension
of the label space. Then, the linear-chain CRF is
exploited to calculate the conditional probability of
the predicted sequence Y as follows:

p(Y |H l) =
exp(S(H l, Y ))∑

Ỹ ∈Yall
exp(S(H l, Ỹ ))

, (9)

where Yall denotes the set of all possible sequential
labels. So the loss of a sentence can be calculated
by the negative log likelihood as follows:

L(s) = − log p(Y |H l). (10)

3.5.2 Multi-Task Version
By integrating aspect and opinion term extraction
(task 0) and TOWE (task 1) into a multi-task ar-
chitecture, we propose a MT-TSMSA method for
AOPE. MT-TSMSA can be defined as using a sen-
tenceH l and a task id ∈ {0, 1} to calculate the con-
ditional probability p(Y |H l, id). When the task id
equals 0, it means aspect and opinion term extrac-
tion. For TOWE, the task id is 1. Some examples
are shown in Figure 1 (d). Aiming at handling dif-
ferent tasks, different score functions S0(H l, Y 0)
and S1(H l, Y 1) are defined, where S0(·) and S1(·)
have different parameter matrices, Y 0 (Y 0

i ∈ {B-
ASP, I-ASP, B-OP, I-OP O}) and Y 1 (Y 1

i ∈ {B,
I, O, [SEP]}) represent the sequential labels of
aspect and opinion term extraction, and TOWE,
respectively. So the conditional probabilities of the
predicted sequences Y 0 and Y 1 can be calculated
as follows:

p(Y 0|H l, id = 0) =
exp(S0(H

l, Y 0))∑
Ỹ ∈Y 0

all
exp(S0(H l, Ỹ ))

,

(11)

p(Y 1|H l, id = 1) =
exp(S1(H

l, Y 1))∑
Ỹ ∈Y 1

all
exp(S1(H l, Ỹ ))

,

(12)

where Y 0
all denotes the set of all possible sequential

labels of task 0 and Y 1
all represents the set of all

possible sequential labels of task 1. The loss of
a sentence is also calculated by the negative log
likelihood as follows:

L(s, id) = − log p(Y |H l, id). (13)

Given M sentences S = {s1, s2, ..., sM} with
id = {id1, ..., idM}, we can minimize the loss for
training:

J(θ) =
M∑
k=1

((1− idk)λ+ idk)L(sk, idk), (14)

where λ is the hyper-parameter used to balance
these two tasks.

3.6 Inference Process

For TOWE, a sentence with a given aspect (i.e.,
target) is first processed into target-specified mode
(“[SEP] Aspect [SEP]”) with the special symbol
“[SEP]” and then passed into TSMSA, the outputs
of which are the target-oriented opinion terms. For
AOPE, MT-TSMSA generates aspect-opinion pairs
by a two-stage inference process. Firstly, a sen-
tence is passed into MT-TSMSA, where aspects
are extracted in task 0. Secondly, given extracted
aspects, repeating the inference process of TOWE,
MT-TSMSA outputs the target-oriented opinion
terms from task 1. Accordingly, the combinations
of aspects from task 0 and target-orient opinion
terms from task 1 are aspect-opinion pairs.

4 Experiments

4.1 Datasets

To evaluate the performance of our model2, we
conduct experiments on two public datasets from
laptop and restaurant domains. These two datasets
were respectively built by Fan et al. (2019) for
TOWE and Chen et al. (2020) for AOPE based on
SemEval Challenge 2014 Task 4, SemEval Chal-
lenge 2015 Task 12, and SemEval Challenge 2016
Task 5 (Pontiki et al., 2014, 2015, 2016). For the
first dataset, every sentence was annotated by two
people, and the conflicts were checked and elimi-
nated manually. The second dataset was developed
by extending the first one. The statistics of these
benchmark datasets are shown in Table 2, from

2The code of our model is available in public at: https:
//github.com/fengyh3/TSMSA.

https://github.com/fengyh3/TSMSA
https://github.com/fengyh3/TSMSA
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which we can observe that the second dataset in-
cludes many negative samples for AOPE (i.e., the
sentences only contain aspects and opinion terms,
without any aspect-opinion pairs). Note that these
negative samples will also be considered when test-
ing our model on AOPE.

Provider Datasets #Sent #Target #A #None

(Fan et al., 2019)

14lap
train 1158 1634 1626 0
test 343 482 481 0

14res
train 1627 2643 2638 0
test 500 865 864 0

15res
train 754 1076 1076 0
test 325 436 436 0

16res
train 1079 1512 1512 0
test 329 457 456 0

(Chen et al., 2020)

14lap
train 3045 1535 2359 1297
test 800 380 653 334

14res
train 3041 2809 3693 902
test 800 936 1134 219

15res
train 1315 1231 1205 556
test 685 516 542 352

Table 2: Statistics of datasets. #Sent, #Target, #A, and
#None represent the numbers of sentences, relations,
and aspects, and the sentences without any aspects and
opinion terms, respectively.

4.2 Baselines
Fan et al. (2019) have employed various baselines
in TOWE, including Distance-rule (Hu and Liu,
2004), Dependency-rule (Zhuang et al., 2006),
BiLSTM + Distance-rule, and TC-BiLSTM, ex-
cept for BERT-based methods. To achieve com-
prehensive comparative analysis, we develop base-
lines of BERT + Distance-rule and Target-fused
BERT (TF-BERT) for this task. The former trains
a sentence-level opinion term extraction model
by BERT, and the target-oriented opinion term is
the one nearest to each aspect. The latter utilizes
the average pooling of target word embeddings to
represent the target information. The word repre-
sentation at each position is the addition of word
embedding and target information, which is fed
into BERT to extract target-oriented opinion terms.
Zhao et al. (2020) have applied some baselines in
AOPE, including HAST (Li et al., 2018) + IOG
and JERE-MHS (Bekoulis et al., 2018). Besides
the above methods, we also employ the following
baselines:

• IOG (Fan et al., 2019) utilizes an Inward-
Outward LSTM and a Global LSTM to capture
the information of aspects and global information
respectively, then it combines these information
for sequence labeling.

• SpanMlt (Zhao et al., 2020) is a span-based
multi-task learning framework where the terms

are extracted with annotated span boundaries and
then the relations between combinations of every
two spans are identified.

• SDRN (Chen et al., 2020) utilizes BERT as the
encoder which consists of an opinion entity ex-
traction unit, a relation detection unit, and a syn-
chronization unit for the AOPE task. In the case
of TOWE, this model extracts the target-oriented
opinion terms with given correct aspects.

4.3 Hyper-parameter Settings
For the TOWE task, Fan et al. (2019) utilize 300-
dimension GloVe (Pennington et al., 2014) vectors
which are pre-trained on unlabeled data of 840
billion tokens to initialize word embedding vec-
tors in IOG. The word embeddings are fixed at
the stage of training. For fair comparison, we use
the same fixed word embeddings in TSMSA(Base).
We randomly select 20% of the training set as the
development set for adjusting all hyper-parameters.
The value of dmodel is 128, and the numbers of
attention heads and layers are 4 and 6, respectively.
In addition, the dropout rate, learning rate, and
maximal sequence length are set to 0.5, 0.001, and
100, respectively. Adam optimizer (Kingma and
Ba, 2015) is adopted to optimize our model. Pre-
trained language models like BERT (Devlin et al.,
2019) can be applied to our methods, and we adopt
BERT-base3 model, where dmodel is 768 and the
number of attention heads and layers are both 12.
Other hyper-parameters include the learning rate
of BERT and CRF, the maximal sequence length,
and the number of epochs. Based on the develop-
ment set, these hyper-parameters are set to 5e-5,
2e-4, 100, and 8, respectively. Unless otherwise
mentioned, λ is set to 1.

To be consistent with various baselines (Fan
et al., 2019; Chen et al., 2020; Zhao et al., 2020),
the term-level F1 score is used as the evaluation
metric for both TOWE and AOPE tasks. Term-level
means that the boundaries of the span are the same
as the ground-truth. For the AOPE task, the con-
sistency of a predicted aspect-opinion pair with the
labeled pair indicates the correctness of prediction.

4.4 Results and Analysis
4.4.1 Target-oriented Opinion Words

Extraction
Table 3 presents the performance of different
models on TOWE. Firstly, the F1 scores of rule-

3https://github.com/google-research/
bert

https://github.com/google-research/bert
https://github.com/google-research/bert
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Models
(Fan et al., 2019) (Chen et al., 2020)

14lap 14res 15res 16res 14lap 14res 15res
Distance-rule 40.42 49.92 45.97 51.83 47.68* 56.24* 51.15*

Dependency-rule 37.14 58.04 55.98 64.62 43.23* 62.17* 59.76*
BiLSTM + Distance-rule 63.38 69.18 66.97 74.01 66.77* 72.54* 69.42*

TC-BiLSTM 61.21 67.61 62.94 73.10 65.83* 71.23* 65.55*
IOG 71.35 80.02 73.25 81.69 76.43* 83.24* 76.63*

TSMSA(Base) 71.10 80.31 75.38 80.68 77.66 82.35 77.52
BERT + Distance-rule 70.54* 76.23* 71.26* 79.53* 73.84* 78.92* 76.57*

TF-BERT 72.26* 78.23* 71.58* 79.23* 74.32* 79.28* 76.94*
SDRN 80.24* 83.53* 80.18* 86.72* 87.54* 86.72* 85.17*

TSMSA(BERT) 82.18 86.37 81.64 89.20 88.63 90.03 87.30

Table 3: Experimental results (F1 score, %) of different models on TOWE. The methods in the upper part do not
utilize the pre-trained language model (i.e., BERT) and BERT is applied in the lower part. The results with ‘*’ are
reproduced by us, and others are released from Fan et al. (2019). Best results are marked in bold.

based methods are poor because the rules only
cover a small number of cases. By utilizing BiL-
STM or BERT as the encoder to extract opin-
ion terms, the BiLSTM/BERT + Distance-rule
perform much better than other rule-based meth-
ods. However, these methods cannot deal with
the one-to-many case. Secondly, TC-BiLSTM and
TF-BERT extract static word embeddings for as-
pects and then incorporate them into sentence rep-
resentation by concatenation or addition. Never-
theless, the results of TC-BiLSTM and TF-BERT
are still over 10% lower than IOG/TSMSA(Base)
and SDRN/TSMSA(BERT), respectively. It re-
veals that the static word embedding is not a good
representation of the aspect and the concatena-
tion/addition operation is not good enough to repre-
sent the specific aspect. Finally, IOG is a state-of-
the-art baseline method for TOWE and the perfor-
mance of TSMSA(Base) trained by the same word
embedding is similar to IOG, which indicates the
effectiveness in capturing the representation of a
specific aspect with the symbol “[SEP]”.

Furthermore, the pre-trained language model
BERT can be applied to our basic method. The F1
score of TSMSA(BERT) is in average 8% higher
than TSMSA(Base) and IOG. SDRN, which also
exploits BERT as the encoder, passes the informa-
tion of the aspect through a synchronization unit
and utilizes supervised self-attention to capture this
information. Nevertheless, it represents the specific
aspect implicitly, which might have an negative im-
pact on capturing the information of targets. In
average, the performance of SDRN is 2% lower
than TSMSA(BERT). The overall results reveal
that our proposed method achieves state-of-the-art
performance on TOWE.

4.4.2 Aspect-Opinion Pair Extraction
As mentioned above, our method can be applied to
AOPE by combining TOWE with aspect and opin-
ion term extraction. We here compare the perfor-
mance of our multi-task model (i.e., MT-TSMSA)
with the following competitive models: HAST +
IOG, JERE-MHS, SpanMlt, and SDRN. The re-
sults are shown in Table 4. Note that the overlap-
ping ratios of pairs in 14lap, 14res, and 15res are
78.8%, 92%, and 99.8% for (Fan et al., 2019), and
87.1%, 86.2%, and 86.4% for (Chen et al., 2020),
respectively. Thus, there is a difference (within 2%
mostly) between the results on these two datasets.

Models
(Fan et al., 2019) (Chen et al., 2020)

14lap 14res 15res 16res 14lap 14res 15res
HAST + IOG 53.41 62.39 58.12 63.84 58.97* 63.14* 58.84*
JERE-MHS 52.34 66.02 59.64 67.65 58.69* 67.81* 60.17*

SpanMlt 68.66 75.60 64.68 71.78 - - -
SDRN 68.50* 74.91* 70.08* 76.92* 67.13 76.48 70.94

MT-TSMSA(BERT) 69.33 78.37 69.13 78.39 68.18 76.69 71.64

Table 4: F1 scores (%) of aspect-opinion pairs extrac-
tion. The results with ‘*’ are reproduced by us, and
others are released from Zhao et al. (2020) and Chen
et al. (2020). Best results are marked in bold.

The performance of JERE-MHS is better than
HAST + IOG, which indicates that the degree of
error propagation in the separate training model
might be smaller than it in the model of joint
training. Moreover, SpanMlt, SDRN, and MT-
TSMSA(BERT) use powerful pre-trained language
models, which have a significant improvement in
the performance on AOPE. We observe that SDRN
and MT-TSMSA(BERT) perform better than Span-
Mlt, showing that selecting top k spans from can-
didate spans as pairs might miss some correct
pairs. Compared to SDRN, MT-TSMSA(BERT)
performs better on three datasets and nearly the
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same on four datasets. Overall, MT-TSMSA
achieves quite competitive performance on AOPE
by simply incorporating our TSMSA into a multi-
task structure.

4.5 Ablation Experiments

To evaluate the impacts of different word embed-
dings and training strategies on our models, we
conduct ablation experiments by varying the above
factors. The results shown in Table 5 indicate that
a suitable word embedding is capable of improving
the performance of our models. Firstly, BERT em-
bedding shows poor performance when compared
to Glove. We conjecture that BERT embedding
needs to cooperate with the pre-trained encoder
of BERT to perform better on TOWE. Secondly,
applying the word embedding and the encoder of
BERT without fine-tuning also fails to work on
TOWE. The reason may be that the encoder of
BERT without fine-tuning cannot capture the in-
formation of the specific aspect with the symbol
“[SEP]”. Furthermore, opinion terms extracted from
task 0 help to identify the corresponding opinion
terms in task 1, which means that the multi-task
structure is able to achieve better results than the
single-task structure on TOWE. Although the im-
provement is not significant in average, we observe
that the former structure can achieve more stable
performance than the latter one.

Models
(Fan et al., 2019)

14lap 14res 15res 16res
TSMSA(random initialized) 56.29 69.05 59.44 71.59
TSMSA(Glove embedding) 71.10 80.31 75.38 80.68
TSMSA(BERT embedding) 61.23 70.12 62.12 72.47

TSMSA(BERT fixed) 65.13 72.37 66.79 73.80
TSMSA(BERT fine-tuned) 82.18 86.37 81.64 89.20

MT-TSMSA(BERT fine-tuned) 82.41 86.52 81.92 89.56

Table 5: Results of ablation experiments (F1 score, %)
on TOWE. The different word embeddings and training
strategies of the models are described in parentheses.

4.6 Convergence and Sensitivity Studies

The results of convergence and sensitivity studies
are shown in Figure 2. Figure 2 (a) reveals that
our model gradually converges as the number of
epochs increases. Although the dropout rate is
set to 0.5, it also converges smoothly. Figure 2
(b) shows the effect of the number of attention
heads. When the number of attention heads is
4, TSMSA(Base) achieves stable and good per-
formance, and as the value increased, the perfor-
mance might be better. Figure 2 (c) shows that

the best performance is achieved when the number
of multi-head self-attention layers is 6, and as the
number increased, the model might be confronted
with overfitting. Figure 2 (d) indicates the impact
of λ on our model which influences the learning
of different tasks. Stable and good results can be
obtained when λ = 1, and better performance can
be achieved when the value is set to 0.5 or 2. Com-
pared with other hyper-parameters, the results also
indicate that λ has a relatively small impact on the
model performance.

(a) Loss. (b) The number of atten-
tion heads.

(c) The number of layers. (d) λ.

Figure 2: (a) is the decline trend of loss. (b), (c), and (d)
are the comparisons among different values of layers,
attention heads, and λ, respectively.

4.7 Visualization of Attention

In this part, we apply an open source tool4 to visu-
alize the attention scores of TSMSA(BERT) and
describe two attention heads on the tenth layer in
Figure 3 (a) and (b), where attention scores less
than 0.1 and unimportant words are not displayed.
As we can see, the words “nice” and “great” are
both close to the aspect “food”, but “nice” will not
pay attention to this aspect. In addition, “great” and
“reasonable” focus on the special symbol “[SEP]”
and the specific aspect “food”, as shown in Fig-
ure 3 (a). At the same time, “food” gives attention
to “great” and “reasonable” on different attention
heads, as described in Figure 3 (b). All these in-
stances reveal that multi-head self-attention mecha-
nism is capable of capturing the representation of a

4https://github.com/jessevig/bertviz

https://github.com/jessevig/bertviz
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Case 1: The receiver was full of superlatives for the quality and performance.
SDRN: (quality, superlatives), (performance, superlatives)!
MT-TSMSA(BERT): (quality, superlatives), (performance, superlatives)!
Case 2: The selection of food is excellent, and the atmosphere is great.
SDRN: (selection of food, excellent), (atmosphere, great)!
MT-TSMSA(BERT): (selection of food, excellent), (atmosphere, great)!
Case 3: The bartenders and the managers are really nice and the decor is very comfy and laid-back, all the while being trendy.
SDRN: (bartenders, nice), (managers, nice), (decor, comfy), (decor, laid-back), (decor, trendy)!
MT-TSMSA(BERT): (bartenders, nice), (managers, nice), (decor, comfy), (decor, laid-back), (decor, trendy)!
Case 4: Additionally, there is barely a ventilation system in the computer, and even the simple activity of watching videos let
alone playing steam games causes the laptop to get very very hot, and in fact impossible to keep on lap.
SDRN: (ventilation system, barely), (ventilation system, hot), (watching videos, simple),
(playing steam games, hot) missed (watching videos, hot)
MT-TSMSA(BERT): (ventilation system, barely), (ventilation system, hot), (watching videos, simple),
(watching videos, hot), (playing steam games, hot)!
Case 5: Every time I log into the system after a few hours, there is this endlessly frustrating process that I have to go through.
SDRN: (log into the system, frustrating)!
MT-TSMSA(BERT): missed (log into the system, frustrating)

Table 6: Case study results. The aspect and opinion terms are highlighted in green and blue, respectively. The
extracted pairs from SDRN and MT-TSMSA are shown in parenthesis, where the missed pairs are marked in red.
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[SEP]

Figure 3: Visualization of multi-head self-attention
mechanism. A line represents that a word from the bot-
tom sentence pays close attention to the word from the
top sentence.

specific aspect.

4.8 Case Study

To further compare our MT-TSMSA(BERT) with
the best-performing baseline of SDRN, we here
conduct a case study by following (Chen et al.,
2020). As shown in Table 6, both SDRN and MT-
TSMSA(BERT) perform well in extracting aspect-
opinion pairs from complicated relations. But in
some cases like Case 4, SDRN misses the pair of
(watching videos, hot). The reason may be that the
massive hyper-parameters in SDRN have a great
impact on the effect. For example, the threshold
β in the relation synchronization mechanism of
SDRN will largely affect the results of the model.
On the other hand, our method can extract all the
pairs because it introduces fewer hyper-parameters,
which leads to stable results. However, in Case
5, our method cannot extract the pair. The rea-

son is that task 0 of MT-TSMSA(BERT) fails to
extract the aspect term “log into the system”. More-
over, the in-depth reason is that for the aspect term
extraction task, the performance of SDRN (i.e.,
83.67%, 89.49%, and 74.05%) is better than that
of MT-TSMSA(BERT), i.e., 83.11%, 84.85%, and
72.69% on the datasets from (Chen et al., 2020).

5 Conclusions

In this paper, we propose a target-specified se-
quence labeling method based on multi-head self-
attention (TSMSA) and a multi-task version (MT-
TSMSA) to deal with TOWE and AOPE, respec-
tively. In our methods, the encoder is capable of
capturing the information of the specific aspect
which is labeled by a special symbol “[SEP]”.
Experimental results demonstrate that TSMSA
and MT-TSMSA achieve quite competitive per-
formance in most cases. When combining aspect
and opinion words extraction with TOWE, our MT-
TSMSA can slightly improve the performance as
compared with TSMSA. In the future, we plan
to extend our approaches to sentiment classifica-
tion of pairs and explore an efficient model with
a one-stage inference process to reduce the time
complexity on AOPE.
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