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Abstract

State-of-the-art Machine Reading Comprehen-
sion (MRC) models for Open-domain Ques-
tion Answering (QA) are typically trained for
span selection using distantly supervised posi-
tive examples and heuristically retrieved neg-
ative examples. This training scheme possi-
bly explains empirical observations that these
models achieve a high recall amongst their top
few predictions, but a low overall accuracy,
motivating the need for answer re-ranking.
We develop a successful re-ranking approach
(RECONSIDER) for span-extraction tasks that
improves upon the performance of MRC mod-
els, even beyond large-scale pre-training. RE-
CONSIDER is trained on positive and nega-
tive examples extracted from high confidence
MRC model predictions, and uses in-passage
span annotations to perform span-focused re-
ranking over a smaller candidate set. As a re-
sult, RECONSIDER learns to eliminate close
false positives, achieving a new extractive state
of the art on four QA tasks, with 45.5% Ex-
act Match accuracy on Natural Questions with
real user questions, and 61.7% on TriviaQA.
We will release all related data, models, and
code1.

1 Introduction

Open-domain Question Answering (Voorhees et al.,
1999) (QA) involves answering questions by ex-
tracting correct answer spans from a large corpus
of passages, and is typically accomplished by a
light-weight passage retrieval model followed by a
heavier Machine Reading Comprehension (MRC)
model (Chen et al., 2017). The span selection com-
ponents of MRC models are trained on distantly su-
pervised positive examples (containing the answer
string) together with heuristically chosen negative
examples, typically from upstream retrieval models.
This training scheme possibly explains empirical

∗Work done while at Facebook AI.
1github.com/facebookresearch/reconsider

Figure 1: Top-3 passage-spans predicted by a BERT-
MRC model on a question from NQ (answer spans are
underlined). RECONSIDER re-evaluates the passages
with marked candidate answers, eliminates close false
positives and ranks Mikhail Gorbachev as correct.

findings (Wang et al., 2018b,c) that while MRC
models can confidently identify top-K answer can-
didates (high recall), they cannot effectively dis-
criminate between top semantically similar false
positive candidates (low accuracy). In this paper,
we develop a general approach to make answer re-
ranking successful for span-extraction tasks, even
over large pretrained models, and improve the state
of the art on four QA datasets.

Earlier work (Wang et al., 2018c,b) on open-
domain QA have recognized the potential of answer
re-ranking, which we continue to observe despite
recent advances using large pre-trained models like
BERT (Devlin et al., 2019). Figure 1 shows the
top-3 predictions of a BERT-based SOTA model
(Karpukhin et al., 2020) on a question from Nat-
ural Questions (NQ) (Kwiatkowski et al., 2019),
“Who was the head of the Soviet Union when it col-
lapsed?" While all predictions are very relevant and
refer to Soviet Union heads, Mikhail Gorbachev is
correct and the rest are close false positives. Table 1
presents accuracies obtained by the same model on
four QA datasets, if the answer exactly matches
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Dataset Top-1 Top-5 Top-10 Top-25

NQ 40.3 49.5 50.9 62.4
TRIVIAQA 57.2 64.6 65.7 73.1
WEBQ 42.6 49.0 50.7 60.4
TREC 49.6 58.7 60.9 71.4

Table 1: Top-k EM accuracies using a state-of-the-art
model (Karpukhin et al., 2020) on four open-domain
QA tasks (dev set). Improvements of up to 22% can po-
tentially be achieved by re-ranking top-25 candidates.

any of the top-k predictions for k = 1, 5, 10 and
25. We observe that an additional 10% and 20% of
correct answers exist amongst the top-5 and top-25
candidates respectively, presenting an enormous
opportunity for span reranking models.

Our re-ranking model is trained using positive
and negative examples extracted from high confi-
dence MRC model predictions, and thus, learns to
eliminate hard false positives. This can be viewed
as a coarse-to-fine approach of training span selec-
tors, with the base MRC model trained on heuris-
tically chosen negatives and the re-ranker trained
on finer, more subtle negatives. This contrasts with
multi-task training approaches (Wang et al., 2018c),
whose re-scoring gains are limited by training on
the same data, especially when coupled with large
pre-trained models. Our approach also scales to any
number of ranked candidates, unlike previous con-
catenation based cross-passage re-ranking methods
(Wang et al., 2018b) that do not transfer well to
current length-bounded large pre-trained models.
Similar to MRC models, our re-ranking approach
uses cross-attention between the question and a
candidate passage (Seo et al., 2016). However, we
now demarcate a specific candidate answer span
in each passage, to assist the model to perform
span-focused reasoning, in contrast to MRC mod-
els, which must reason across all spans. Therefore,
the re-ranker performs span ranking of carefully
chosen candidates, rather than span selection like
the MRC model. Similar focused cross-attention
methods have recently proved to be effective for
Entity Linking (Wu et al., 2020) tasks, although
they annotate the query rather than the passage.

We use our broadly applicable span-focused re-
ranking approach on models from Karpukhin et al.
(2020) and achieve a new extractive state of the art
on four QA datasets, including 45.5% on the open-
domain setting of NQ (real user queries, +1.6% on
small models) and 61.1% on TriviaQA (Joshi et al.,

2017) (+2.5% on small models). To our knowledge,
we are the first to successfully leverage re-ranking
to improve over large pre-trained models on open-
domain QA.

2 Background

Open-domain Question Answering (QA) aims to
answer factoid questions from a large corpus of pas-
sages (Voorhees et al., 1999) (such as Wikipedia)
in contrast with single passage MRC tasks (Ra-
jpurkar et al., 2016). Prior works use pipelined
approaches, that first retrieve candidate passages
and subsequently use a neural MRC model to ex-
tract answer spans (Chen et al., 2017), with further
improvements using joint learning (Wang et al.,
2018a; Tan et al., 2018). Recent successes involve
improving retrieval, thereby increasing the cover-
age of passages fed into the MRC model (Guu et al.,
2020; Karpukhin et al., 2020). In this paper, we
significantly improve MRC model performance by
making re-ranking successful using span-focused
re-ranking of its highly confident predictions.

For Open-domain QA, it is crucial to train MRC
models to distinguish passage-span pairs contain-
ing the answer (positives) from those that do not
(negatives). Using negatives that appear as close
false positives can produce more robust MRC mod-
els. However, prior work relies on upstream re-
trieval models to supply distantly supervised posi-
tives (contain answer string) and negatives (Asai
et al., 2020), that are in-turn trained using heuristi-
cally chosen positives and negatives. Our approach
leverages positives and negatives from highly con-
fident MRC predictions which are hard to classify,
and thus, improve upon MRC model performance.

Jia and Liang (2017) motivate recent work on
answer verification for QA by showing that MRC
models are easily confused by similar passages.
Wang et al. (2018b) use a weighted combination
of three re-rankers and rescore a concatenation
of all passages with a particular answer using
a sequential model, while, Wang et al. (2018c)
develop a multi-task end-to-end answer scoring
approach. Although the main idea is to con-
sider multiple passage-span candidates collectively,
such approaches either used concatenation, which
is prohibitively expensive to couple with length-
restricted models like BERT, or are trained on
the same data without variations only to realize
marginal gains. Hu et al. (2019) use answer verifi-
cation to predict the unanswerability of a question-
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passage pair for traditional MRC tasks. To our
knowledge, our work is the first to (i) success-
fully demonstrate a re-ranking approach that signif-
icantly improves over large pre-trained models (De-
vlin et al., 2019) in an open domain setting, and
(ii) use annotated top model predictions as harder
negatives to train more robust models for QA.

3 Model

We assume an extractive MRC modelM coupled
with a passage retrieval model, that given a question
q and a passage corpus P , produces a list of N
passage and span pairs, {(pj , sj)}Nj=1, pj ∈ P and
sj is a span within pj , ranked by the likelihood of
sj answering q. Note that {pj}Nj=1 is not disjoint
as a passage can have multiple answer spans. In
this section, we develop a span-focused re-ranking
model R, that learns a distribution p, over top-
K (pj , sj) pairs 1 ≤ j ≤ K, given question q.
Essentially, model R first scores every (q, pj , sj)
triple using scoring function r, and then normalizes
over these scores to produce p:

p(q, pj , sj) =
er(q,pj ,sj)∑

1≤k≤K er(q,pk,sk)
. (1)

Specifically, if E(q, pj , sj) ∈ RH is a dense
representation of (q, pj , sj), r is defined as:

r(q, pj , sj) = wTE(q, pj , sj), (2)

where w ∈ RH is a learnable vector.

Span-focused tuple encoding We compute E
using the representation of the [CLS] token of a
BERT model (Devlin et al., 2019) applied to a span-
focused encoding of (q, pj , sj). This encoding is
generated by first marking the tokens of sj within
passage pj with special start and end symbols [A]
and [/A], to form p̂j , followed by concatenating
the [CLS] and question tokens, with the annotated
passage tokens p̂j , using separator token [SEP].
We find span marking to be a crucial ingredient
for answer re-ranking, without which, performance
deteriorates (Section 5).

Training We obtain top K predictions (pj , sj)
of model M for each question qi in its training
set, which we divide into positives, where sj is
exactly the groundtruth answer, and remaining neg-
atives. We train R using mini-batch gradient de-
scent, where in each iteration, for question q, we
include 1 randomly chosen positive and M − 1

randomly chosen negatives, and maximize the like-
lihood of the positive. Unlike the heuristically cho-
sen negatives used to trainM, R is trained using
negatives from high confidence predictions ofM,
which are harder to classify. Thus, this can be
viewed as an effective coarse-to-fine negative selec-
tion strategy for span extraction models (Section 5).

4 Baseline ModelM

We use the state-of-the-art models of Karpukhin
et al. (2020) which consists of 1) a dense passage
retriever, and 2) a span extractive BERT reader,
as our model M. The retriever uses a passage
encoder fp and a question encoder fq to represent
all passages and questions as dense vectors in the
same space. During inference, it retrieves top-100
passages similar to question q based on their inner
product, and passes them on to the MRC reader.

The MRC reader is an extension of modelR of
Section 3, to perform span extraction. We briefly
describe it but Karpukhin et al. (2020) has com-
plete details. Its input is a question q together
with positive and negative passages pj from its
retrieval model. (q, pj) tuples are encoded as be-
fore (enc(q, pj) = q [SEP] pj), but without spans
being marked (as spans are unavailable). A dis-
tribution over passages ps is computed as before
using scoring function r and context encoder E.
In addition, a start-span probability, pst(ti|q, pj)
and an end-span probability, pe(ti|q, pj) is com-
puted for every token ti in enc(q, pj). The model
is trained to maximize the likelihood of ps(pj)×
pst(s|q, pj) × pe(t|q, pj) for each correct answer
span (s, t) in pj , and outputs the top-K scoring
passage-span pairs during inference.

5 Experiments

Datasets We use four benchmark open-domain
QA datasets following Lee et al. (2019):
Natural Questions (NQ) contains real user ques-
tions asked on Google searches; we consider ques-
tions with short answers up to 5 tokens.
TRIVIAQA (Joshi et al., 2017) consists of ques-
tions collected from trivia and quiz-league web-
sites; we take questions in an unfiltered setting and
discard the provided web snippets.
WebQuestions (WEBQ) (Berant et al., 2013) is a
collection of questions extracted from the Google
Suggest API, with answers being Freebase entities.
CuratedTREC (Baudiš and Šedivỳ, 2015) con-
tains curated questions from TREC QA track.
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Model NQ TRIVIAQA WEBQ TREC

BM25+BERT (Lee et al., 2019) 26.5 47.1 17.7 21.3
ORQA (Lee et al., 2019) 33.3 45.0 36.4 30.1
HardEM (Min et al., 2019a) 28.1 50.9 - -
GraphRetriever (Min et al., 2019b) 34.5 56.0 36.4 -
PathRetriever (Asai et al., 2020) 32.6 - - -
REALM (Guu et al., 2020) 39.2 - 40.2 46.8
REALMNews (Guu et al., 2020) 40.4 - 40.7 42.9

Models that use DPRmulti (Karpukhin et al., 2020)

DPR-BERTbase (Karpukhin et al., 2020) 41.5 56.8 42.4 49.4
RECONSIDERbase (Ours) 43.1 59.3 44.4 49.3

DPR-BERT†large (Karpukhin et al., 2020) 44.6 60.9 44.8 53.5
RAGlarge (Lewis et al., 2020) 44.5 56.1 45.5 52.2
RECONSIDERlarge (Ours) 45.5 61.7 45.9 55.3

Table 2: End-to-end QA test-set (Exact Match) accuracy. Models in the lower half use dense passage retrieval
from Karpukhin et al. (2020). RECONSIDER outperforms previous methods under both base and large versions.
Table layout and baselines are borrowed from Karpukhin et al. (2020) (published extractive SOTA). Dataset stats and dev set
results are in Appendix, and baseline descriptions can be found in Karpukhin et al. (2020). †: numbers from our own experiments.

Implementation details For all datasets, we use
the retrieval model (without retraining) and setup
from Karpukhin et al. (2020), retrieving 100-token
passages from a Wikipedia corpus (from 2018-12-
20). We also use their MRC model with their best
performing hyperparameters as model M. For
modelR, we experiment with both BERTbase and
BERTlarge, use top-100 predictions from modelM
during training (top-5 for testing), and use M = 30.
We use a batch size of 16 on NQ and TRIVI-
AQA and 4 otherwise. For WEBQ and TREC,
we start training from our trained NQ model.

Results Table 2 presents end-to-end test-set ex-
act match accuracies for these datasets, compared
with previous models. The BERTbase version of
RECONSIDER outperforms the previous state-of-
the-art DPR model of Karpukhin et al. (2020) (our
model M) by 1.6% on NQ and ∼ 2% on TRIV-
IAQA and WEBQ. For training on the smaller
WEBQ and TREC datasets, we initialize mod-
els using the corresponding NQ model. Table 2
demonstrates the effectiveness of a coarse-to-fine
approach for selecting negative passages, with
dense retrieval based negatives (DPR) outperform-
ing BM25, and in turn, improved upon by our re-
ranking approach. We obtain gains despiteR being
not only very similar in architecture to the MRC
readerM, but also trained on the same QA pairs,
owing to (i) training using harder false-positive

style negatives, and (ii) answer-span annotations
that allow a re-allocation of modeling capacity
from modeling all spans to reasoning about specific
spans with respect to the question and the passage.
Re-ranking performance suffers without these cru-
cial methods. For example, replacing answer-span
annotations with answer concatenation reduces ac-
curacy by ∼1% on the dev set of NQ.

We train a large variant of RECONSIDER us-
ing BERTlarge for model R, trained on predic-
tions from a BERTlarge model M. For a fair
comparison, we re-evaluate DPR using BERTlarge.
RECONSIDERlarge outperforms it by ∼1% on all
datasets (+ ∼2% on TREC). This model is also
comparable in size to RAG (Lewis et al., 2020)
(which uses BARTlarge) but outperforms it on
all tasks (+1 on NQ, +5.5 on TRIVIAQA, +3 on
TREC), demonstrating that retrieve-extract archi-
tectures can perform better than answer generation
models.

We find K=5 (testing) to be best for all datasets,
and increasing K has little effect on accuracy, de-
spite training on top-100 predictions. Although in
contrast with our expectations based on Table 1,
this is anticipated since very low-ranked predic-
tions are less likely to be reranked highly, but this
also presents an opportunity for future work.

In Table 3, we present examples from the valida-
tion set of NQ, of cases where 1) DPR-BERTbase
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Model Prediction

Question Where are zebra mussels found in the United States?
DPR-BERTbase ... on the genetic algorithm for rule - set production (garp), a group of researchers predicted that the

southeastern united states is moderately to highly likely to be inhabited by zebra mussels ...
+RECONSIDER ... of zebra mussel in the great lakes alone exceeds $500 million a year.

Question Where do you find neurons in the brain?
DPR-BERTbase ... there is strong evidence for generation of substantial numbers of new neurons in two brain areas, the

hippocampus and olfactory bulb. A neuron is a specialized type of cell found in the bodies ...
+RECONSIDER The brain is the most complex organ in a vertebrate’s body. In a human, the cerebral cortex contains

approximately 14–16 billion neurons.

Question Who said if I have seen further it is by standing on the shoulders of giants?
DPR-BERTbase Standing on the shoulders of giants ... this concept has been traced to the 12th century, attributed to

Bernard of Chartres. Its most familiar expression in English is by Isaac Newton in 1675: "If I have
seen further it is by standing on the shoulders of giants ...

+RECONSIDER Standing on the shoulders of giants ... this concept has been traced to the 12th century, attributed to
Bernard of Chartres. Its most familiar expression in English is by Isaac Newton in 1675: "If I have
seen further it is by standing on the shoulders of giants ...

Table 3: Top passage with answer span (in bold) for example questions from the validation set of NQ, both with
and without re-ranking using RECONSIDER. For the first two examples, RECONSIDER re-ranks to obtain the
correct answer, while in the last example, re-ranking eliminates the already correct top answer.

produces an incorrect top answer, which is cor-
rected after re-ranking with RECONSIDER (top
2 examples), and 2) DPR-BERTbase’s answer is
correct but is ranked lower after re-ranking. Of
the 15.4% validation examples that were amenable
for correction by re-ranking the top-5 candidates
from DPR-BERTbase, RECONSIDER was able to fix
6.1%. However, in this process, 4.3% of answers
that were originally correct (top-ranked), lost their
top-rank after RECONSIDER, and this presents an
opportunity for further improving re-ranking.

6 Conclusion

We use a synergistic combination of two techniques
viz. retraining with harder negatives, and, span-
focused cross attention, to make re-ranking success-
ful for span-extractive tasks over large pretrained
models. This method achieves SOTA extractive re-
sults on four open domain QA datasets, also outper-
forming recent generative pre-training approaches.
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A Computing Infrastructure Used

All experiments were run on a machine with 2 chips
of Intel(R) Xeon(R) CPU E5-2698 v4 @ 2.20GHz
with 20 cores (40 threads) each, equipped with 8
NVIDIA TESLA V100 GPUs, each with 32 GB of
memory.

B Average Run-time and #Parameters

We report average run-times for training and in-
ference on NQ (TRIVIAQA is similar), as well
as number of model parameters, in Table 4.
WEBQ and TREC are much smaller datasets and
have lower runtimes.

Model Params Train Inf.

DPR-BERTlarge 335M 37 h 2.8 h
RECONSIDERbase 109M 13 h 2 m
RECONSIDERlarge 335M 28 h 2 m

Table 4: Runtime for training and inference, and num-
ber of parameters of the models that we executed, on
NQ. Runtimes for RECONSIDER do not include the
time required to train and obtain predictions from DPR.

C Validation Performance

Table 8 presents validation set performance for the
experiments that we ran for this paper.

D Hyperparameters

For training RECONSIDER, we use top-100 predic-
tions of the baseline MRC model. This was chosen
based on validation set accuracy, and other values
that were experimented with were 50 and 75. For
training RECONSIDER we use 1 positive and M−1
negatives during each iteration. We tried values of
M between 5 and 40 in increments of 5 and chose
M = 30 based on validation set accuracy (see Ta-
ble 6). Similarly, we re-rank K = 5 candidates

K Accuracy (%)

3 41.54
5 42.50
10 42.26
15 42.03
20 41.91

Table 5: Hyper-parameter tuning for K at inference
time on the validation set of NQ.

Train-M Accuracy (%)

25 42.34
30 42.48
40 41.25

Table 6: Hyper-parameter tuning for the number of neg-
ative passages i.e. train-M , on the validation set of NQ.

during inference, and this value was chosen by ex-
perimenting with values 2, 3, 4 and values between
5 and 20, in increments of 5 (see Table 5).

Dataset Train Dev Test

NQ 67,098 8,757 3,610
TRIVIAQA 67,975 8,837 11,313
WEBQ 2,898 361 2,032
TREC 1,240 133 694

Table 7: Training, validation and testing set sizes for
the four open-domain QA tasks evaluated in our paper.

E Dataset Statistics

Table 7 presents the number of examples in the
training, validation and testing splits of the four
open-domain QA datasets that we use, based on
the dataset prepared by Karpukhin et al. (2020).
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Model NQ TRIVIAQA WEBQ TREC

RECONSIDERbase (Ours) 42.5 60 46.3 49.6

DPR-BERTlarge (Karpukhin et al., 2020) 42.2 60.1 43.8 54.9
RECONSIDERlarge (Ours) 44.2 61.7 46 54.9

Table 8: Validation set performance for our experiments.


