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Abstract

Item categorization is an important application
of text classification in e-commerce due to its
impact on the online shopping experience of
users. One class of text classification tech-
niques that has gained attention recently is us-
ing the semantic information of the labels to
guide the classification task. We have con-
ducted a systematic investigation of the poten-
tial benefits of these methods on a real data
set from Rakuten, a major e-commerce com-
pany in Japan. We found that using pre-trained
word embeddings specialized to specific cate-
gories of items performed better than one ob-
tained from all available categories despite the
reduction in data set size. Furthermore, using a
hyperbolic space to embed product labels that
are organized in a hierarchical structure led to
better performance compared to using a con-
ventional Euclidean space embedding. These
findings demonstrate how label-guided learn-
ing can improve item categorization systems
in the e-commerce domain.

1 Introduction

Natural language processing (NLP) techniques
have been applied extensively to solve modern e-
commerce challenges (Malmasi et al., 2020; Zhao
et al., 2020). One major NLP challenge in e-
commerce is item categorization (IC) which refers
to classifying a product based on textual informa-
tion, typically the product title, into one of numer-
ous categories in the product category taxonomy
tree of online stores. Although significant progress
has been made in the area of text classification,
many standard open-source data sets have limited
numbers of classes which are not representative of
data in industry where there can be hundreds or
even thousands of classes (Li and Roth, 2002; Pang
and Lee, 2004; Socher et al., 2013)To cope with
the large number of products and the complexity of
the category taxonomy, an automated IC system is
needed and its prediction quality needs to be high
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Figure 1: Subset of the product taxonomy tree for item
categorization.

enough to provide positive shopping experiences
for customers and consequently drive sales. Fig-
ure 1 shows an example diagram of the product
category taxonomy tree for the IC task. In this ex-
ample, a tin of Japanese tea 1 needs to be classified
into the leaf level category label “Japanese tea.”

As reviewed in Section 2, significant progress
has been made on IC as a deep learning text classifi-
cation task. However, much of the progress in text
classification does not make use of the semantic
information contained in the labels. Recently there
have been increasing interest in taking advantage
of the semantic information in the labels to im-
prove text classification performance (Wang et al.,
2018; Liu et al., 2020; Du et al., 2019; Xiao et al.,
2019; Chai et al., 2020). For the IC task, labels in a
product taxonomy tree are actively maintained by
human experts and these labels bring rich semantic
information. For example, descriptive genre infor-
mation like “clothes” and “electronics” are used
rather than just using a numeric index for the class
labels. It is reasonable to surmise that leveraging
the semantics of these category labels will improve
the IC models.

Although label-guided learning has been shown

1Image from https://item.rakuten.co.jp/
kusurinokiyoshi/10016272/

https://item.rakuten.co.jp/kusurinokiyoshi/10016272/
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to improve classification performance on several
standard text classification data sets, its application
to IC on real industry data has been missing thus
far. Compared to standard data sets, e-commerce
data typically contain more complicated label tax-
onomy tree structures, and product titles tend to be
short and do not use standard grammar. Therefore,
whether label-guided learning can help IC in indus-
try or not is an open question worth investigating.

In this paper, we describe our investigation of
applying label-guided learning to the IC task. Us-
ing real data from Rakuten2, we tested two models:
Label Embedding Attentive Model (LEAM) (Wang
et al., 2018) and Label-Specific Attention Network
(LSAN) (Xiao et al., 2019). In addition, to cope
with the challenge that labels in an IC task tend to
be similar to each other within one product genre,
we utilized label embedding methods that can bet-
ter distinguish labels which led to performance
gains. This included testing the use of hyperbolic
embeddings which can take into account the hier-
archical nature of the taxonomy tree (Nickel and
Kiela, 2017).

The paper is organized as follows: Section 2
reviews related research on IC using deep learning-
based NLP and the emerging techniques of label-
guided learning. Section 3 introduces the two
label-guided learning models we examined, namely
LEAM and LSAN, as well as hyperbolic embed-
ding. Section 4 describes experimental results on a
large-scale data set from a major e-commerce com-
pany in Japan. Section 5 summarizes our findings
and discusses future research directions.

2 Related works

Deep learning-based methods have been widely
used for the IC task. This includes the use of deep
neural network models for item categorization in
a hierarchical classifier structure which showed
improved performance over conventional machine
learning models (Cevahir and Murakami, 2016),
as well as the use of an attention mechanism to
identify words that are semantically highly corre-
lated with the predicted categories and therefore
can provide improved feature representations for a
higher classification performance (Xia et al., 2017).

Recently, using semantic information carried by
label names has received increasing attention in
text classification research, and LEAM (Wang et al.,
2018) is one of the earliest efforts in this direction

2https://www.rakuten.co.jp

that we are aware of. It uses a joint embedding of
both words and class labels to obtain label-specific
attention weights to modify the input features. On
a set of benchmark text classification data sets,
LEAM showed superior performance over models
that did not use label semantics. An extension of
LEAM called LguidedLearn (Liu et al., 2020) made
further modifications by (a) encoding word inputs
first and then using the encoded outputs to com-
pute label attention weights, and (b) using a multi-
head attention mechanism (Vaswani et al., 2017)
to make the attention-weighting mechanism have
more representational power. In a related model,
LSAN (Xiao et al., 2019) added a label-specific at-
tention branch in addition to a self-attention branch
and showed superior performance over models that
did not use label semantics on a set of multi-label
text classification tasks.

Alternatively, label names by themselves may
not provide sufficient semantic information for ac-
curate text classification. To address this potential
shortcoming, longer text can be generated based
on class labels to augment the original text input.
Text generation methods such as using templates
and reinforcement learning were compared, and
their effectiveness were evaluated using the BERT
model (Devlin et al., 2019) with both text sen-
tence and label description as the input (Chai et al.,
2020).

Finally, word embeddings such as word2vec
(Mikolov et al., 2013) and GloVe (Pennington
et al., 2014) are generated in Euclidean space. How-
ever, embeddings in non-Euclidean space called hy-
perbolic embeddings have been developed (Nickel
and Kiela, 2017; Chen et al., 2020a,b) and have
been shown to better represent the hierarchical re-
lationship among labels.

3 Model

For a product title X consisting of L words X =
[w1, . . . , wL], our goal is to predict one out of a set
of K labels, y ∈ C = {c1, . . . , cK}. In a neural
network-based model, the mapping X → y gener-
ally consists of the following steps: (a) encoding
step (f0), converting X into a numeric tensor rep-
resenting the input, (b) representation step (f1),
processing the input tensor to be a fixed-dimension
feature vector z, and (c) classification step (f2),
mapping z to y using a feed-forward layer.

Among label-guided learning models, we chose
both LEAM (Wang et al., 2018) and LSAN (Xiao

https://www.rakuten.co.jp
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Step LEAM LSAN
f0 Word embedding Word embedding + Bi-LSTM encoding
f1 Only label-specific attention Both self- and label-specific attentions + adaptive interpolation
f2 Softmax with CE loss Softmax with CE loss

Table 1: Comparison of LEAM (Wang et al., 2018) and LSAN (Xiao et al., 2019) with respect to the three modeling
steps.
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Figure 2: Architecture of LEAM (Wang et al., 2018).

et al., 2019) for our experiments. Table 1 shows a
comparison between these models.

3.1 LEAM
The LEAM architecture is shown in Figure 2 (Wang
et al., 2018). First a product title of length L is en-
coded as V = [v1, . . . , vL] where vl ∈ RD is deter-
mined through word embedding and V ∈ RD×L.
The class labels are also encoded via label em-
bedding as C = [c1, ..., cK ] where K is the total
number of labels, ck ∈ RD and C ∈ RD×K . The
label embeddings are title-independent and is the
same across all titles for a given set of labels. We
can then compute the compatibility of each word-
label pair based on their cosine similarity to obtain
a compatibility tensor G ∈ RL×K .

The compatibility tensor is transformed into an
attention vector through the following steps, (a)
apply a 1D convolution to refine the compatibility
scores by considering its context, (b) apply max
pooling to keep the maximum score, and (c) ap-
ply a softmax operation to obtain the label-guided
attention weights β. These attention weights con-
taining the label semantic information are used in
the f1 step to compute a new representation,

z =
∑
l

βlvl. (1)

After obtaining z, we use a fully-connected layer

with softmax to predict y ∈ C. The entire pro-
cess f2(f1(f0(X ))) is optimized by minimizing
the cross-entropy loss between y and f2(z).

3.2 LSAN
The LSAN architecture is shown in Figure 3 (Xiao
et al., 2019). As shown in Table 1, LSAN has
a few modifications compared to LEAM. First, a
bi-directional long short-term memory (Bi-LSTM)
encoder is used to better capture context seman-
tic cues in the representation. The resulting con-
catenated tensor is H = [

−→
H,
←−
H ] where

−→
H and

←−
H

represent LSTM encoding outputs from forward
and backward directions and H ∈ RL×2P where
P is the dimension of the LSTM hidden state. For
model consistency we typically set P = D.

Additional features of LSAN which extend
LEAM include (a) using self-attention on the en-
coding H , (b) creating a label-attention component
from H and C, and (c) adaptively merging the self-
and label-attention components.

More specifically, the self-attention score A(s) is
determined as

A(s) = softmax(W2 tanh(W1H
T )), (2)

where W1 ∈ Rda×2P and W2 ∈ RK×da are self-
attention tensors to be trained, da is a hyperparam-
eter, A(s) ∈ RK×L and each row A

(s)
j· is an L-

dimensional vector representing the contributions
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Figure 3: Architecture of LSAN (Xiao et al., 2019).

of all L words to label j. Therefore,

M (s) = A(s)H (3)

is a representation of the input text weighted by
self-attention where M (s) ∈ RK×2P .

From the title encoding H and the label embed-
ding C, compatibility scores between class labels
and title words can be computed as the product

←−−
A(l) = CT←−HT (4)
−−→
A(l) = CT−→HT , (5)

where A(l) ∈ RK×L and each row A
(l)
j· is a L-

dimensional vector representing the contributions
of all L words to label j. The product title can be
represented using label attention as

M (l) = [
←−−
A(l)←−H,

−−→
A(l)−→H ] (6)

where M (l) ∈ RK×2P .
The last procedure in the f1 step of LSAN is

to adaptively combine the self- and label-attention
representations M (s) and M (l) as

Mj. = αjM
(s)
j. + βjM

(l)
j. , (7)

where the two interpolation weight factors (α, β ∈
RK) are computed as

α = σ(M (s)W3) (8)

β = σ(M (l)W4), (9)

with the constraint αj + βj = 1, W3,W4 ∈ R2P

are trainable parameters, σ(x) ≡ 1/(1+e−x) is the
element-wise sigmoid function, and M ∈ RK×2P .

Although the original LSAN model proposed
multiple additional layers in its f2 step, in our im-
plementation we performed average pooling along
the label dimension and then to a fully-connected
layer with softmax output, similar to LEAM. Fi-
nally, the cross entropy loss is minimized.

3.3 Hyperbolic Embedding

In e-commerce item categorization we tend to use a
more complicated label structure with a large num-
ber of labels organized as a taxonomy tree com-
pared to standard text classification data sets. One
immediate issue is that hundreds of labels can exist
at the leaf level, some with very similar labels like
“Japanese tea” and “Chinese tea,” and the difference
in label embedding vectors in Euclidean space can
be too small to be distinguished by machine learn-
ing models. Such issues become more severe with
increasing taxonomy tree depth as well. Hyper-
bolic embedding is one technique that has been
developed which can address these issues (Nickel
and Kiela, 2017; Chen et al., 2020a,b).

Hyperbolic space is different from Euclidean
space by having a negative curvature. Conse-
quently, given a circle, its circumference and disc
area grow exponentially with radius. In contrast,
in Euclidean space the circumference and area
grow only linearly and quadratically, respectively.
For representing hierarchical structures like trees,
this property can ensure that all leaf nodes which
are closer to the edge of the circle maintain large
enough distances from each other.

As a specific application, Poincaré embedding
uses the Poincaré ball model which consists of
points within the unit ball Bd where the distance
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Figure 4: (a) Tree with a branching factor of 2 in Eu-
clidean space. (b) Embedding a hierarchical tree with
a branching factor of 2 in a Poincaré disk. Figure from
Figure 1(b) in (Nickel and Kiela, 2017).

between two points, u,v ∈ Bd is defined as

d(u,v) = cosh−1

(
1+2

‖u− v‖2

(1− ‖u‖2)(1− ‖v‖2)

)
.

(10)
The Poincaré embedding is obtained by minimiz-
ing a loss function depending only on d(u,v) for
all pairs of labels (u,v) using Riemannian opti-
mization methods.

Figure 4 illustrates the differences between using
an Euclidean space and a Poincaré ball model when
representing nodes organized in a tree. Using a
hyperbolic embedding has the potential to maintain
large enough distances when our models aim to
distinguish subtle differences among these labels.

4 Experiments and Results

4.1 Experimental Setup
Data set: Our data set consisted of more than one
million products in aggregate from Rakuten, a large
e-commerce platform in Japan, focusing on four
major product categories which we call root-level
genres. Our task, a multi-class classification prob-
lem, was to predict the leaf-level product categories
from their Japanese titles. Further details of our
data set are shown in Table 2.

Evaluation metric: We used the macro-averaged
F-score F to evaluate model performance. This is
defined in terms of the per-class F-score Fk as

F =
1

K

K∑
k=1

Fk, (11)

Fk =
2PkRk

Pk +Rk
, (12)

where K is the total number of classes, and Pk and
Rk are the precision and recall for class k.

Pre-trained embedding methods: We tested the
following three methods:

• All genre: Word embedding pre-trained on all
of the data across different root-level genres;
for the label embedding, the average of the
word embedding from all word tokens in a
label is used to initialize the label embedding
C and this is further updated in the model
training process.

• Genre specific: Word embedding pre-trained
from data specific to each root-level genre;
label embeddings were obtained similarly to
the all-genre method.

• Poincaré: Label embedding pre-trained on
the Poincaré ball taking into account the full
hierarchical taxonomy tree.

Models: We compared a number of variants of
LEAM and LSAN as described below.

• LEAM: Described in Section 3 (Wang et al.,
2018), using all-genre pre-trained word em-
beddings.

• LEAMbase: LEAM without the label embed-
ding attention component (effectively fixing
βl = 1/L in Eq. 1), using all-genre pre-
trained word embeddings.

• LSAN: Described in Section 3 (Xiao et al.,
2019), using all-genre pre-trained word em-
beddings.

• LSANbase: LSAN without the label-specific
attention component (effectively fixing β =
0 in Eq. 7) which is similar to Atten-
tionXML (You et al., 2019), and using all-
genre pre-trained word embeddings.

• LSANgenre: LSAN using genre-specific pre-
trained word embeddings.

• LSANPoincaré: LSAN using genre-specific
pre-trained word embeddings for the titles and
pre-trained Poincaré embeddings for the la-
bels.

Experimental parameters: Our models were im-
plemented in TensorFlow 2.3 using a GPU for train-
ing and evaluation. Since Japanese text does not
have spaces to indicate individual words, tokeniza-
tion was performed with MeCab, an open source
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Root genre Class size Train size Dev size Test size Mean words/title
Catalog Gifts & Tickets 29 11,369 1,281 559 31
Beverages 32 205,107 22,805 10,315 21
Appliances 286 399,584 44,529 18,478 20
Men’s Fashion 71 593,126 65,939 43,243 23

Table 2: Summary of our data set obtained from a large e-commerce platform in Japan.

Root genre LEAMbase LEAM LSANbase LSAN
Catalog Gifts & Tickets 0.341 0.289↓ 0.241 0.338
Beverages 0.719 0.755 0.759 0.773
Appliances 0.682 0.654↓ 0.667 0.686
Men’s Fashion 0.696 0.657↓ 0.685 0.686

Table 3: Macro F-score of LEAM and LSAN without and with label attention.

Japanese part-of-speech and morphological ana-
lyzer using conditional random fields (CRF).3 Once
the text was tokenized, we fixed our input length
to L = 60 words by truncating the title if it was
longer than L and zero-padding the title if it was
shorter than L. If a word appeared less than three
times, it was discarded and replaced with an out-of-
vocabulary token.

Pre-trained word embeddings of dimensionD =
100 using just product titles were obtained with
fastText, which uses a skipgram model with bag-of-
character n-grams (Bojanowski et al., 2016). No
external pre-trained embeddings were used. After
initialization of word and label embeddings with
pre-trained values, they were jointly trained with
the remaining parameters of the model.

For Poincaré embedding of labels, we used an
embedding dimension of 300. Pre-trained Poincaré
embeddings of labels were obtained by represent-
ing the genre taxonomy tree as (child, parent)
pairs and minimizing a loss function which de-
pends only on inter-genre distances as defined in
Eq. 10 (Nickel and Kiela, 2017). These pre-trained
Poincaré label embeddings were used to initialize
the label embeddings in LSAN but during training
were allowed to vary according to the standard loss
optimization process in Euclidean space.

For LEAM, we used a 1D convolution window
size of 5. For LSAN, we set da = 50, and when
we experimented with the Poincaré embedding we
set the LSTM hidden state dimension P = 300 to
match the Poincaré embedding dimension.

The models were trained by minimizing the
cross-entropy loss function using the Adam opti-

3https://taku910.github.io/mecab/

mizer with an initial learning rate of 0.001 (Kingma
and Ba, 2015). We used early stopping with a pa-
tience of 10 to obtain the final models.

4.2 Results and Discussions

Impact of label attention: We examined the im-
pact of label attention by comparing performance
without and with label attention for LEAM and
LSAN for each of the four root-level genres us-
ing all-genre pre-trained word embeddings. The
result is shown in Table 3. For LEAM, we do not
observe consistent improvements by including the
label attention component, contrary to what was
previously reported on standard text classification
data sets (Wang et al., 2018). On the other hand
for LSAN we do observe consistent improvements
over all root-level genres by including the label
attention component of the model. Since we did
not observe a consistent improvement for LEAM
in using label attention, for the remainder of this
section we focus on variations of LSAN.

Impact of different pre-trained embeddings: We
next evaluated the impact of using different pre-
trained embeddings for the title embeddings as
well as the label embeddings for each of the four
root-level genres. This is shown in Table 4. We
observed that different pre-trained embeddings can
consistently have a significant effect on model per-
formance. In particular, using genre-specific em-
beddings outperformed all-genre embeddings for
all genres. This is particularly notable for the small-
est genre where we used more than 10 times the
data to obtain the all-genre embeddings.

We believe this is because words that occur in
the same root-level genre will tend to be embedded
closer to each other in the full embedding space,

https://taku910.github.io/mecab/
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Root genre LSAN LSANgenre LSANPoincaré

Catalog Gifts & Tickets 0.338 0.403 0.438
Beverages 0.773 0.784 0.789
Appliances 0.686 0.697 0.701
Men’s Fashion 0.686 0.701 0.722

Table 4: Macro F-score of LSAN with various pre-trained title and label embeddings.

which then makes it more difficult for the label at-
tention to distinguish between different but similar
labels such as “Japanese tea” and “Chinese tea.”
By using pre-trained embeddings obtained from
specific genres, the embeddings become spaced far-
ther apart and therefore the label attention is able
to better distinguish labels with similar names.

Poincaré embeddings take this further by requir-
ing the embedding space distance between all leaf-
genre labels to be far apart from each other, and
our results show that this leads to the best model
performance. This supports our hypothesis that
the distance between labels in the label embedding
space is an important factor in ensuring that label
attention improves model performance.

Compared to models using only the product ti-
tles, we see that models using label-guided learning
can significantly improve the F-score. In particular,
LSAN using a Poincaré label embedding shows the
following F-score increases compared to LSAN
base: 19.7% for “Catalog Gifts & Tickets,” 3.0%
for “Beverages,” 3.4% for “Appliances,” and 3.7%
for “Men’s Fashion.” Note that the largest increase
was achieved on the genre with the fewest training
instances.

5 Conclusions

Since 2018, there have been increasing interest in
the field of NLP to use the semantic information
of class labels to further improve text classification
performance. On the item categorization task in e-
commerce, a taxonomy organized in a hierarchical
structure already contains rich meaning and pro-
vides an ideal opportunity to evaluate the impact of
label-guided learning. In this paper, we used real
industry data from Rakuten, a leading Japanese
e-commerce platform, to evaluate the benefits of
label-guided learning.

Our experiments showed that LSAN is superior
to LEAM because of its usage of context encoding
and adaptive combination of both self- and label-
attention. We also found that using genre-specific
pre-trained embeddings led to better model per-

formance than pre-trained embeddings obtained
from all product genres. This is likely because pre-
training on specific genres allows the embedding
to focus on differences between similar genres and
the label embeddings are able to take advantage
of this. Finally, we showed that using hyperbolic
embedding, more specifically Poincaré embedding,
can improve model performance further by ensur-
ing that all class labels are sufficiently separated to
allow label-guided learning to work well.

One possible limitation of our current work is
that although the label embedding is initialized us-
ing a hyperbolic embedding, the rest of the training
process proceeds in Euclidean space. Future work
could explore the possibility of training the entire
model in hyperbolic space. Another direction is
to incorporate the label-attention mechanism into
the BERT model (Devlin et al., 2019), which has
proven to be a powerful approach to text encoding.
In addition, more advanced approaches to obtain-
ing better representations of labels on top of our
existing approach of using word tokens in labels
could be explored.
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