
Proceedings of NAACL HLT 2021: IndustryTrack Papers, pages 19–25
June 6–11, 2021. ©2021 Association for Computational Linguistics

19

Optimizing NLU Reranking Using Entity Resolution Signals in
Multi-domain Dialog Systems

Tong Wang∗, Jiangning Chen∗, Mohsen Malmir, Shuyan Dong,
Xin He, Han Wang, Chengwei Su, Yue Liu, Yang Liu

Amazon Alexa
{tonwng, cjiangni, malmim, shuyand, xih, wnghn, chengwes, lyu, yangliud}@amazon.com

Abstract
In dialog systems, the Natural Language
Understanding (NLU) component typically
makes the interpretation decision (including
domain, intent and slots) for an utterance be-
fore the mentioned entities are resolved. This
may result in intent classification and slot tag-
ging errors. In this work, we propose to
leverage Entity Resolution (ER) features in
NLU reranking and introduce a novel loss term
based on ER signals to better learn model
weights in the reranking framework. In addi-
tion, for a multi-domain dialog scenario, we
propose a score distribution matching method
to ensure scores generated by the NLU rerank-
ing models for different domains are properly
calibrated. In offline experiments, we demon-
strate our proposed approach significantly out-
performs the baseline model on both single-
domain and cross-domain evaluations.

1 Introduction

In spoken dialog systems, natural language under-
standing (NLU) typically includes domain classifi-
cation (DC), intent classification (IC), and named
entity recognition (NER) models. After NER ex-
tracts entity mentions, an Entity Resolution (ER)
component is used to resolve the ambiguous en-
tities. For example, NLU interprets an utterance
to Alexa (or Siri) "play hello by adele" as in the
‘Music’ domain, ‘play music’ intent, and labels
"hello" as a song name, "adele" as an artist name.
ER queries are then formulated based on such a
hypothesis to retrieve entities in music catalogs.
Often times NLU can generate a list of hypotheses
for DC, IC, and NER, and then a reranking model
uses various confidence scores to rerank these can-
didates (Su et al., 2018).

Since ER is performed after NLU models, the
current NLU interpretation of the utterance is lim-
ited to the raw text rather than its underlying enti-
ties. Even in NLU reranking (Su et al., 2018), only
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DC, IC, and NER confidence scores were used,
and as a result, the top hypothesis picked by NLU
reranking might not be the best interpretation of the
utterance. For example, in the absence of entity in-
formation, "the beatles" in the utterance "play with
the beatles" is interpreted as an artist name. If the
reranker could search the ER catalog, it would pro-
mote the hypothesis that has "with the beatles" as
an album name. Such NLU errors may propagate
to ER and downstream components and potentially
lead to end-customer friction.

In this work, we thus propose to incorporate
ER features in the NLU reranking model, called
NLU-ER reranking. For a domain, we use its corre-
sponding catalogs to extract entity related features
for NLU reranking for this domain. To enhance ER
feature learning, we add a novel loss term when
an NER hypothesis cannot be found in the catalog.
One additional challenge arises in the multi-domain
systems. In large-scale NLU systems, one design
approach is to modularize the system as per the
concept of domains (such as Music, Video, Smart
Home), and each domain has its own NLU (DC,
IC, NER) and reranking models that are trained
independently. Under this scheme, each domain’s
NLU reranking plays an important role in both in-
domain and cross-domain reranking, since it not
only ranks hypotheses within a domain to promote
the correct hypothesis, but also produces ranking
scores that need to be comparable across all differ-
ent domains. In (Su et al., 2018), the scores for the
hypotheses from different domains are calibrated
through training on the same utterance data with
similar models . However, we may only use NLU-
ER reranking for some domains (due to reasons
such as lack of entity catalog, different production
launch schedule, etc.), and the scores from such
rerankers may no longer be comparable with other
domains using the original reranker model. To mit-
igate this issue, we introduce a score distribution
matching method to adjust the score distributions.
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We evaluate our NLU-ER reranking model on
multiple data sets, including synthetic and real di-
alog data, and for both single domain and cross-
domain setups. Our results show improved NLU
performance compared to the baseline, and the im-
provement is contributed to our proposed ER fea-
tures, loss term, and score matching method.

2 Related Work

Early reranking approaches in NLU systems use a
single reranker for all the domains. Robichaud et
al. (Robichaud et al., 2014) proposed a system for
multi-domain hypothesis ranking (HR) that uses
LambdaMART algorithm (Burges et al., 2007) to
train a ranking system. The features in the ranking
system include confidence scores for intents and
slots, relevant database hits and contextual features
that embed relationship to previous utterances. The
authors showed improved accuracy in top domains
using both non-contextual and contextual features.
Crook et al. adapted a similar reranking scheme for
multi-language hypothesis ranking (Crook et al.,
2015). The set of features in the reranker include
binary presence variables, for example presence
of an intent, coverage of tagged entities and con-
textual features. They adapted the LambdaMART
algorithm to train a Gradient Boosted Decision
Trees model (Friedman, 2001) for cross language
hypothesis ranking, and demonstrated compara-
ble performance of the cross language reranker to
the language-specific reranker. These models did
not explicitly use ER signals for reranking. In ad-
dition, reranking is done across domains. Such
single reranker approach is not practical in NLU
systems with a large set of independent domains.
In contrast, our approach emphasizes domain inde-
pendence, allowing reranking to be performed for
each domain independently. Furthermore, we rely
on ER signal as a means to improve reranking.

To the best of our knowledge, the most related
work to ours is Su et al. (Su et al., 2018), which
proposed a re-ranking scheme to maximize the ac-
curacy of the top hypothesis while maintaining the
independence of different domains through implicit
calibration. Each domain has its NLU reranker, and
the scores for the hypotheses from reranking are
compared across all the domains to pick the best
hypothesis. The feature vector for each reranker is
composed of intent, domain and slot tagging scores
from the corresponding domain. Additionally, a
cross entropy loss term is used to ensure calibra-

tion across domains. In a series of experiments,
they demonstrated improvement of semantic under-
standing. Our work is an extension of that work
as we utilize ER signals, in addition to the DC, IC,
and NER scores, and introduce a new loss term to
improve the reranking accuracy.

To resolve the score non-comparable problem
in a multi-domain system, traditional calibration
methods utilize Platt Scaling or Isotonic Regres-
sion to calibrate the prediction distribution into a
uniform distribution (Zadrozny and Elkan, 2001,
2002; Platt et al., 1999; Niculescu-Mizil and Caru-
ana, 2005; Wilks, 1990). However, this does not
work in our scenario since the data in different do-
mains are imbalanced, which causes domains with
big traffic to have lower confidence scores. Instead
of using probability calibration methods, we pro-
pose a solution based on power transformation to
match the prediction score distribution back to the
original score distribution, thus making the scores
comparable even after ER information is added to
NLU reranking.

3 Reranking Model

The baseline NLU reranking model is implemented
as a linear function that predicts the ranking score
from DC, IC, and NER confidence scores. We
augment its feature vector using ER signals and
introduce a novel loss term that penalizes the hy-
potheses that do not have a matched entity in the
catalog. Similar to (Su et al., 2018), we tested using
a neural network model for reranking, but observed
no improvements, therefore we focus on the linear
model.

3.1 ER Features in Reranking

The features used in the baseline NLU reranker
include scores for DC (d), IC (i), NER (n) hy-
potheses, and ASR scores that are obtained from
upstream components and used for all the do-
mains. The additional ER features used in NLU-ER
reranker are extracted and computed from the ER
system, and can be designed differently for indi-
vidual domains. For example, in this work, for
the Music domain, ER features we use are aggre-
gated from NER slot types such as: SongName,
ArtistName, and the ER features are defined as:

ER success esi : if a hypothesis contains a slot
si that is successfully matched by any of the ER
catalogs, this feature is set to 1, otherwise 0. ER
success feature serves as a positive signal to pro-
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mote the corresponding hypothesis score.
ER no match msi : if a slot si in a hypothesis

does not have any matched entities in the ER cat-
alogs, this feature value is 1, otherwise 0. ER no
match feature serves as a negative signal to penalize
the hypothesis score. We find ‘ER no match’ is a
stronger signal than ‘ER success’ because over 90%
of the time, ER no match implies the corresponding
hypothesis does not agree with the ground truth.

Similarity feature lsi : this feature is nonzero
only if the ER success feature esi is 1. In each
catalog, a lexical or semantic similarity score be-
tween the slot value and every resolved entity is
computed, and the maximum score among them
is selected as the feature value. This indicates the
confidence of the ER success signal.

Not in Gazetteer: this feature is set to 1 when
ER features are not in the gazetteer (neither ER
success nor no match), otherwise 0. We will discuss
the gazetteer in the next section.

3.2 ER Gazetteer Selection

Since NLU and reranking happen before ER, in
runtime retrieving ER features from large catalogs
for NLU reranking is not trivial. Therefore we
propose to cache the ER signals offline and make
it accessible in NLU reranking in the form of a
gazetteer. To make the best use of the allocated
amount of runtime memory, we design a gazetteer
selection algorithm to include the most relevant
and effective ER features in the gazetteer.

We define Frequent Utterance Database (FUD)
as the live traffic data where the same utterance has
been spoken by more than 10 unique customers. To
formalize the selection procedure, we define outper-
forming and underperforming utterances by friction
(e.g., request cannot be handled) rate fr and 30s
playback queue (playback ≥ 30s) rate qr. For all
FUD utterances in a given period, an utterance u is
defined as outperforming if fr(u) ≤ µfr−λ1∗σfr
and qr(u) ≥ µqr + λ2 ∗ σqr, where µ and σ are
the mean and standard deviation, λ1 and λ2 are
hyperparameters. Underperforming utterances are
defined likewise.

The detailed gazetteer selection algorithm is de-
scribed in Algorithm 1. uh1 , ..., uhn denote n-best
NLU hypotheses of the utterance u. The idea is
to encourage the successful hypotheses and avoid
the friction hypotheses based on the historical data.
For instance, if u is an underperforming utterance
and uh1 is ER_NO_MATCH, we want to penalize

Algorithm 1: Gazetteer Data Selection
Obtain outperforming and underperforming
utterances from FUD;

for u ∈ outperforming utterances do
if uh1 is ER_SUCCESS then

select ER features in uh1 to the
gazetteer;

end
end
for u ∈ underperforming utterances do

if uh1 is ER_NO_MATCH then
select ER features in uh1 to the

gazetteer;
end
if uhi is ER_SUCCESS, and hi 6= h1
then

select ER features in uhi to the
gazetteer;

end
end

uh1 to down-rank it, and promote other hypotheses
uhi (i 6= 1) that receive the ER_SUCCESS signal.
For the utterance hypotheses that are not selected
in the gazetteer, we will use the Not_in_gazetteer
(NG) feature.

3.3 NLU-ER Reranker
For an utterance, the hypothesis score y is defined
as the following:

y =WGG+
∑
si∈S

1slot=si(WsiERsi) + 1NGwd

(1)

The first part in (1) is the baseline NLU reranker
model:

(2)y =WGG

where G = [g1, g2, . . . , gp]
T is the NLU general

feature vector, WG = [w1, w2, . . . , wp] is the cor-
responding weight vector. The rest of the fea-
tures are ER related. 1 is the indicator func-
tion. S is the set of all slot types, ERsi =
[er1, er2, . . . , erq]

T is the ER feature vector and
Wsi = [wsi1, wsi2, . . . , wsip] is the correspond-
ing weight vector. If an utterance in Music only
contains SongName slot s1, then y = WGG +
Ws1ERs1 , the rest of the terms are all 0s. If an ut-
terance does not have any ER features from all the
defined slot types, y = WGG + wd. wd serves
as the default ER feature value to the reranker
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when no corresponding ER features are found in
the gazetteer described above. Its value is also
learned during the model training.

3.4 Loss Function
We use SemER (Semantic Error Rate) (Su et al.,
2018) to evaluate NLU performance. For a hy-
pothesis, SemER is defined as E/T , where E is
the total number of substitution, insertion, deletion
errors of the slots, T is the total number of slots.

One choice of the loss function is the combina-
tion of expected SemER loss and expected cross
entropy loss (Su et al., 2018). The loss function Lu
of an utterance is defined as:

Lu = k1Su + k2Cu (3)

where Su is the expected SemER loss: Su =∑N
i pi × SemERi, and Cu is the expected cross

entropy loss: Cu =
∑N

i pi × [−ti log ri − (1 −
ti) log(1 − ri)], where ri = 1

1+e−yi
, pi = eyi∑5

j e
yj

,

ti = (SemERi == 0), N is the number of hy-
potheses in utterance u.

Since our analysis showed that ER_NO_MATCH
is a stronger signal and we expect the top hypothe-
sis to get ER hits, we add a penalty term Nu to the
loss function to penalize the loss when the 1-best
hypothesis gets ER_NO_MATCH.

Let rj = maxi(ri) be the best score in the cur-
rent training step, and j the index for the current
best hypothesis. Then no match loss term is defined
as:

Nu = −ej × log(1− rj) (4)

where ei =
#(sloter_no_match)

#(slot) . It is the ratio of the
slots with ER_NO_MATCH to all the slots in the
ith hypothesis, and if no slot gets ER_NO_MATCH,
the loss term is zero. Then the overall loss function
is updated as:

Lu = k1Su + k2Cu + k3Nu (5)

Nu will penalize more the hypothesis that has a
high score but gets no ER hits. k1,2,3 are the hyper-
parameters, Lu is the final loss term for NLU-ER
Reranker.

In our experiments, we observed that the weights
are higher for the ER no match feature, and the
model with the new loss term had a better perfor-
mance under in-domain setup, which is as expected.
Also, giving higher weight to ‘ER no match’ de-
creases the confidence scores generated by a do-
main NLU-ER reranker, which can help with the

cross domain calibration problem. We will dis-
cuss how to ensure comparable scores in the next
section.

4 Score Distribution Matching

Before adding the ER features, the reranking scores
are calibrated through training on the same utter-
ance data with similar models. However, adding
the ER features in NLU reranking for a single do-
main may lead to incomparable scores with other
domains. Using the loss function in Eq (3), we
have the following theorem:

Theorem 4.1. Under the loss function in Eq (3),
assuming hypothesis 1 is the ground truth, and
0 = SemER1 < SemER2 < SemER3 <
SemER4 < SemER5, with a uniform score as-
sumption

∑5
j e

yj = c; Eq (1) will obtain a higher
positive label hypothesis score and a lower nega-
tive label score than Eq (2).

Proof. For the expected SemER loss Su, since it is
the linear combination of SemERi, the solution of
the minimization problem will be: p1 → 1, p2 =
p3 = p4 = p5 → 0. This leads to:y1 → ∞, y2 =
y3 = y4 = y5 → −∞. Then for the expected cross
entropy loss Cu, let xi = eyi , the minimization of
Cu becomes:

min−x1 log
x1

1 + x1
−
∑
j 6=1

xj log
1

1 + xj
= min−I1−I2.

The first part (I1) is monotonically increasing,
while the second part (I2) is monotonically de-
creasing when xj > 0. This also leads to: y1 →
∞, y2 = y3 = y4 = y5 → −∞. Thus, solving
the minimization problem minLu is equivalent to
solving the linear system:{

F+ ~w = y1+

F− ~w = −y1−
(6)

when y →∞ associated with the given loss in Eq
(3), where F+ is the feature matrix for the positive
labels, F− is the feature vector for the negative la-
bels, ~w is the weight vector we need to solve, and
1+,1− are the unit vectors with the same dimen-
sion as the number of positive samples and negative
samples respectively.

We can rewrite Eq (6) into: F ~w = ~y, and
its solution will be the projection associated with
the loss in Eq (3) of ~y onto the solution space
spanned by the column vectors of matrix F . Now
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define this projection as PF (~y). For the fea-
ture matrix of the NLU model in Eq (2), we
have FN = G, and for the feature matrix of
NLU-ER model in Eq (1) we have FER =
[G,ERs1 , ERs2 , . . . , ERsq ,1default]. Since FN
is the submatrix of FER, we have spanFN ⊂
spanFER, thus:

PFN (~y) ≤ PFER(~y)

In Theorem 4.1, we show that the candidate hy-
pothesis from a more complicated model will be
more likely to have a higher score than the do-
mains using the original reranker model. Thus
the domains using the NLU-ER reranker are no
longer comparable to the domains using the origi-
nal model. We observed this scenario in our experi-
ments empirically. When we only experiment with
Music domain, it will generate higher confidence
scores and have more false positives.

To solve this problem, since we would like the
confidence scores for each domain to have stabi-
lized variance and minimized skewness, we pro-
pose to use power transformation, which is able
to map data from any distribution to an approxi-
mately standard Gaussian distribution. In our case,
the confidence scores from Eq (1) might be zero or
negative, thus we consider the Yeo-Johnson trans-
formation with λ 6= 0 and λ 6= 2:

x
(λ)
i =

{
[(xi + 1)λ − 1]/λ if xi ≥ 0,
−[(−xi+1)2−λ−1]

2−λ if xi < 0,
(7)

We have the inverse function:

x
(λ)
i =

{
(λxi + 1)

1
λ − 1 if xi ≥ 0,

1− [1− (2− λ)xi]
1

2−λ if xi < 0,
(8)

where parameter λ is determined through maxi-
mum likelihood estimation. The idea is to first map
both the NLU reranker model scores and the NLU-
ER reranker scores to a standard Gaussian distri-
bution and obtain λNLU and λNLU−ER. Then to
calculate a new score from the NLU-ER reranker,
we first use Eq (7) to transform the score into a
standard Gaussian score with λ = λNLU−ER, fol-
lowed by Eq (8) to transform the standard Gaussian
score back into the original NLU reranker scores
with λ = λNLU . Notice that when λ > 0, both Eq
(7) and (8) are monotonic functions, thus the map-
ping method can only change the score distribution
while maintaining the in-domain ranking order.

5 Experiment

5.1 Experimental Setup
We use the following data sets for training and
evaluation:

Annotation Data (AD): It contains around 1
million annotated utterances from internal traffic.
Training and testing split is 50:50. For testing, we
further evaluate two different conditions: (i) ‘AD
All’ using utterances from all domains for cross-
domain evaluation. (ii) ‘AD Music’, ‘AD Video’,
‘AD LS’ using utterances from the Music domain,
Video Domain and Local Search domain, respec-
tively, for in-domain evaluation.

Synthetic Data (SD): These are synthetically
generated ambiguous utterances used for in-domain
evaluation. For Music and Video domains, utter-
ances are in the form of "play X". Slot type of
X could be ArtistName, SongName, AlbumName,
VideoName, etc. X is an actual entity sampled
from the corresponding ER song, video, artist, or
album catalogs, and it is not in the training data,
such that the model cannot infer the slot by sim-
ply "memorizing" it from the training data. We
only report SongName (10K data) results in Music
domain, and VideoName results in Video domain,
due to the space limitation. For Local Search do-
main, utterances are in the form of "give me the
direction to X", slot type of X could be PlaceName,
DestinationName, etc. Note this data set is more
ambiguous than the above one from real traffic in
that "X" has multiple interpretations, whereas in
real traffic users often add other words to help dis-
ambiguate, for example ‘play music ...’.

We initialize the general feature weights to the
same weights used in the baseline model. ER fea-
ture weights are set to smaller values (3 times less
than the general feature weights). We find the ex-
pected SemER loss is less effective, so we set k1
= 0.01, k2 = 0.9, k3 = 0.1. Besides, we use Adam
optimizer (Kingma and Ba, 2014) with a learning
rate of 0.0001 and train the model for 10 epochs.

5.2 Results
Table 1 presents the NLU-ER reranker results for
cross-domain (AD All) and in-domain (AD Mu-
sic, SD) settings. All the results are the SemER
metric relative improvements compared to the base-
line reranker. We have DC, IC, NER scores as the
general NLU features. NLU-ER reranker uses ad-
ditional ER features: ER success, no match, and
lexical similarity of different slot types, and the
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Table 1: NLU-ER reranking results on different data
sets. The reported numbers show relative improve-
ments compared with the baseline model using SemER
evaluation metric. Baseline: NLU reranker with gen-
eral features; ER: NLU-ER reranker with gazetteer se-
lection; +N: with loss term for No Match feature; +R:
with regression score matching; +P: with power trans-
formation score matching. All the results in the table
are statistically significant with p-value < 0.01.

ER ER+N ER+N+R ER+N+P

AD All -0.22% +0.19% +0.26% +0.32%
AD Music +0.87% +0.99% +0.99% +0.99%
AD Video +0.95% +1.01% +1.01% +1.01%
AD LS +0.08% +0.09% +0.09% +0.09%
SD Music +20.74% +28.58% +28.58% +28.58%
SD Video +14.21% +18.69% +18.69% +18.69%
SD LS +12.53% +17.37% +17.37% +17.37%

gazetteer selection algorithm is applied to retrieve
the ER features. For the in-domain results, NLU-
ER reranker has statistically significant improve-
ment on both AD and SD. The improvement is
more substantial on SD data, over 20%, which
indicates ER features are more helpful when the ut-
terances have ambiguity. Note there is some degra-
dation in cross domain results on AD All when
NLU-ER is used, due to the non-comparable score
issue. After adding the loss term for ER no match
feature, we observed additional improvements on
both the in-domain and cross-domain settings.

As discussed earlier, because the scores from
the baseline model are already well calibrated
across domains, we use Yeo-Johnson transforma-
tion to match the domain score distribution back
into the baseline score distribution. For Music do-
main, we use maximum likelihood estimation to get
λNLU = 1.088 and λNLUER = 1.104. With these
two estimations, we map NLU-ER reranker scores
back to obtain a score in the baseline reranker score
distribution. Using this updated score, we can
see the cross-domain SemER score is improved
by 0.32% relatively. Among the improved cases,
we found that the number of False Positive utter-
ances is decreased by 7.37% relatively. For com-
parison, we also trained a univariate neural network
regression model to predict the original reranker
score given the NLU-ER reranker score. Although
this method also yields improvements, we can see
that power transformation has a better performance
and is also easy to implement. Note again that
the in-domain performance remains the same since
these score mapping approaches do not affect the

in-domain ranking order. We perform the same
experiments for Video domain and Local Search
domain as well, and have the similar observations.

To illustrate the effectiveness of our proposed
NLU-ER reranker and analyze the reasons for per-
formance improvement, we compare the generated
1-best hypothesis from the baseline model with our
new reranker. For utterance "play hot chocolate by
polar express", the correct type for "polar express"
is album. The baseline model predicts "polar ex-
press" as an artist because it is not in the training
set, and "Song by Artist" appears more frequently
than "Song by Album". However, our model suc-
cessfully selected this hypothesis ("polar express"
is an album), since ER_SUCCESS signal is found
from the ER album catalog but ER_NO_MATCH is
found from ER artist catalog. Similarly, in another
example "play a sixteen z" where "a sixteen z" is
ambiguous and not in the training set, the baseline
model predicts it as a song since utterances with
SongName slot have higher frequency in the train-
ing data, whereas our model can correctly select
ProgramName as the 1-best hypothesis using ER
signals.

6 Conclusion

In this work, we proposed a framework to incorpo-
rate ER information in NLU reranking. We devel-
oped a new feature vector for the domain reranker
by utilizing entity resolution features such as hits
or no hits. To provide the ER features to the NLU
reranker, we proposed an offline solution that dis-
tills the ER signals into a gazetteer. We also in-
troduced a novel loss term based on ER signals to
discourage the domain reranker from promoting
hypotheses with ER no match and showed that it
leads to better model performance. Finally, since
domain rerankers predict the ranking scores inde-
pendently, we introduced a score matching method
to transform the NLU-ER model score distribu-
tion to make the final scores comparable across do-
mains. Our experiments demonstrated that the Mu-
sic domain reranker performance is significantly
improved when ER information is incorporated in
the feature vector. Also with score calibration, we
achieve moderate gain for the cross-domain sce-
nario.
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