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Abstract

Transformer-based methods are appealing for
multilingual text classification, but common
research benchmarks like XNLI (Conneau
et al., 2018) do not reflect the data avail-
ability and task variety of industry applica-
tions. We present an empirical comparison
of transformer-based text classification mod-
els in a variety of practical monolingual and
multilingual pretraining and fine-tuning set-
tings. We evaluate these methods on two dis-
tinct tasks in five different languages. De-
parting from prior work, our results show that
multilingual language models can outperform
monolingual ones in some downstream tasks
and target languages. We additionally show
that practical modifications such as task- and
domain-adaptive pretraining and data augmen-
tation can improve classification performance
without the need for additional labeled data.

1 Introduction

While the development of natural language un-
derstanding (NLU) applications often begins with
high-resource languages such as English, there is a
need to create products that are accessible to speak-
ers of the world’s nearly 7,000 languages. Only
5% of the world’s population is estimated to speak
English as a first language.1

The growth of NLU-centric products within di-
verse language markets is evidenced by the increase
in language support for popular consumer applica-
tions such as virtual assistants, Web search, and so-
cial media platforms. As of mid-2020, Google As-
sistant supported 44 languages on smartphones, fol-
lowed by Siri (21 languages) and Amazon Alexa (8
languages). At the start of 2021, Google Search and
Microsoft Bing supported 149 and 40 languages
respectively. Also at this time, Twitter officially
supported a total of 45 languages with Facebook
reaching over 100 languages.

1CIA World Factbook

Advances in multilingual language models such
as multilingual BERT (mBERT; Devlin et al., 2019)
and XLM-RoBERTa (XLM-R; Conneau et al.,
2020) which are trained on massive corpora in
over 100 languages, show promise for fast iteration
and deployment of NLU applications. In theory,
cross-lingual approaches reduce the need for la-
beled training data in target languages by enabling
zero- or few-shot learning. Additionally, they en-
able simplified model deployment compared to the
use of many monolingual models. On the other
hand, evaluations show that scaling to more lan-
guages causes dilution (Conneau et al., 2020) and
consequently cite the relative under-performance
of multilingual models on monolingual tasks (Vir-
tanen et al., 2019; Antoun et al., 2020).

Recent studies (Hu et al., 2020; Rust et al., 2020)
have explored tradeoffs of multi versus monolin-
gual model paradigms. However, we observe that
existing multilingual text classification benchmarks
are designed to measure zero-shot cross-lingual
transfer rather than supervised learning (Conneau
et al., 2018; Yang et al., 2019), though the latter is
more applicable to industry settings. Thus, the goal
of this paper is to evaluate multilingual text classifi-
cation approaches with a focus on real applications.
Our contributions include:

• A comparison of state-of-the-art language
models spanning monolingual and multilin-
gual setups, evaluated across five languages
and two distinct tasks;

• A set of practical recommendations for fine-
tuning readily available language models for
text classification; and

• Analyses of industry-centric challenges such
as domain mismatch, labeled data availability,
and runtime inference scalability.

2 Multilingual Text Classification

We consider a series of practical components for
building multilingual text classification systems.
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Lang. Model Pretraining Corpus Tokenizer Param.

EN RoBERTa (Liu et al., 2019) Various (160GB) BPE 125M
DE German BERT (deepset.ai, 2019) German Wikipedia, OpenLegalData, and

news articles (12 GB)
SentencePiece 110M

ES BETO (Cañete et al., 2020) Various (18.4GB) WordPiece 110M
FR CamemBERT (Martin et al., 2020) OSCAR (138GB) SentencePiece 110M
JA Japanese BERT (Suzuki and Taka-

hashi, 2019)
Japanese Wikipedia (2.6GB) MeCab+Wordpiece 110M

MULTI XLM-RoBERTa (Conneau et al.,
2019)

CC-100 (2.5 TB) EN (301GB), DE (67GB),
ES (53GB), FR (57GB), JA (69GB)

SentencePiece 270M

Table 1: Pretraining corpora, tokenizers, and size (# parameters) of the language models used in our experiments.

2.1 Pretrained Transformer Language
Models

Transfer learning using pretrained language models
(LMs) which are then fine-tuned for downstream
tasks has emerged as a powerful technique for NLU
applications. In particular, models using the now-
ubiquitous transformer architecture (Vaswani et al.,
2017), such as BERT (Devlin et al., 2019) and its
variants, have obtained state of the art results in
many monolingual and cross-lingual NLU bench-
marks (Wang et al., 2019a; Raffel et al., 2020; He
et al., 2021).

One drawback of data-hungry transformer mod-
els is that they are time- and resource-intensive
to train. In our experiments, we consider LMs
pretrained on both monolingual and multilingual
corpora, and analyze the effects of combining these
models with other NLU system components.

For monolingual LMs, we use BERT models
pretrained on corpora in each target language. The
one exception is English, where we use RoBERTa,
a BERT reimplementation that exceeds its perfor-
mance on an assortment of tasks (Liu et al., 2019).

For multilingual LMs, we use XLM-R, which
significantly outperforms mBERT on cross-lingual
benchmarks and is competitive with monolingual
models on monolingual benchmarks such as GLUE
(Wang et al., 2019b). All of the pretrained models
used are accessible from the Hugging Face (Wolf
et al., 2020) model hub, and their details are sum-
marized in Table 1.

2.2 Domain-Adaptive and Task-Adaptive
Pretraining

Though pretrained language models have hundreds
of millions of parameters and are trained on di-
verse corpora, they are not guaranteed to gener-
alize to all tasks and domains. For downstream
tasks, a second phase of pretraining on a smaller
domain- or task-specific corpus has been shown to

provide performance improvements. Gururangan
et al. (2020) compare domain-adaptive pretraining
(DAPT), which uses a large corpus of unlabeled
domain-specific text, and task-adaptive pretrain-
ing (TAPT), which uses only the training data of a
particular task. The primary difference is that the
task-specific corpus tends to be much smaller, but
also more task-relevant. Therefore, while DAPT
is helpful in both low- and high-resource settings,
TAPT is much more resource-efficient and outper-
forms DAPT when sufficient data is available.

In our experiments, we evaluate both approaches,
using the classification task training data as the
TAPT corpus and in-domain unlabeled data as the
DAPT corpus (see Section 3 for details). BERT and
RoBERTa are pretrained with a masked language
modeling (MLM) objective, a cross-entropy loss on
randomly masked tokens in the input sequence. We
similarly use the MLM objective when performing
DAPT and TAPT.

2.3 Supervised Fine-Tuning

We consider three settings for supervised fine-
tuning of language models for downstream classifi-
cation tasks (N is the number of target languages).

• mono-target (N final models): Fine-tune a
monolingual LM on the training data in each
target language

• multi-target (N final models): Fine-tune
XLM-R on the training data in each target
language

• multi-all (one final model): Fine-tune XLM-R
on the concatenation of all training data

To represent sequences for classification, we use
the final LM hidden vectors B ∈ Rl×H correspond-
ing to each of the l input tokens.2 We then compute
average and max pools over the sequence length

2Though only the hidden vector for the first ([CLS]) to-
ken is typically used (Devlin et al., 2019), we find that the
pooled sequence summary attains better results on our tasks.



123

Dataset Task Lang. Unlab. Train Test

CLS Sentiment EN 105k 6k 6k
(AMAZON) DE 317k 6k 6k

FR 58k 6k 6k
JA 294k 6k 6k

HATEVAL Hate speech EN - 10k 3k
(TWITTER) ES - 5k 1.6k

Table 2: The target tasks, languages, and number of
training and test examples in each dataset.

layer and concatenate them to create the aggregate
representation C ∈ R2H . Finally, the summary
vector C is passed to a classification layer where
we compute a standard cross-entropy loss.

2.4 Data Augmentation

In real applications, labeled data is often available
in high resource languages such as English but
sparse or nonexistent in others. We experiment
with machine translation3 as a form of cross-lingual
data augmentation, which has been shown to im-
prove performance on multilingual benchmarks
(Singh et al., 2019). In single target language set-
tings, we translate training data from other lan-
guages into the target language, yielding N times
the number of training examples. In the multi-all
setting, we translate data from every language into
every other language, yielding N(N − 1) times
the number of training examples. At training time,
we directly include the translated examples in the
training corpus. Following the pretraining conven-
tion of XLM-R, we do not use special markers to
denote the input language.

3 Data

We choose sentiment analysis and hate speech de-
tection as evaluation tasks due to their relevance to
industry applications and the availability of mul-
tilingual datasets. An overview of the datasets is
shown in Table 2.

3.1 Sentiment Analysis

The Cross-Lingual Sentiment dataset (CLS; Pret-
tenhofer and Stein, 2010)4 consists of AMAZON

product reviews in four languages and three prod-
uct categories (BOOKS, DVD, and MUSIC). Each
review includes title and body text, which we con-
catenate to create the input example. The dataset

3https://cloud.google.com/translate
4We use the processed version of this dataset provided by

Eisenschlos et al. (2019).

Hashtag Train Test Test†

#NoDACA 99.36 34.26 99.60
#EndDACA 98.31 33.87 98.39
#BuildThatWall 100.0 24.89 95.99
#BuildTheDamnWall 100.0 62.07 100.0
#NoAmnesty 100.0 48.25 100.0
#SendThemBack 82.02 68.29 87.80
#DeportThemAll 100.0 83.15 99.46

Table 3: Percentage of hateful class by anti-immigrant
hashtags in HATEVAL (non-exhaustive list). †Denotes
the relabeled test set.

contains training and test sets with balanced binary
sentiment labels, as well as 50-320k unlabeled ex-
amples per language. We sample 10k unlabeled
examples from each language for DAPT.

3.2 Hate Speech Detection

The HATEVAL dataset (Basile et al., 2019) con-
tains tweets in English and Spanish annotated for
the presence of hate speech targeting women and
immigrants. Examples were collected by querying
Twitter for users with histories of sending or receiv-
ing hateful messages, as well as keywords related
to women and immigrants.

Relabeling English Test Data During experi-
mentation, we found that English example labels
were inconsistent across the training and test sets.
For instance, many test examples containing anti-
immigration hashtags were mislabeled as non-
hateful while similar examples were labeled as
hateful in the training set (see Table 3). We man-
ually relabeled 641 examples in the test set and
release the relabeled data for future research.5,6

Unlabeled Twitter Data Since no unlabeled cor-
pus is provided, we collected a sample of 10k ran-
dom tweets per language from November 2020,
which we use for DAPT.

4 Experimental Setup

Preprocessing and Tokenization We apply min-
imal preprocessing to both datasets, replacing
URLs and Twitter usernames with <url> and
<user> tokens. At all stages of training, we use the
default tokenizers associated with each pretrained

5Prior work (Stappen et al., 2020) has also noted this
discrepancy and proposed repartitioning the train and test sets.
We instead relabeled the test set due to the large number of
mislabeled examples.

6https://github.com/sentropytechnologies/
hateval2019-relabeled

https://cloud.google.com/translate
https://github.com/sentropytechnologies/hateval2019-relabeled
https://github.com/sentropytechnologies/hateval2019-relabeled
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Model DE FR JA

mBERT 84.3 86.6 81.2
MultiFiT 92.2 91.4 86.2

Model EN ES

Majority label 36.7 37.0
SVM + tf-idf 45.1 70.1
1st place submissions 65.1 73.0

Table 4: Prior results (macro-F1) for CLS (Eisenschlos
et al., 2019, top) and HATEVAL (Basile et al., 2019,
bottom).

LM (see Table 1) and truncate sequences with more
than 512 tokens.

Training We use 80% of each training set for
training and the rest for validation. During DAPT
and TAPT, we train using the MLM objective for
10 epochs. During supervised fine-tuning, we train
for 5 epochs. We use the default hyperparameters
for all pretrained LMs and apply dropout of 0.4 to
the final classification layer.

Evaluation We report the test set macro-
averaged F1 score for both datasets. (For CLS,
this is equivalent to accuracy since the classes are
balanced.) For reference, prior results on CLS and
HATEVAL are shown in Table 4.

5 Results and Analysis

We report results for all experiments in Table 5. For
both datasets, (1) TAPT and DAPT and (2) data
augmentation with machine translations improve
model performance. These strategies, which re-
quire no additional labeled data, improve macro-F1
score by between 0.6-1.5% for CLS and between
0.3-4.3% for HATEVAL. Even without DAPT,
which is often the most expensive step, applying
TAPT and/or data augmentation alone improves
performance in all settings and languages except
HATEVAL EN.

CLS For languages where extremely high-
resource monolingual LMs are available (EN and
FR), models perform best in the mono-target set-
ting, in which a monolingual LM is fine-tuned
on target language data. This is consistent with
prior findings that XLM-R suffers from fixed model
capacity and vocabulary dilution (Conneau et al.,
2019). However, for DE and JA, which are not low-
resource languages but whose monolingual LM
pretraining corpora are relatively limited in size

and domain (see Table 1), XLM-R models perform
better.

HATEVAL On average, XLM-R models perform
better on HATEVAL than those fine-tuned from
monolingual LMs. Unlike for CLS, this is true
even in EN, suggesting that for some classification
tasks, the LM pretraining corpus is not as impor-
tant for downstream task performance as XLM-R’s
larger model capacity and cross-lingual transfer.
Though scores were much higher for the relabeled
EN dataset than the original, the effects of LM fine-
tuning, TAPT, DAPT, and data augmentation were
consistent.

5.1 Not All Classification Tasks Are Created
Equal

The two text classification tasks we evaluate are sig-
nificantly different from both an annotation and a
modeling perspective. Sentiment is a well-defined
facet of language, and language model represen-
tations have even been shown to encode semantic
information about it (Radford et al., 2017). Mean-
while, defining and identifying hate speech is much
more nuanced, even for humans. Hate speech de-
tection is confounded by many factors that require
not only immediate context of the input but also
cultural and social contexts (Schmidt and Wiegand,
2017). The difference in the types of information
that models need to encode for each task may ex-
plain why monolingual LMs, which tend to encode
better lexical information than multilingual LMs
(Vulić et al., 2020), can outperform XLM-based
models when fine-tuned for sentiment analysis but
not for hate speech detection.

5.2 Cross-lingual Transfer

Prior work has established that multilingual LMs
benefit from the addition of more languages dur-
ing pretraining up to a point, after which limited
model capacity and vocabulary dilution cause per-
formance to degrade on downstream tasks – this is
referred to as the curse of multilinguality (Conneau
et al., 2019). Though this is reflected in the results
of CLS EN and FR, other models fine-tuned from
XLM-R exhibit gains from cross-lingual transfer.
In particular, for CLS JA and HATEVAL EN, the
best-performing models benefit not only from mul-
tilingual pretraining corpora but also from multilin-
gual task training data.

These results suggest that when fine-tuning LMs
for downstream tasks, XLM-R is a robust baseline.
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CLS HATEVAL

Model Adapt. Aug. EN DE FR JA AVG EN EN† ES AVG AVG†

mono-target

RoBERTa (EN)
BERT (OTHERS)

× × 94.70.4 90.90.6 95.20.0 88.70.3 92.4 44.45.3 58.56.2 75.60.6 60.0 67.1
X 95.30.3 92.00.2 95.60.3 89.30.02 93.0 46.12.6 60.63.2 76.01.7 61.0 68.3

TAPT × 94.90.1 91.60.1 95.40.1 89.30.3 92.8 45.41.9 59.92.7 76.11.1 60.8 68.0
X 95.00.4 92.30.4 95.80.2 89.70.4 93.2 44.71.5 59.21.7 76.91.4 60.8 68.0

TAPT+
DAPT

× 94.90.4 91.80.2 95.50.3 89.50.2 92.9 48.01.5 63.12.6 76.31.1 62.2 69.7
X 95.30.1 93.00.8 95.90.1 89.90.4 93.5 46.04.3 60.24.4 76.90.6 61.4 68.5

multi-target

XLM-RoBERTa

× × 92.50.4 93.00.2 92.50.3 90.40.5 92.1 47.22.0 61.41.9 74.80.5 61.0 68.1
X 93.30.1 94.00.2 93.80.2 90.30.3 92.8 45.61.6 59.32.5 77.01.1 61.3 68.1

TAPT × 92.70.5 93.50.5 93.90.3 90.30.1 92.6 47.02.7 62.43.3 76.11.4 61.6 69.2
X 93.40.6 94.00.3 93.80.5 90.50.4 92.9 47.91.3 63.51.5 77.90.9 62.9 70.7

TAPT+
DAPT

× 93.10.6 93.00.5 93.60.1 90.80.3 92.6 49.92.5 65.62.4 76.51.0 63.2 71.0
X 94.00.3 94.10.4 93.80.3 91.10.4 93.2 46.62.1 61.72.5 78.10.8 62.3 69.9

multi-all

XLM-RoBERTa

× × 92.40.3 92.60.4 93.30.4 90.40.4 92.2 48.43.5 63.14.5 77.50.4 62.9 70.3
X 93.40.3 93.30.2 94.00.2 90.40.5 92.8 49.83.5 66.04.6 77.80.9 63.8 71.9

TAPT × 92.50.4 93.00.3 93.90.3 90.90.3 92.6 48.42.7 64.23.5 77.40.9 62.9 70.8
X 93.50.4 93.40.5 94.10.2 91.10.2 93.0 50.02.2 66.52.6 77.80.6 63.9 72.2

TAPT+
DAPT

× 92.70.3 93.30.2 94.00.3 91.20.3 92.8 47.13.9 62.75.3 77.41.0 62.3 70.1
X 93.50.3 93.80.2 94.30.3 91.40.2 93.3 50.71.1 67.41.4 77.70.7 64.2 72.6

Table 5: CLS and HATEVAL results (macro-F1) averaged over five random seeds. The best results for each target
language test set are bolded, and standard deviations are shown in subscripts. Model denotes the supervised fine-
tuning setting. Adapt. denotes the adaptive pretraining setting: × (no adaptive pretraining), TAPT (task-adaptation
only), or TAPT+DAPT (task- and domain-adaptation). Aug. denotes whether the training data was augmented with
machine-translated examples. For HATEVAL, we report results for both the original and relabeled† test sets.

Model Data DE FR JA ES

multi-target target 94.1 93.8 91.1 78.1
multi-all all 93.8 94.3 91.4 77.7
zero-shot EN 92.7 92.6 88.5 72.1

Table 6: Zero-shot learning versus best multilingual ap-
proaches. Data denotes language of training data. We
fine-tune XLM-R and use DAPT, TAPT, and data aug-
mentation for all models shown.

In cases where knowledge transfer from a monolin-
gual LM might be difficult (e.g. due to a limited
pretraining corpus or specialized downstream task),
XLM-R may even outperform its monolingual com-
petitors.

5.3 Are Target Language Labels Needed?

Zero-shot learning is a topic of significant inter-
est in multilingual NLU research (Conneau et al.,
2018, 2019; Artetxe and Schwenk, 2019). In this
context, we use zero-shot learning to refer to learn-
ing a classification task without observing training
examples in the target language. Such an approach
would allow practitioners to train a classification
model using labeled data in a high-resource lan-

guage such as EN and deploy it in other languages
for which labels are not available.

To evaluate the viability of zero-shot approaches
for our tasks, we compare the best performing mod-
els from the experiments in Table 5 with models
trained only on EN training data. We report the
test set results for each of the non-EN target lan-
guages in Table 6. Zero-shot models are compet-
itive with previously published baselines (Table
4), which demonstrates the effectiveness of cross-
lingual transfer in models like XLM-R. However,
models trained using target language labels still out-
perform them by a large margin. Since obtaining a
small number of target language labels is straight-
forward and typically required for validation in
real applications, the need for zero-shot learning is
reduced in practical scenarios.

5.4 Speed and Memory Usage

The deployment of multilingual NLU systems
varies significantly depending on the number of
downstream task models trained and the model ar-
chitectures used. For instance, the mono-target and
multi-target settings induce one model per target
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Figure 1: Inference time (top) and memory usage
(bottom) benchmarks. XLM-R results not shown at
batch sizes 32 and 64 due to GPU memory restraints.
Environment details: transformers v3.1.0,
PyTorch v1.4.0, python v3.7.4, Linux.
CPU: x86_64 (fp16=False, RAM=15GB).
GPU: Tesla P100-PCIE-16GB, RAM=16GB,
power=250.0W, perf. state=0).

language. Conversely, multi-all models have more
consistent end-task performance and do not require
the added complexity and latency of language de-
tection.

We use the Hugging Face library to benchmark
the pretrained transformer models used in our ex-
periments. We measure the inference time and
memory usage of a single forward pass on a sin-
gle Nvidia Tesla P100 GPU. Results are shown in
Figure 1.

Monolingual BERT models in different lan-
guages are nearly identical in inference speed, but
vary slightly at small batch sizes. RoBERTa has
more parameters than BERT, but the impact on
inference time and memory is small. XLM-R is
also comparable with monolingual models at small
batch sizes, but its memory usage becomes pro-
hibitively large at batch sizes larger than 32. For
certain applications such as those with real-time
inference, this may not be important since the most
common batch size is 1. Overall, the main tradeoff
we observe is between the complexity of deploying
N language-specific models and the high parame-
ter count of a single multilingual model.

6 Related Work

6.1 Multilingual Classification Benchmarks
XNLI (Conneau et al., 2018) and PAWS-X (Yang
et al., 2019) are commonly used as representative
benchmarks for cross-lingual text classification (Hu
et al., 2020; Conneau et al., 2019). However, both
datasets are designed for evaluating zero-shot cross-
lingual transfer. While useful, they do not reflect
practical scenarios where (1) a small amount of
labeled data obviates zero-shot approaches, and
(2) target language test data are not semantically
aligned.

Meanwhile, benchmarks for supervised multi-
lingual text classification are limited. Artetxe and
Schwenk (2019) propose Language-Agnostic SEn-
tence Representations (LASER) and evaluate them
on Multilingual Document Classification Corpus
(MLDOC; Schwenk and Li, 2018). Eisenschlos
et al. (2019) later show that their multilingual fine-
tuning and bootstrapping approach, MultiFit, out-
performs LASER and mBERT on CLS and ML-
DOC. The recently released Multilingual Amazon
Reviews Corpus (MARC; Keung et al., 2020) is
similar to CLS, but contains a different set of lan-
guages and large-scale training sets. Rust et al.
(2020) perform a systematic evaluation similar
to ours, comparing monolingual and multilingual
BERT models on seven monolingual sentiment
analysis datasets. Unlike our work, they do not con-
sider multilingual test sets or cross-lingual transfer
during training (as in the multi-all setting). None of
the above evaluate practical training modifications,
XLM-R, or tasks with class imbalance.

6.2 Hate Speech Detection
Due to the increased volume and consequence of
online content moderation in recent years, there is a
growing body of work on multilingual hate speech
data and methodology. The Multilingual Toxic
Comment Classification Kaggle challenge (Jigsaw,
2019) included a multilingual test set of Wikipedia
talk page comments annotated for toxicity. More
recently, Glavaš et al. (2020) introduced XHATE-
999, an evaluation set of 999 semantically aligned
test instances annotated for abusive language in
five typologically diverse languages. Similar to our
work, they compare state-of-the-art monolingual
and multilingual transformer models. However,
both the Jigsaw dataset and XHATE-999 are de-
signed for evaluating zero-shot transfer and do not
contain multilingual training data.
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Other multilingual hate speech studies have
largely combined separate existing monolingual
datasets for evaluation (Pamungkas and Patti, 2019;
Sohn and Lee, 2019; Aluru et al., 2020; Corazza
et al., 2020; Zampieri et al., 2020). To avoid do-
main mismatch effects across languages, we use the
HATEVAL dataset (Basile et al., 2019), for which
all examples were collected simultaneously.

Previously evaluated approaches include LSTM
architectures and feature selection (Pamungkas and
Patti, 2019; Corazza et al., 2020), as well as us-
ing transformers for fine-tuning (Sohn and Lee,
2019) or feature extraction (Stappen et al., 2020).
Aluru et al. (2020) show that fine-tuning from
transformer-based language models generally out-
performs other methods, including cross-lingual
fixed representations like LASER.

7 Conclusion

We conduct an empirical evaluation of transformer-
based methods for multilingual text classification
in a variety of pretraining and fine-tuning settings.
We evaluate our results on two multilingual datasets
spanning five languages: CLS (sentiment analysis)
and HATEVAL (hate speech detection). Addition-
ally, we contribute a relabeled version of HATE-
VAL to address mislabeled test examples and enable
meaningful comparisons in future work.

Our results and analysis show that practical meth-
ods such as task- and domain-adaptive pretrain-
ing and data augmentation using machine trans-
lations consistently improve model performance
without requiring additional labeled data. We fur-
ther show that multilingual model performance can
vary based on task semantics, and that monolingual
models are not always guaranteed to outperform
massively multilingual models like XLM-R due to
its large pretraining corpora and increased capacity.

Our work points to a number of future direc-
tions, including cross-domain and cross-task trans-
fer, low-resource and few-shot learning, and practi-
cal alternatives to large multilingual models such
as distillation.
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