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Abstract
Potentially idiomatic expressions (PIEs) are
ambiguous between non-compositional id-
iomatic interpretations and transparent literal
interpretations. For example, hit the road can
have an idiomatic meaning corresponding to
‘start a journey’ or have a literal interpretation.
In this paper we propose a supervised model
based on contextualized embeddings for pre-
dicting whether usages of PIEs are idiomatic
or literal. We consider monolingual experi-
ments for English and Russian, and show that
the proposed model outperforms previous ap-
proaches, including in the case that the model
is tested on instances of PIE types that were
not observed during training. We then consider
cross-lingual experiments in which the model
is trained on PIE instances in one language,
English or Russian, and tested on the other lan-
guage. We find that the model outperforms
baselines in this setting. These findings sug-
gest that contextualized embeddings are able
to learn representations that encode knowledge
of idiomaticity that is not restricted to specific
expressions, nor to a specific language.

1 Introduction

Multiword expressions (MWEs) are lexicalized
combinations of multiple words, which display
some form of idiomaticity (Baldwin and Kim,
2010). In this paper we focus on potentially-
idiomatic expressions (PIEs), i.e., expressions
which are ambiguous between a semantically-
opaque idiomatic interpretation, and a composi-
tional literal meaning. In the following example,
the English PIE hit the road has an idiomatic mean-
ing corresponding roughly to ‘start a journey’:

1. The marchers had hit the road before 0500
hours and by midday they were limping back
having achieved success on day one.

On the other hand, hit the road, can also be used
literally, as in the example below:

2. Two climbers dislodged another huge block
which hit the road within 18 inches of one of
the estate’s senior guides.1

PIEs occur across languages, with one particu-
larly common class of PIE cross-lingually being
verb–noun combinations (VNCs, Fazly et al., 2009)
— i.e., PIEs consisting of a verb with a noun in its
direct object position — such as hit the road in
the example above. Although VNCs are common,
PIEs also occur in other syntactic constructions,
with English examples including combinations of
a verb and prepositional phrase — e.g., skating on
thin ice (which can be used idiomatically to mean
roughly ‘at risk’) — and prepositional phrases —
e.g., off the hook (with a potential idiomatic mean-
ing of roughly ‘out of danger’). Distinguishing
between literal and idiomatic usages of PIEs could
be particularly important for down-stream natural
language processing applications such as machine
translation (Isabelle et al., 2017).

Previous work has considered both unsupervised
and supervised approaches to predicting the token-
level idiomaticity of PIEs. However, annotated data
to train supervised approaches is not available for
all PIEs in all languages. This makes unsupervised
approaches (e.g., Fazly et al., 2009; Haagsma et al.,
2018; Liu and Hwa, 2018; Kurfalı and Östling,
2020), which do not have this resource require-
ment, appealing. On the other hand, supervised ap-
proaches (e.g., Salton et al., 2016; King and Cook,
2018) tend to outperform unsupervised approaches,
but are restricted to languages and PIEs for which
annotated training data is available.

In this paper we consider supervised approaches
based on contextualized embeddings (Devlin et al.,
2019; Liu et al., 2019; Kuratov and Arkhipov,
2019) to predicting usages of PIEs as idiomatic

1These example sentences are taken, with light editing,
from the VNC-Tokens dataset (Cook et al., 2008).
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or literal; however, we measure the ability of these
approaches to generalize to expressions that were
not observed during training, and also to gener-
alize across languages. We begin by considering
monolingual experiments for English and Russian
in which we train and test on instances of the same
PIEs. For English, we focus on VNCs (Cook et al.,
2008). For Russian, we consider a wider-range of
types of PIEs (Aharodnik et al., 2018). We then
consider a second monolingual setting in which we
evaluate on PIEs, again either English or Russian,
that were not observed during training. Finally,
we consider cross-lingual detection of idiomaticity.
Here we train on instances of PIEs in one language,
English or Russian, and evaluate on instances of
PIEs in the other language.

Our findings evaluating on expressions that were
observed during training are similar to those of
(Kurfalı and Östling, 2020); we achieve strong im-
provements over baselines, and on English out-
perform previous approaches based on conven-
tional word embeddings (King and Cook, 2018). In
monolingual experiments evaluating on PIEs that
were not observed during training, we again im-
prove over baselines, and in the case of English,
also over a strong linguistically-informed unsuper-
vised baseline. In cross-lingual experiments, in
which the model is evaluated on instances of PIEs
in a language that was not observed during train-
ing, we again improve over baselines, and remark-
ably observe performance roughly on par with that
of monolingual experiments evaluating on expres-
sions not observed during training. These findings
suggest that contextualized embeddings are able
to learn representations that encode knowledge of
idiomaticity that is not restricted to specific expres-
sions, nor to a specific language.

2 Related Work

Previous work has considered unsupervised and
supervised approaches to predicting the token-level
idiomaticity of PIEs. Although unsupervised meth-
ods have been proposed to disambiguate a wide
range of kinds of potentially-idiomatic expressions
(Haagsma et al., 2018; Liu and Hwa, 2018; Kurfalı
and Östling, 2020), and are not limited to languages
and types of PIEs for which training data is avail-
able, these approaches tend to not perform as well
as supervised approaches.

Focusing on specific languages and types of ex-
pressions can improve unsupervised approaches.

For example, focusing on VNCs, the idiomatic
interpretations of VNCs are typically lexico-
syntactically fixed. Returning to the hit the road
example from Section 1, the idiomatic interpreta-
tion is typically not accessible if the determiner
is indefinite (e.g., hit a road), the noun is plural
(e.g., hit the roads), or the voice is passive (e.g.,
the road was hit); in such cases typically only the
literal interpretation is available. Fazly et al. (2009)
propose an unsupervised statistical method based
on the lexico-syntactic fixedness of VNCs to deter-
mine the canonical forms — with respect to the de-
terminer, number of the noun, and voice of the verb
— of VNCs. They observe that idiomatic usages of
VNCs tend to occur in canonical forms, and that lit-
eral usages tend to occur in non-canonical forms. A
strong, linguistically-informed unsupervised base-
line for distinguishing literal from idiomatic VNC
usages is therefore to label canonical form usages
as idiomatic, and non-canonical form usages as
literal.

Salton et al. (2016) propose a supervised ap-
proach to predicting the token-level idiomaticity of
PIEs, focusing on English VNCs, based on train-
ing an SVM on skip-thoughts (Kiros et al., 2015)
representations of sentences containing PIEs. King
and Cook (2018) achieve better results using a sim-
pler sentence representation based on average of
word embeddings. Moreover, King and Cook show
that adding a single binary feature to the sentence
representation indicating whether the VNC occurs
in a canonical form — based on the method of
Fazly et al. (2009) — gives substantial improve-
ments. Hashempour and Villavicencio (2020) pro-
pose a supervised approach in which PIE instances
are treated as single units by fusing their lexical-
ized component words, and learning representa-
tions of these units using word and contextualized
(Melamud et al., 2016; Devlin et al., 2019) embed-
dings. Hashempour and Villavicencio also focus
on VNCs. Although they show improvements by
treating VNC instances as fused units, they do not
outperform King and Cook; they do, however, train
their models on smaller corpora. Shwartz and Da-
gan (2019) use representations of spans of tokens
based on contextualized embedding for predicting
a range of MWE properties. Most closely related
to our work, they consider light-verb construction
and verb-particle construction classification, for
both of which there is an ambiguity between MWE
usages and similar-on-the-surface literal combina-
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tions. Shwartz and Dagan do not, however, con-
sider English VNCs or Russian idioms as we do.

Kurfalı and Östling (2020) propose a supervised
approach to classifying instances of potentially-
idiomatic expressions, as idiomatic or literal, based
on contextualized embeddings. They represent
MWE instances as the average of the contextual
embeddings for the tokenized pieces of their lexi-
calized component words, which are lemmatized in
a preprocessing step, and use a single-layer percep-
tron for classification. Their findings indicate that
their approach improves over previous approaches
on English and German PIEs. In this paper, sim-
ilarly to Kurfalı and Östling, we consider an ap-
proach based on contextualized embeddings, but
we consider experimental setups in which classi-
fiers are evaluated on expressions, and also lan-
guages, that are unobserved during training.

3 Predicting PIE Idiomaticity with
Contextualized Embeddings

Previous supervised approaches to identifying id-
iomatic instances of PIEs have represented PIE
instances with sentence embeddings (Salton et al.,
2016; King and Cook, 2018). We consider a simi-
lar approach here using contextualized embeddings
from BERT (Devlin et al., 2019), RoBERTa (Liu
et al., 2019), RuBERT (Kuratov and Arkhipov,
2019), and mBERT (Devlin et al., 2019). Specif-
ically we represent a PIE instance using the CLS
(classification) token for the context in which it
occurs.2 For representing English PIEs we use the
sentence in which the target expression occurs as
the context. For representing Russian PIEs, the
dataset we use (discussed in Section 4.1) does not
include sentence segmentation, and so we instead
use a context of up to 300 characters to the left and
right of the target expression.3

Because we focus on VNCs for English ex-
periments, following King and Cook (2018), for
our monolingual experiments on English VNCs,
we also consider whether incorporating informa-

2In preliminary experiments we also considered represen-
tations of English VNC instances formed by averaging and
concatenating contextualized representations of the verb and
noun components of a target VNC (where the verb and noun
representations are themselves averages of the representations
of the word pieces they are segmented into). We found these
approaches to perform roughly on par with representing VNC
instances using the CLS token, and so only consider this ap-
proach here.

3We did not attempt to tune this context window size,
although there is scope to do so in future work.

tion about lexico-syntactic fixedness of VNCs into
our approach gives improvements. Specifically,
we concatenate a single binary feature indicating
whether a VNC usage is in a canonical form, re-
ferred to as CF, with the representation of the CLS
token.

We fine tune pre-trained BERT, RoBERTa, Ru-
BERT, and mBERT models for binary classification
of PIE token instances as idiomatic or literal. We
use two fully-connected layers on top of the contex-
tualized embedding model. The first layer has the
same dimensionality as the representation of the
VNC (i.e., 768 dimensions, the hidden layer size
of each of the contextualized embedding models
considered, and an additional dimension when the
CF feature is used) and uses the ReLU activation
function. The second layer has 512 dimensions and
uses the softmax activation function.

4 Materials and Methods

In this section we describe our datasets (Sec-
tion 4.1), experimental setups and evaluation met-
ric (Section 4.2), and then the implementation of
our models and the parameter settings used (Sec-
tion 4.3).

4.1 Datasets

Following Salton et al. (2016), King and Cook
(2018), and Hashempour and Villavicencio (2020),
for English, we use the VNC-Tokens dataset (Cook
et al., 2008), which consists of English VNC us-
ages extracted from the British National Corpus
(Burnard, 2000) annotated as literal or idiomatic.4

VNC-Tokens includes DEV (development) and
TEST sets — referred to here as EN-DEV and EN-
TEST to distinguish them from the Russian dataset
introduced below — which each include roughly
600 instances of 14 VNC types. The expressions
in EN-DEV and EN-TEST do not overlap. Each of
EN-DEV and EN-TEST is roughly balanced with
respect to idiomatic and literal instances. We use
EN-DEV for hyper-parameter tuning, and carry out
no such tuning on EN-TEST.

For Russian, we use the dataset of Aharodnik
et al. (2018) which consists of instances of Rus-
sian PIEs annotated at the token level as literal
or idiomatic. Unlike the English dataset, this
dataset is not restricted to VNCs. It includes id-

4Following Salton et al. (2016), King and Cook (2018), and
Hashempour and Villavicencio (2020), we ignore instances
labelled as unknown in VNC-Tokens.



26

Dataset # expressions # tokens % idiomatic
EN-DEV 14 594 60.9
EN-TEST 14 613 63.3
RUSSIAN 37 775 54.3

Table 1: The number of PIE types and tokens, and the
percentage of idiomatic tokens, in each dataset.

ioms with a range of syntactic constructions in-
cluding preposition+noun, preposition+adj+noun,
and VNCs. The dataset consists of three sections
containing classical prose, modern prose, and text
from Russian Wikipedia. We consider only the
Russian Wikipedia portion because classical prose
is substantially older than the text in the English
VNC-Tokens dataset (which is from the British Na-
tional corpus, which primarily includes texts from
the late twentieth century), and the modern prose
portion is relatively small compared to the Russian
Wikipedia portion, which includes roughly 500M
tokens. Each instance is accompanied by a con-
text window of up to three paragraphs. Meta-data
for this dataset indicating the location of the target
expression in the context unfortunately does not
appear to be available. We therefore restrict our
experiments to the subset of this dataset for which
there is an exact match between the target expres-
sion and a token sequence in the context. This
gives a dataset consisting of 37 expressions and
775 token instances.5 The dataset is again roughly
balanced between idiomatic and literal usages with
54.3% being idiomatic. In contrast to the English
dataset, we do not split this Russian dataset at the
type level into separate DEV and TEST datasets be-
cause we carry out no hyper-parameter tuning on
this dataset. We refer to this dataset as RUSSIAN.

Statistics for the number of PIE types and tokens,
and the percentage of idiomatic tokens, in each
dataset, are given in Table 1.

4.2 Experimental Setups and Evaluation
We first consider an experimental setup similar to
King and Cook (2018) and Kurfalı and Östling
(2020), referred to here as “all expressions”. In
this monolingual experimental setup we train and
test on instances of the same PIEs in the same
language. For each of EN-DEV, EN-TEST, and
RUSSIAN, we randomly partition the instances into

5The entire Russian Wikipedia portion of the dataset con-
sists of 40 expressions and 799 token instances. Restricting
the dataset to instances that have an exact match with the target
expression therefore still retains the majority of the data.

training (roughly 75%) and testing (roughly 25%)
sets, keeping the ratio of idiomatic to literal usages
of each expression balanced across the training and
testing sets. We repeat this random partitioning 10
times. For EN-DEV and EN-TEST we use the same
partitions as King and Cook.

We do not expect to have annotated instances
of all PIE types, limiting the applicability of mod-
els developed for the all expressions experimental
setup. We are therefore particularly interested in
determining whether a supervised model is able
to generalize to expressions that were unseen dur-
ing training. Here we consider a second monolin-
gual experimental setup proposed by Gharbieh et al.
(2016), referred to here as “unseen expressions”.
In these experiments we hold out all instances of
one PIE type for testing, and train on all instances
of the remaining types (within either EN-DEV, EN-
TEST, or RUSSIAN). We repeat this fourteen times
for each of EN-DEV and EN-TEST, and 37 times
for RUSSIAN, holding out each PIE type once for
testing.

For both experimental setups — i.e., all expres-
sions and unseen expressions — we train and test
models on EN-DEV for preliminary experiments
and setting parameters. We then report final results
by training and testing models on EN-TEST and
RUSSIAN.

Just as we do not expect to have annotated in-
stances of all PIE types for a given language, we
also do not expect to have annotated instances of
PIEs for all languages. We therefore consider an ex-
tension of the monolingual unseen expressions ex-
perimental setup in which we evaluate on instances
of PIEs in a language that was not observed during
training, referred to as “cross-lingual”. In these
experiments we train on either English or Russian,
and evaluate on the other language. In particular,
we train on either EN-DEV or EN-TEST and eval-
uate on RUSSIAN, and also train on RUSSIAN and
evaluate on each of EN-DEV and EN-TEST.

The idiomatic and literal classes for both the En-
glish and Russian datasets are roughly balanced
(Table 1). We therefore evaluate using accuracy.
For the all expressions experimental setup, we re-
port average accuracy across the 10 runs. In the
unseen expressions experimental setup, we repeat-
edly hold out each expression until all instances of
each expression (within either EN-DEV, EN-TEST,
or RUSSIAN) have been classified, and then com-
pute accuracy. For the cross-lingual experiments,
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we simply calculate accuracy over all instances in
the dataset used for testing.

4.3 Implementation and Parameter Settings

We use Huggingface (Wolf et al., 2020) imple-
mentations of BERT, RoBERTa, mBERT, and
RuBERT. Specifically we use bert-base-uncased,
roberta-base, bert-base-multilingual-cased, and
rubert-base-cased. All models have 12 layers and a
hidden layer size of 768. The number of parame-
ters for BERT, RoBERTa, mBERT, and RuBERT,
is 125M, 125M, 179M, and 180M, respectively.
BERT and RoBERTa are trained on uncased and
cased English text, respectively. mBERT is trained
on text from 104 languages. RuBERT is trained
on Russian Wikipedia and Russian news data. We
use BERT, RoBERTa, and mBERT for monolin-
gual English experiments; RuBERT and mBERT
for monolingual Russian experiments; and mBERT
for cross-lingual experiments.

We train our models using Adam optimizer
(Kingma and Ba, 2015) to minimize the cross-
entropy loss. We use the default dropout of 0.5
for the network layers which are on top of BERT,
RoBERTa, mBERT, or RuBERT. For fine-tuning,
Devlin et al. (2019) recommend the following pa-
rameter settings: batch size of 8, 16, or 32; epochs
between 2 and 4; and learning rate of 2e-5, 3e-5, or
5e-5.

We perform grid search over these parameter
settings on EN-DEV for the monolingual all expres-
sions and unseen expressions experimental setups.
We report results for the best parameter settings
on EN-DEV, and then use only these parameter set-
tings for experiments on EN-TEST and RUSSIAN.
For the cross-lingual experiments, we do no fur-
ther parameter tuning, and report results for the
best parameter settings for the unseen expressions
experimental setup for EN-DEV. We repeat the ex-
periments 10 times with different random seeds,
and report the mean accuracy and standard devia-
tion over the runs.

5 Monolingual Results

In this section, we present results for the unseen
and all expressions experimental setups, for mono-
lingual experiments on English (Section 5.1) and
Russian (Section 5.2). In Section 6 we present
results for cross-lingual experiments.

5.1 English

For English, we compare against three baselines: a
most-frequent class (MFC) baseline, the unsuper-
vised approach of Fazly et al. (2009, CForm) based
on canonical forms, and the supervised approach
of King and Cook (2018).

We begin by considering results for the all ex-
pressions experimental setup. Results are shown in
the top panel of Table 2 (labelled “All”). On each
dataset, both BERT and RoBERTa outperform all
baselines, including King and Cook (2018) when
using the canonical form (CF) feature (indicated
by “+CF” in Table 2). This finding demonstrates
that contextualized embeddings are able to better
capture knowledge of the idiomaticity of PIEs than
previous approaches. mBERT performs relatively
poorly compared to BERT and RoBERTa, although
it still outperforms the baselines, with the exception
of King and Cook when using the CF feature.

We now examine the impact of the CF feature
in the all expressions experimental setup.6 For
each model based on contextualized embeddings,
incorporating the CF feature gives an improvement,
but these improvements are small relative to the
standard deviation across runs. This is in contrast
to the substantial improvements obtained by King
and Cook (2018) when using the CF feature. These
findings suggest that contextualized embeddings
are able to better capture the linguistic knowledge
encoded in this feature than conventional word em-
beddings, which King and Cook use to represent
VNC instances.

We now consider results for the unseen expres-
sions experimental setup. Results are shown in the
bottom panel of Table 2 (labelled “Unseen”). On
EN-DEV, the best results are again obtained using
BERT, however, the accuracy drops substantially
on EN-TEST. RoBERTa performs more consistently
across EN-DEV and EN-TEST, and performs best on
EN-TEST. mBERT again performs relatively poorly
compared to BERT and RoBERTa, but nevertheless
substantially outperforms the most-frequent class
baseline.

Focusing on the contribution of the CF feature,
results for both BERT and RoBERTa on EN-DEV

6We do not consider the CF feature, which was devel-
oped for and evaluated on English VNCs (Fazly et al., 2009),
for experiments with mBERT. We are primarily interested
in mBERT as a point of comparison for cross-lingual ex-
periments, and so do not incorporate this English-specific
knowledge here. We also do not consider the CF feature in
experiments on RUSSIAN or in cross-lingual experiments.
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Setup Model
EN-DEV EN-TEST

−CF +CF −CF +CF

All

MFC 63.4 63.4 62.9 62.9
CForm 75.0 75.0 71.1 71.1
King and Cook (2018) 82.5 85.6 81.5 84.7
BERT 90.7 ±0.53 90.8 ±0.51 89.3 ±1.11 89.8 ±0.71
RoBERTa 88.3 ±0.96 89.9 ±0.66 88.6 ±0.87 89.0 ±0.48
mBERT 84.1 ±0.8 - 83.8 ±1.1 -

Unseen

MFC 60.9 60.9 63.3 63.3
CForm 73.6 73.6 70.0 70.0
King and Cook (2018) 72.3 76.4 74.6 77.8
BERT 83.5 ±0.97 83.4 ±0.65 78.6 ±1.78 79.8 ±1.55
RoBERTa 81.8 ±1.60 82.4 ±1.20 82.3 ±1.76 80.6 ±2.35
mBERT 75.4 ±1.5 - 74.3 ±2.2 -

Table 2: % accuracy and standard deviation for the all and unseen expressions experimental setups on EN-DEV and
EN-TEST, for BERT, RoBERTa, and mBERT, with and without the CF feature. % accuracy for the baselines is also
shown. The best accuracy for each experimental setup, on each dataset, with and without the CF feature, is shown
in boldface.

do not show a clear improvement when incorpo-
rating this feature when considering the standard
deviation across runs. The impact of this feature
in experiments on EN-TEST is similar. This find-
ing again suggests that contextualized embeddings
capture much of the linguistic knowledge encoded
in this feature. We therefore focus on results for
BERT and RoBERTa that do not incorporate the
CF feature.

Focusing on results for EN-TEST (for which no
hyper-parameter tuning was carried out), given the
substantial improvements over the most-frequent
class baseline, and over the CForm baseline, with
the exception of mBERT when accounting for
variation across runs, these findings suggest that
the classifiers (including the approach of King
and Cook) have learned information about the id-
iomaticity of PIEs, that is not restricted to spe-
cific expressions, as in the case of the all expres-
sions experimental setup. Furthermore BERT and
RoBERTa (without the CF feature) outperform the
approach of King and Cook (2018), although given
the standard deviation across runs, this difference
does not appear to be significant for BERT when
comparing against the approach of King and Cook
when they use the CF feature.

In experiments until now we have used represen-
tations from the final layer of contextualized em-
bedding models (BERT, RoBERTa, and mBERT).
We now consider the effect of using different hid-
den layers, focusing on the unseen expressions ex-

Model Dataset
Layer

9 10 11 12
BERT EN-DEV 82.0 82.2 82.6 83.5
BERT EN-TEST 79.2 79.8 80.2 78.6
RoBERTa EN-DEV 75.6 78.2 79.8 81.8
RoBERTa EN-TEST 71.8 77.7 79.5 82.3

Table 3: % accuracy and standard deviation for the un-
seen expressions experimental setup on EN-DEV and
EN-TEST using BERT and RoBERTa with representa-
tions from the indicated layers. The best results for
each model and dataset are shown in boldface.

perimental setup for BERT and RoBERTa, in an
effort to explain the relatively poor performance
of BERT here. Results are shown in Table 3.7 In
all cases, except for BERT on EN-TEST, the final
layer performs best. This is inline with the findings
of Jawahar et al. (2019) that the upper layers of
BERT encode semantic information. For BERT,
where accuracy was low on EN-TEST relative to
EN-DEV in Table 2, on EN-TEST the second last
layer performs best.

5.2 Russian

For monolingual experiments on Russian, we again
consider the all and unseen expressions experi-
mental setups. Here we compare against a most-
frequent class baseline. Although Aharodnik et al.

7Results are only shown for layers 9–12. The overall trend
for other layers is that lower layers achieve lower accuracy.
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Setup Model % Accuracy

All
MFC 54.1
RuBERT 87.4 ±4.7
mBERT 88.2 ±2.8

Unseen
MFC 54.3
RuBERT 74.6 ±2.2
mBERT 73.6 ±3.8

Table 4: % accuracy and standard deviation for the all
and unseen expressions experimental setups on RUS-
SIAN for RuBERT, mBERT, and the most-frequent
class baseline (MFC). The best accuracy for each ex-
perimental setup is shown in boldface.

(2018) report preliminary results on this dataset,
they are not for the same experimental setups that
we consider, and so we do not compare against their
results. Here we consider RuBERT, a monolingual
Russian model, and mBERT, which includes Rus-
sian text in its pre-training. For the all and unseen
expressions experimental setups we use the best
hyper-parameter settings for EN-DEV using BERT
for the unseen and all expressions experimental
setups, respectively; i.e., we do not do any hyper-
parameter tuning on RUSSIAN.

Results are shown in Table 4. We see that in
both the all and unseen expressions experimental
setups, both RuBERT and mBERT substantially
outperform the most-frequent class baseline. We
also see that, accounting for variation across runs,
the performance of RuBERT and mBERT is similar
within each experimental setup.

These findings add to those of Section 5.1, and
again indicate that contextualized embeddings en-
code knowledge of PIE idiomaticity, although in
this case the experiments consider a range of PIE
syntactic constructions, as opposed to only VNCs.
These findings also again indicate that the classi-
fier for the unseen expressions experimental setup
has learned information about the idiomaticity of
PIEs that is not restricted to expressions that were
observed during training. In the following section
we consider whether contextualized embeddings
encode knowledge of idiomaticity that can be gen-
eralized across languages.

6 Cross-lingual Results

In this section we consider cross-lingual experi-
ments in which we train on instances of PIEs in
a source language, and evaluate on instances of
PIEs in a (different) target language. We consider

the case of both English-to-Russian and Russian-
to-English. For English we consider both EN-DEV

and EN-TEST. In these experiments we train on
the entire source language dataset (i.e., when Rus-
sian is the source language we train on RUSSIAN,
and when English is the source language we train
on either EN-DEV or EN-TEST), and evaluate on
the entire target language dataset. We use the best
hyper-parameter settings for EN-DEV using BERT
for the unseen expressions experimental setup from
Section 5.1; i.e., we do not attempt any hyper-
parameter tuning for this cross-lingual experimen-
tal setup. We again compare results against a most-
frequent class baseline, and when English is the tar-
get language, also against the unsupervised CForm
baseline (Fazly et al., 2009).

Results are shown in Table 5. For English-to-
Russian, and Russian-to-English, mBERT outper-
forms the most-frequent class baseline in each
case. In experiments with English as the target
language, mBERT also outperforms the CForm
baseline, although in the case of EN-DEV the dif-
ference does not appear to be significant given the
standard deviation across runs. Furthermore, the
results are, remarkably, roughly on par with mono-
lingual results for the unseen expressions experi-
mental setup. Focusing on experiments involving
EN-TEST and RUSSIAN, where for both datasets no
hyper-parameter tuning was considered in previous
experiments, for English-to-Russian (i.e., EN-TEST

source, RUSSIAN target) mBERT achieves 72.4%
accuracy, whereas in the monolingual Russian un-
seen expressions experimental setup, RuBERT and
mBERT achieve accuracies of 74.6% and 73.6%,
respectively (Table 4). These differences are rel-
atively small considering the standard deviations
across runs. For Russian-to-English (i.e., RUSSIAN

source, EN-TEST target) mBERT achieves an accu-
racy of 80.1%, while the accuracies for contextual-
ized embedding models for EN-TEST in the unseen
expressions experimental setup range from 74.3%
for mBERT to 82.3% for RoBERTa (Table 2).

Whereas the findings for the monolingual un-
seen expressions experimental setup indicate that
the classifier is able to generalize to expressions
that are unseen during training, these findings for
cross-lingual experiments indicate that the classi-
fier is able to generalize across languages. This
suggests that the classifier has learned information
about idiomaticity that is not restricted to specific
expressions, nor to a specific language. The cross-
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Source Language Target language Source dataset Target dataset Model % Accuracy

English Russian
EN-DEV RUSSIAN

MFC 54.3
mBERT 75.7 ±3.0

EN-TEST RUSSIAN
MFC 54.3
mBERT 72.4 ±5.7

Russian English

RUSSIAN EN-DEV

MFC 60.9
CForm 73.6
mBERT 75.2 ±2.0

RUSSIAN EN-TEST

MFC 63.3
CForm 70.0
mBERT 80.1 ±1.3

Table 5: % accuracy and standard deviation for cross-lingual experiments from English to Russian (top panel)
and Russian to English (bottom panel) using mBERT, a most-frequent class (MFC) baseline, and for English, the
unsupervised CForm baseline.

lingual findings furthermore seem to be inline with
the findings of Pires et al. (2019) that cross-lingual
transfer with mBERT works reasonably well even
when languages do not share the same script (as
for English and Russian), but works less well when
the languages do not share the same word order
(where English is an SVO language, and Russian
has freer word-order, but SVO is considered domi-
nant (Dryer, 2013)).

7 Conclusions

In this paper we proposed a supervised model based
on contextualized embeddings to predict the id-
iomaticity of PIE instances. In contrast to most
prior work on this topic, we considered the abil-
ity of the model to generalize to expressions that
were not observed during training, and also to gen-
eralize across languages. Code to reproduce these
experiments is available.8

We first considered monolingual experiments
for English, focusing on verb–noun combinations,
a common type of PIE. In experiments in which
we train and test on instances of the same PIEs,
we demonstrated that an approach based on con-
textualized embeddings improves over previous
approaches based on conventional word embed-
dings. We then considered experiments in which
we evaluate on PIEs that were not observed during
training, and showed that the proposed approach
improves over a strong, linguistically-informed un-
supervised baseline. We further found that, in con-

8https://github.com/SaminFakharian/Co
ntextualized-Embeddings-Encode-Monolingu
al-and-Cross-lingual-Knowledge-of-Idioma
ticity

trast to prior models based on conventional word
embeddings, incorporating information about the
lexico-syntactic fixedness of VNCs does not lead to
clear improvements, suggesting that contextualized
embeddings capture this rich linguistic knowledge.

In monolingual experiments on Russian we con-
sidered a wider range of types of PIEs. Here we
showed that, as for English, the proposed approach
improves over baselines when evaluating on ex-
pressions that were, and were not, observed dur-
ing training. The experimental setup in which the
model is tested on instances of PIE types that were
not observed during training is particularly inter-
esting because we do not expect to have annotated
instances of all PIE types available for training su-
pervised models. The findings in this experimental
setup, for both English and Russian, indicate that
the model is capturing knowledge of PIE idiomatic-
ity that is not restricted to specific expressions.

Finally, we considered cross-lingual experiments
in which we train on instances of either English or
Russian PIEs, and evaluate on PIE instances in the
other language. Here the proposed model again
improves over baselines, and achieves performance
that is roughly on par with that of monolingual
experiments in which we evaluate on PIEs that
were not observed during training. This finding
indicates that contextualized embeddings encode
knowledge of PIE idiomaticity that is not restricted
to specific expressions, nor to a specific language.

In future work, we plan to further explore cross-
lingual idiomaticity prediction. We would like to
include more languages in the analysis to be able to
measure the impact of training on multiple source
languages. We further intend to consider including

https://github.com/SaminFakharian/Contextualized-Embeddings-Encode-Monolingual-and-Cross-lingual-Knowledge-of-Idiomaticity
https://github.com/SaminFakharian/Contextualized-Embeddings-Encode-Monolingual-and-Cross-lingual-Knowledge-of-Idiomaticity
https://github.com/SaminFakharian/Contextualized-Embeddings-Encode-Monolingual-and-Cross-lingual-Knowledge-of-Idiomaticity
https://github.com/SaminFakharian/Contextualized-Embeddings-Encode-Monolingual-and-Cross-lingual-Knowledge-of-Idiomaticity
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the target language amongst the source languages,
to measure the impact of augmenting training data
for the target language with data from other lan-
guages. Finally, we intend to consider cross-lingual
approaches for other MWE prediction tasks, such
as predicting noun compound compositionality.
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