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Abstract

Generative language models trained on large,
diverse corpora can answer questions about a
passage by generating the most likely contin-
uation of the passage in which the answer to
a given question, as appended to the passage,
is the most likely continuation of that passage.
However, accuracy rates vary depending on
the type of question asked. In this paper, we
keep the passage fixed, and test with a wide va-
riety of question types, exploring the strengths
and weaknesses of the GPT-3 language model.
We provide the passage and test questions as a
challenge set for other language models.

1 Introduction

Generative language models produce likely text
based on a context of other text. This process has
a surprising number of useful applications, one of
which is answering questions about a text passage.
By training on text that contains (among other data)
passages followed by questions and answers about
the passage, and creating a context in which the
answer to a question is the most likely continuation
of the passage, better text prediction tends to result
in better question answering.

However, there are many types of questions that
could be asked about a passage, from direct ques-
tions about facts, to explorations of its themes, to
imagining what would happen if something about
the story was completely different. Depending on
the type of question, the accuracy of answers can
vary greatly. While some tests of the question-
answering ability of language models have been
run, it is difficult to separate out whether a question
is answered incorrectly because of changes to the
question, or changes to the passage, or both. There-
fore, in this paper, we selected a single passage and
asked a wide variety of questions about the passage.
The response of a particular model to any one of
these types of questions could be explored much

New York Times, 29 September 1973
A 61-year old furniture salesman was pushed down the
shaft of a freight elevator yesterday in his downtown
Brooklyn store by two robbers while a third attempted
to crush him with the elevator car because they were
dissatisfied with the $1,200 they had forced him to
give them.
The buffer springs at the bottom of the shaft
prevented the car from crushing the salesman, John J.
Hug, after he was pushed from the first floor to the
basement. The car stopped about 12 inches above him
as he flattened himself at the bottom of the pit.
Mr. Hug was pinned in the shaft for about half an
hour until his cries attracted the attention of a porter.
The store at 340 Livingston Street is part of the
Seaman’s Quality Furniture chain.
Mr. Hug was removed by members of the Police
Emergency Squad and taken to Long Island College
Hospital. He was badly shaken, but after being treated
for scrapes of his left arm and for a spinal injury was
released and went home. He lives at 62-01 69th
Lane, Maspeth, Queens.
He has worked for seven years at the store, on the
corner of Nevins Street, and this was the fourth time
he had been held up in the store. The last time was
about one year ago, when his right arm was slashed
by a knife-wielding robber.

Table 1: Full text of story in McCarthy (1990).

more extensively on a larger dataset with more pas-
sages. Here, we are simply making a first survey
of the possibilities.1

2 The Challenge Set Passage

In 1976, John McCarthy published the informal
memo “An Example for Natural Language Un-
derstanding and the AI Problems It Raises” (Mc-
Carthy, 1990). The example was a short few para-
graphs from a news article about a robbery, and
a series of questions about the article asked and
answered in natural language. The full text of the
passage can be found in Table 1.

1To assess for statistical significance beyond this manual
survey, the next phase of research will entail automating the
generation of questions from type seed sets and the evaluation
of question/answer pairs.
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The term “natural language understanding” only
seems to have been introduced to the field of AI in
about 1973 or 1974 (Woods, 1973). With this 1976
memo, McCarthy was helping lay the foundations
of what the field would mean for AI researchers.
He called this newspaper story “my candidate for a
target for a natural language understander,” point-
ing out that a fictional story would bring up even
more difficult to answer questions about the moti-
vations of the author.

McCarthy thought it would make the problem
simpler to have both the questions and answers
not be in natural language, but be queries formu-
lated in an artificial query language free of ambigui-
ties. Parsing the questions does not seem to require
much beyond what would already be needed to
parse the story, but certainly natural language gen-
eration was not part of the problem as he conceived
it at all.

As an early benchmark, it avoids the kinds of
bias that come from working with modern systems,
tailoring the kinds of questions we ask to what
the models we are working with can or can’t do,
depending on the researcher’s motivations. It is
small and simple enough to fit within the prompt of
GPT, but rich enough that it allows tests for many
different aspects of “understanding.”

3 Background

We present views on what would be needed to ad-
dress McCarthy’s challenge, an overview of the
GPT-3, and prompt-based learning.

3.1 Early Views of NLU Architecture
The paper from which the passage was taken con-
tain’s McCarthy’s thoughts on how one might build
a system to answer the questions he posed. It is
instructive to compare the architecture of the GPT
models tested in this paper with what McCarthy
and, later, Erik Mueller believed would be required
to solve such problems (1999).

McCarthy proposed that the Natural Language
Understanding problem be solved by a system with
the following components:
“1. A ‘parser’ that takes English into ANL [Arti-

ficial Natural Language].
2. An ‘understander’ that constructs the ‘facts’

from a text in the ANL.
3. Expression of the ‘general information’ about

the world that could allow getting the answers
to the questions by formal reasoning from

the ‘facts’ and the ‘general information.’ The
“general information” would also contain non-
sentence data structures and procedures, but
the sentences would tell what goals can be
achieved by running the procedures. In this
way, we would get the best of the sentential
and procedural representations of knowledge.

4. A ‘problem solver’ that could answer the
above questions on the basis of the ‘facts.”’

Mueller (1999), responding to McCarthy’s paper,
proposed that a system for answering the questions
in the passage would require the following steps:
“1. Feed input text to text agents for recognizing

entities such as names and places.
2. Perform lexical analysis on the input.
3. Use part-of-speech taggers and word sense

disambiguators to reduce possibilities.
4. Feed textual entities and lexical entries to a

partial syntactic parser.
5. Feed syntactic parse fragments to a semantic

parser.
6. Feed semantic parse fragments to a collection

of understanding agents.
7. Build understanding agents for multiple

realms including the physical realm, devices,
human needs and goals, emotions, and mental
states.

8. Design and implement mechanisms for under-
standing agents to negotiate a shared interpre-
tation and renegotiate that interpretation as
each input is received.

9. Build B-Brain mechanisms for controlling
processing by understanding agents.

10. Adapt and extend existing parsers and lexi-
cons.

11. Evolve existing commonsense databases by
adding knowledge as needed.

12. Build links between existing resources, allow-
ing multiple resources to be used.”

The neural approaches in this paper are missing
all of these components. However, there is some
evidence that deep neural language models may
rediscover a similar NLP pipeline (Tenney et al.,
2019; Li et al., 2021).

The knowledge-base-centric approaches sug-
gested by McCarthy and Mueller would guarantee
that if the background knowledge, passage, and
questions were encoded as logical statements cor-
rectly, the inference would be valid and the answers
true. When using a language model to answer the
questions, we have no such guarantees.
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3.2 GPT-3

GPT stands for “Generative Pre-trained Trans-
former.” It is a deep neural network with the
transformer architecture, trained on a large general
text corpus, that generates text as output, given a
text prompt. Both the input and output are rep-
resented as “tokens”: either common words or
parts of words that can represent any unicode string.
There are 50,000 possible tokens, and at each step,
GPT generates a probability distribution over these
tokens. How this probability distribution is sam-
pled depends on various parameter settings, but for
nearly all results in this paper, we simply select the
most probable token.

The Davinci model of GPT-3 is the most pow-
erful of this language model (LM) family, at 175
billion parameters for the Davinci version. GPT-3
has set records for accuracy on several question-
answering and common-sense tasks (Brown et al.,
2020), which made it a reasonable choice for the
model best able to answer these questions correctly
at present. In addition to being trained on terabytes
of general text data from the web, the instruct vari-
ants, such as Davinci-instruct-beta (GDIB), were
also specially trained on examples of question-
answering, in a process known as “finetuning.”
This finetuning causes the model to have a bias
towards expecting text to fall into a pattern of a
short section of text, followed by questions and
answers about that text.

We also did limited testing of the other GPT-3
models. These are referred to as Ada, Babbage,
Curie. Although the sizes of these models have not
been made public, indirect evidence (Gao, 2021)
suggests that they are 350M, 1.3B, and 6.7B pa-
rameters respectively.

3.3 Prompt-based Learning

Stepping back for a moment, it is worth pointing
out just how distinctive applying the LM-based
approach to question-answering is in the context
of machine learning methods and where prompt
engineering fits in to this task. In traditional super-
vised learning, in order to train the parameters of
the model, supervised data, i.e., pairs of inputs and
outputs, are needed to characterize the task that the
model will perform. The crucial issue for many
tasks, however, is that the large amounts of super-
vised data needed for training these models may
not be available. One way around this requirement
when the datasets involve text is to leverage the text

prediction capability of language models. While
it is beyond the scope of this paper to describe the
training of LMs specifically for prompt-based ap-
plications,2 we note here the format of the prompts
that we used in running the questions of the chal-
lenge dataset we have constructed:

"Read the passage below and answer the ques-
tions based on what you read."

passage
"Q. "
the question
"A."

The first element of the prompt was an instruction,
altered systematically in our experimentation, as
described in Section 4.1.1. The second element
was the text passage verbatim (Table 1). The third
element was the indicator of the upcoming question.
The fourth element was the question verbatim. And
the final element was the indicator of an answer to
come.

4 Approach: Challenge Set Development

We construct our challenge dataset by beginning
with the passage and questions from McCarthy, and
building upon this with questions that further probe
hypothesized strengths and weaknesses of GPT-3.

4.1 Questions from McCarthy and Answers
from GPT-3 Davinci-instruct-beta

The questions were presented as a numbered list
in McCarthy’s paper. We presented the text of
the article that McCarthy extracted, followed by
each question individually (so previous questions
and answers are not included in the prompt). The
question was preceded by the letter “Q.” to indicate
that it is a question and followed by the letter “A.”
on a new line to indicate that an answer is expected.
This is the most common use pattern for Davinci-
instruct-beta.

We have set the temperature parameter to 0 ex-
cept where otherwise noted, so that the most likely
token is selected at each step. This also makes
the results more reproducible. Temperature 0 has
an increased tendency toward repetition in long
(multiple sentence) answers and tends to produce
somewhat blander output, but for this task it is
probably the most appropriate.

The full set of questions and answers are in the
Appendix B. McCarthy did not answer a few of
his own questions, probably because the answer

2For details see Liu et al. (2021).
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was obvious, and he followed up with a related
question.

4.1.1 Summary Analysis on McCarthy
Questions, Answers

Of McCarthy’s 25 questions, GDIB clearly got
four wrong, with perhaps another five arguable.
We tested these same questions on all six GPT-3
models, with three variations on the prompt:

1. The passage followed by “Q.” then the text of
the question, and then “A.” These results are
listed in Appendix D.

2. Same as 1. above but preceded by the text
“Read the passage below and answer the ques-
tions based on what you read.”

3. Same as 1. above but preceded by the text
“Read the passage below and answer the ques-
tions based on what you read. If there is not
enough information to answer, say so.”

Model #1 #2 #3
Ada 12 12 13

Babbage 15 18 17
Curie 17 17 18

Davinci 15 18 18
Curie-instruct-beta 18 17 18

Davinci-instruct-beta 21 20 19

Table 2: Number of correct answers out of 25 on each
model and for each prompt variation.

See Table 2 for a summary. This is a small
dataset and the grading is not exact, but in general
we see that including instructions in the prompt
helped the non-instruct models and had little effect
on the instruct models (probably because it was
only directing them to do what they had already
been fine-tuned to do); and that the Babbage, Curie,
and Davinci models did not differ much in their
ability to correctly answer these questions, though
Ada did worse and the instruct models did a little
better.

GPT’s successes and failures on these questions
hinted at types of questions to try to further test the
model’s ability. We only tested these questions on
GDIB, the best-performing model, without instruc-
tions in the prompt.

4.2 Added Challenge Set Questions
The questions McCarthy asked covered a broad
range of topics, and probed several different abili-
ties of the system. We created additional questions

to more thoroughly cover different kinds of ques-
tions that systems might be capable of answering.

This approach provides us with a way to further
organize the categories of challenge set questions
and begin to spell out, for example, a few parallel
hypotheses with respect to these questions and the
abilities of GPT-3:
Knowledge Sources Questions pertaining to
explicit information within a single sentence in
the prompt are more likely to be answered cor-
rectly than to explicit information that is distributed
across sentences in the passage in the prompt.
Knowledge Types Questions pertaining to a sin-
gle common named entity are more likely to be an-
swered correctly than those pertaining to sequenc-
ing of several events and specific entities involved
in those events.
Reasoning Requirements Questions with logical
negation are more likely to be answered incorrectly
than their counterpart without negation.
Outside of these basic hypotheses, we view this
research as exploratory to further probe strength
and weakness areas of GPT-3 generally, with the
three dimensions allowing us to pinpoint these ar-
eas more precisely.

4.2.1 Knowledge Source

Questions requiring only factual knowledge to an-
swer were almost always answered correctly:

• Questions about the facts of the article that
require little external knowledge (e.g., How
old was Mr. Hug?)

• Questions that require combining facts of the
article with some other commonly known in-
formation (e.g., What country did the events
take place in?)

These questions would still be challenging for a sys-
tem with a knowledge base (as opposed to a LM),
because mapping the natural language questions to
the logical representation and mapping the answers
to natural language is not trivial. However, these
steps being handled, the content of the questions
would be a straightforward retrieval.

Questions requiring mainly linguistic knowledge
were also usually answered correctly. These ques-
tions mainly involve interpreting an ambiguity in
language correctly based on the surrounding con-
text, such as defining a word with the right sense
(e.g., In the phrase “he was badly shaken” what
does the word “shaken” mean? The word “shaken”
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means to be very frightened).3

It has been argued (Saba, 2020) that certain lin-
guistic phenomena should be especially difficult
for natural language understanding due to the miss-
ing text phenomenon, where the speaker leaves
out certain information from speech because the
listener already knows the information, making
it impossible to learn from text alone. However,
our results indicate that for many instances of this
phenomenon, this is simply not the case. Appar-
ently, much of the the common-sense information
is available to the model in some form that it is able
to make use of. We tested the following types of
missing-text inference:

• lexical ambiguity (How was Mr. Hug treated
at the hospital? He was treated for scrapes
on his left arm and for a spinal injury.)

• hidden relations (When it says, “the car
stopped 12 inches above him”, what did the
car stop doing? The car stopped moving.)

• quantifier scope (Is every Seaman’s Quality
Furniture store on Livingston Street? No,
there are many stores in the chain.)

• prepositional ambiguity (What does “for”
mean in the sentence “he was treated for
scrapes”? “For" means “in order to treat.")

• metonomy (In the phrase “a third attempted
to crush him,” what does the word “third”
refer to? The third robber.)

• metaphor (In the phrase “he was pinned
in the shaft” what does the word “pinned”
mean? The word “pinned" means to be held
in place.)

• compound nominals (What does a “freight
elevator” have to do with freight? A freight
elevator is a large elevator that is used to
transport goods.)

While the model does seem to contain this infor-
mation, depending on how the question is phrased
it might be inaccessible to the model. For exam-
ple, A “shoe store” sells shoes. A “book store”
sells books. What does a “downtown Brooklyn
store” sell? ** A “downtown Brooklyn store” sells

“Brooklyn.”4 The model sometimes gets questions
of this form right and sometimes wrong. This ex-
ample demonstrates the effect that careful prompt
engineering can have—the prompt examples seem
to sway the system towards an analogous, but in
this case incorrect, answer.

3The challenge set questions are in bold italics. The re-
turned answers follow in italics, not bolded.

4Incorrect answers are preceded by **.

4.2.2 Knowledge Type
Beyond simple factual questions are questions that
test comprehension or understanding. One defi-
nition of “understanding” is “to grasp explanatory
and conceptual connections between various pieces
of information involved in the subject matter in
question” (Kvanvig, 2015). In this sense, GDIB is
able to solve some “understanding” tasks.

Theory of Mind GDIB is able to reasonably an-
swer questions about what characters were thinking
and feeling (e.g., Why did Mr. Hug give the rob-
bers $1200? He was afraid they would kill him).
These are “theory of mind” questions, intended to
probe the ability to ascribe thoughts, beliefs, and
feelingsto another person, where these may differ
from one’s own for a variety of reasons, including
the other’s current knowledge. For a person to an-
swer these questions appropriately it is thought that
a model of the other’s mind is necessary. We in-
vestigated this topic further by asking the example
questions regarding short passages from Kaland
et al. (2005), and the model answered them all
correctly. The example passage is given in Table 3.

Theory of Mind Example Passage

Today James is going to Claire’s house for the first time.
He is going over for tea, and he is looking forward to seeing
Claire’s dog, which she talks about all time. James likes
dogs very much. When James arrives at Claire’s house
Claire runs to open the door, and her dog jumps up to greet
James. Claire’s dog is huge; it’s almost as big as James!
When James sees Claire’s huge dog he says,“Claire, you
haven’t got a dog at all. You’ve got an elephant!

Table 3: Example passage from Kaland et al. (2005).

We posed follow-on questions for this passage:
Q. Is it true, what James says?
A. No, it’s not true. Claire does have a dog.
Q. Why does James say this?
A. James is surprised because Claire’s dog is so
big.
In a child, this would be considered evidence that
the child possesses a well-developed theory of
mind (Kaland et al., 2005).

Counterfactual Knowledge Some of Mc-
Carthy’s questions were about what might have
happened, rather than what actually happened. In
general, we found GDIB surprisingly good at an-
swering many counterfactual questions. Coun-
terfactual questions requiring temporal or deduc-
tive reasoning, however, were often incorrectly an-
swered. (e.g., What would have happened if Mr.
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Hug had been on the second floor instead of the
first? ** The car would have crushed him.)

Counterfactual questions with impossible fic-
tional premises were still usually answered cor-
rectly. (e.g., What if the salesman had been Su-
perman? He would have been able to fly out of the
shaft.) These kinds of questions create problems
for traditional knowledge bases because a consis-
tent knowledge base cannot contain at the same
time the set of facts that “no person can fly” and
“Superman is a person” and “Superman can fly.”
GPT has no mechanisms to enforce consistency,
which avoids this problem, but at the cost of allow-
ing it to contradict itself and being incapable of
guaranteeing anything about the truth of its output.

4.2.3 Reasoning
The most challenging questions we posed were
questions requiring some kind of reasoning process
to arrive at the answer. There has been some suc-
cess at getting GPT to correctly follow a reasoning
process by giving examples of the reasoning steps
to follow, and having it imitate these steps one at a
time. In the zero-shot prompts we are using, how-
ever, reasoning beyond what was required for the
earlier types of questions seemed to be beyond its
capabilities. It is unclear to what extent these dif-
ficulties with reasoning lie with the architecture
(a limited number of layers can only carry out so
many steps) or with the training set. Certainly other
transformers trained on, for example, calculus prob-
lems (Lample and Charton, 2019) rather than web
text, are able to correctly generate valid chains of
reasoning.

Mathematical Word Problems Questions that
require mathematical operations were frequently
incorrect. This matches what one would expect
from the original paper on GPT-3, where zero-shot
math questions were usually incorrect. (e.g., The
events of this story happened in 1975. How old
would Mr. Hug be in 2020? ** He would be 91
years old.)

GPT-3’s abilities at arithmetic and “word prob-
lems” have been the subject of several investiga-
tions (Gwern, 2020). It is clear that the tokenization
makes arithmetic more difficult for the model to
learn.

Temporal Reasoning GDIB is able to success-
fully answer questions about what events happened
during a particular time interval (e.g., What hap-
pened after the robbers arrived and before they
pushed Mr. Hug down the elevator shaft?) Ques-

tions about a time interval that require reasoning
about beginnings and ends of events, however, were
difficult for the model. These questions were in-
spired by Kelly and Khemlani (2020). (e.g., Did
the elevator car reach the springs before Mr. Hug
finished falling? ** Yes.)

False Premises Questions with false premises
were almost never answered correctly. Answering
these questions correctly would mean pointing out
the error in the question. Instead, the model an-
swers as if the premise of the question were true
in a plausible way. (e.g., Why was there an air-
plane in the furniture store? ** The airplane was
a display in the store.)

Insufficient Information Similarly, questions
for which there is not enough information to answer
were almost always answered confidently with a
plausible (but frequently incorrect) answer (e.g.,
Why is the furniture chain called “Seaman’s?”
** The chain was founded by a sea captain.)

In the tests of modified prompts, hinting that
“not enough information” is an acceptable answer
causes it to get all of the false premise and insuffi-
cient information questions right, but causes it to
be unwilling to speculate on most of the counter-
factual questions, and sometimes to claim there is
not enough information when, in fact, there is.

This brings up the important point that answers
in this paper provide only a lower bound on what
the language model is capable of. It is possible that
with a more cleverly designed prompt, the model
would be capable of getting more of these questions
right. By sticking to a format of story followed by
a question and answer prefixed with Q. and A., we
have reduced the space of prompts to explore, at the
cost of possibly underestimating the full capability
of the models.

Logical Negation This was a serious problem
for smaller models, and still gives GDIB some dif-
ficulty. Considering some variations on the first
question:

• Who was in the store when the events be-
gan? John J. Hug

• Who was not in the store when the events
began? ** The third robber.

• Who was in the store during the events?
John J. Hug, the two robbers, and a third rob-
ber.

• Who was not in the store during the events?
** The robber who attempted to crush Mr. Hug
with the elevator car.
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• Who was in the store after the events? ?? A
porter.5

• Who was not in the store after the events?
?? The robber who attempted to crush Mr.
Hug with the elevator car.

Depending on how one takes “the events” differ-
ent judgements of these answers are possible, but
it is clear that in any case, all the robbers were in
the store during the events, and none of them were
there after the events. A knowledge base could not
contradict itself in this way.

5 Analysis

In a zero-shot setting, GDIB seems frequently un-
able to handle two main types of questions:

• Trick questions: questions with false premises,
patterns that do not continue, or not enough
information to answer

• Questions that require multi-step reason-
ing, including mathematical operations (story
problems) and anything but the simplest tem-
poral reasoning

A model that would do a better job on questions
with not enough information may simply require
finetuning on such questions and the appropriate
answers, since they occur only relatively rarely
in the data GDIB was trained on. (The question
about the robbers’ names—What are the names
and addresses of the robbers? The names are un-
known. The addresses are unknown—suggests that
the model has an appropriately set threshhold for
assessing and then describing its uncertainty.) Fix-
ing the problems with reasoning, on the other hand,
probably requires a much larger model or changes
to the underlying architecture.

On the positive side, GDIB frequently was able
both to find and apply relevant background knowl-
edge of the world to correctly answer questions.
“What crimes were committed?”, for example,
seems to require knowing that pushing someone
down an elevator shaft is a crime, that it is an at-
tempt to kill them, and that the crime is known
by the name “attempted murder.” “Who had the
money at the end?” seems to require keeping track
of the motion of the money through the story. It
seems able to predict thoughts and feelings, and to
anticipate the immediate result of physical actions.

Beyond supplying answers to questions, we
found this striking case where GPT generated this
summary text:

5Answers not clearly correct or incorrect begin with “??”.

Summarize the story. A furniture salesman was
pushed down the shaft of a freight elevator by two
robbers and a third attempted to crush him with the
elevator car because they were dissatisfied with the
$1,200 they had forced him to give them.

We also found parameter settings that led the
model to change major aspects of the story (this
was generated using the stock Davinci model with
temperature = 0.7):

Write a similar story that takes place in ancient
Egypt. A wealthy merchant was passing through
the Valley of the Kings when a band of marauders
descended on him. The merchant was carrying a
large amount of gold and jewelry, so the marauders
forced him to surrender it. But they wanted more,
so they forced him to reveal where he had hidden
his most valuable possessions. When he refused to
tell them, they put him in a tomb and left him there
to die.
This is a fairly sophisticated analogy. Instead of
an elevator shaft, there is a tomb; instead of a fur-
niture salesman with $1200 in Brooklyn there is a
merchant with gold and jewels in the Valley of the
Kings; but the bones of the story are the same.

One issue with the use of this article as part of a
challenge set for language models is that the article
may have been part of the training material for
GPT, letting it memorize the answers, as discussed
in (Lewis et al., 2020) Three lines of evidence show
this is unlikely:

1. OpenAI (2019) states that they only trained
on pages with outbound links from reddit, to
ensure human readability. Searches of red-
dit.com and search engines indexing it did not
turn up any links to any of the versions of the
paper found on Google.

2. Performance on our new questions is similar
to performance on McCarthy’s questions. If
his answers were memorized, these would be
expected to do worse.

3. None of the answers longer than two words
were verbatim, which one would expect if they
had been memorized, especially at tempera-
ture 0.

Nevertheless, we can’t completely rule it out.

6 Related Work

Challenge Datasets We have constructed a “chal-
lenge dataset” guided by approaches in the fields
of linguistics and computational linguistics. In the
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former, datasets are developed for structured elici-
tation where linguists ask native speakers to judge
grammaticality of presented sentences or to answer
questions about their language. The elicitation re-
sults are key to deriving properties of the language
(Clark et al., 2008; Probst and Levin, 2002). In the
latter, datasets are constructed for system evalua-
tion to establish benchmarks to gauge progress on
shared tasks. In MT research, going beyond auto-
mated scores, the challenge set approach to system
evaluation has provided a more fine-grained picture
of the strengths of neural systems, as well as in-
sight into which linguistic phenomena remain out
of reach (Isabelle et al., 2017). In recent LM re-
search that probes the syntactic knowledge in these
models, the structured datasets of minimal gram-
matical/ungrammatical sentence pairs test when
LMs assign a higher probability to the grammati-
cal sentence than the ungrammatical one (Marvin
and Linzen, 2018; Newman et al., 2021). Though
significant caution is needed in interpreting LM
results, we see diagnostic value in constructing
challenge datasets to evaluate systems’ passage un-
derstanding, as carefully constructed by Dua et al.
(2019). The fact that a current state-of-the-art LM
dropped more than 50 absolute F1 points on their
dataset reinforces our belief that challenge datasets
can spur research into more comprehensive seman-
tic analyses of what LMs know, encouraging sys-
tem hill-climbing up the right hill, per Bender and
Koller (2020).

The General Language Understanding Evalua-
tion (GLUE) benchmark (Wang et al., 2018) is of
particular relevance to this work, as it is a collec-
tion of resources for both training and evaluation of
various types of Natural Language Understanding
tasks. It is intended to be agnostic to the system
type. The evaluation suite includes tasks related to
sentiment, paraphrase, natural language inference,
coreference, as well as question-answering. While
we took inspiration from this benchmark in our in-
clusion of questions overlapping with the inference
tasks in GLUE, such as the Winograd Schema Chal-
lenge, we contribute a set of challenge questions
that have been carefully crafted and classified to
probe the strengths and weaknesses of a LM with
respect to particular knowledge sources, types, and
reasoning requirements.

LMs and “prompt-based learning” Numer-
ous research teams are working to evaluate what
LMs may “know”, even asking how they compare

to knowledge bases (Petroni et al., 2019). New
possibilities are emerging with methods of estimat-
ing the knowledge in LMs that can be found with
automatically constructed prompts that yield better
results than those manually created, demonstrating
that any given prompt may be sub-optimal (Jiang
et al., 2020). Given our focus on assessing what
one family of prompt-based LMs can answer about
a given text passage, the most recent and pertinent
overview that situates these LMs in the field is the
extensive, systematic survey of prompting meth-
ods and pre-trained language models using these
methods by Liu et al. (2021). As this survey notes,
in tuning-free prompting as we have carried out
with GPT LMs, the questions in the q/a task gener-
ate the answers directly. This is efficient, yet also
leaves the prompts as the only method to provide
the task specification. For this reason, we present
the framework of example questions that serve as
test prompts in a structured challenge dataset both
so that they can be reused by others in testing their
systems, and so that we can extend these over time.

7 Conclusion

This limited evidence suggests that current lan-
guage models are able to supply answers to ques-
tions about a passage in a way that, at least super-
ficially, meets the challenge of “natural language
understanding” as originally set out in the 1970s.
They can do surprisingly well at describing the
likely thoughts and feelings of characters though
these are not explicit in the passage. The models
can also generate text that describes likely conse-
quences for what might have happened if things
had gone differently, and that fills in the factual in-
formation that we tend to omit when using natural
language. However, many questions requiring even
a little careful thought, reasoning, or multi-step
inference go beyond the capability of these models.

For those who want to make use of these models
today, this suggests sticking to applications where
the information needed to answer the questions are
immediately available in the passage or slowly-
changing, widely known information about the
world; or else creative questions where there is
no wrong answer. For researchers, though, this
highlights the need to discover ways of combining
the deductive reasoning capabilities already present
in early AI work with the context-sensitivity and
ability to work with natural language that these
models provide.
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