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Abstract

The evaluation of question answering mod-
els compares ground-truth annotations with
model predictions. However, as of today, this
comparison is mostly lexical-based and there-
fore misses out on answers that have no lexical
overlap but are still semantically similar, thus
treating correct answers as false. This underes-
timation of the true performance of models hin-
ders user acceptance in applications and com-
plicates a fair comparison of different mod-
els. Therefore, there is a need for an evalua-
tion metric that is based on semantics instead
of pure string similarity. In this short paper,
we present SAS, a cross-encoder-based metric
for the estimation of semantic answer similar-
ity, and compare it to seven existing metrics.
To this end, we create an English and a Ger-
man three-way annotated evaluation dataset
containing pairs of answers along with human
judgment of their semantic similarity, which
we release along with an implementation of
the SAS metric and the experiments. We find
that semantic similarity metrics based on re-
cent transformer models correlate much better
with human judgment than traditional lexical
similarity metrics on our two newly created
datasets and one dataset from related work.

1 Introduction

The evaluation of question answering (QA) models
relies on human-annotated datasets of question-
answer pairs. Given a question, the ground-truth
answer is compared to the answer predicted by
a model with regard to different similarity met-
rics. Currently, the most prominent metrics for the
evaluation of QA models are exact match (EM),
F1-score, and top-n-accuracy. All these three met-
rics rely on string-based comparison. EM is a
binary metric that checks whether the predicted
answer string matches exactly the ground-truth an-
swer. While this metric works well for short factual

∗Both authors contributed equally to this research.

answers, such as names of persons or locations, it
has some obvious flaws when it comes to compar-
ing slightly differing short answers or longer, more
elaborate answers. Even a prediction that differs
from the ground truth in only one character in the
answer string is evaluated as completely wrong.
To mitigate this problem and have a continuous
score ranging between 0 and 1, the F1-score can
be used. In this case, precision is calculated based
on the relative number of tokens in the prediction
that are also in the ground-truth answer and recall
is calculated based on the relative number of to-
kens in the ground-truth answer that are also in the
prediction. An extension of this metric runs stop
word removal and lowercasing before the compari-
son, for example, to disregard prepositions. As an
F1-score is not as simple to interpret as accuracy,
there is a third common metric for the evaluation
of QA models. Top-n-accuracy evaluates the first
n model predictions as a group and considers the
predictions correct if there is any positional over-
lap between the ground-truth answer and one of
the first n model predictions — otherwise, they are
considered incorrect. The answer string itself is not
compared for top-n-accuracy but the start and end
index of the answer within the text document from
where the answer is extracted, called context.

If a dataset contains multi-way annotations, there
can be multiple different ground-truth answers for
the same question. The maximum similarity score
of a prediction over all ground-truth answers is
used in that case, which works with all the metrics
above. However, a problem is that sometimes only
one correct answer is annotated when in fact there
are multiple correct answers in a document. If the
multiple correct answers are semantically but not
lexically the same, existing metrics require all cor-
rect answers within a document to be annotated and
cannot be used reliably otherwise. Figure 1 gives an
example of a context, a question, multiple ground-
truth answers, a prediction and different similarity
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Question: How many plant species are esti-
mated to be in the Amazon region?
Context: The region is home to about 2.5 mil-
lion insect species, tens of thousands of plants,
and some 2,000 birds and mammals. To date,
at least 40,000 plant species [. . . ]
Ground-Truth Answer: “40,000”
Predicted Answer: “tens of thousands”
Exact Match: 0.00
F1-Score: 0.00
Top-1-Accuracy: 0.00
SAS: 0.55
Human Judgment: 0.50

Figure 1: Exact match, F1-score, and top-1-accuracy
are no good metrics to evaluate QA models. They do
not take into account semantic similarity of predictions
and ground-truth answers but only their lexical similar-
ity. SAS is close to human judgment of similarity.

scores. Besides EM, F1-score, and top-1-accuracy,
we also list human judgment. The example shows
that the existing metrics cannot capture the seman-
tic similarity of the prediction and the ground-truth
answers but are limited to lexical similarity.

Extractive QA is not the only QA task that re-
quires evaluation metrics that go beyond string-
based matching. Abstractive QA requires genera-
tive models to synthesize an answer and they need
to be evaluated differently, too. As of today, the
evaluation of this task reuses metrics from the re-
search field of natural language generation (NLG)
but they are mostly string-based and not tailored to
QA. Given the shortcomings of the existing metrics,
a novel metric for QA is needed and we address
this challenge by presenting SAS, a cross-encoder-
based semantic answer similarity metric, and com-
pare it with traditional lexical metrics and two re-
cently proposed metrics for the more general task
of semantic textual similarity (STS). To encourage
and support research in this area, we release the
annotated dataset1 and the trained model2 under
the Creative Commons Attribution-ShareAlike 4.0
International License (CC BY-SA 4.0).

The remainder of this paper is structured as fol-
lows: Section 2 describes related work on metrics
used for the evaluation of QA and similar tasks. In

1https://semantic-answer-similarity.s3.
amazonaws.com/data.zip

2https://huggingface.co/deepset/
gbert-large-sts

Section 3, we present our new metric SAS along
with two existing STS metrics. Three datasets, two
newly created, three-way annotated datasets and
one existing dataset from related work, are the basis
of the experiments presented in Section 4, which
compare four lexical and three semantic similarity
metrics. We conclude in Section 5 with directions
for future work.

2 Related Work

The related work discussed in this section goes be-
yond evaluation metrics explicitly meant for QA.
The task can be generalized to estimating the se-
mantic similarity of a pair of text inputs, which
is often referred to as semantic textual similarity
(STS). While there is a benchmark dataset for STS
estimation (Cer et al., 2017), to the best of our
knowledge, not even a single dataset has been cre-
ated for the subtask of estimating semantic answer
similarity. STS is closely related to paraphrasing,
which, strictly speaking, refers to semantic equiv-
alence. As a consequence of this strict definition,
Bhagat and Hovy (2013) introduce the concept of
approximate paraphrases as conveying a similar
meaning. Measuring to what extent a text is an
approximate paraphrase of another text has been
addressed in several subfields of research on nat-
ural language processing and we list different ap-
proaches in the following.

A recent tutorial summarizes evaluation metrics
used in NLG, including but not limited to the QA
task (Khapra and Sai, 2021). The challenge of
evaluating NLG has also been recently addressed
by Gehrmann et al. (2021), who introduce the
GEM benchmark comprising eleven datasets. Be-
sides traditional, lexical similarity metrics, such as
BLEU (Papineni et al., 2002), ROUGE (Lin and
Hovy, 2003), and METEOR (Banerjee and Lavie,
2005), the benchmark also includes the two se-
mantic similarity metrics BERTScore (Zhang et al.,
2020) and BLEURT (Sellam et al., 2020). Both
BERTScore and BLEURT are BERT-based (Devlin
et al., 2019) metrics tailored to evaluating NLG.

BLEU (BiLingual Evaluation Understudy) (Pa-
pineni et al., 2002) is a metric used to evaluate
the quality of machine translations by measuring
the n-gram overlap of prediction and ground truth.
Similarly, there is ROUGE (Recall-Oriented Un-
derstudy for Gisting Evaluation), which comes in
different variations, such as using n-gram over-
lap (ROUGE-N) (Lin and Hovy, 2003) or the

https://creativecommons.org/licenses/by-sa/4.0/
https://semantic-answer-similarity.s3.amazonaws.com/data.zip
https://semantic-answer-similarity.s3.amazonaws.com/data.zip
https://huggingface.co/deepset/gbert-large-sts
https://huggingface.co/deepset/gbert-large-sts
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longest common subsequence (ROUGE-L) (Lin
and Och, 2004) of prediction and ground truth.
METEOR (Banerjee and Lavie, 2005) addresses
the same task but aims to improve on BLEU, for
example, by using a weighted harmonic mean of
precision and recall of uni-gram overlap. It relies
on WordNet (Miller, 1995) and, for this reason, can
only be used for English. There are also slightly
modified versions of BLEU and Rouge for yes-no
answers and entity answers that introduce a bonus
term that gives more weight to correct answers of
that type Yang et al. (2018). Still, these modified
versions rely on the standard implementations of
BLEU and ROUGE, thus inheriting their shortcom-
ings with regard to lexical vs. semantic similarity.

BERTScore (Zhang et al., 2020) is similar to
F1-score in that it performs stop word removal
and lowercasing before the comparison. TF-IDF
is used to lower the influence of stop words on
the score. In our work, we argue that stopword
removal should not be an extra step of the metric.
Instead, the metrics should be based on models
that have been trained to recognize what words and
phrases are more or less important when comparing
the meaning of two answers. The main advantage
of BERTScore over traditional metrics is that it
compares contextual embeddings of tokens in the
prediction and the ground truth instead of the ac-
tual tokens. As future work, Zhang et al. (2020)
mention that BERTScore could be adapted for the
evaluation of different tasks and in this paper, we
discuss whether BERTScore is superior to other
metrics for the evaluation of QA tasks. Chen et al.
(2019) apply BERTScore as an evaluation metric
for QA and find that METEOR has a stronger cor-
relation with human judgment.

While evaluating the correctness of predicted
answers is the by far the most popular QA eval-
uation task, there are also approaches to evaluate
the consistency of the predicted answers (Ribeiro
et al., 2019) or other desirable properties of open-
domain QA models, such as efficiency, context
awareness, fine granularity of answers, end-to-end
trainability or ability to generalize to different in-
put data (Ahmad et al., 2019). Perturbations can
serve as a means to evaluate the latter (Shah et al.,
2020) and, in the same way, perturbations of the
training data allow training models that are more
robust (Khashabi et al., 2020). The correctness
of answers can be estimated with methods from
natural language inference: Chen et al. (2021) con-

vert answers to declarative statements and check
whether the statement can be inferred from the rele-
vant document (context). Nema and Khapra (2018)
consider the task of evaluating the answerability
of generated questions. They find that existing
string-based evaluation metrics do not correlate
well with human judgment and propose modifica-
tions of these metrics, which give more weight to
relevant content words, named entities, etc. With
the metrics and the underlying models presented
in this paper, we present end-to-end deep learning
approaches, which learn these features automati-
cally if they increase the correlation between the
automated metric and human judgment.

Semantic similarity metrics might also mitigate
the influence of an annotator bias on the evaluation,
which has been reported to be learned by models
and is currently not recognized if the same annota-
tors create both the training and test dataset (Geva
et al., 2019; Ko et al., 2020). That bias could be,
for example, the position of the answer within a
document always being in the first few sentences
or a specific style of phrasing the questions. With
the help of semantic similarity metrics the position
of the annotated answer within the context would
not make a difference for the evaluation.

In line with the evaluation of QA models, the
automated evaluation of models for question gen-
eration also relies on BLEU, ROUGE, and ME-
TEOR, while human evaluation is limited to small
datasets (Du et al., 2017). For the evaluation of
conversational QA, Siblini et al. (2021) address the
problems that arise from teacher forcing, which
refers to earlier ground-truth answers being avail-
able to a model at each step in the conversation.
The authors discuss ideas to mitigate this problem,
such as using the model’s own predicted answers
instead of the ground-truth answers. However, this
approach only considers the ground-truth user re-
action to the ground-truth answer but not the pre-
dicted answer as other reactions are not available
in offline training and evaluation. Last but not least,
there is research on error analyses of QA models,
which defines guidelines (Wu et al., 2019) or identi-
fies challenges and promising directions for future
work (Rondeau and Hazen, 2018; Wadhwa et al.,
2018; Pugaliya et al., 2019). These publications
present anecdotal evidence of predictions that are
evaluated as wrong due to the limitations of lexical
similarity metrics but are in fact correct.
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3 Approach

We consider four different approaches to estimate
the semantic similarity of pairs of answers: a bi-
encoder approach, a cross-encoder approach, a
vanilla version of BERTScore, and a trained ver-
sion of BERTScore. This section describes each of
these four approaches and the pre-trained language
models they are based on.

Bi-Encoder The bi-encoder approach is based
on the sentence transformers architecture (Reimers
and Gurevych, 2019), which is a siamese neu-
ral network architecture comprising two language
models that encode the two text inputs and co-
sine similarity to calculate a similarity score of
the two encoded texts. The model that we use
is based on xlm-roberta-base, where the training
has been continued on an unreleased multi-lingual
paraphrase dataset. The resulting model, called
paraphrase-xlm-r-multilingual-v1, has then been
fine-tuned on the English-language STS benchmark
dataset (Cer et al., 2017) and a machine-translated
German-language version3 of the same data. The
final model is called T-Systems-onsite/cross-en-de-
roberta-sentence-transformer and is available on
the huggingface model hub. As the model has been
trained on English- and German-language data, we
use the exact same model for all three datasets in
our experiments. An advantage of the bi-encoder
architecture is that the embeddings of the two text
inputs are calculated separately. As a consequence,
the embeddings of the ground-truth answers can
be pre-computed and reused when comparing with
the predictions of several different models. This
pre-computation can almost halve the time needed
to run the evaluation.

SAS Our new approach called SAS differs from
the bi-encoder in that it does not calculate sepa-
rate embeddings for the input texts. Instead, we
use a cross-encoder architecture, where the two
texts are concatenated with a special separator to-
ken in between. The underlying language model
is called cross-encoder/stsb-roberta-large and has
been trained on the STS benchmark dataset (Cer
et al., 2017). Unfortunately, there are only English
cross-encoder models for STS estimation available.
Therefore, we train a German cross-encoder model
for STS estimation, which we release online. This

3https://github.com/
t-systems-on-site-services-gmbh/
german-STSbenchmark

model is based on deepset/gbert-base and we train
it for four epochs with a batch size of 16 and the
Adam optimizer on the machine-translated version
of the STS benchmark that has previously been
used to train a bi-encoder STS model for German.
For the warm-up phase of the training, we use 10%
of the training data and linearly increase the learn-
ing rate to 2e-5. While pre-computation is not pos-
sible with the cross-encoder architecture, its advan-
tage over bi-encoders is that it takes into account
both text inputs at the same time when applying
the language model in a monolithic way rather than
calculating encodings separately and comparing
them afterward.

BERTScore vanilla or trained The BERTScore
vanilla approach uses the task-agnostic, pre-trained
language models bert-base-uncased for the English-
language datasets and deepset/gelectra-base for
the German-language dataset. In line with the
approach by Zhang et al. (2020), we use the lan-
guage models to generate contextual embeddings,
match the embeddings of the tokens in the ground-
truth answer and in the prediction and take the
maximum cosine similarity of the matched tokens
as the similarity score of the two answers. The
optional step of importance weighting of tokens
based on inverse document frequency scores is not
applied. For the vanilla version, we extract em-
beddings from the second layer and for the trained
version from the last layer. In contrast to the vanilla
model, the BERTScore trained model uses a task-
specific model tailored to STS estimation. It is the
same multi-lingual model that is used by the bi-
encoder approach, called T-Systems-onsite/cross-
en-de-roberta-sentence-transformer.

4 Experiments

To evaluate the ability of the different approaches
to estimate semantic answer similarity, we measure
their correlation with human judgment of similarity
on three datasets. This section describes the dataset
creation, experiment setup, and the final results.

4.1 Datasets

The evaluation uses subsets of three existing
datasets: SQuAD, GermanQuAD, and NQ-open.
We process and hand-annotate the datasets as de-
scribed in the following so that each of the pro-
cessed subsets contains pairs of answers and a class
label that indicates their semantic similarity. There

https://github.com/t-systems-on-site-services-gmbh/german-STSbenchmark
https://github.com/t-systems-on-site-services-gmbh/german-STSbenchmark
https://github.com/t-systems-on-site-services-gmbh/german-STSbenchmark
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0
The two answers are completely dissimilar.
“power steering” 6= “air conditioning”

1

The two answers have a similar meaning
but one of them is less detailed and could
be derived from the more elaborate answer.
“Joseph Priestley” ≈ “Priestley”

2
The two answers have the same meaning.
“UV” = “ultraviolet”

Table 1: Similarity scores with descriptions and exam-
ple pairs of answers.

are three similarity classes: dissimilar answers, ap-
proximately similar answers, and equivalent an-
swers, which are all described in Table 1.

SQuAD We annotate the semantic similarity of
pairs of answers in a subset of the English-language
SQuAD test dataset (Rajpurkar et al., 2018). The
original dataset contains multi-way annotated ques-
tions, which means there are on average 4.8 an-
swers per question. Answers to the same question
by different annotators often are the same but in
some cases they have only a small overlap or no
overlap at all. We consider a subset where 566 pairs
of ground-truth answers have an F1-score of 0 (no
lexical overlap of the answers) and 376 pairs have
an F1-score larger than 0 (some lexical overlap of
the answers). As we use the majority vote as the
ground-truth label of semantic similarity in our ex-
periments, we let two of the authors label each pair
of answers while a third author acts as a tie-breaker
labeling only those samples, where the first two
labels disagree. The resulting dataset comprises
942 pairs of answers each with a majority vote in-
dicating either dissimilar answers, approximately
similar answers, or equivalent answers.

GermanQuAD To show that the presented ap-
proaches also work on non-English datasets,
we consider the German-language GermanQuAD
dataset (Möller et al., 2021). It contains a three-
way annotated test set, which means there are three
correct answers given for each question. After re-
moving questions where all answers are the same,
there are 137 pairs of ground-truth answers that
have an F1-score of 0 and 288 pairs of answers
have an F1-score larger than 0. We label these 425
pairs in the same way as the SQuAD subset result-
ing in 425 pairs of answers each with a majority
vote indicating their semantic similarity.

NQ-open The original Natural Questions dataset
(NQ) (Kwiatkowski et al., 2019) was meant for
reading comprehension but Lee et al. (2019)
adapted the dataset for open-domain QA and it has
been released under the name NQ-open. We use
the test dataset of NQ-open as it contains not only
questions and ground-truth answers but also model
predictions and annotations how similar these pre-
dictions are to the ground-truth answer. There are
three classes of definitely incorrect predictions, pos-
sibly correct predictions, and definitely correct pre-
dictions. Min et al. (2021) report in more detail
on how these additional annotations were created.
They resemble the three similarity classes we de-
fined in Table 1. After filtering for only those ques-
tions that have exactly one ground-truth answer,
we create pairs of ground-truth answers and model
predictions accompanied with the label indicating
the correctness of the prediction, which also corre-
sponds to the similarity of the ground-truth answer
and the predicted answer. There are 3,658 pairs of
answers of which 3118 have an F1-score of 0 and
540 pairs that have an F1-score larger than 0.

4.2 Results

Table 2 lists the correlation between different au-
tomated evaluation metrics and human judgment
using Spearman’s rho and Kendall’s tau-b rank cor-
relation coefficients on labeled subsets of SQuAD,
GermanQuAD, and NQ-open datasets. The tra-
ditional metrics ROUGE-L and METEOR have
very weak correlation with human judgement if
there is no lexical overlap between the pair of an-
swers, in which case the F1-score and BLEU are
0. If there is some lexical overlap, the correlation
is stronger for all these metrics but BLEU lags
far behind the others. METEOR is outperformed
by ROUGE-L and F1-score, which achieve almost
equal correlation. All four semantic answer similar-
ity approaches outperform the traditional metrics
and among them, the cross-encoder model is con-
sistently achieving the strongest correlation with
human judgment except for slightly underperform-
ing the trained BERTScore metric with regard to τ
on English-language pairs of answers with no lexi-
cal overlap. This result shows that semantic similar-
ity metrics are needed in addition to lexical-based
metrics for automated evaluation of QA models.
The former correlate much better with human judg-
ment and thus, are a better estimation of a model’s
performance in real-world applications.
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SQuAD GermanQuAD NQ-open

F1 = 0 F1 6= 0 F1 = 0 F1 6= 0 F1 = 0 F1 6= 0

Metrics ρ τ ρ τ ρ τ ρ τ ρ τ ρ τ

Human 0.61 0.48 0.68 0.64 0.64 0.57 0.57 0.54 - - - -

BLEU 00.0 00.0 0.18 0.16 00.0 00.0 0.13 0.05 00.0 00.0 0.08 0.08
ROUGE-L 0.10 0.04 0.56 0.46 0.16 0.02 0.54 0.43 0.14 0.12 0.40 0.33
METEOR 0.38 0.19 0.45 0.37 - - - - 0.21 0.16 0.30 0.25
F1-score 00.0 00.0 0.60 0.50 00.0 00.0 0.55 0.44 00.0 00.0 0.37 0.31
Bi-Encoder 0.48 0.30 0.69 0.57 0.39 0.27 0.56 0.47 0.23 0.15 0.38 0.30
BERTScore vanilla 0.27 0.15 0.61 0.48 0.21 0.01 0.52 0.41 0.14 0.13 0.16 0.11
BERTScore trained 0.52 0.32 0.70 0.57 0.41 0.28 0.57 0.47 0.25 0.16 0.38 0.30
SAS (ours) 0.56 0.29 0.75 0.61 0.49 0.33 0.68 0.55 0.31 0.13 0.54 0.42

Table 2: Correlation between human judgment and automated metrics using Spearman’s rho (ρ) and Kendall’s tau-b
(τ ) rank correlation coefficients on subsets of SQuAD, GermanQuAD, and NQ-open. Human baseline correlations
on SQuAD and GermanQUAD were measured between first and second annotator. METEOR is not available for
German and scores of individual annotators have not been reported on NQ-open (indicated as “-” in the table).

Embedding Extraction for BERTScore BERT-
Score can be used with different language models
to generate contextual embeddings of text inputs.
While the embeddings are typically extracted from
the last layer of the model, they can be extracted
from any of its layers and related work has shown
that for some tasks the last layer is not the best (Liu
et al., 2019). The experiment visualized in Figure 2
evaluates the correlation between human judgment
of semantic answer similarity and a vanilla and
a trained BERTScore model. Comparing the ex-
traction of embeddings from the different layers,
we find that the last layer drastically outperforms
all other models for the trained model. For the
vanilla BERTScore model, the choice of the layer
has a much smaller influence on the performance,
with the first two layers resulting in the strongest
correlation with human judgment. For comparison,
Figure 2 also includes the results of a cross-encoder
model, which does not have the option to choose
different layers due to its architecture.

5 Conclusion and Future Work

Current evaluation metrics for QA models are lim-
ited in that they check for lexical or positional over-
lap of ground-truth answers and predictions but do
not take into account semantic similarity. In this pa-
per, we present SAS, a semantic answer similarity
metric that overcomes this limitation. It leverages
a cross-encoder architecture and transformer-based
language models, which are pre-trained on STS
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Figure 2: Pearson correlation between BERTScore
(computed across different layers) and human judge-
ment of similarity of answer pairs on SQuAD dev set.
BERTScore vanilla is pretrained only on Wikipedia,
whereas BERTScore trained is fine-tuned on the STS
benchmark dataset (Cer et al., 2017).

datasets that have not been used in the context of
QA so far. Experiments on three datasets demon-
strate that SAS outperforms four lexical-based and
three semantics-based similarity metrics regarding
the correlation between the automated metrics and
human judgment of the semantic similarity of pairs
of answers. A promising path for future work is to
analyze pairs of answers where SAS differs from
human judgment and find types of common er-
rors. Based on these findings, a dataset tailored
to training models for estimating semantic answer
similarity could be created.
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