
Specializing Multilingual Language Models: An Empirical Study

Ethan C. Chau† Noah A. Smith†⋆

†Paul G. Allen School of Computer Science & Engineering, University of Washington
⋆Allen Institute for Artificial Intelligence

{echau18,nasmith}@cs.washington.edu

Abstract

Pretrained multilingual language models have
become a common tool in transferring NLP
capabilities to low-resource languages, often
with adaptations. In this work, we study the
performance, extensibility, and interaction of
two such adaptations: vocabulary augmentation
and script transliteration. Our evaluations on
part-of-speech tagging, universal dependency
parsing, and named entity recognition in nine
diverse low-resource languages uphold the vi-
ability of these approaches while raising new
questions around how to optimally adapt multi-
lingual models to low-resource settings.

1 Introduction

Research in natural language processing is increas-
ingly carried out in languages beyond English. This
includes high-resource languages with abundant
data, as well as low-resource languages, for which
labeled (and unlabeled) data is scarce. In fact,
many of the world’s languages fall into the latter
category, even some with a high number of speak-
ers. This presents unique challenges compared
to high-resource languages: effectively modeling
low-resource languages involves both accurately
tokenizing text in such languages and maximally
leveraging the limited available data.

One common approach to low-resource NLP is
the multilingual paradigm, in which methods that
have shown success in English are applied to the
union of many languages’ data,1 enabling trans-
fer between languages. For instance, multilingual
contextual word representations (CWRs) from lan-
guage models (Devlin et al., 2019; Huang et al.,
2019; Lample and Conneau, 2019, inter alia) are
conventionally “pretrained” on large multilingual

1Within the multilingual paradigm, a distinction is some-
times made between massively multilingual methods, which
consider tens or hundreds of languages; and polyglot meth-
ods, which use only a handful. In this paper, all mentions of
“multilingual” refer to the former.

corpora before being “finetuned” directly on super-
vised tasks; this pretraining-finetuning approach is
derived from analogous monolingual models (De-
vlin et al., 2019; Liu et al., 2019; Peters et al., 2018).
However, considering the diversity of the world’s
languages and the great data imbalance among
them, it is natural to question whether the current
multilingual paradigm can be improved upon for
low-resource languages.

Indeed, past work has demonstrated that it can.
For instance, Wu and Dredze (2020) find that multi-
lingual models often lag behind non-contextualized
baselines for the lowest-resource languages in their
training data, drawing into question their utility in
such settings. Conneau et al. (2020a) posit that
this phenomenon is a result of limited model capac-
ity, which proves to be a bottleneck for sufficient
transfer to low-resource languages. In fact, with
multilingual models only being pretrained on a lim-
ited set of languages, most of the world’s languages
are unseen by the model. For such languages, the
performance of such models is even worse (Chau
et al., 2020), due in part to the diversity of scripts
across the world’s languages (Muller et al., 2021;
Pfeiffer et al., 2021b; Rust et al., 2021) as compared
to the models’ Latin-centricity (Ács, 2019).

Nonetheless, there have been multiple attempts
to remedy this discrepancy by specializing2 a mul-
tilingual model to a given target low-resource lan-
guage, from which we take inspiration. Among
them, Chau et al. (2020) augment the model’s vo-
cabulary to more effectively tokenize text, then
pretrain on a small amount of data in the target
language; they report significant performance im-
provements on a small set of low-resource lan-
guages. In a similar vein, Muller et al. (2021)
propose to transliterate text in the target language

2We use specialization to denote preparing a model for use
on a specific target language, to the exclusion of others. This
is a subset of adaptation, which includes all techniques that
adjust a model for use on target languages, regardless of their
resulting universality.



to Latin script to be better tokenized by the ex-
isting model, followed by additional pretraining;
they observe mixed results and note that translit-
eration quality may be a confounding factor. We
hypothesize that these two methods can serve as
the basis for improvements in modeling a broad set
of low-resource languages.

In this work, we study the effectiveness, exten-
sibility, and interaction of these two approaches to
specialization: the vocabulary augmentation tech-
nique of Chau et al. (2020) and the script translit-
eration method of Muller et al. (2021). We verify
the performance of vocabulary augmentation on
three tasks in a diverse set of nine low-resource
languages across three different scripts, especially
on non-Latin scripts (§2) and find that these gains
are associated with improved vocabulary coverage
of the target language. We further observe a nega-
tive interaction between vocabulary augmentation
and transliteration in light of a broader framework
for specializing multilingual models, while noting
that vocabulary augmentation offers an appealing
balance of performance and cost (§3). Overall, our
results highlight several possible directions for fu-
ture study in the low-resource setting. Our code,
data, and hyperparameters are publicly available.3

2 Revisiting Vocabulary Augmentation

We begin by revisiting the Vocabulary Augmenta-
tion method of Chau et al. (2020), which we recast
more generally in light of recent work (§2.1). We
evaluate their claims on three different tasks, using
a diverse set of languages in multiple scripts (§2.2),
and find that the results hold to an even more pro-
nounced degree in unseen low-resource languages
with non-Latin scripts (§2.3).

2.1 Method Overview

Following Chau et al. (2020), we consider how
to apply the pretrained multilingual BERT model
(MBERT; Devlin et al., 2019) to a target low-
resource language, for which both labeled and un-
labeled data is scarce. This model has produced
strong CWRs for many languages (Kondratyuk and
Straka, 2019, inter alia) and has been the starting
model for many studies on low-resource languages
(Muller et al., 2021; Pfeiffer et al., 2020; Wang
et al., 2020). MBERT covers the languages with the
104 largest Wikipedias, and it uses this data to con-

3https://github.com/ethch18/
specializing-multilingual

struct a wordpiece vocabulary (Wu et al., 2016) and
train its transformer-based architecture (Vaswani
et al., 2017). Although low-resource languages are
slightly oversampled, high-resource languages still
dominate both the final pretraining data and the
vocabulary (Ács, 2019; Devlin et al., 2019).

Chau et al. (2020) note that target low-resource
languages fall into three categories with respect
to MBERT’s pretraining data: the lowest-resource
languages in the data (Type 1), completely unseen
low-resource languages (Type 2), and low-resouce
languages with more representation (Type 0).4 Due
to their poor representation in the vocabulary, Type
1 and Type 2 languages achieve suboptimal tok-
enization and higher rates of the “unknown” word-
piece5 when using MBERT out of the box. This
hinders the model’s ability to capture meaningful
patterns in the data, resulting in reduced data effi-
ciency and degraded performance.

We note that this challenge is exacerbated when
modeling languages written in non-Latin scripts.
MBERT’s vocabulary is heavily Latin-centric (Ács,
2019; Muller et al., 2021), resulting in a signif-
icantly larger portion of non-Latin scripts being
represented with “unknown” tokens (Pfeiffer et al.,
2021b) and further limiting the model’s ability to
generalize. In effect, MBERT’s low initial perfor-
mance on such languages can be attributed to its
inability to represent the script itself.

To alleviate the problem of poor tokenization,
Chau et al. (2020) propose to specialize MBERT

using Vocabulary Augmentation (VA). Given un-
labeled data in the target language, they train a
new wordpiece vocabulary on the data, then se-
lect the 99 most common wordpieces in the new
vocabulary that replace “unknown” tokens under
the original vocabulary. They then add these 99
wordpieces to the original vocabulary and continue
pretraining MBERT on the unlabeled data for addi-
tional steps. They further describe a tiered variant
(TVA), in which a larger learning rate is used for
the embeddings of these 99 new wordpieces. VA

yields strong gains over unadapted multilingual
language models on dependency parsing in four
low-resource languages with Latin scripts. How-

4Muller et al. (2021) further subdivide Type 2 into Easy,
Medium, and Hard languages, based on the performance of
MBERT after being exposed to these languages. However,
this categorization cannot be determined a priori for a given
language.

5The “unknown” wordpiece is inserted when the word-
piece algorithm is unable to segment a word-level token with
the current vocabulary.

https://github.com/ethch18/specializing-multilingual
https://github.com/ethch18/specializing-multilingual


ever, no evaluation has been performed on other
tasks or on languages with non-Latin scripts, which
raises our first research question:

RQ1: Do the conclusions of Chau et al. (2020)
hold for other tasks and for languages with non-
Latin scripts?

We can view VA and TVA as an instantation of a
more general framework of vocabulary augmenta-
tion, shared by other approaches to using MBERT

in low-resource settings. Given a new vocabulary
V , number of wordpieces n, and learning rate mul-
tiplier a, the n most common wordpieces in V are
added to the original vocabulary. Additional pre-
training is then performed, with the embeddings
of the n wordpieces taking on a learning rate a
times greater than the overall learning rate. For VA,
we set n = 99 and a = 1, while we treat a as a
hyperparameter for TVA. The related E-MBERT
method of Wang et al. (2020) sets n = |V | and
a = 1. Investigating various other instantiations of
this framework is an interesting research direction,
though it is out of the scope of this work.

2.2 Experiments

We expand on the dependency parsing evaluations
of Chau et al. (2020) by additionally considering
named entity recognition and part-of-speech tag-
ging. We follow Kondratyuk and Straka (2019) and
compute the CWR for each token as a weighted
sum of the activations at each MBERT layer. For
dependency parsing, we follow the setup of Chau
et al. (2020) and Muller et al. (2021) and use the
CWRs as input to the graph-based dependency
parser of Dozat and Manning (2017). For named
entity recognition, the CWRs are used as input to
a CRF layer, while part-of-speech tagging uses a
linear projection atop the representations. In all
cases, the underlying CWRs are finetuned during
downstream task training, and we do not add an
additional encoder layer above the transformer out-
puts. We train models on five different random
seeds and report average scores and standard er-
rors.

2.2.1 Languages and Datasets
We select a set of nine typologically diverse low-
resource languages for evaluation, including three
of the original four used by Chau et al. (2020).
These languages use three different scripts and are
chosen based on the availability of labeled datasets
and their exemplification of the three language
types identified by Chau et al. (2020). Of the lan-

guages seen by MBERT, all selected Type 0 lan-
guages are within the 45 largest Wikipedias, while
the remaining Type 1 languages are within the top
100. The Type 2 languages, which are excluded
from MBERT, are all outside of the top 150.6 Addi-
tional information about the evaluation languages
is given in Tab. 1.

Unlabeled Datasets Following Chau et al.
(2020), we use articles from Wikipedia as unla-
beled data for additional pretraining in order to
reflect the original pretraining data. We downsam-
ple full articles from the largest Wikipedias to be on
the order of millions of tokens in order to simulate
a low-resource unlabeled setting, and we remove
sentences that appear in the labeled validation or
test sets.

Labeled Datasets For dependency parsing and
part-of-speech tagging, we use datasets and
train/test splits from Universal Dependencies
(Nivre et al., 2020), version 2.5 (Zeman et al.,
2019). POS tagging uses language-specific part-
of-speech tags (XPOS) to evaluate understanding
of language-specific syntactic phenomena. The
Belarusian treebank lacks XPOS tags for certain
examples, so we use universal part-of-speech tags
instead. Dependency parsers are trained with gold
word segmentation and no part-of-speech features.
Experiments with named entity recognition use the
WikiAnn dataset (Pan et al., 2017), following past
work (Muller et al., 2021; Pfeiffer et al., 2020; Wu
and Dredze, 2020). Specifically, we use the bal-
anced train/test splits of (Rahimi et al., 2019). We
note that UD datasets were unavailable for Meadow
Mari, and partitioned WikiAnn datasets were miss-
ing for Wolof.

2.2.2 Baselines
To measure the effectiveness of VA, we benchmark
it against unadapted MBERT, as well as directly
pretraining MBERT on the unlabeled data with-
out modifying the vocabulary (Chau et al., 2020;
Muller et al., 2021; Pfeiffer et al., 2020). Follow-
ing Chau et al. (2020), we refer to the latter ap-
proach as language-adaptive pretraining (LAPT).
We also evaluate two monolingual baselines that
are trained on our unlabeled data: fastText embed-
dings (FASTT; Bojanowski et al., 2017), which
represent a static word vector approach; and a
BERT model trained from scratch (BERT). For

6Based on https://meta.wikimedia.org/
wiki/List_of_Wikipedias.

https://meta.wikimedia.org/wiki/List_of_Wikipedias
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Language Type Script Family # Sentences # Tokens Downsample % # WP/Token
Bulgarian (BG) 0 Cyrillic Slavic 357k 5.6M 10% 1.81
Belarusian (BE) 0 Cyrillic Slavic 187k 2.7M 10% 2.25
Meadow Mari (MHR) 2 Cyrillic Uralic 52k 512k – 2.37
Vietnamese (VI) 0 Latin Viet-Muong 338k 6.9M 5% 1.17
Irish (GA) 1 Latin Celtic 274k 5.8M – 1.83
Maltese (MT) 2 Latin Semitic 75k 1.4M – 2.39
Wolof (WO) 2 Latin Niger-Congo 15k 396k – 1.78
Urdu (UR) 0 Perso-Arabic Indic 201k 3.6M 20% 1.58
Uyghur (UG) 2 Perso-Arabic Turkic 136k 2.3M – 2.54

Table 1: Language overview and unlabeled dataset statistics: number of sentences, number of tokens, and average
wordpieces per token under the original MBERT vocabulary.

BERT, we follow Muller et al. (2021) and train a
six-layer RoBERTa model (Liu et al., 2019) with a
language-specific SentencePiece tokenizer (Kudo
and Richardson, 2018). For a fair comparison to
VA, we use the same task-specific architectures and
modify only the input representations.

2.2.3 Implementation Details

To pretrain LAPT and VA models, we use the code
of Chau et al. (2020), who modify the pretraining
code of Devlin et al. (2019) to only use the masked
language modeling (MLM) loss. To generate VA

vocabularies, we train a new vocabulary of size
5000 and select the 99 wordpieces that replace the
most unknown tokens. We train with a fixed linear
warmup of 1000 steps. To pretrain BERT mod-
els, we use the HuggingFace Transformers library
(Wolf et al., 2020). Following Muller et al. (2021),
we train a half-sized RoBERTa model with six lay-
ers and 12 attention heads. We use a byte-pair
vocabulary of size 52000 and a linear warmup of 1
epoch. For LAPT, VA, and BERT, we train for up to
20 epochs total, selecting the highest-performing
epoch based on validation masked language mod-
eling loss. FASTT models are trained with the skip-
gram model for five epochs, with the default hyper-
parameters of Bojanowski et al. (2017).

Training of downstream parsers and taggers fol-
lows Chau et al. (2020) and Kondratyuk and Straka
(2019), with an inverse square-root learning rate
decay and linear warmup, and layer-wise gradual
unfreezing and discriminative finetuning. Models
are trained with AllenNLP, version 2.1.0 (Gardner
et al., 2018), for up to 200 epochs with early stop-
ping based on validation performance. We choose
batch sizes to be the maximum that allows for suc-
cessful training on one GPU.

2.3 Results

Tab. 2 presents performance of the different input
representations on POS tagging, dependency pars-
ing, and named entity recognition. VA achieves
strong results across all languages and tasks and
is the top performer in the majority of them, sug-
gesting that augmenting the vocabulary addresses
MBERT’s limited vocabulary coverage of the tar-
get language and is beneficial during continued
pretraining.

The relative gains that VA provides appear to cor-
relate not only with language type, as in the find-
ings of Chau et al. (2020), but also with each lan-
guage’s script. For instance, in Vietnamese, which
is a Type 0 Latin script language, the improvements
from VA are marginal at best, reflecting the Latin-
dominated pretraining data of MBERT. Irish, the
Type 1 Latin script language, is only slightly more
receptive. However, Type 0 languages in Cyrillic
and Arabic scripts, which are less represented in
MBERT’s pretraining data, are more receptive to
VA, with VA even outperforming all other methods
for Urdu. This trend is amplified in the Type 2
languages, as the improvements for Maltese and
Wolof are small but significant. However, they are
dwarfed in magnitude by those of Uyghur, where
VA achieves up to a 57% relative error reduction
over LAPT.

This result corroborates the findings of both
Chau et al. (2020) and Muller et al. (2021) and
answers RQ1. Prior to specialization, MBERT is
especially poorly equipped to handle unseen low-
resource languages and languages in non-Latin
scripts due to its inability to model the script itself.
In such cases, specialization via VA is beneficial,
providing MBERT with explicit signal about the
target language and script while maintaining its
language-agnostic insights. On the other hand, this
also motivates additional investigation into reme-



Rep. BE* (0) BG (0) GA (1) MT (2) UG (2) UR (0) VI (0) WO (2) Avg.
FASTT 68.84 ± 7.16 88.86 ± 0.37 86.87 ± 2.55 89.68 ± 2.15 89.45 ± 1.37 90.81 ± 0.31 81.84 ± 1.15 87.48 ± 0.55 85.48
BERT 91.00 ± 0.30 94.48 ± 0.10 90.36 ± 0.20 92.61 ± 0.10 90.87 ± 0.13 89.88 ± 0.13 84.73 ± 0.13 87.71 ± 0.31 90.20
MBERT 94.57 ± 0.45 96.98 ± 0.08 91.91 ± 0.25 94.01 ± 0.17 78.07 ± 0.22 91.77 ± 0.18 88.97 ± 0.10 93.04 ± 0.20 91.16
LAPT 95.74 ± 0.44 97.15 ± 0.04 93.28 ± 0.19 95.76 ± 0.09 79.88 ± 0.27 92.18 ± 0.16 89.64 ± 0.20 94.58 ± 0.13 92.28
VA 95.28 ± 0.51 97.20 ± 0.06 93.33 ± 0.16 96.33 ± 0.09 91.49 ± 0.13 92.24 ± 0.16 89.49 ± 0.22 94.48 ± 0.20 93.73

(a) POS tagging (accuracy). *Belarusian uses universal POS tags.
Rep. BE (0) BG (0) GA (1) MT (2) UG (2) UR (0) VI (0) WO (2) Avg.
FASTT 35.81 ± 2.24 84.03 ± 0.41 65.58 ± 1.21 68.45 ± 1.40 54.52 ± 1.02 79.33 ± 0.25 54.91 ± 0.79 70.39 ± 1.39 64.13
BERT 45.77 ± 1.35 84.61 ± 0.27 64.02 ± 0.49 65.92 ± 0.45 60.34 ± 0.27 78.07 ± 0.22 54.70 ± 0.27 60.12 ± 0.39 64.19
MBERT 71.83 ± 0.90 91.62 ± 0.23 71.68 ± 0.62 76.63 ± 0.35 47.70 ± 0.44 81.45 ± 0.26 64.58 ± 0.42 76.24 ± 0.83 72.72
LAPT 72.77 ± 1.12 92.08 ± 0.31 74.79 ± 0.12 81.53 ± 0.37 50.67 ± 0.34 81.78 ± 0.44 66.15 ± 0.41 80.34 ± 0.14 75.01
VA 73.22 ± 1.23 91.90 ± 0.20 74.35 ± 0.22 82.00 ± 0.31 67.55 ± 0.17 81.88 ± 0.25 65.64 ± 0.12 80.22 ± 0.41 77.09

(b) UD parsing (LAS).
Rep. BE (0) BG (0) GA (1) MT (2) UG (2) UR (0) VI (0) MHR (2) Avg.
FASTT 84.26 ± 0.86 87.98 ± 0.76 67.21 ± 4.30 33.53 ± 17.89 – 92.85 ± 2.04 85.57 ± 1.98 35.28 ± 13.81 60.84
BERT 88.08 ± 0.62 90.31 ± 0.20 76.58 ± 0.98 54.64 ± 3.51 61.54 ± 3.70 94.04 ± 0.55 88.08 ± 0.15 54.17 ± 2.88 75.93
MBERT 91.13 ± 0.07 92.56 ± 0.09 82.82 ± 0.57 61.86 ± 2.60 50.76 ± 1.86 94.60 ± 0.34 92.13 ± 0.27 61.85 ± 3.25 78.46
LAPT 91.61 ± 0.74 92.96 ± 0.13 84.13 ± 0.78 81.53 ± 2.33 56.76 ± 4.91 95.17 ± 0.29 92.41 ± 0.15 59.17 ± 5.15 81.72
VA 91.38 ± 0.56 92.70 ± 0.11 84.82 ± 1.00 80.00 ± 2.77 68.93 ± 3.30 95.43 ± 0.22 92.43 ± 0.16 64.23 ± 3.07 83.74

(c) NER (macro F1). – indicates that a model did not converge.

Table 2: Results on POS tagging, UD parsing, and NER, with standard deviations from five random initializations.
Bolded results are the maximum for each language, and scores in gray are not significantly worse than the best
model (1-sided paired t-test, p = 0.05 with Bonferonni correction).

dies for the script imbalance at a larger scale, e.g.,
more diverse pretraining data.

2.4 Analysis

We perform further analysis to investigate VA’s pat-
terns of success. Concretely, we hypothesize that
VA significantly improves the tokenizer’s coverage
of target languages where it is most successful. In-
spired by Ács (2019), Chau et al. (2020), and Rust
et al. (2021), we quantify tokenizer coverage using
the percentage of tokens in the raw text that yield
unknown wordpieces when tokenized with a given
vocabulary (“UNK token percentage”). These are
tokens whose representations contain at least par-
tial ambiguity due to the inclusion of the unknown
wordpiece.

Tab. 3 presents the UNK token percentage for
each dataset using the MBERT vocabulary, aver-
aged over each script and language type. This vo-
cabulary is used in LAPT and represents the base-
line level of vocabulary coverage. We also include
the change in the UNK token percentage between
the MBERT and VA vocabularies, which quanti-
fies the coverage improvement. Both sets of val-
ues are juxtaposed against the average change in
task-specific performance from LAPT to VA, repre-
senting the effect of augmenting the vocabulary on
task-specific performance.

We observe that off-the-shelf MBERT already at-

tains relatively high vocabulary coverage for Type
0 and 1 languages, as well as languages written
in Latin and Cyrillic scripts. On the other hand,
up to one-fifth of the tokens in Arabic languages
and one-sixth of those in Type 2 languages yield
an unknown wordpiece. For these languages, there
is great room for increasing tokenizer coverage,
and VA indeed addresses this more tangible need.
This aligns with the task-specific performance im-
provements for each group and helps to explain our
results in §2.3.

It is notable that VA does not always eliminate
the issue of unknown wordpieces, even in lan-
guages for which MBERT attains high vocabulary
coverage. This suggests that the remaining un-
known wordpieces in these languages are more
sparsely distributed (i.e., they represent low fre-
quency sequences), while the unknown wordpieces
in languages with lower vocabulary coverage repre-
sent sequences that occur more commonly. As a re-
sult, augmenting the vocabulary in such languages
quickly improves coverage while associating these
commonly occurring sequences with each other,
which benefits the overall tokenization quality.

We further explore the association between the
improvements in vocabulary coverage and task-
specific performance in Fig. 1. Although we do not
find that languages from the same types or scripts
form clear clusters, we nonetheless observe a loose



Lang. Group Avg. UNK Token % (MBERT) Avg. UNK Token % (∆) Avg. Task Performance (∆)
(# of Langs.) Unlabeled UD WikiAnn Unlabeled UD WikiAnn POS UD NER
All (9) 5.9 % (–) 5.2 % (–) 6.2 % (–) –5.3 % (–) 4.7 % (–) –5.8 % (–) +1.45 (–) +2.08 (–) +2.02 (–)
Type 0 (4) 1.0 % (↓) 0.3 % (↓) 1.2 % (↓) –0.9 % (↑) –0.3 % (↑) –1.2 % (↑) –0.13 (↓) –0.04 (↓) –0.05 (↓)
Type 1 (1) 0.3 % (↓) 0.0 % (↓) 0.4 % (↓) –0.3 % (↑) –0.00 % (↑) –0.4 % (↑) +0.05 (↓) –0.44 (↓) +0.69 (↓)
Type 2 (4) 12.3 % (↑) 13.5 % (↑) 14.8 % (↑) –10.8 % (↓) –12.1 % (↓) –13.7 % (↓) +4.03 (↑) +5.74 (↑) +5.23 (↑)
Latin (4) 1.2 % (↓) 0.6 % (↓) 2.4 % (↓) –1.2 % (↑) –0.6 % (↑) –2.3 % (↑) +0.09 (↓) –0.15 (↓) –0.27 (↓)
Cyrillic (3) 3.6 % (↓) 0.6 % (↓) 2.8 % (↓) –3.6 % (↑) –0.6 % (↑) –2.7 % (↑) –0.21 (↓) +0.14 (↓) +1.52 (↓)
Arabic (2) 19.0 % (↑) 19.2 % (↑) 16.9 % (↑) –16.1 % (↓) –17.0 % (↓) –15.5 % (↓) +5.84 (↑) +8.49 (↑) +6.22 (↑)

Table 3: Average UNK token percentage under the MBERT vocabulary (left); change in UNK token percentage
from MBERT to VA vocabularies (center); and average task performance change from LAPT to VA (right). Averages
are computed overall and within each script and language type, with comparisons to the overall average; all UNK
token percentages are computed on the respective training sets for illustration. Note that Uyghur accounts for a
large portion of the behavior of the Type 2/Arabic rows.

correlation between the two factors in question and
see that VA delivers greater performance gains on
Type 2 and Arabic-script languages compared to
their Type 0/1 and Latin-script counterparts, respec-
tively. To quantify the strength of this association,
we also compute the language-level Spearman cor-
relation between the change in UNK token percent-
age on the unlabeled dataset7 from the MBERT to
VA vocabulary and the task-specific performance
improvements from LAPT to VA. The resulting
ρ-values – 0.29 for NER, 0.56 for POS tagging,
and 0.81 for UD parsing – suggest that this set of
factors is meaningful for some tasks, though ad-
ditional and more fine-grained analysis in future
work should give a more complete explanation.

3 Mix-in Specialization: VA and
Transliteration

We now expand on the observation made in §2.3
regarding the difficulties that MBERT encounters
when faced with unseen low-resource languages in
non-Latin scripts because of its inability to model
the script. Having observed that VA is benefi-
cial in such cases, we now investigate the inter-
action between this method and another special-
ization approach that targets this problem. Specif-
ically, we consider the transliteration methods of
Muller et al. (2021), in which unseen low-resource
languages in non-Latin scripts are transliterated
into the Latin script, often using transliteration
schemes inspired by the Latin orthographies of lan-
guages related to the target language. They hypoth-
esize that the increased similarity in the languages’
writing systems, combined with MBERT’s overall
Latin-centricity, provides increased opportunity for
crosslingual transfer.

7We benchmark against the unlabeled dataset instead of
task-specific ones for comparability.

We can view transliteration as a inverted form of
vocabulary augmentation: instead of adapting the
model to the needs of the data, the data is adjusted
to meet the assumptions of the model. Furthermore,
the transliteration step is performed prior to pre-
training MBERT on additional unlabeled data in the
target language, the same stage at which VA is per-
formed. In both cases, the ultimate goal is identical:
improving tokenization and more effectively using
available data. We can thus view transliteration and
VA as two instantiations of a more general mix-in
paradigm for model specialization, whereby var-
ious transformations (mix-ins) are applied to the
data and/or model prior to performing additional
pretraining. These mix-ins target different compo-
nents of the experimental pipeline, which naturally
raises our second research question:

RQ2: How do the VA and transliteration mix-ins
for MBERT compare and interact?

3.1 Method and Experiments

To test this research question, we apply translit-
eration and VA in succession and evaluate their
compatibility. Given unlabeled data in the target
language, we first transliterate it into Latin script,
which decreases but does not fully eliminate the
issue of unseen wordpieces. We then perform VA,
generating the vocabulary for augmentation based
on the transliterated data.

We evaluate on Meadow Mari and Uyghur,
which are Type 2 languages where transliteration
was successfully applied by Muller et al. (2021).
To transliterate the data, we use the same methods
as Muller et al. (2021): Meadow Mari uses the
transliterate8 package, while Uyghur uses

8https://pypi.org/project/
transliterate

https://pypi.org/project/transliterate
https://pypi.org/project/transliterate


(a) POS tagging. (b) UD parsing. (c) NER.

Figure 1: Relationship between the change in UNK token percentage on task data and the change in task performance,
from (MBERT/LAPT to VA), with a 1-degree line of best fit. All vocabulary values are computed on the respective
training sets.

a linguistically-motivated transliteration scheme9

aimed at associating Uyghur with Turkish. We use
the same training scheme, model architectures, and
baselines as in §2.2, the only difference being the
use of transliterated data. This includes directly
pretraining on the unlabeled data (LAPT), which
is comparable to the highest-performing translit-
eration models of Muller et al. (2021). Although
our initial investigation of VA in §2 also included
non-Type 2 languages of other scripts, we omit
them from our investigation based on the finding
of Muller et al. (2021) that transliterating higher-
resource languages into Latin scripts is not benefi-
cial.

3.2 Results

Tab. 4 gives the results of our transliteration mix-in
experiments. For the MBERT-based models, both
VA and transliteration provide strong improvements
over their respective baselines. Specifically, the im-
provements from LAPT to VA and LAPT to LAPT

with transliteration are most pronounced. This ver-
ifies the independent results of Chau et al. (2020)
and Muller et al. (2021) and suggests that in the
non-Latin low-resource setting, unadapted addi-
tional pretraining is insufficient, but that the mix-in
stage between initial and additional pretraining is
amenable to performance-improving modifications.
Unsurprisingly, transliteration provides no consis-
tent improvement to the monolingual baselines,
since the noisy transliteration process removes in-
formation without improving crosslingual align-
ment.

However, VA and transliteration appear to inter-
act negatively. Although VA with transliteration im-

9https://github.com/benjamin-mlr/
mbert-unseen-languages

proves over plain VA for Uyghur POS tagging and
dependency parsing, it still slightly underperforms
LAPT with transliteration for the latter. For the
two NER experiments, VA with transliteration lags
both methods independently. One possible expla-
nation is that transliteration into Latin script serves
as implicit vocabulary augmentation, with embed-
dings that have already been updated during the
initial pretraining stage; as a result, the two sources
of augmentation conflict. Alternatively, since the
transliteration process merges certain characters
that are distinct in the original script, VA may aug-
ment the vocabulary with misleading character clus-
ters. Either way, additional vocabulary augmenta-
tion is generally not as useful when combined with
transliteration, answering RQ2.

Nonetheless, additional investigation into the op-
timal amount of vocabulary augmentation might
yield a configuration that is consistently comple-
mentary to transliteration and is an interesting di-
rection for future work. Furthermore, designing
linguistically-informed transliteration schemes like
those devised by Muller et al. (2021) for Uyghur
requires large amounts of time and domain knowl-
edge. VA’s fully data-driven nature and relatively
comparable performance suggest that it achieves
an appealing balance between performance gain
and implementation difficulty.

4 Related Work

Our work follows a long line of studies investi-
gating the performance of multilingual language
models like MBERT in various settings. The exact
source of such models’ crosslingual ability is con-
tested: early studies attributed MBERT’s success to
vocabulary overlap between languages (Cao et al.,
2020; Pires et al., 2019; Wu and Dredze, 2019),

https://github.com/benjamin-mlr/mbert-unseen-languages
https://github.com/benjamin-mlr/mbert-unseen-languages


Rep. MHR (NER) UG (NER) UG (POS) UG (UD)
FASTT 35.28 → 41.32 (+6.04) – 89.45 → 89.03 (–0.42) 54.52 → 54.45 (–0.07)

BERT 54.17 → 48.45 (–5.72) 61.54 → 63.05 (+1.51) 90.87 → 90.76 (–0.09) 60.34 → 60.08 (–0.26)

MBERT 61.85 → 63.84 (+1.99) 50.76 → 56.80 (+6.04) 78.07 → 91.34 (+13.27) 47.70 → 65.85 (+18.15)

LAPT 59.17 → 63.68 (+4.51) 56.76 → 67.57 (+10.81) 79.88 → 92.59 (+12.71) 50.67 → 69.39 (+18.72)

VA 64.23 → 63.19 (–1.04) 68.93 → 67.10 (–1.83) 91.49 → 92.64 (+1.15) 67.55 → 68.58 (+1.03)

Table 4: Comparison of model performance before and after transliteration. Bolded results are the maximum for
each language-task pair. – indicates that a model did not converge.

but subsequent studies find typological similarity
and parameter sharing to be better explanations
(Conneau et al., 2020b; K et al., 2020). Nonethe-
less, past work has consistently highlighted the
limitations of multilingual models in the context
of low-resource languages. Conneau et al. (2020a)
highlight the tension between crosslingual transfer
and per-language model capacity, which poses a
challenge for low-resource languages that require
both. Indeed, Wu and Dredze (2020) find that
MBERT is unable to outperform baselines in the
lowest-resource seen languages. Our experiments
build off these insights, which motivate the devel-
opment of methods for adapting MBERT to target
low-resource languages.

Adapting Language Models Several prior stud-
ies have proposed methods for adapting pretrained
models to a downstream task. The simplest of
these is to perform additional pretraining on unla-
beled data in the target language (Chau et al., 2020;
Muller et al., 2021; Pfeiffer et al., 2020), which in
turn builds off similar approaches for domain adap-
tation (Gururangan et al., 2020; Han and Eisenstein,
2019). Recent work uses one or more of these ad-
ditional pretraining stages to specifically train mod-
ular adapter layers for specific tasks or languages,
with the goal of maintaining a language-agnostic
model while improving performance on individ-
ual languages (Pfeiffer et al., 2020, 2021a; Vidoni
et al., 2020). However, as Muller et al. (2021) note,
the typological diversity of the world’s languages
ultimately limits the viability of this approach.

On the other hand, many adaptation techniques
have focused on improving representation of the
target language by modifying the model’s vocabu-
lary or tokenization schemes (Chung et al., 2020;
Clark et al., 2021; Wang et al., 2021). This is well-
motivated: Artetxe et al. (2020) emphasize repre-
sentation in the vocabulary as a key factor for effec-
tive crosslingual transfer, while Rust et al. (2021)
find that MBERT’s tokenization scheme for many
languages is subpar. Pfeiffer et al. (2021b) further

observe that for languages with unseen scripts, a
large proportion of the language is mapped to the
generic “unknown” wordpiece, and they propose
a matrix factorization-based approach to improve
script representation. Wang et al. (2020) extend
MBERT’s vocabulary with an entire new vocabu-
lary in the target language to facilitate zero-shot
transfer to low-resource languages from English.
The present study most closely derives from Chau
et al. (2020), who select 99 wordpieces with the
greatest amount of coverage to augment MBERT’s
vocabulary while preserving the remainder; and
Muller et al. (2021), who transliterate target lan-
guage data into Latin script to improve vocabulary
coverage. We deliver new insights on the effective-
ness and applicability of these methods.

5 Conclusion

We explore the interactions between vocabulary
augmentation and script transliteration for spe-
cializing multilingual contextual word represen-
tations in low-resource settings. We confirm vocab-
ulary augmentation’s effectiveness on multiple lan-
guages, scripts, and tasks; identify the mix-in stage
as amenable to specialization; and observe a nega-
tive interaction between vocabulary augmentation
and script transliteration. Our findings highlight
several open questions in model specialization and
low-resource natural language processing at large,
motivating further study in this area.

Future directions for investigation are manifold.
In particular, our results in this work unify the sep-
arate findings of past works, which use MBERT as
a case study; a natural continuation would extend
these methods to a broader set of multilingual mod-
els, such as mT5 (Xue et al., 2021) and XLM-R
(Conneau et al., 2020a), in order to obtain a clearer
understanding of the factors behind specialization
methods’ patterns of success. While we intention-
ally choose a set of small unlabeled datasets to
evaluate on a setting applicable to the vast majority
of the world’s low-resource languages, we acknowl-



edge great variation in the amount of unlabeled data
available in different languages. Continued study
on the applicability of these methods to datasets
of different sizes is an important future step. An
interesting direction of work is to train multilingual
models on data where script respresentation is more
balanced, which might also allow for different out-
put scripts for transliteration. Given that the mix-in
stage is an effective opportunity to specialize mod-
els to target languages, constructing mix-ins at both
the data and model level that are complementary by
design has potential to be beneficial. Finally, future
work might shed light on the interaction between
different configurations of the adaptations studied
here (e.g., the number of wordpiece types used in
vocabulary augmentation).
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Mitrofan, Yusuke Miyao, Simonetta Montemagni,
Amir More, Laura Moreno Romero, Keiko Sophie
Mori, Tomohiko Morioka, Shinsuke Mori, Shigeki
Moro, Bjartur Mortensen, Bohdan Moskalevskyi,
Kadri Muischnek, Robert Munro, Yugo Murawaki,
Kaili Müürisep, Pinkey Nainwani, Juan Igna-
cio Navarro Horñiacek, Anna Nedoluzhko, Gunta
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