
Proceedings of the 1st Workshop on Multilingual Representation Learning, pages 32–40
November 11, 2021. ©2021 Association for Computational Linguistics

32

Clustering Monolingual Vocabularies to Improve Cross-Lingual
Generalization

Riccardo Bassani
Utrecht University

Netherlands
r.bassani@students.uu.nl

Anders Søgaard
University of Copenhagen

Denmark
soegaard@di.ku.dk

Tejaswini Deoskar
Utrecht University

Netherlands
t.deoskar@uu.nl

Abstract

Multilingual language models exhibit better
performance for some languages than for oth-
ers (Singh et al., 2019), and many languages
do not seem to benefit from multilingual shar-
ing at all, presumably as a result of poor mul-
tilingual segmentation (Pyysalo et al., 2020).
This work explores the idea of learning mul-
tilingual language models based on clustering
of monolingual segments. We show significant
improvements over standard multilingual seg-
mentation across nine languages on a question
answering task, both in a small model regime
and for a model of the size of BERT-base.

1 Introduction

Since its release in 2018, multilingual BERT
(mBERT) has been extensively analyzed. For
instance, mBERT has been shown to facilitate
zero-shot cross-lingual transfer, but transfer per-
formance is significantly worse for typologically
distant languages (Pires et al., 2019). This is be-
cause cross-lingual generalization is only partial,
with some language-specific partitioning of the rep-
resentational space (Libovický et al., 2019; Singh
et al., 2019; Pires et al., 2019).

Moreover, mBERT relies on a single, multilin-
gual tokenizer to create its vocabulary (WordPiece,
Schuster and Nakajima (2012)), a subword tok-
enizer based on an algorithm similar to BPE (Gage,
1994). The multilingual tokenizer lets subwords
be shared across different languages, but the ap-
proach penalizes outlier languages, whose words
end up being segmented according to statistics de-
rived from high-resource languages (Pyysalo et al.,
2020; Chung et al., 2020).

In this study, we propose a novel method for
building a multilingual vocabulary that is more
fair to outlier languages: The core idea is to train
mBERT-like language models on multilingual clus-
ters of monolingual tokens derived from monolin-
gual tokenizations into vocabularies of equal size.

We argue this approach brings us the best of two
worlds: monolingual (dedicated) tokenization and
multilingual input representations.

Contributions Our main contribution is devising
a novel way of learning multilingual vocabularies
that are more fair to outlier languages. Our ap-
proach relies on clusters, and we analyze these
clusters in depth. Next, we induce a multilingual
mBERT-like language model from cluster represen-
tations of input sentences and evaluate this lan-
guage model on the downstream task of cross-
lingual question answering. We show that the
model trained on our cluster representations im-
proves over our baseline, trained with standard
mBERT tokenization, across nine typologically di-
verse languages. We observe the same improve-
ments across two different language model sizes.

Related work Pyysalo et al. (2020) showed how
training monolingual BERT models instead of a
single multilingual one can improve performance
for some languages even if the amount of train-
ing data decreases. A possible cause of this phe-
nomenon could be identified in the better quality
of tokenization that can be reached when a dedi-
cated monolingual vocabulary is used. This thesis
is also supported by the findings of Conneau et al.
(2020) on the importance of vocabulary size to a
multilingual language model’s performance.

In order to overcome the issues deriving from
the use of a single multilingual vocabulary, Chung
et al. (2020) propose to cluster together similar
languages and to learn vocabularies for language
clusters. Their methods proves to be effective, with
a significant reduction of maximum description
length, and significant improvements on QA, NER
and XNLI tasks. This suggests that multilingual
model can benefit from the use of a vocabulary that
more fairly represents all languages.

In this paper, we take this approach one step
further and propose a method which clusters the

33

output of monolingual tokenizations, merging dedi-
cated vocabularies into a single vocabulary of token
clusters.

2 Multilingual Vocabulary Induction

The key idea of our method is to build a single mul-
tilingual model from the output of dedicated, mono-
lingual tokenizers, i.e., language-specific subword
vocabularies, by clustering the obtained subwords
by semantic similarity. A single model is then
trained on the desired number of clusters, learn-
ing an embedding for each cluster. This allows for
implicitly using a very large vocabulary without
increasing model complexity, hopefully leading to
better segmentation for outlier languages and better
generalization across languages.

Our approach involves three steps:

(i) Creation of monolingual subword vocabular-
ies.

(ii) Clustering monolingual subwords into multi-
lingual subword clusters.

(iii) Training a multilingual language model on
multilingual subword clusters and evaluating
it on a downstream task.

These steps are described in turn below. An
overview of the entire process is given in Figure 2.

Figure 1: EM and F1 scores for the baseline and the
ICEBERT model, across nine languages.

2.1 Vocabulary creation

First, monolingual vocabularies were created start-
ing from the BPEmb vocabularies offered by Heinz-
erling and Strube (2018). BPEmb1 is a collection of
BPE-based subword embeddings in 275 languages.
Monolingual vocabularies are available in differ-
ent sizes. We extracted vocabularies of size 30k2

1//bpemb.h-its.org/
2This vocabulary size was chosen to be similar to the size

of the monolingual BERT’s vocabulary, leaving the 30k most
frequent tokens in each language.

Figure 2: Overview of the three phases of the project.
From top to bottom: joint vocabulary creation, sub-
word clustering, and model training. The clusters are
identified by clusters IDs (cIDs), and are represented as
circles in the figure. Blue circles represent clusters ob-
tained by partitioning the translation graph, while red
circles represent singleton clusters dedicated to special
tokens.

for the 9 languages present in the TyDiQA bench-
mark (Clark et al., 2020): Arabic, Bengali, English,
Finnish, Indonesian, Korean, Russian, Swahili, and
Telugu. These languages are typologically very
different and as such provide for downstream eval-
uation of multilingual language models.

A joint vocabulary was created by concatenating
the mono-lingual vocabularies and marking sub-
words with a language identifier. Digits, punctua-
tion and other special symbols, which are largely
language-agnostic, were not marked this way, but
assigned dedicated, singleton clusters. Following
Dufter and Schütze (2020), we mapped all digits to
zero.

2.2 Subword clustering
The goal of subword clustering is to obtain clusters
made of tokens from different languages that are se-
mantically similar. The ideal clusters will therefore
contain tokens which are near-translations of each
other. Moreover, we want clusters to be generally
small and of similar size. Large clusters are unde-
sirable, since they tend to be semantically vague or
inconsistent. Therefore, while allowing some vari-
ance in cluster size, we limit the maximum cluster
size.

34

Cross-lingual embeddings creation The sub-
words in the joint vocabulary were clustered by
semantic similarity exploiting the already available
BPEmb-embeddings. We started from the mono-
lingual BPEmb embeddings of size d = 300, and
projected them into a shared semantic space by
mapping all vectors but the English ones into the
English vector space. The mapping was performed
using the scripts and seed dictionaries published by
Glavas et al. (2019).3 In particular, we relied on
the PROC algorithm to solve the Procrustes prob-
lem (Schönemann, 1966). Seed dictionaries were
available for English-Russian and English-Finnish,
containing 5000 training pairs and 2000 test pairs.
Dictionaries for the remaining languages were de-
rived from Google Translate and can be shared for
resource purposes upon request.4

The mapping provides us with 300-dimensional
multilingual embeddings, which we evaluate on a
bilingual lexicon induction (BLI) task. For each
source/target language pair, and for each word pair
in the rtest dictionary, the top k translations of the
source word are extracted from the target language
vocabulary as its k nearest neighbours, measured
by cosine similarity. Precision at k (p@k) scores
are used to quantify the fraction of times in which
the gold translation (the one in the test dictionary)
is present among the top k extracted translations.
The mean reciprocal rank (MRR) gives an idea
of the average rank of the gold translation among
the predicted translations, as expressed by the for-
mula 1

|Q|
∑|Q|

i=1
1

ranki
, where Q is the set of all the

tokens in the target vocabulary. The created mul-
tilingual embeddings achieve good average scores
on BLI (p@1=0.193, p@5=0.384 p@10=0.454,
MRR=0.283).

Translation graph creation Instead of simply
clustering the tokens considering only the distance
between embeddings, we aim to carefully create
small clusters of similar sizes, ideally containing
synonyms and translations.5 To this end, we cre-
ate a sparse graph containing for each subword,
the top-k translations in each language, i.e., the
top-k nearest neighbors in the projected space. We

3https://github.com/codogogo/xling-eval
4Glavas et al. (2019) showed that by applying a bootstrap-

ping algorithm it is possible to obtain similar performances
with seed dictionaries containing only 1000 pairs. Artetxe et al.
(2018) also discuss inducing dictionary seeds in a completely
unsupervised manner.

5We ran early experiments to verify that simple k-means
clustering performs poorly.

eliminate from this sparse translation graph all non-
symmetric edges, so that the obtained graph con-
tains an edge between subword_1 and subword_2
if and only if subword_1 is among the top-k trans-
lations of subword_2, and vice versa.

To select the most adequate value for k, we
examine the distribution of clique sizes in each
graph. k must be high enough to avoid having
many subwords which are not in (non-single-ton)
cliques. If k is too high, however, cliques may
contain subwords that are not reciprocal transla-
tions/synonyms.

Figure 3 shows how, as expected, the number of
singletons (cliques containing only one subword)
decreases as k increases. We select k = 5, which
is the smallest value that gives us a reasonably
low number of isolated subwords: With k = 5,
there are 1232 isolated subwords, requiring 1232
dedicated clusters.

Figure 3: Number of tokens belonging to a clique of
size at most s, for s in [1,9] and for different values
of k. The blue bar represents tokens belonging only to
singletons, the orange bar tokens belonging to cliques
of size at most 2, the green one tokens belonging to
cliques of size at most 3, etc.

Note that cliques do not capture all translations,
as shown in the example below, where x2 has three
translations despite not being in any clique of size
higher than 2.

x1 x2

x3

x4

In Figure 4, we plot the average number of lan-
guages per clique, across different clique sizes. We
see that most small cliques contain translation pairs,
not merely synonym pairs in the same language.

Graph Partitioning In order to obtain final clus-
ters of similar size, we apply the METIS algorithm
on the sparse translation graph. The METIS algo-
rithm was first introduced in 1995 (Karypis and

35

Figure 4: Average number of different languages in a
clique, across different clique sizes

Kumar, 1995), and is now available both as a stan-
dalone software6 and as a Python package.7 It
solves the multiway graph partitioning problem,
which consists in finding a partition of the vertex
set into a given number of balanced sets while min-
imizing cut weight (Hashimoto et al., 2010).

The main parameters of the METIS balanced
graph partitioning algorithm are two:

1. p: the number of parts in which the graph
must be divided. We set this value to 28500.
This was done to reach a final number of clus-
ters of approximately 30000, considering that
665 clusters are reserved for the special to-
kens, and the post-processing performed on
the partition.

2. v: the load imbalance tolerance, defining
that the cluster size must not be higher than⌈
N
p ∗ (1 + v)

⌉
, where N is the number of

nodes in the graph and p the number of parts
the graph must be split into. This value was
set to 1.5, in order to allow for a moderate
degree of flexibility with the clusters size.

With these parameter values, the algorithm pro-
duced a partition made of groups of size varying
between 1 and 23 (the 81 empty groups were im-
mediately removed). Figure 5 shows that the large
majority of the groups have size 7, 8 or 9, which,
since we are clustering subwords from 9 languages,
is exactly the desired size.

The METIS partitions contain only one group
of size 1. How can it be explained, if the previ-
ous graph analysis detected the presence of 1,232
isolated subwords? The answer is that the “cut"
objective of the METIS algorithm simply aims to

6http://glaros.dtc.umn.edu/gkhome/metis/metis/overview
7https://github.com/networkx/networkx-metis

Figure 5: Distribution of the sizes of the groups in the
partition obtained with the (28500, 1.5) METIS algo-
rithm. Most groups have size 8, close to the number of
languages.

minimize the number of edges cut by the parti-
tion. Therefore, it is not necessarily penalized
when grouping together disconnected nodes. This
holds not only for the METIS algorithm, but for
k-way graph partitioning in general, its goal being
minimizing the number of edges whose incident
vertexes belong to different subsets (Karypis and
Kumar, 1995). Despite this, however, graph parti-
tioning algorithms prefer grouping together highly
connected nodes, therefore the METIS algorithm
can prove to be adequate for our task. The spe-
cific problem of isolated subwords can be solved
by removing from the partition the 1,232 isolated
subwords detected before, and assigning them to
dedicated clusters. Upon doing so, we analyzed
whether the so-many groups of size 7, 8, and 9
actually reflected the graph structure, or whether
they were an artifact of the METIS algorithm?

To answer this question, we looked at the dis-
tribution of shortest-path lengths across all pairs
of subwords belonging to the same group. Figure
6 shows that most of the subwords inhabiting the
same clusters are immediate neighbours (length=1)
or share a neighbour (length=2).

Figure 6: Distribution of shortest path lengths across
intra-cluster pairs of tokens. Clusters of size 1 were not
considered.

36

Only around 100 intra-cluster pairs are not con-
nected. We split the 19 groups containing such
pairs into 39 groups so that all their members were
connected. Finally, 665 singletons were added for
the multilingual special tokens. This resulted in
a total of 30292 clusters containing 270314 sub-
words. Some randomly selected clusters are re-
ported in Figure 7.

Figure 7: Examples of clusters created by the METIS
algorithm. Each token is reported both in the original
language and in English, except from the cases when
providing an English translation is not possible. This
happens for many strict subwords in the red and in
the yellow clusters. For most clusters it is possible to
identify an underlying concept: sick (green), pixel/data
(cyan), gang/violence (red), while it is infeasible for
some other clusters, especially the ones mainly made
of strict subwords (yellow).

3 Model Training

Once the clustering was completed, a BERT vo-
cabulary was built extending the set of cluster IDs
(cIDs) with BERT special tokens, to give a vocabu-
lary size of 30397, similar to the one of the original
BERT model. We called our model ICEBERT, an
acronym for Interlingual-Clusters Enhanced BERT.

INPUT: Goodmorning world!
TOK.: [‘good_en’ ‘##morning_en’ ‘world_en’ ‘!_en’]
CIDS: 28121 5132 14568 29913

Table 1: Input example tokenization and rewriting

3.1 ICEBERT training

To train our ICEBERT model on cluster IDs in-
stead that actual subwords, we decided to take the
following approach:

At training time, the entire training corpus was
mapped to cluster IDs (cIDs). Each sentence was
first tokenized using a lowercase BPEmb monolin-
gual tokenizer. Before calling the tokenizer, the
sentences were lowercased and digits replaced by
zeros. After the tokenization was completed, all to-
kens were marked with a language ID. Each token
was then mapped to its cID, using the token→ cID
dictionary created in the clustering phase. The
model was then trained with a fictitious tokenizer,
whose vocabulary contained the string representa-
tions of cIDs: “0", “1", ... “30291". In this way,
the model’s tokenizer simply separates strings of
cIDs according to white spaces, while the optimal
subword tokenization is made by language-specific
tokenizers. See example in Table 1.

At inference time, the same actions are per-
formed. This means that the input to the model
must be mapped to cIDs before being fed to the
model. This is fairly simple and quick. For some
downstream tasks, the model prediction must be
modified to take into account the differences be-
tween the original input and the mapped one (e.g.,
span indexes in question answering). The greatest
challenge would occur in generation tasks, since
generated cIDs can correspond to multiple sub-
words. In this paper, we limit evaluation to question
answering.

3.2 Baseline Training

As our baseline tokenizer, we trained a Sentence-
Piece8 model on a balanced Wikipedia corpus of
100k sentences, covering all the 9 languages in the
experiment. Early experiments showed that uncas-
ing the input data led to a drop in performance, as
also reported in mBERT’s documentation.9 The
baseline vocabulary size is set to be the same as the
ICEBERT’s one.

8https://github.com/google/
sentencepiece

9https://github.com/google-
research/bert/blob/master/multilingual.md

https://github.com/google/sentencepiece
https://github.com/google/sentencepiece

37

3.3 Small-Scale Pretraining

We first adopted the quick experimental setup10 pro-
posed by Dufter and Schütze (2020) to pre-train a
small-BERT model using a training corpus of 180k
sentences from Wikipedia (20k per language). The
sentences were shuffled to avoid any bias towards
a specific language. The model was pretrained for
only 10 epochs (vs. 100 in Dufter and Schütze,
2020) to account for the larger amount of training
data (around ten times more). All the remaining
hyperparameters were kept as in the original small-
BERT article except from the batch size, which
was reduced to 128. The training required less than
ninety minutes on a single Tesla T4 GPU. As a
baseline, we pretrained a model of the same size,
with the same hyperparameters, and on the same
training corpus11, omitting the mapping to cIDs.

The models were finetuned for 20 epochs, with
an AdamW optimizer with learning rate equal to
5e-5. We trained both the baseline and the model
five different times, and report average results for
each language in Figure 8.

Figure 8: EM and F1 scores for the small baseline and
ICEBERT model, across 9 languages.

3.4 Large-Scale Pre-training

The positive results obtained in the small-scale ex-
periment motivated the training of a large ICE-
BERT model.

Configuration In the large-scale setting we
trained two models of the size of the original BERT
model, BERTBASE. Our model, ICEBERTBASE,
therefore has an hidden size of 768, an intermedi-
ate size of 3072, 12 hidden layers and 12 attention
heads. We mostly used the training hyperparame-
ters reported by (Devlin et al., 2018) in the BERT
paper: an AdamW optimizer (lr=1e-4 with linear

10hidden layers=12, hidden size=64, intermediate size=256,
attention head=1. Total paramaters=2612989.

11shuffled using the same random indexes

decay, β1 = 0.9, β2 = 0.999, weight decay=0.01,
epsilon=1e-6, warmup steps=10,000, dropout prob-
ability=0.1), 1,000,000 of training steps, a maxi-
mum sequence length of 512 and a batch size of 64
(8 per core).

Training Corpus As training corpus, we con-
catenated the Wikipedia corpora of all the 9 lan-
guages included in the study. To compensate for
the different Wikipedia sizes across languages, we
took an approach similar to the one adopted by
Devlin et al. (2018). They performed exponen-
tially smoothed weighting of the data during pre-
training data creation. This means that they sam-
pled sentences according to a multinomial distribu-
tion qii=1...N , where:

qi =
pαi∑N
j=1 p

α
j

being pi =
ni∑N
j=1 nj

;

(1)
The parameter α ∈ (0, 1) controls the degree to
which low-resource languages are over-sampled:
the closer it is to zero, the closer the number of lines
across different languages. Devlin et al. (2018)
chose a value of α = 0.7 in their paper. Successive
works, however, used lower values of α (Lample
and Conneau, 2019, Conneau et al., 2020). Xue
et al. (2020) recently showed how exponential sam-
pling works best with a value of α = 0.3. We
therefore used α = 0.3 to compute the values of
the multinomial distribution qii=1...N . We then cre-
ated an augmented corpus by keeping fixed the
size of the English corpus and duplicating the other
languages’ data in order to achieve the desired ra-
tios between corpora. During this process we also
concatenated/split consecutive lines in the corpus
so that each line was made of approximately 512
tokens. This was necessary since the Transformers
library handling training on TPUs does not sup-
port automatic creation of balanced input segments,
but requires the input dataset to be provided as a
line by line dataset, i.e. so that each line corre-
sponds to a sequence. If a line is longer than the
maximum sequence length (512 in our case), it is
truncated. If it is shorter, it is padded with [PAD]
tokens. Wikipedia lines exhibit a great variance,
ranging from single words to full paragraphs. To
avoid waste of data, and that most of the input
sequences were made predominantly by [PAD] to-
kens, we pre-processed the corpus as described
above. The ICEBERT cIDs corpus was created af-
ter this pre-processing step, so that the two corpora

38

contained exactly the same lines. The corpora were
finally shuffled according to a shared indexes list.
This resulted in a training corpus of approximately
80GB for the baseline and 70GB for ICEBERT12.

Pretraining Costs It is important to notice that,
despite the total number of training steps being
the same as in BERTBASE, the lower batch size
implies that the model is actually trained on 1

4 of
the training data. A full-training was not feasible
with the given resources (almost 4 weeks per model
on a single v3-8 TPU), but we decided to undertrain
rather than downscaling, based on the findings of
Li et al. (2020), who claimed that larger models
tend to achieve better performance than smaller
models when trained for the same time.

The training took approximately 5 days per
model on a GCP cluster made of a nd2-highmem-8
compute engine (8 vCPUs, 64 GB memory) accel-
erated by a v3-8 TPU node (8 cores, 128 GiB of
TPU memory). The cost of the training on Google
Cloud Platform amounted to little more than 60$
per model for the compute engine, while the TPUs
where made available for free by Google as part of
the TRC program13. The costs covered by this offer
amount to 300$ per model if using a pre-emptible
v3-8 TPUs, or to 1000$ per model if using an on-
demand device.

Fine-Tuning The models were finetuned for 2
epochs, with an AdamW optimizer with a learning
rate of 1e−5, following Hu et al. (2020) approach14.
We finetuned both the baseline and the model three
different times.

3.5 Evaluation

We evaluate our models on TyDiQA-GoldP (Clark
et al., 2020), a question answering task covering
the nine (9) target languages. The model input is a
question and a background passage, called context,
which contains the answer, and the task is to predict
the contiguous span of characters that human an-
notators have indicated, provides an answer to the
question. Models are evaluated with the two met-
rics proposed in the SQuAD 1.1 paper (Rajpurkar
et al., 2016):

12In UTF-8 encoding foreign characters often takes more
than 8 bits, therefore by mapping foreign characters to digits
the size of the corpus is reduced. The size of the English
corpus, on the other hand, is increased, since many short
tokens (e.g. punctuation) are mapped to 5-digits cluster IDs.

13https://sites.research.google/trc/
14The learning rate was adjusted to take into account the

difference batch size (16 instead of 32).

1. EM: Exact match, measures the percentage of
predictions exactly matching any one of the
ground truth answers.

2. F1: (Macro-averaged) F1 score. Computes the
F1 score between the prediction and ground
truth answers, treating them as bags of tokens.
For each prediction, the maximum score over
all the ground truth answers is taken. The
scores are then averaged over all the questions.

Our models were fine-tuned only on the English
TyDiQA training dataset and applied to unseen
languages at test time. This protocol is commonly
referred to as unsupervised cross-lingual transfer
or zero-shot cross-lingual learning.

The fine-tuning data comprises 231 batches of
size 16. To train the ICEBERT model, the English
dataset was mapped to cluster-IDs, following the
method described in Section 3.1. The input labels,
i.e., the span indexes, also had to be mapped to
match the indexes of the mapped answers in the
mapped contexts. The text in the test dataset was
mapped to cluster IDs in the same way as for the
training dataset. The span indexes output by the
model were then adjusted to extract the correct
text span in the original contexts, and the extracted
answers were evaluated with EM and F1.

4 Results

Figures 9 shows the EM and the F1 scores across all
nine languages, for the base architecture. Average
results are reported in Table 2, which also gives the
performances of the small models and of the fully
trained mBERT model, as reported by Hu et al.
(2020), for comparison.

Figure 9: EM and F1 scores for the baseline and the
ICEBERT model, across nine languages.

5 Discussion and Future Work

ICEBERT significantly improves over the base-
line, across both the experimental settings and

39

model EM F1
BaselineSMALL 1.80 12.89
ICEBERTSMALL 4.74 15.30

BaselineBASE 10.96 21.49
ICEBERTBASE 11.36 23.18

mBERT 41.46 57.74

Table 2: Exact Match and F1 average scores across
all languages different from English. On top of the
baseline’s and the ICEBERT model’s performance, the
scores obtained by the fully-trained mBERT model are
also reported.

evaluation metrics. The base architecture F1 im-
provements moving from baseline tokenization to
ICEBERT tokenization (1.7 F1) are encouraging.
ICEBERTBASE improves over the baseline over al-
most all languages. Languages which are typolog-
ically distant from English, like Arabic, Russian,
and Telugu, benefit the most from the clustering,
as shown by the reported increments in perfor-
mance. The most significant improvements can
be observed on Arabic and Telugu (the language
with the lowest baseline scores among the ones in-
cluded in the study). Excluding Korean, for which
performance is extremely poor, the only two lan-
guages for which significant improvements were
not seen, are Indonesian and Swahili, which are
morphosyntactically most similar to English.

As shown in Table 2, the ICEBERTBASE model
significantly outperforms the ICEBERTSMALL
model, but its scores remain well below the fully
trained mBERTBASE model, as reported by Hu et al.
(2020). We hope that the performance improve-
ments of ICEBERT tokenization scale to more
competitive models as well, but the model sizes
considered here were limited by the available re-
sources. Our model is also limited in training only
on nine languages. Including more languages is
perfectly possible and would only affect clustering
time. Finally, we only considered question answer-
ing in this study. We expect our conclusions to
generalize to other tasks, but this remains an open
question for now.

In the paper we have compared clustering of
monolingual vocabularies to multilingual segmen-
tation, i.e., BPE on concatenated corpora. Other
alternatives have been proposed in the literature, in-
cluding multilevel tokenization (Wang et al., 2021)
and tokenization-free, character-based modeling

(Clark et al., 2021). It is beyond the scope of this
paper to systematically compare all these different
approaches. The idea of using sequences of token
group IDs to represent input sentences was previ-
ously explored in Wulff and Søgaard (2015), who
used finite state automata instead of clusters.

6 Conclusion

This study aimed to improve multilingual language
models by training them on clusters of monolingual
segments. The proposed approach yielded good
quality clusters able to group semantically similar
words and subwords across languages. Our clus-
tering strategy led to improvements over standard
segmentation and training methods on the majority
of the included languages, when evaluated on a
question answering task.

References
Mikel Artetxe, Gorka Labaka, and Eneko Agirre. 2018.

A robust self-learning method for fully unsupervised
cross-lingual mappings of word embeddings. In Pro-
ceedings of the 56th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 789–798, Melbourne, Australia. As-
sociation for Computational Linguistics.

Hyung Won Chung, Dan Garrette, Kiat Chuan Tan, and
Jason Riesa. 2020. Improving multilingual models
with language-clustered vocabularies. In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
4536–4546, Online. Association for Computational
Linguistics.

Jonathan H. Clark, Eunsol Choi, Michael Collins, Dan
Garrette, Tom Kwiatkowski, Vitaly Nikolaev, and
Jennimaria Palomaki. 2020. Tydi qa: A benchmark
for information-seeking question answering in typo-
logically diverse languages.

Jonathan H. Clark, Dan Garrette, Iulia Turc, and John
Wieting. 2021. Canine: Pre-training an efficient
tokenization-free encoder for language representa-
tion.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised
cross-lingual representation learning at scale. In
ACL, pages 8440–8451. Association for Computa-
tional Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. BERT: pre-training of
deep bidirectional transformers for language under-
standing. CoRR, abs/1810.04805.

https://doi.org/10.18653/v1/P18-1073
https://doi.org/10.18653/v1/P18-1073
https://doi.org/10.18653/v1/2020.emnlp-main.367
https://doi.org/10.18653/v1/2020.emnlp-main.367
http://arxiv.org/abs/2003.05002
http://arxiv.org/abs/2003.05002
http://arxiv.org/abs/2003.05002
http://arxiv.org/abs/2103.06874
http://arxiv.org/abs/2103.06874
http://arxiv.org/abs/2103.06874
http://dblp.uni-trier.de/db/conf/acl/acl2020.html#ConneauKGCWGGOZ20
http://dblp.uni-trier.de/db/conf/acl/acl2020.html#ConneauKGCWGGOZ20
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805

40

Philipp Dufter and Hinrich Schütze. 2020. Identifying
necessary elements for bert’s multilinguality.

Philip Gage. 1994. A new algorithm for data compres-
sion. C Users Journal.

Goran Glavas, Robert Litschko, Sebastian Ruder, and
Ivan Vulic. 2019. How to (properly) evaluate cross-
lingual word embeddings: On strong baselines, com-
parative analyses, and some misconceptions. CoRR,
abs/1902.00508.

Hideki Hashimoto, Youhei Sonobe, and Mutsunori
Yagiura. 2010. A multilevel scheme with adaptive
memory strategy for multiway graph partitioning. In
Learning and Intelligent Optimization, pages 188–
191, Berlin, Heidelberg. Springer Berlin Heidelberg.

Benjamin Heinzerling and Michael Strube. 2018.
BPEmb: Tokenization-free Pre-trained Subword
Embeddings in 275 Languages. In Proceedings of
the Eleventh International Conference on Language
Resources and Evaluation (LREC 2018), Miyazaki,
Japan. European Language Resources Association
(ELRA).

Junjie Hu, Sebastian Ruder, Aditya Siddhant, Graham
Neubig, Orhan Firat, and Melvin Johnson. 2020.
Xtreme: A massively multilingual multi-task bench-
mark for evaluating cross-lingual generalization.

George Karypis and Vipin Kumar. 1995. Multilevel
graph partitioning schemes. In ICPP (3), pages 113–
122. CRC Press.

Guillaume Lample and Alexis Conneau. 2019. Cross-
lingual language model pretraining. CoRR,
abs/1901.07291.

Zhuohan Li, Eric Wallace, Sheng Shen, Kevin Lin,
Kurt Keutzer, Dan Klein, and Joseph E. Gonzalez.
2020. Train large, then compress: Rethinking model
size for efficient training and inference of transform-
ers. CoRR, abs/2002.11794.

Jindrich Libovický, Rudolf Rosa, and Alexander Fraser.
2019. How language-neutral is multilingual bert?
CoRR, abs/1911.03310.

Telmo Pires, Eva Schlinger, and Dan Garrette. 2019.
How multilingual is multilingual BERT? In Pro-
ceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 4996–
5001, Florence, Italy. Association for Computa-
tional Linguistics.

Sampo Pyysalo, Jenna Kanerva, Antti Virtanen, and
Filip Ginter. 2020. Wikibert models: deep transfer
learning for many languages.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev,
and Percy Liang. 2016. Squad: 100, 000+ ques-
tions for machine comprehension of text. CoRR,
abs/1606.05250.

Mike Schuster and Kaisuke Nakajima. 2012. Japanese
and korean voice search. In ICASSP, pages 5149–
5152. IEEE.

P.H. Schönemann. 1966. A generalized solution of
the orthogonal procrustes problem. Psychometrika,
31:1–10.

Jasdeep Singh, Bryan McCann, Richard Socher, and
Caiming Xiong. 2019. BERT is not an interlingua
and the bias of tokenization. In Proceedings of the
2nd Workshop on Deep Learning Approaches for
Low-Resource NLP (DeepLo 2019), pages 47–55,
Hong Kong, China. Association for Computational
Linguistics.

Xinyi Wang, Sebastian Ruder, and Graham Neubig.
2021. Multi-view subword regularization. In Pro-
ceedings of the 2021 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
473–482, Online. Association for Computational
Linguistics.

Julie Wulff and Anders Søgaard. 2015. Learning finite
state word representations for unsupervised Twitter
adaptation of POS taggers. In Proceedings of the
Workshop on Noisy User-generated Text, pages 162–
166, Beijing, China. Association for Computational
Linguistics.

Linting Xue, Noah Constant, Adam Roberts, Mi-
hir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya
Barua, and Colin Raffel. 2020. mt5: A mas-
sively multilingual pre-trained text-to-text trans-
former. CoRR, abs/2010.11934.

http://nbn-resolving.de/urn/resolver.pl?urn=nbn:de:bvb:19-epub-72199-8
http://nbn-resolving.de/urn/resolver.pl?urn=nbn:de:bvb:19-epub-72199-8
http://arxiv.org/abs/1902.00508
http://arxiv.org/abs/1902.00508
http://arxiv.org/abs/1902.00508
http://arxiv.org/abs/2003.11080
http://arxiv.org/abs/2003.11080
http://dblp.uni-trier.de/db/conf/icpp/icpp1995-3.html#KarypisK95
http://dblp.uni-trier.de/db/conf/icpp/icpp1995-3.html#KarypisK95
http://arxiv.org/abs/1901.07291
http://arxiv.org/abs/1901.07291
http://arxiv.org/abs/2002.11794
http://arxiv.org/abs/2002.11794
http://arxiv.org/abs/2002.11794
http://arxiv.org/abs/1911.03310
https://doi.org/10.18653/v1/P19-1493
http://arxiv.org/abs/2006.01538
http://arxiv.org/abs/2006.01538
http://arxiv.org/abs/1606.05250
http://arxiv.org/abs/1606.05250
http://dblp.uni-trier.de/db/conf/icassp/icassp2012.html#SchusterN12
http://dblp.uni-trier.de/db/conf/icassp/icassp2012.html#SchusterN12
https://doi.org/https://doi-org.proxy.library.uu.nl/10.1007/BF02289451
https://doi.org/https://doi-org.proxy.library.uu.nl/10.1007/BF02289451
https://doi.org/10.18653/v1/D19-6106
https://doi.org/10.18653/v1/D19-6106
https://doi.org/10.18653/v1/2021.naacl-main.40
https://doi.org/10.18653/v1/W15-43
https://doi.org/10.18653/v1/W15-43
https://doi.org/10.18653/v1/W15-43
http://arxiv.org/abs/2010.11934
http://arxiv.org/abs/2010.11934
http://arxiv.org/abs/2010.11934

