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1 Introduction

Multilingual pre-trained representations (Devlin
et al., 2019; Huang et al., 2019; Conneau et al.,
2020) are ubiquitous in state-of-the-art methods
for cross-lingual transfer (Wu and Dredze, 2019;
Pires et al., 2019). These methods learn from raw
textual data in up to hundreds of languages. A
typical pipeline transfers to another language by
fine-tuning a downstream task in a high-resource
language, often English.

Many recent works use ‘consistency regularisa-
tion’ to improve the generalisation of fine-tuned
pre-trained models, both multilingual and English-
only (Jiang et al., 2020; Aghajanyan et al., 2020;
Wang et al., 2021; Zheng et al., 2021; Park et al.,
2021; Liang et al., 2021). These works encourage
model outputs to be similar between a perturbed
and normal version of the input, usually via pe-
nalising the Kullback–Leibler (KL) divergence be-
tween the probability distribution of the perturbed
and normal model. ‘Generic’ perturbations can
be adversarial inputs (Jiang et al., 2020) or inputs
with Gaussian or uniform noise (Aghajanyan et al.,
2020). For cross-lingual generalisation in partic-
ular, probabilistic subword segmentations (Kudo,
2018) of the input or translations of the input gen-
erated by machine translation can be used (Wang
et al., 2021; Zheng et al., 2021). Other work has
found improvement by enforcing consistency for
perturbations within models in addition to at the
input (Hua et al., 2021; Liang et al., 2021).

While these works show improved generalisa-
tion compared to ‘vanilla’ fine-tuning, they present
multiple explanations of the effectiveness of con-
sistency regularisation. They also rarely compare
to traditional regularisation methods like dropout
or L2 regularisation. Finally such methods either
require a complex adversarial training step (Jiang
et al., 2020; Park et al., 2021), or tuning many
hyper-parameters like type of noise, level of noise,

and weight given to the consistency loss term.
We believe that consistency losses may be im-

plicitly regularizing the loss landscape. In particu-
lar, we build on the work of Jastrzebski et al. (2021),
who hypothesize that implicitly or explicitly reg-
ularizing trace of the Fisher Information Matrix
(FIM), Tr(F ), amplifies the implicit bias of SGD
to avoid memorization. Briefly, the FIM is de-
fined as F(θ) = Ex∼X ,y∼pθ(y|x)[g(x, y)g(x, y)

T ],
where g(x, y) is the gradient w.r.t to θ on the loss
for label y and input x. Jastrzebski et al. (2021)
propose directly penalising a proxy of Tr(F ), the
Fisher penalty defined as ‖ 1

B

∑B
i=1 g(xi, yi)‖2.

In the multilingual setting we may wish to first
fine-tune on a high-resource language like English,
then further fine-tune on a smaller amount data in a
lower-resource language, a ‘two-stage’ fine-tuning
procedure. The FIM is a measure of the local cur-
vature, and a small Tr(F ) at the end of training
implies a flatter minimum. Intuitively, such flat
minima imply we can ‘travel further’ in param-
eter space before reaching a region of high loss,
allowing for better performance in the two-stage
fine-tuning setting.

Our (preliminary) key contributions are

• We show that the trace of the FIM is corre-
lated with generalisation, confirming that the
results of Jastrzebski et al. (2021) apply to
cross-lingual transfer.

• Adding a direct Fisher penalty can achieve
similar results to subword consistency regu-
larization.

• We show for models fine-tuned on an En-
glish downstream task, improvements from
fine-tuning on data from another language are
correlated with low curvature (i.e. small trace
of the FIM) in the English fine-tuned model.
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Figure 1: English validation set accuracy on a subset of the XNLI dataset vs. trace of the FIM at the end of training,
for models with different weight given to consistency regularisation (crosses) and fisher penalty (circles) losses.
For clarity we leave various models with different L2 penalties (squares) off the legend. kl=k means a consistency
loss was given weight k during training. fpen=k means the Fisher penalty was given weight k.

2 Initial Results

We first present a theoretical argument that in
some simple situations, consistency losses penal-
ize the trace of the FIM. We perturb model pa-
rameters θ with small, zero-mean, i.i.d. noise ε.
For small ε, we can Taylor expand the KL di-
vergence between models with these parameters:
KL [pθ(y |x) || pθ+ε(y |x)] ≈ 1

2ε
TFε, (see e.g.,

Dabak and Johnson, 2003). Taking expectations
w.r.t. ε and writing εTFε as a sum, we have,

Eε∼p(ε)[ε
TFε] =

∑
i,j E[εiεjFi,j ]

=
∑

i 6=j E[εi]E[εj ]Fi,j +
∑

i E[ε2i ]Fi,i

= 0 + C
∑

i Fi,i = C Tr(F ), (1)

where C is the variance of the i.i.d. noise.
Consistency losses that use larger or more struc-

tured perturbations could potentially have a useful
effect not captured by the Fisher Information Ma-
trix alone. We empirically investigate the relation-
ship between a subword segmentation consistency
loss and penalizing the FIM. We use the same loss
and hyper-parameters as Wang et al. (2021). All
experiments use multilingual BERT.

Figure 1 presents results from an experiment on
a subset (20k examples, with the small size chosen
due to compute constraints) of the XNLI dataset
(Conneau et al., 2018). It shows 1) a correlation
between generalisation and small Tr(F ), and 2) de-
creasing Tr(F ) with increasing weight given to the
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Figure 2: Increase in target language (either de, es or
zh) validation set accuracy when fine-tuning on data in
the target language vs. trace of the FIM after training on
English, for the PAWS-X dataset (Yang et al., 2019).

consistency loss term. Additionally we see that di-
rectly penalising the FIM (models marked ‘fpen=’)
has a similar effect to these consistency losses.

Figure 2 shows the effect of small Tr(F ), i.e. flat
minima, on fine-tuning a model trained on English
data on another language. To obtain non-English
training data, we split the 2000 dev set examples
in two, leaving 1000 training examples in each
language and 1000 new dev examples. We see
that improvements on the non-English language
are correlated with flat minima.

We aim to confirm these initial results on more
datasets, and use our insights to develop better mul-
tilingual fine-tuning techniques.
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