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Abstract

General-purpose language models have
demonstrated impressive capabilities, perform-
ing on par with state-of-the-art approaches
on a range of downstream natural language
processing (NLP) tasks and benchmarks when
inferring instructions from very few examples.
Here, we evaluate the multilingual skills of the
GPT and T5 models in conducting multi-class
classification on non-English languages
without any parameter updates. We show
that, given a few English examples as context,
pre-trained language models can predict not
only English test samples but also non-English
ones. Finally, we find the in-context few-shot
cross-lingual prediction results of language
models are significantly better than random
prediction, and they are competitive compared
to the existing state-of-the-art cross-lingual
models and translation models.

1 Introduction

The progress in language model (LM) pre-
training (Peters et al., 2018; Devlin et al., 2019;
Radford et al., 2019; Yang et al., 2019; Liu et al.,
2019a; Brown et al., 2020; Liu et al., 2020a; Lewis
et al., 2020; Raffel et al., 2020; Gao et al., 2020a)
has led to the possibility of conducting few-shot
learning, that is, learning a new task using a small
number of examples without any further training
or gradient computation. Few-shot learning alle-
viates the cost for extensive labeled data, which
is beneficial since collecting high-quality labeled
data is resource-intensive and expensive. It also
reduces the cost for model fine-tuning, which re-
quires tremendous GPU or TPU resources. Few-
shot learning can be seen as a one-for-all plug-
and-play computational model that can be applied
to various natural language tasks, from sentiment
analysis for text classification to story generation,
provided only a small context (Brown et al., 2020).
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Figure 1: Accuracy vs. model size on English-Spanish
MNLU dataset. Cross-lingual in-context learning with
LMs (i.e., context with few English examples tested on
Spanish sentences) performs as well as models trained
in cross-lingual setting (Liu et al., 2020b) and transla-
tion baselines.

The idea of few-shot learning is also relevant
to address the low-resource issue in non-English
languages. Few-shot learning has been applied
to NLP tasks (Brown et al., 2020; Madotto et al.,
2020b; Lu et al., 2021; Perez et al., 2021; Liu et al.,
2021a,b; Cahyawijaya et al., 2021a). Common ap-
proaches to solve the low-resource issue are to pre-
train models with self-supervised learning using un-
labelled monolingual text data collected from vari-
ous resources available online (Wilie et al., 2020;
Le et al., 2020; Martin et al., 2020; Eddine et al.,
2020; Nguyen and Nguyen, 2020; Scheible et al.,
2020; Bhattacharjee et al., 2021; Lee et al., 2020;
Cahyawijaya et al., 2021b; Park et al., 2021) and
then apply pre-training on the source language and
fine-tune on the target languages (Schuster et al.,
2019; Lin et al., 2019; Winata et al., 2019, 2021;
Pfeiffer et al., 2020; Zheng et al., 2021; Lin et al.,
2021b). Conversely, the few-shot learning does
not need any training from the source and target
languages. Figure 1 shows how it is possible to uti-
lize pre-trained models on non-English languages,
such as Spanish, as the performance is not random,
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Figure 2: Example of the inference and query generation on the few-shot learning, where the source language and
target language are German and English, respectively.

and the performance increases as the models are
given more samples. We conjecture that pre-trained
models may be able to adapt to languages that are
similar to English. However, for many language
tasks, it is difficult to collect a large supervised
training dataset as language experts (e.g., linguists
or native speakers) are required to annotate the
data.

Another line of work is to apply cross-lingual
transfer on English with the same task as the target
languages (Ponti et al., 2018; Artetxe and Schwenk,
2019; Liu et al., 2019b; Lauscher et al., 2020; Liu
et al., 2020b, 2021c; Chen et al., 2021). How-
ever, such methods still need to apply a fine-tuning
step to update the model for fast adaptation, which
can be challenging for large pre-trained models –
some models require substantial memory capac-
ity – since the models have to be trained on high-
performing machines. Different from the afore-
mentioned method, in-context learning using an
LM does not allow any parameter updates. Thus,
the process does not need to compute and store the
gradients for backward propagation.

In this work, we investigate the practicality of
applying few-shot learning in the multilingual set-
ting for four languages, English, French, German,
and Spanish, on natural language understanding in-
tent prediction tasks using publicly available LMs
that are mainly trained on English data. We show
that, given a few English examples as context, pre-
trained LMs can predict not only English test sam-

ples, but also non-English ones (Figure 2). To
the best of our knowledge, no existing works have
studied these tasks in multilingual settings. We
conjecture that the English LMs can still produce
good results on languages that are closely related
to English. We construct the inference for the
multi-class prediction setup by extending the idea
from Madotto et al. (2020b) of applying multiple
binary predictions on each class. Instead of guid-
ing the model to generate true or false like in their
work, which is not consistent and sometimes gen-
erates other words –, we introduce maximum confi-
dence prediction. This method considers the con-
fidence of predicting a certain label to provide a
prediction. We design this as a multiple-choice task
in which the confidence of the prediction for all pos-
sible classes is compared. Each class’s confidence
score is computed by normalizing the logits of gen-
erating the next boolean token given the prompt as
the context. This method is considered to be more
scalable than the simple k-way few-shot learning,
where we need to put all data in a single prompt,
since we only have a fixed maximum sequence
length and, in the deployment, each forward step
can be run in parallel to speed up the process. To
increase the difficulty of the challenge, we also pro-
pose a cross-lingual task, where the context and
query are in different languages.

Overall, we find that conditional generative LMs,
such as the GPT-2 (Radford et al., 2019), GPTNEO
models (Gao et al., 2020a), and T5 models (Raffel
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et al., 2020) have the capability to predict non-
English languages, and adding more shots and us-
ing larger models achieves a substantial increment
in performance, making it significantly better than
random, which indicates the models are able to un-
derstand the prompt. We only focus on GPT and T5
models. T5 models do not perform as well as GPT
models, which might be caused by the pre-training
strategy. Experimental results in the cross-lingual
setting demonstrate that pre-trained LMs make cor-
rect predictions. To summarize, our contributions
are as follows:

• We study few-shot learning in the multilingual
setting on four languages without any gradi-
ent updates. We use the publicly available
GPT and T5 LMs, and compare the results
to those from the zero-shot and fine-tuning
approaches.

• We propose a simple and straightforward ap-
proach to perform few-shot learning on multi-
class classification by applying binary predic-
tion and considering the confidence of predict-
ing the boolean tokens.

• We display the zero-shot, one-shot, and many-
shot proficiency of the LMs in the cross-
lingual setting when the language of the
prompt is different from the target language.

2 Few-shot Multilingual Learners

First, we briefly define the notation of the input
and output of the task, and then we introduce our
method to design prompts for few-shot in-context
learning. 1

2.1 Notation and Tasks

Let us define D as the distribution over the dataset
and P as the prompt that we use as the input of
the LM θ. The prompt P = [Dpos, Dneg, Q] is a
concatenation of few-shot samples: positive sam-
ples Dpos, negative samples Dneg, and the query
Q, where Dpos, Dneg ∼ D. Dpos is a sample with
a label that is the same as the query, and Dneg is a
sample that is taken from the datasetD with a label
other than the query. θ takes P as the input of the
model, and the LM generates a word y. We define
the task Ts→t, where s is the source language and
t is the target language.

1The code is released at https://github.com/
gentaiscool/few-shot-lm.

In this paper, we focus on the intent detection
task in the monolingual and cross-lingual settings.
In the monolingual setting, the source language is
the same as the target language, and in the cross-
lingual setting, we take the source language as dif-
ferent from the target language (s 6= t). We design
our task as a multiple-choice problem, in which
each sample has a label l ∈ L, where L is the set
of possible labels. We predict the boolean (true or
false) for each sample and take the highest predic-
tion confidence.

2.2 Prompt Generation

We define the task by designing prompts to perform
few-shot learning. We design our task as a binary
classification for multi-class prediction by follow-
ing Madotto et al. (2020b). The idea is to guide
the model to predict the boolean tokens, true and
false. We examine the usage of two types of LMs,
GPT and T5 models, and we construct prompts
specific to each model. We use a specific way to
probe the LMs to perform the few-shot prediction
since they are trained with different learning objec-
tives. Table 1 shows the format of the prefix we
use for the GPT and T5 models. Xi is one of the

Model Prompt

GPT [SAMPLES] Q→
T5 [SAMPLES] Q→ [MASK]

[SAMPLES]
Format Example

X1→ true\n zeige mir meine wecker=>get_alarm=true\n
X∗1 → false\n entferne alle wecker=>get_alarm=false\n
· · · · · ·
Xk → true\n kann ich meine wecker sehen?=>get_alarm=true\n
X∗k → false\n keinen sound bitte=>get_alarm=false\n

Table 1: Prompt format given a few German examples
as context.

few-shot samples, and X∗i is the sample from other
classes. For the GPT models, we only input the
prefix by concatenating positive and negative sam-
ples with the query. Specifically for the T5 models,
we add an additional token after the query and let
the model predict that particular token during the
generation step.

Figure 2 shows an example of how we generate
the prompt in k-shot settings. We create L prompts
and apply L forward steps for each sample. For
each prompt, k positive and negative samples are
randomly drawn from the dataset. It is worthwhile
to note that the sampling method is similar to k-way
few-shot learning, but the samples are not merged

https://github.com/gentaiscool/few-shot-lm
https://github.com/gentaiscool/few-shot-lm
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into a single prompt. We do this because we want
to give more shots as the prompt to the LMs as
they have a limitation on the number of tokens they
can accept as input (1,024 tokens in GPT-2XL and
2,048 tokens in GPTNEO). We add a special token
\n as a separator between each sample, as shown
in Table 1.

2.3 Maximum Confidence Prediction

To get the final prediction of each sample, first, we
compute the score of predicting the next boolean
(true or false 2) given the prompt Xi for label i:
Pθ(y = true|Xi) and Pθ(y = false|Xi) from
the prediction distribution. Then, we normalize the
score to get the probability of generating the true
token to measure how much confidence the LM
has to predict label i. We collect all the confidence
scores over all label options and choose the highest
confidence score among them, as follows:

MC(X,L) = argmax
i∈L

Pθ(y = true|Xi)∑
b Pθ(y = b|Xi)

, (1)

where b ∈ {true,false}. We take the label
with the highest confidence score as MC(X,L).

2.4 Choices of Samples

For in-context learning, choosing the order of sam-
ples is essential (Lu et al., 2021). Here, we examine
the impact of the order of the samples. We con-
struct the probing set in two ways: (1) shuffle the
few-shot samples and measure the variance in per-
formance after changing their order, and (2) arrange
the positive samples before the negative samples.
We find that the latter works well, specifically on
the T5 models.

3 Baselines

In this work, we compare the few-shot learning
performance with other common approaches: zero-
shot, zero-shot cross-task, and fine-tuning.

3.1 Zero-shot Cross-Task

One way to solve zero-shot prediction is by us-
ing entailment models to calculate the entailment
score between sequences and labels. Given a pre-
trained LM ψ with an entailment head, a set of
hypotheses H , and possible labels L, the model

2Notice that some tokenizers (e.g., T5) splits "true" in two
sub-tokens. We compute the score of the first sub-token only
since it is significantly different for the two label (i.e. "tr" and
"fal").

accepts two inputs, the hypothesis h ∈ H and
label l ∈ L, and generates the entailment score
given any combinations of the hypothesis and label
Pψ(y = entail|h, l):

ES(H,L) = argmax
h,l∈{H,L}

Pψ(y = entail|h, l). (2)

3.2 Zero-shot In-Context Learning
This approach is very similar to our few-shot ap-
proach. It does not need any samples, and the
model is only given natural language instruction.
However, instead of using the prompt like in the
few-shot setting, we can set up the prompt in a
question-and-answer (Q&A) format as follows:

Q: Is ‘<INTENT>’ the intent of ‘<TEXT>’? A:. (3)

3.3 Fine-tuning
Fine-tuning is the most common approach to up-
dating a pre-trained model’s weights when training
with a labeled dataset. The advantage of this ap-
proach is strong performance since we give super-
vised signals with the correct labels to the model.
For fine-tuning, we use the same sets of few-shot
samples as in the in-context learning. In Sec-
tion 4.2, we provide the hyper-parameters used
in the experiments.

4 Experiments

4.1 Datasets and Metrics
We use an English natural language understanding
(NLU) dataset, SNIPS (Coucke et al., 2018), and
two multilingual NLU datasets, MTOP (Li et al.,
2021) and Multilingual NLU (MultiNLU) (Schus-
ter et al., 2019). MTOP includes four languages,
English (en), French (fr), German (de), and
Spanish (es), and Multilingual NLU includes two
languages, English (en) and Spanish (es). We
measure the model performance by calculating the
average and standard deviation of the accuracy with
three runs.

4.2 Experiment Settings
We set up the experiment in two settings: mono-

lingual and cross-lingual. In the monolingual set-
ting, we test the ability of the model to conduct
few-shot in-context learning on four languages: En-
glish (en), French (fr), German (de), and Spanish
(es). In the cross-lingual setting, we test its abil-
ity to predict a query from a non-English language
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Models SNIPS MTOP MultiNLU

en de en es fr en es

Random 14.29 15.07 15.25 15.55 14.36 8.33 8.33
Full-training SOTA 99.00‡ 88.80† 94.00† 90.10† 89.60† 99.11∗ 98.90∗

Zero-shot Cross-Task Prediction

BARTLARGE 0.4B 74.43 24.80 43.41 36.06 24.77 65.60 34.77
XLM-RLARGE 0.6B 68.00 54.30 53.37 51.67 51.99 77.79 66.35

Few-shot Learning (K-shot)

GPT-2 0.1B 39.33 ± 8.58 40.03 ± 6.34 35.46 ± 0.92 36.18 ± 2.12 41.16 ± 5.65 51.59 ± 12.83 37.56 ± 7.14
GPT-2MEDIUM 0.3B 65.71 ± 2.80 52.94 ± 5.12 63.35 ± 3.01 54.33 ± 4.75 50.6 ± 2.44 72.21 ± 14.88 50.25 ± 4.99
GPT-2LARGE 0.8B 71.43 ± 10.27 50.94 ± 6.63 59.70 ± 4.50 52.38 ± 2.65 44.75 ± 1.11 62.36 ± 13.82 58.04 ± 5.28
GPT-2XL 1.6B 78.43 ± 3.16 78.43 ± 3.16 73.93 ± 1.21 56.61 ± 2.02 45.21 ± 2.54 79.04 ± 5.05 64.74 ± 7.64
GPTNEO 1.3B 84.19 ± 2.78 67.17 ± 2.50 82.40 ± 1.90 73.51 ± 0.95 66.3 ± 1.29 89.70 ± 1.28 85.77 ± 2.53
GPTNEO 2.7B 91.24 ± 0.68 71.57 ± 5.94 81.51 ± 0.39 76.94 ± 0.83 70.31 ± 1.99 83.76 ± 3.14 87.82 ± 1.55
GPTNEO-J 6B 93.38 ± 0.76 80.97 ± 3.21 89.66 ± 0.50 84.18 ± 0.32 85.04 ± 1.18 94.32 ± 1.14 88.54 ± 6.18
T5LARGE 0.8B 23.57 ± 8.93 41.84 ± 7.63 36.02 ± 5.26 49.49 ± 6.32 40.41 ± 5.97 37.57 ± 15.23 21.20 ± 6.51
T53B 3B 46.52 ± 6.69 50.81 ± 6.45 46.17 ± 4.06 46.45 ± 4.39 44.38 ± 0.22 31.46 ± 18.18 31.60 ± 14.90

GPTNEO 2.7B (ordered) 86.71 ± 1.62 55.69 ± 3.45 55.12 ± 4.01 50.77 ± 4.41 50.70 ± 2.47 63.33 ± 7.14 61.51 ± 1.63
T5LARGE 0.8B (ordered) 25.90 ± 18.51 63.06 ± 4.56 51.92 ± 3.90 62.71 ± 6.30 55.91 ± 3.82 38.97 ± 14.80 63.10 ± 4.46
T53B 3B (ordered) 93.00 ± 3.00 74.11 ± 2.69 65.03 ± 1.87 66.97 ± 1.35 68.89 ± 2.51 80.12 ± 3.95 86.60 ± 2.40

Fine-tuning (40-shot)

mBERT 0.2B 88.57 ± 3.14 25.21 ± 2.31 41.44 ± 5.59 33.82 ± 10.08 16.54 ± 5.54 84.88 ± 1.59 87.87 ± 3.29
XLM-RBASE 0.3B 87.95 ± 1.39 27.47 ± 11.90 37.03 ± 5.11 27.16 ± 5.51 13.8 ± 6.50 77.06 ± 3.16 74.85 ± 1.53

Table 2: Zero-shot and few-shot results in the monolingual setting. The SOTA results are taken from †Li et al.
(2021), ‡Qin et al. (2019), and ∗Schuster et al. (2019).

with the English context (en→XX). In the few-shot
in-context learning, we use k-way-few-shot clas-
sification, taking k samples. For each model, we
take k ∈ [0, 5,K], where K ≤ 40 is the largest
number of few-shot samples that can be passed to
the model as input and is divisible by 10 without
exceeding the maximum input token limit. We uti-
lize an NVIDIA Tesla V100 16GB GPU to run the
inference so that the model is ensured to fit in a
single GPU, and we use 16-bit precision.

Model details We run experiments on a variety
of publicly available models:3 four sizes of GPT-2
models (0.1B, 0.3B, 0.8B and 1.6B), three sizes
of GPTNEO models (1.3B, 2.7B, and 6B), and two
sizes of T5 models (0.8B and 3B). Table 3 shows
the details of each pre-trained model.

Baselines We use the same sets of few-shot sam-
ples for the baselines. We run fine-tuning on the
pre-trained models mBERT (Devlin et al., 2019)
and XLM-R (Conneau et al., 2020), and also com-
pare our models with the zero-shot cross-task mod-
els using pre-trained models XLM-R, fine-tuned
on XNLI (Conneau et al., 2018), and BART, fine-

3The models except GPTNEO-J are taken from
https://huggingface.co/. The GPTNEO-J model
is taken from https://github.com/kingoflolz/
mesh-transformer-jax/

tuned on MNLI (Williams et al., 2018);4 a random
baseline; and state-of-the-art results reported on
each dataset. For the finetuning, we use a learning
rate of 5e-5 with a decay of 0.9 for every epoch,
and a batch size of 32. We apply an early stopping
after 5 epochs without any improvement on the
validation set.

Model Name nparams nlayers nhidden nffn

GPT-2 0.1B 12 768
GPT-2MEDIUM 0.3B 24 768 -
GPT-2LARGE 0.8B 36 1,280 -
GPT-2XL 1.6B 48 1,600 -
GPTNEO 1.3B 24 2,048 -
GPTNEO 2.7B 32 2,560 -
GPTNEO-J 6B 28 4096 16,384

T5LARGE 0.8B 24 1,024 4,096
T53B 3B 24 1,024 16,384

Table 3: Model architecture.

4The XLM-R model fine-tuned with XNLI data can
be accessed at https://huggingface.co/joeddav/
xlm-roberta-large-xnli. The BART model fine-
tuned with MNLI data can be accessed at https://
huggingface.co/facebook/bart-large-mnli

https://huggingface.co/
https://github.com/kingoflolz/mesh-transformer-jax/
https://github.com/kingoflolz/mesh-transformer-jax/
https://huggingface.co/joeddav/xlm-roberta-large-xnli
https://huggingface.co/joeddav/xlm-roberta-large-xnli
https://huggingface.co/facebook/bart-large-mnli
https://huggingface.co/facebook/bart-large-mnli
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Models MTOP MultiNLU

en→de en→es en→fr en→es

Fine-tuning (all-shot on source language, zero-shot on target language)

Seq2Seq w/ CRISS (Li et al., 2021) 36.10 48.60 46.60 -
Seq2Seq w/ XLM-R (Li et al., 2021) 42.30 50.30 43.90 -
NLM (Liu et al., 2021d) 54.91 59.99 58.16 -
X2Parser (Liu et al., 2021d) 56.16 60.30 58.34 -
Multi CoVe (Schuster et al., 2019) - - - 53.89
Translate-Train (Liu et al., 2020b) - - - 85.39
MTL (Liu et al., 2020b) - - - 87.88

Few-shot Learning (K-shot)

GPT-2 0.1B 23.89 ± 1.52 27.10 ± 3.19 26.14 ± 0.54 38.60 ± 3.54
GPT-2MEDIUM 0.3B 39.61 ± 5.42 41.81 ± 4.66 42.40 ± 3.84 40.40 ± 10.48
GPT-2LARGE 0.8B 30.94 ± 4.45 34.69 ± 6.50 33.04 ± 4.56 23.99 ± 14.02
GPT-2XL 1.6B 42.88 ± 4.94 48.43 ± 4.42 50.67 ± 4.50 51.31 ± 9.87
GPTNEO 1.3B 56.14 ± 2.75 63.14 ± 2.52 60.25 ± 3.32 64.82 ± 5.94
GPTNEO 2.7B 58.27 ± 1.28 64.79 ± 1.69 62.30 ± 1.60 65.91 ± 6.42
GPTNEO-J 6B 79.41 ± 1.18 81.57 ± 0.83 77.85 ± 1.63 82.66 ± 4.19
T5LARGE 0.8B 37.14 ± 5.44 38.14 ± 3.20 33.53 ± 4.85 14.95 ± 16.34
T53B 3B 35.35 ± 7.07 34.64 ± 6.21 37.26 ± 8.68 14.11 ± 14.01

GPTNEO 2.7B (ordered) 0.8B 42.23 ± 3.24 48.62 ± 2.60 46.30 ± 3.02 47.83 ± 5.73
T53B (ordered) 3B 52.23 ± 4.29 52.74 ± 3.20 49.72 ± 5.37 50.42 ± 6.01

Table 4: Few-shot results in the cross-lingual setting on MTOP and MultiNLU datasets.

5 Results and Analysis

5.1 Model Performance

Tables 2 and 4 show the results in the monolingual
and cross-lingual settings, respectively. The tables
show that the performance improvement is highly
related to the size of the pre-trained model, and the
performance gap between the fully trained state-
of-the-art model and the few-shot learning models
decreases when we use larger models, indicating
the usefulness of utilizing models of bigger sizes.
The performance of the models with few-shot learn-
ing is considered promising as they are not trained
at all, and the best model’s performance gap with
the fine-tuned model is less than 10%.

Few-shot vs. Fine-tuning. Comparing the per-
formance of generative models to fine-tuning, it
is clear that we can achieve higher accuracy with-
out any training. However, in this experiment, we
acknowledge GPT and T5 models we use for in-
context learning are larger than the models we fine-
tune, and few-shot learning is much more efficient
since the models are not required to store the in-
termediate memory. In terms of inference speed,

the few-shot models require more time to run an
inference step, which may cause a bottleneck when
the number of few-shot samples is relatively large.
This is the limitation of this method, and reduc-
ing the inference time is an open research area to
improve the efficiency of in-context learning.

Zero-shot cross-task baselines. Surprisingly,
the zero-shot cross-task models are able to pre-
dict the samples much better than the random
baseline, particularly on English tasks. Overall,
the XLM-RLARGE model performs better than the
BARTLARGE models in all tasks except SNIPS.

GPT vs. T5 models. In general, the GPT mod-
els outperform the T5 models in all language pairs
and datasets in a head-to-head comparison: Both
GPT-2LARGE and T5LARGE have a similar number
of parameters (0.8B), but they have a significant
performance difference. A similar pattern can also
be observed on larger models, such as GPTNEO
2.7B and T53B 3B. Although the T5 models per-
form worse than the GPT models, they do not have
a maximum token size for the input, as the GPT
models do, which is one of the advantages of using
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them. On the other hand, we find that changing the
sample order tremendously affects the performance
of the T5 models. As shown in Tables 2 and 4, the
performance increases substantially when we sort
the few-shot samples based on their label (i.e., first
all positive and then all negative examples). Con-
versely, the GPT models suffer loss in performance.
Thus, we can make the conclusion that changing
the sample order may produce high variance in the
results, as also shown in (Lu et al., 2021).

Effectiveness on non-English languages.
Based on the results, the performance of the
models is lower in the non-English languages than
in English. These results are expected since the
pre-trained models are mostly trained on English
data. However, the differences in performance
are marginal. This finding may indicate that
our few-shot learning method can be effectively
utilized for languages that are in the same language
family as English, such as French, German, and
Spanish, but this will require further investigation
in the future.

Cross-lingual results. Based on the results in Ta-
ble 4, we can see that the generative models are
able to use the context from English to predict
the sample in non-English languages. The cross-
lingual setting is considered harder than the mono-
lingual one since the models need to contextualize
and understand the source and target languages to
predict the test samples correctly. In general, the
trend of the results in the cross-lingual setting is
similar to the monolingual setting. In the MTOP
dataset, we find that the models generally achieve
higher performance for en→es than for the other
two target languages (de and fr). In MultiNLU,
our GPTNEO-J closes the gap with the existing state-
of-the-art baseline with fine-tuning from Liu et al.
(2020b) underperforming it only by a close margin
of around 4.2%, and the GPTNEO-J performance is
only less than 3% worse than that of the Translate-
Train model. These results show a promising new
direction in the zero-shot cross-lingual research
that can be applied to other datasets and language
pairs.

5.2 Ablation Study
To further understand how much data we need for
the in-context learning, we conduct experiments
with different numbers of few-shot samples, in-
cluding zero-shot experiments on the MTOP and
MultiNLU datasets.

MTOP dataset. Figures 3, 4, 5, and 6 illustrate
the results with different numbers of samples on
the MTOP dataset in the monolingual setting. We
show a different set of k-shot results for each model
according to the maximum samples that can be
used in the model as input. The results consistently
improved as the number of shots increases. In-
terestingly, the QA style’s zero-shot strategy can
outperform random prediction only on two or three
models in each language, and the others are worse.
The fine-tuning results on MTOP are thus far worse
than those of few-shot learning.

MultiNLU dataset. Figures 7 and 8 illustrate
the results with different numbers of samples on
the MultiNLU dataset in the monolingual setting.
The results on MultiNLU for the models with fine-
tuning are closer to those of few-shot learning than
those on the MTOP dataset. The reason may be the
number of labels that the MTOP dataset has com-
pared to MultiNLU. As a result, the zero-shot per-
formance on the GPT models is sometimes worse
than that of the random baseline.

6 Related Work

6.1 Few-shot In-Context Learning

Recent work on few-shot in-context learning uses
LMs to solve NLP tasks (Petroni et al., 2019;
Brown et al., 2020; Gao et al., 2020b; Madotto
et al., 2020b; Zhao et al., 2021; Schick and Schütze,
2021; Lin et al., 2021a). In this approach, we select
the appropriate prompts to trigger the LMs to be-
have so that they can predict the desired output (Liu
et al., 2021b). However, the prompts have to be
engineered to allow the LM to generate a text ap-
propriate to solve the task. Learning to calibrate
the few-shot results is also essential to reduce the
model’s performance variance (Zhao et al., 2021),
and the selection criteria in choosing the prompts
are also important (Perez et al., 2021). In another
stream of work, Shin et al. (2020); Li and Liang
(2021) proposed an automated method to create
prompts for a diverse set of tasks by gradient-based
tuning instead of manually searching for a good
prompt. Using such a method, may allow us to
find an optimal prompt easier, it is very difficult
to discover the optimal prompts for complicated
natural language processing tasks, such as semantic
parsing (Liu et al., 2021b).
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Figure 3: The results on German (de) MTOP dataset
with GPT models.

Figure 4: The results on English (en) MTOP dataset
with GPT models.

Figure 5: The results on Spanish (es) MTOP dataset
with GPT models.

Figure 6: The results on French (fr) MTOP dataset with
GPT models.

Figure 7: The results on English (en) multilingual NLU
dataset with GPT models.

Figure 8: The results on Spanish (es) multilingual NLU
dataset with GPT models.

6.2 Pre-trained Language Models

Recent advances in pre-trained LMs have been
focused on building pre-trained encoders, such
as BERT (Devlin et al., 2019), RoBERTa (Liu
et al., 2019a), ELMO (Peters et al., 2018), ULM-
FiT (Howard and Ruder, 2018), ELECTRA (Clark

et al., 2019), XLM (Conneau and Lample, 2019),
and XLM-R (Conneau et al., 2020; Goyal et al.,
2021), decoder-only models, such as GPT mod-
els (Radford et al., 2019; Brown et al., 2020) and
encoder-decoder models, such as T5 (Raffel et al.,
2020), BART (Lewis et al., 2020), and their mul-
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tilingual versions, mT5 (Xue et al., 2021) and
mBART (Liu et al., 2020a).

Pre-trained encoders have been used to improve
the contextualized representations of multilingual
systems in various NLP tasks, for example, dia-
logue systems (Liu et al., 2020b, 2021d; Li et al.,
2021), code-switching sequence labeling (Aguilar
et al., 2020; Winata et al., 2021; Winata, 2021), and
multilingual speech recognition (Datta et al., 2020;
Winata et al., 2020). Meanwhile, the pre-trained
encoder-decoder models, have been used for vari-
ous sequence generation tasks, such as summariza-
tion (Raffel et al., 2020), conversational agents (Lin
et al., 2020b,a; Madotto et al., 2020a; Wu and
Xiong, 2020; Hosseini-Asl et al., 2020; Lin et al.,
2021b), and knowledge grounding (Chen et al.,
2020; Zhao et al., 2020).

7 Limitation and Future Work

More Languages In this paper, we explored only
cross-lingual transfer learning from and to Latin-
based language (e.g., English to Spanish / French
/ German). Extending our approach to non-Latin
languages (e.g., Thai, Chinese, etc.) is challeng-
ing for two reasons: 1) we are currently using En-
glish tokenizers which are known to fails, or they
assign UNK tokens when prompt with non-Latin
characters, and 2) a possible little, or absent, the
named entity overlap between the source and target
language, which could make the English prompt
completely irrelevant. The latter suggests an in-
teresting future work, where we could study the
correlation between performance and word (or to-
ken) overlapping of the source (en) and the target
language samples.

More Datasets and Models Intent recognition is
an important task, especially in multiple language
scenarios. In future work, we plan to include the
missing languages of MTOP and MultiNLU, and
to add more languages from the MultiATIS++ (Xu
et al., 2020) which consists of a total of 9 languages,
that is, English, Spanish, German, French, Por-
tuguese, Chinese, Japanese, Hindi, and Turkish.
Moreover, to cope with the tokenization issues, we
would like to explore multilingual LMs such as
MT5 (Xue et al., 2021).

8 Conclusion

This paper demonstrates the multilingual skills of
pre-trained LMs, GPT and T5, in conducting in-
context learning without parameter updates. This

work is our initial attempt to show the effectiveness
of in-context learning in the multilingual and cross-
lingual setting. It covers four different languages
and explores the possibility of conducting efficient
inference on low-resource tasks. We find that LMs
can predict samples correctly, significantly better
than the random prediction, in cross-lingual tasks
with no training examples of the target languages.
We would like to investigate further the applicabil-
ity of this method to other tasks and languages in
future work.
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Figure 9: The acc results on English (en) SNIPS with
GPT models.

Figure 10: The f1 results on English (en) SNIPS with
GPT models.

Figure 11: The acc results on the cross-lingual setting,
English-German (de) MTOP dataset with GPT models.

Figure 12: The f1 results on the cross-lingual setting,
English-German (de) MTOP dataset with GPT models.

Figure 13: The acc results on the cross-lingual setting,
English-Spanish (es) MTOP dataset with GPT models.

Figure 14: The f1 results on the cross-lingual setting,
English-Spanish (es) MTOP dataset with GPT models.
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Figure 15: The acc results on the cross-lingual setting,
English-French (fr) MTOP dataset with GPT models.

Figure 16: The f1 results on the cross-lingual setting,
English-French (fr) MTOP dataset with GPT models.

Figure 17: The acc results on the cross-lingual setting,
English-Spanish (es) multilingual NLU dataset with
GPT models.

Figure 18: The f1 results on the cross-lingual setting,
English-Spanish (es) multilingual NLU dataset with
GPT models.


