
A Generative Process for Lambek Categorial Proof Nets

Jinman Zhao and Gerald Penn
Department of Computer Science

University of Toronto
Toronto, Canada

{jzhao,gpenn}@cs.toronto.edu

Abstract

In this work, we present a stochastic, generative
model for Lambek categorial proof sequents
(Lambek, 1958). When a set of primitive cat-
egories is provided, this model, called PLC
is able to generate all sequents of categories
that are derivable in the Lambek Calculus with
it. We also introduce a simple method to nu-
merically estimate the parameters of the model
from an annotated corpus. Then we compare
our model with probabilistic context-free gram-
mars (PCFGs). We show that there are several
trade-o↵s with respect to using PLC in place of
PCFG. Overall, PLC provides a layer of gener-
alization in exposing numerical parameters of
the formalism that is not directly accessible to
PCFGs.

1 Introduction

Stochastic variants of di↵erent grammars have been
proposed over the last several decades, and stochas-
tic methods are very important for natural language
processing. For example, stochastic context-free
grammars (Huang and Fu, 1971), also known as
probabilistic context-free grammar(PCFG), assign
a probability to each production rule, normalized
over their left-hand sides. Maximum Likelihood Es-
timation (MLE) and the Inside-Outside algorithm
(Lari and Young, 1991) can be used to estimate
these rule probabilities, given a training set. Other
stochastic models have been proposed for Combi-
natory Categorial Grammar (Osborne and Briscoe,
1997). Bonfante and de Groote (2004) proposed a
stochastic model for Lambek Categorial Grammar.
In their work, probabilities are assigned to each leaf
of a proof net, with the interpretation that a leaf
will appear as the left conclusion of an axiom link
with this probability. Probabilities are not attached
to derivation rules and their model is fully lexical-
ized. It is not, however, generative, in the sense
that it cannot deterministically produce proof nets

from no input. In this respect, it more resembles
a supertagger or an automaton-based probabilistic
model, such as those that have been proposed for
TAG (Bangalore and Joshi, 2010) or dependency
grammar (Kübler et al., 2009). These are very use-
ful for parsing. On the other hand, it would still
be very instructive to have a generative process for
Lambek proof nets more akin to a PCFG.

Pentus proved that both Lambek Grammars and
product-free Lambek Grammars are context-free
(Pentus, 1993, 1997). Using those constructive
proofs, it is possible to convert a PCFG to a gener-
ative model of Lambek sequent derivability. The
conversion takes exponential time as a function of
the original PCFG’s size, however, and what the
numerical parameters of the PCFG correspond to
in terms of proof nets provides little additional illu-
mination. What we propose here is a “native” gen-
erative process defined directly for Lambek proof
nets.

While the incremental enforcement of certain
semantic criteria as necessary side conditions to
proof-net construction (Roorda, 1991) is very di�-
cult when a candidate sequent is known at the out-
set (leading, in one view, to the NP-completeness
of the sequent derivability problem), in the genera-
tive orientation, it turns out not to be so di�cult, as
we show below. We also provide a simple param-
eter estimation method, and compare the results
of training a PLC model through MLE to those of
training a PCFG on an analogous annotated corpus.

2 Preliminaries

2.1 Lambek Calculus

The Lambek calculus was introduced by Lambek
(1958). Given a set of primitive types, Prim =
{p1, p2, p3, ...}, and, in this work, only the two
connectives \, /, we have the following rules:

Proceedings of the 17th Meeting on the Mathematics of Language, pages 1–13, Montpellier (online),
December 13, 2021. © 2021 Association for Computational Linguistics

1

�X ! Y
�! Y/X

(/R)

X�! Y
�! X\Y (\R)

�! X �Y⇥! Z
�Y/X�! Z

(/L)

�! X �Y⇥! Z
��X\Y⇥! Z

(\L)

�! X �X⇥! Y
��⇥! Y

(CUT)

along with the axioms, pi ! pi, for primitive types
only. Note that we use the formulation of Pentus
(1993). His restriction of these axioms to primi-
tives will be important to us below. The primitive
types, together with their closure under the avail-
able connectives, will be called categories.

We take Lambek Categorial Grammar(LCG) to
be a 3-tuple G = (⌃,D, f), where ⌃ is a finite al-
phabet, D is a distinguished category, and f is a
mapping of members of the alphabet t 2 ⌃ to a
single category, where the possible categories have
been derived from the set Prim by induction over
the connectives. Note that this is a departure from
Pentus (1993), in that there is no lexical ambiguity
here, as our input will consist of candidate proof se-
quents, in which a single category is already known
for each word. In general, f (t) is a finite set of
categories. Lambek (1958) did not define lexical
mappings.

2.2 Proof Nets
Roorda (1991) adapted the proof nets of linear logic
to the Lambek calculus. The treatment here is taken
from Penn (2004). A (Lambek) proof net consists
of a lexically unfolded sequence of terminal formu-
lae, a spanning linkage of the resulting sequence of
axiomatic formulae and a variable substitution.

As a running example of how to parse with a
proof net, let us consider the sequent:

S/(NP\S) (NP\S)/NP NP |= S

2.2.1 Labelled Terms
Given a sequent, the first step is to add polarities to
each category. By convention, all LHS categories
receive negative polarity and the RHS category re-
ceives positive polarity. We also label each formula
with a variable. The result on our example would
be:

S/(NP\S)�:a (NP\S)/NP�:b NP�:c S +:d

2.2.2 Lexical Unfolding
We then apply the following substitution rules to
each labelled category from the previous step until
no more rules can be applied:

(A\B)�:t ! A+:u B�:tu
(A\B)+:v! B+:v0 A�:u[v := �u.v0]
(A/B)�:t ! A�:tu B+:u
(A/B)+:v! B�:u A+:v0[v := �u.v0]

Here, we are expanding every labelled category
into a string of labelled categories until only primi-
tive labelled types remain. Note that when positive-
polarity categories unfold, they add new variables,
u and v0. We will refer to v as a lambda node
or lambda variable when this happens, in honour
of the correspondence between these labels and
lambda-terms in the corresponding labelled deduc-
tion system (Roorda, 1991). u and v0 will likewise
be referred to as the daughters of v.

The above example produces:

Note that negative-polarity categories are gener-
ally labelled with strings of variables, not merely
one variable.

2.2.3 Axiomatic Linkage
Next, we must link matching primitives of opposite
polarities together in a half-planar graph. Each
polarized primitive must be linked exactly once.
One possible linkage for the above example is:

The edges of this half-planar graph will be
known as axiom links.

2.3 LC-graph construction
The first two steps in this process are guaranteed
to succeed exactly once. The third step is not —
a half-planar linkage may not exist or more than
one may exist. Furthermore, even if one does exist,

2

the fourth step below, which can be undertaken in
parallel, may fail, requiring the search for more
half-planar linkages to continue.

Given a sequence of axiomatic formulae and
a partial linkage, every link induces the addition
of one or more edges to an LC-graph, in which
every node corresponds to a single variable in the
category labels.

Let the candidate sequent’s LC-graph be a di-
rected graph G = hV, Ei, such that V is the set of
all variables that appear in its category labels and
E is the smallest set such that:

• for every v 2 V , if v is a lambda-variable,
then for both daughter variables of v, u and v0,
(v, u) 2 E, and (v, v0) 2 E, and

• for every axiom link matching p+ : u and
p� : t and for every v in the string t, (u, v) 2 E.

The LG-graph for above linkage and sequence
of axiomatic formulae is:

2.3.1 Integrity Criteria
Penn (2004) proved that an LCG sequent is deriv-
able i↵ the following three criteria are true of the
LC graph, G, of some axiomatic linkage:

• I(1) there is a unique node in G with in-
degree 0, from which all other nodes are path-
accessible.

• I(2) G is acyclic.

• I(3) for every lambda-node v 2 V , there is a
path from its plus-daughter, v0, to its minus-
daughter, u.

• I(CT) for every lambda-node v 2 V , there
is a path in G, v x, such that x labels a
negative-polarity category, x has out-degree 0
and there is no lambda-node v0 2 V such that
v v0 ! x.

The second criterion can be enforced incremen-
tally. In general, it appears that the others may

result in a violation that would cause backtrack-
ing and the selection of other axiomatic links in
the third step. The value of annotating proof nets
with probabilities inheres in its ability to direct us
towards axiom links that are likely to lead to the
successful construction of a proof net.

3 Generative Process

A generative process is not necessarily just for pars-
ing. It can begin with no input whatsoever, and gen-
erate a derivable sequent, along with a numerical
score that could correspond to the probability of a
corresponding string of words. It can also be made
to backtrack after every output sequent, thereby
enumerating an infinite sequence of derivable se-
quents.

Note that in our formulation of the generative
process here, however, there is no guarantee that a
sequent in fact corresponds to a string of words. To
achieve this, we must condition our process to stop
only at categories that are attested in the lexicon.
What we present here is a generative process for
derivable sequents.

To generate any well-formed sequent, we may
begin only with p ! p, for a primitive type p.
Note that p is not required to be D, the distin-
guished category of an intended grammar, and be-
cause there is no requirement that D be primitive,
some choices of D will not be allowed here. Never-
theless, because well-formed proof nets are closed
under cyclic permutations of their polarized prim-
itive categories, we can assume without loss of
generality that the right-hand side of the generated
sequent is a primitive category.

Our generative process proceeds in two phases.
Both expand the proof net as well as its correspond-
ing LC graph. The first phase adds non-lambda
nodes to the LC graph, and the second phase adds
lambda nodes to the LC graph. Corollary 4.14 will
prove that any proof net can be generated in this
fashion: all of the non-lambda nodes first, followed
by all of the lambda nodes.

Adding non-lambda nodes a↵ects the number of
axiomatic formulae; adding lambda nodes does not.
Unlike the method outlined in the previous section
for derivability when an input candidate sequent is
given, the correctness conditions of the LC-graph
will be satisfied throughout the derivation. They
will therefore be satisfied in the final proof net.

We will need the following definition for grow-
ing larger categories from smaller categories:

3

Definition 3.1 (Term tree). Every labelled cate-
gory in a sequent corresponds to a binary tree of
labelled categories. Each subtree in the term tree is
rooted in a labelled category X+/� : v, where X is
a category and v is a sequence of variables. Every
interior subtree has a positive child and a negative
child, and is licensed by one of the rules shown in
Section 2.2.2.

Figure 1 shows the term tree of (A/B)/C� : a as
an example. Unlike Section 2.2.2, we will think
of term trees as corresponding not to top-down
unfoldings of complex categories, but to bottom-
up compositions of more complex categories from
simpler categories.

(A/B)/C�:a

C+:bA/B�:ab

B+:cA�:abc

Figure 1: An example term tree.

3.1 Adding Non-lambda Nodes
This phase of the process consists of the iteration
of the following steps in sequence zero or more
times, until we elect to stop. Each iteration will
add one more link and one more matching pair of
axiomatic primitives (of opposite sign).

Suppose, for example, that we have already de-
rived the following proof net:

We first pick any negative term (not a subterm)
from the existing sequent, e.g., f1 = A� : a, as the
redex. Then we add two new, adjacent polarized
primitives, connected by a new link of distance 1
to the immediate left or immediate right of that
redex. Both new primitives will have a di↵erent,
new variable as their labels. The new positive prim-
itive should be the closer of the two to the negative
redex.

We then combine the positive primitive and the
redex to form a new complex, negative category. At
the same time, we give this new complex category
the old semantic label of the redex, and assign the
string consisting of this old label followed by the

fresh variable on the new positive primitive as the
new label of the redex.

In our example, suppose we elect to add the new
primitives to the right of f 1. Then we have:

We add a link to join f 2 and f 3, and create a new
formula f 4 = (A/B)/C� : a. In di↵erent words,
we combine f 1 and f 2 into a larger term tree with
the root, f 4.

Then we replace the label on f 1 with ae. We
also replace a with ae in all of the descendants of
f 1’s term tree, if any.

We could have instead added f 3 = C� : f and
f 2 = C+ : e (in this order) on the left of f 1, and
joined f 2 and f 1 with f 4 = (C\A)� : a.

Regardless of the choice of left or right, we must
also modify the corresponding LC-graph:

1. Add new nodes e and f ,

2. for the unique value of x for which there is
already an edge (x, a), add a new edge (x, e),
and

3. add the new edge (e, f).

These measures will retain the correctness cri-
teria in the LC-graph because, in this phase, there
are no lambda nodes yet. So the new sequent will
be derivable in the Lambek calculus if the sequent
that began this iteration was.

We can repeat these steps as many times as we
like in the first phase, and then decide to stop. If we

4

apply zero iterations of the first phase, we cannot
apply any iterations of the second phase either, and
we will be left with the sequent p! p.

3.2 Adding Lambda Nodes
Like the first phase, the second phase consists of
the iterative application of a sequence of steps that
we may elect to apply any number of times.

Every step in the second phase will preserve
the number of axiomatic primitives and links, but
will add one more lambda node. The following
definition is useful:
Definition 3.2 (Anterior node). An anterior node,
a, in an LC-graph is a positive node for which there
is no lambda node on the path that leads from the
root to a apart from possibly a itself.

Definition 3.3 (Terminal node). A terminal node, t,
in an LC-graph is a node with an out-degree of 0
and in-degree of 1.

In Figure 2, j and i are both lambda nodes, but
only j is an anterior lambda node. a, c, e and g
are all positive non-lambda nodes, but only a, the
root, is anterior. b and d are terminal nodes. f and
h are negative, but not terminal because of their
in-degrees. Terminal nodes are always negative
because of their out-degree. Because of the restric-
tion on their in-degrees, they correspond exactly to
the labels of the LHS categories of the sequent.

Figure 2: An example LC graph.

Figure 3: Running example for adding lambda nodes.

The redex, x1, in each step of this phase will
always be a positive node in the LC-graph that
satisfies two other requirements:

1. x1 is anterior, and

2. x1 has more than one terminal descendant.

Let f 1 be the term or subterm labelled with x1
(i.e. f 1 = X+1 : x1) in the proof net. We can do
the following to the proof net (take Figure 3 as an
example):

1. Let S be the set of terminal LC-graph nodes
that are path-accessible from x1.

2. Pick x2 2 S as an outermost (either leftmost or
rightmost) variable in S , arranged by the order
of the elements in S within the current sequent.
Let f 2 be the (sub)term labelled with x2 (i.e
f 2 = X2� : x2). In the running example, we
choose x2 to be the leftmost variable.

3. Create new formula f 3 = X2\X1+ : x3, with
f 1 as the left child of f 3 and f 2 as the right
child of f 3. Insert f 3 into the unfolding below
f 1.

4. Update the categories in f 3’s ancestors.

5. Replace x1 with x3 in all terms that are de-
scendants of f 3’s parent but not of f 3.

5

In our example, we could have alternatively cho-
sen x2 = d, the rightmost variable in S , in which
case f 3 = X1/X2+ : x3, with f 2 as the left child f 1
as the right child.

With either choice, we then modify the corre-
sponding LC-graph:

1. Add x3 as a new lambda node.

2. If x1 is not the root, then for the unique y such
that (y, x1), replace this edge with (y, x3). If
x1 is the root, do nothing.

3. Add edges (x3, x1) and (x3, x2).

Because x1 was chosen to have more than one
terminal descendant, Lemma 4.2 in the next section
ensures that, after this step, the integrity criteria of
the LC-graph are still satisfied. So the new sequent
will be derivable in LCG.

3.3 End-to-end Example

Figure 4 and Figure 5 depict the first and second
phases, respectively, of a run of the generative pro-
cess.

4 Coverage

Theorem 4.1. Every sequent that is derivable
in the product-free Lambek calculus is derivable
through the PLC generative process.

All derivable sequents are witnessed by a valid
proof net P paired with a corresponding LC-graph
G. We will prove the above theorem in this section,
by induction on the number of nodes in G. The
base case, sequents of the form A |= A, where A is a
primitive, are trivial to generate. In other instances,
it su�ces to show that every sequent, consisting of
a valid proof net, P with corresponding LC-graph,
G, can be derived from some other sequent (P0,G0)
by running one more iteration of either the first
phase or the second.

We will consider the following two cases: G
contains lambda nodes, and G contains no lambda
nodes.

(a) initialization.

(b) first phase, first iteration.

(c) first phase, second iteration.

(d) first phase, third iteration.

Figure 4: An example run of non-lambda node genera-
tion.

4.1 LC-graph contains lambda nodes
Lemma 4.2. In any integral LC-graph, for any
anterior lambda node v, there must be at least one
terminal node v0 such that v v0.

Proof. Every lambda node has two immediate de-
scendants, one positive and one negative, and only
these negative immediate descendants have in-
degrees of more than 1 (specifically, 2). If all neg-
ative nodes v0 such that v v0 had indegrees of
2, then they would all be negative immediate de-
scendants of lambda nodes. Because v is anterior,
those lambda nodes cannot be ancestors of v, and
therefore must be v itself or descendants of v, and
thus the x implied by I(CT) does not exist. ⇤

Lemma 4.3. If x, y are positive, w is negative, x
w and y w, then either x y or y x.

Proof. If w is the negative immediate descendant
of a lambda node, z, then it is possible that one of
x, y reaches w via z, and the other reaches it via the
positive sibling of w, q, by I(3). But z! q, and so
the result holds.

If w is not the negative immediate descendant
of a lambda node, then its in-degree is 1 and its
ancestors are all positive, with in-degrees of 1. So
again the results holds. ⇤

6

(a) second phase, first iteration.

(b) second phase, second iteration.

Figure 5: An example run of lambda node generation.

Lemma 4.4. In any integral LC-graph, G, for any
nodes a, b, c 2 G, if a 6 b and b 6 a, then there
is no c such that a c and b c.

Proof. The only nodes with in-degrees greater than
1 (i.e., negative immediate descendants of lambda
nodes) have out-degrees of 0. Thus if there were
such a c, it would need to be a negative immediate
descendant of some lambda node, d, itself. But
even in this case, either a d b or b d a
because of I(3). ⇤

Lemma 4.5. For each term tree T in P, if f 2 =
F2+/� : y is a subterm of f 1 = F1� : x in T such
that |y| = 1 and there is no positive subterm of
f 1 of which f 2 is a proper subterm, then for any
ancestor, w, of x in G, w y in G.

Proof. If f 1 = f 2, then x = y. Otherwise, the
action of the negative unfolding rules on f 1 guar-
antees that the primitive negative term label that
reflects x will also reflect y, and so any node in G
that leads to x through an axiom link also leads to
y. We may consider the case when x is the neg-
ative immediate descendant of a lambda node, z,
to be exceptional, because z points directly to x
as a result of the action of the positive unfolding
rules. But even in this case, by I(3), z x through
its positive immediate descendant, and thus also
through an axiom link. ⇤

Lemma 4.6. For each term tree T in P, if f 2 =
F2+/� : y is a subterm of f 1 = F1+ : x in T , where
x is a lambda node and |y| = 1 (a variable), then
x y in G.

Proof. If f 1 = f 2, then x = y. Otherwise, because
x is a lambda node, it has a positive immediate
descendant, a, and negative immediate descendant,
b, in G. b, in particular, corresponds to the negative
immediate subterm of f 1, f 3 = F3� : b. If f 2 = a
or f 2 = b, the lemma follows from the action of
the positive unfolding rules.

Otherwise, we can obtain the result by induction
on the number n of positive subterms of f 1, q, for
which f 2 is a proper subterm of q. In the base case,
n = 1, f 2 is nested inside exclusively negative
subterms of f 3, and so by Lemma 4.5, x y.

If n > 1, then let f 4 = F4+ : z be the smallest
positive subterm containing f 2 other than possibly
f 2. By induction, x z in G. Because f 4 contains
f 2, F4 is not primitive, and so z is a lambda node.
Thus again by induction, z y. ⇤

Lemma 4.7. For each term tree T in P, if f 2 =
F2+/� : y is a proper subterm of f 1 = F1� : x in
T , if |y| = 1 (a variable), then for any ancestor, w,
of x in G, w y in G.

Proof. Proof by induction on the number n of pos-
itive subterms of f 1, q, such that f 2 is a proper
subterm of q. The base case, n = 0, follows by
Lemma 4.5.

Otherwise, n > 0. Again, let f 3 = F3+ : z be
the smallest positive subterm of T containing f 2
except possibly f 2. By induction, every ancestor
of x, w z in G. Because f 3 contains f 2, F3 is
not primitive, and so z is a lambda node. Thus the
result follows by Lemma 4.6. ⇤

Lemma 4.8. For every sequent with a primitive
right-hand side p+ : r, the axiom link emanating
from p+ : r is incident to the axiomatic reflection
of the label of some left-hand side term, i.e., r ! b
in G, for some left-hand side term, B� : b.

Proof. The axiom link must be incident to a
negative-polarity primitive in the unfolding, which
is either labelled with a string that includes the la-
bel of some left-hand side term, or with a string
that includes the negative immediate descendant of
some lambda node. In the latter case, the negative
immediate descendant would be cut o↵ from its
positive immediate descendant sibling, in violation

7

of I(3), because p is primitive (and so there are no
paths that would transit to b via r). ⇤

Lemma 4.9. Let X be the set of all axiomatic for-
mulae of P, v be an anterior lambda node in G,
and D(v) be the set of terminal nodes w in G for
which v w in G. Given a set of nodes, V,
let Q(V) = X \ { f | there exists a formula f 1
with a label in V and f as one of its subterms
in some term tree}. Divide X into two subsets:
X1 = Q({v}) [Q(D(v)) and X2 = X\X1. There
is no axiomatic link connecting one formula in X1
with another one in X2.

Proof. If v is the root of G, then X1 = X and
X2 = �. Otherwise, suppose there is such a link
connecting x1 2 X1 and x2 2 X2. Let A�/+ : a be
the root of the term tree that contains x2.

Case 1: a is positive. A must be a primitive,
otherwise, a would be a lambda node, and thus
the only anterior node in G would be a itself. So
x2 = A+ : a. By Lemma 4.8, there exists a negative
node b that labels the root of some term tree in G
such that a! b. Let R� : r be the root of the term
tree that contains x1. If b = r, then by Lemma 4.7,
b is the label of both x1 and its witness, f 1. b , v
(wrong polarity), and so b 2 D(v), v b, and
because b is terminal, v a, which would mean
that G has a cycle. Thus b , r, but then b labels the
root of a di↵erent term tree, and so x2 = a 9 x1
after all. But a is the root of G, and so x19 a = x2
either.

Case 2: a is negative, and so it labels a left-hand-
side term in the sequent, and thus it is terminal. So
there exists a unique node b such that b ! a in
G. Because a dominates x2 2 X2, v 6 a, and so
v 6 b. Furthermore, every node in the label of
x1 is accessible from v. If x1 2 Q({v}), then this
follows from Lemma 4.6. If x1 2 Q(D(v)), then
it follows from Lemma 4.7 and the definition of
D(v).

Case 2a: b 6 v either. By Lemma 4.4, there is
no node v0 in G such that v v0 and b v0. A
link between x1 and x2 will guarantee that there is
such a v0, however, because, by Lemma 4.7, every
node in the label of x2 is accessible from b.

Case 2b: b v. First, we begin by noting that
x2 cannot simultaneously be negative and contain
a in its label, or else the label of x1 is a single node
that points to a, and hence v a. So there must
be a positive C+ : c subterm of A� : a which in
turn contains x2 as a subterm. Choose the highest

such subterm. Then because c is in the negative
reflection of a, b! c. Furthermore, either c is the
label of x2 or, by Lemma 4.6, every node of x2 is
accessible from c.

Let w be the negative member of {x1, x2} and
the target of the link between them. The nodes
labelling w are accessible from both v (via x1) and
c (via x2). By Lemma 4.3, either v c or c v.

If v c, then recall that both b! c and, by as-
sumption, b v, which means either v = b, which
contradicts v 6 a, or v = c, which contradicts
x2 2 X2. If c v, then because v is anterior, c is
the label of x2, which is positive, and therefore the
source of the link between x1 and x2. As a result,
the nodes of x1 are accessible from v, and imme-
diately accessible from x2. Similar to the proof of
Lemma 4.3, This might happen if x1 is the negative
immediate descendant of some lambda node, z, but
now we know that x1 and x2 are connected by an
axiom link, and so v z and, by I(3), z x2 = c.
Thus v = c, which is again a contradiction. ⇤

Lemma 4.10. For every anterior lambda node v in
G, the LHS terms labelled by each of v’s accessible
terminal nodes must be contiguous in the sequent.

Proof. This follows from Lemma 4.9. The terms
that are labelled by each of the D(v) are not con-
nected by axiom links to the other terms, with the
exception of the term that contains v itself, and
even then only to the subterm rooted at v. If some
of these other terms were interspersed among the
former, then either the linkage would not be half-
planar, or the underlying LC-graph would not be
connected. Even the term that contains v itself can-
not appear between two terms labelled by members
of D(v), because either v itself, which is positive,
is the label of the term, and so must be the RHS
category of the sequent, or it is not, in which case
part of that term resides in X2, leading to the same
contradiction. ⇤

Theorem 4.11. If G contains at least one lambda
node, then (P,G) could have been generated in
PLC from a proof net with any arbitrary anterior
lambda node removed.

Proof. Suppose v is the variable of the anterior
lambda node in G, b is its negative immediate de-
scendant in G and a, its positive immediate descen-
dant.

8

(a) Case 1. (b) Case 2.

(c) Case 3. (d) Case 4.

Figure 6: Four cases of the respective ordering of f 2, f 3 and the contiguous subsequence of terms labelled with
accessible terminal nodes, as given by Lemma 4.10 (depicted with a rectangle).

Let f 1 be the formula labeled with v, f 2 be the
formula labeled with b and f 3 be the formula la-
beled with a. In the parlance of Lemma 4.9, X1
consists of f 2, f 3, and the subsequence of terms
labelled by the accessible terminal nodes of v. By
Lemma 4.10, this subsequence is contiguous. By
Lemma 4.9, the axiom links that have one side in-
cident to any of these have both sides incident to
these. There are therefore 2 ⇥ 2 ⇥ 2 = 8 possible
combinations: (1) whether f 2 occurs to the left or
right of f 3, (2) whether the leftmost (resp. right-
most) axiomatic reflection of f 2 connects to f 3 or
to a reflection within the contiguous subsequence
and (3) whether the contiguous subsequence oc-
curs to the left or right of f 1. For brevity, Figure 6
shows the four possible cases in which we choose
“left” for (3) — the other four are the symmetric
duals of these.

In each case, such a derivation exists through a
single iteration of the second phase of the genera-
tive process, as shown in Figure 6.

Note: the contiguous subsequence is, in fact,
the left-hand side of the subsequent that derives
f 1. ⇤

4.2 LC-graph does not have lambda nodes
Lemma 4.12. For an arbitrary valid proof net P
with its corresponding LC-graph G, if G does not
contain any lambda node, then the sequent must be
one of:

A |= A

or
..., �/A, A... |= ...

or
..., A, A\�.... |= ...

where A is a primitive and � is any category.

Proof. By structural induction on the proof of the
sequent. We will refer to A as a reduction point in
the sequent. ⇤

Theorem 4.13. If G has at least three nodes and
contains no lambda nodes, then (P,G) could have
been generated in PLC from a proof net with any
arbitrary reduction point removed.

Proof. If G contains only two nodes, then the se-
quent must be A |= A. According to Lemma 4.12,
in the second case, a reduction point exists, and
corresponds to the result of a non-lambda-node ad-
dition step in PLC, as shown in Figure 7. Note that

9

the term trees involving the reduction point must
be adjacent in the sequent.

Figure 7: Formula f , f1 and f2 in proof net.

The third case is symmetric to the second. ⇤

Corollary 4.14. Any proof net and its correspond-
ing LC-graph can be generated by starting with
p! p, followed by a sequence of steps of adding
non lambda nodes then followed by a sequence of
steps of adding lambda nodes.

Proof. by Thm 4.11 and Thm 4.13, we can always
put steps of adding non lambda nodes before the
steps of adding lambda nodes. ⇤

5 Adding Probability

Maximum likelihood parameter estimation can like-
wise be accomplished by separately parameterizing
the two phases.

5.1 Phase 1: Adding Non-lambda Nodes
The first phase iteratively picks a category A and
expands it to either A/P · P or P · P\A for some
primitive P. So for all primitives P, we must assign
a probability to these two expansion schemes, as
well as to A ! A, which means that A has been
skipped with no expansion. The estimates are then
simply the relative frequencies with which these
rules have been chosen in this phase.

Below is a tiny example corpus with only two
proof nets and one primitive:

p1 : N1/N2 N3 |= N4
axiom links : (1, 4), (2, 3)
p2 : N1/N2 N3 N4\N5 |= N6
axiom links : (3, 4), (2, 5), (1, 6)

Here, the primitive category is N, and the numbers
index the instances of it within the sequent.

For p1, we start from N1 |= N4, and proceed
with these steps:

1. N1! N1/N2 N3

2. N1/N2! N1/N2 (no expansion)

3. N3! N3 (no expansion)

For p2, we start from N1 |= N6, and follow with
these steps:

1. N1! N1/N2 N5

2. N5! N3 N4\N5

3. N1/N2! N1/N2 (no expansion)

4. N3! N3 (no expansion)

5. N4\N5! N4\N5 (no expansion)

Between the two derivations, there are a total of 8
steps, and so we can conclude that:

1. P(A! A/N N) = 2
8

2. P(A! A) = 5
8

3. P(A! N N\A) = 1
8

Using this distribution, we know that:

P(p1) = 2
8 ⇥ 5

8 ⇥ 5
8 =

25
256

P(p2) = 2
8 ⇥ 1

8 ⇥ 5
8 ⇥ 5

8 ⇥ 5
8 =

125
16384 .

5.2 Phase 2: Adding Lambda Nodes
Once every category has been touched with a deci-
sion not to expand, it is time to start adding lambda
nodes in the second phase. Let us modify the above
corpus so that it requires a second phase, and yet
can be derived through an identical sequence of
steps as in the first phase:

p1 : N1/N2 |= N4/N3
axiom links : (1, 4), (2, 3)
p2 : N1/(N3\N2) N4\N5 |= N6
axiom links : (3, 4), (2, 5), (1, 6)

Both p1 and p2 contain one lambda node. During
the second phase, we must first determine the place
to add a lambda node, and then select either (\R) or
(/R). p1 applies (/R) once and p2 applies (\R) once.
So, for this corpus, P(/R) = P(\R) = 1

1+1 =
1
2 .

The only remaining problem is how to determine
where to add lambda nodes. Once this problem is
solved, then:

P(p1) = 25
256 ⇥ P(pick positions in p1) ⇥ P(/R)

P(p2) = 125
16384 ⇥ P(pick positions in p2) ⇥ P(\R)

Now we will present our method for selecting
places to add lambda nodes.

Definition 5.1 (Breakable). A node v in an integral
LC-graph is breakable i↵ we can first:

10

1. if v is not the root, add a lambda node a be-
tween the edge u! v, or

2. if v is the root, add a lambda node a such that
a! v,

then pick a terminal node w such that v w, then
add (a,w), and the integrity of the LC-graph is
preserved.

If v can be picked as x1 in Section 3.2, then it is
breakable, but the inverse may not be true.

Lemma 5.1. An LC-graph satisfies I(CT) i↵ for
every lambda node v:

| {u | u lambda node & v u} |
< | {w | w negative & v w} | .

Proof. Every lambda node u points to its positive
immediate descendant. So:

| {u | u lambda node & v u} |
 | {w | w negative & v w} | .

And the node x asserted by I(CT) is a negative node
that is not accessible from any lambda node. So
the inequality is strict. ⇤

Lemma 5.2. A node v is breakable i↵:

| {u | u lambda node & v u) + 1} |
< | {w | w negative & v w} | .

Proof. This readily follows from Lemma 5.1. ⇤

Theorem 5.3. If a node v is breakable, then picking
it as x1 during Section 3.2 will not change the
breakability of any node u such that v 6 u.

Proof. If u 6 v, the constraints of breakability
in Lemma 5.2 will not be changed. If u v,
then the constraints of Lemma 5.2 must have been
satisfied both before and after adding the lambda
node. So in both cases, the breakability of u will
not change. ⇤

So in the second phase, we will add lambda
nodes from bottom to top. So we first gather all
breakable nodes into a set denoted as S . During
each iteration, we find the subset U ✓ S with max-
imum depth. We then either apply Section 3.2 by
picking nodes in U or reject U as candidates and
jump to the next lower lower depth. Thus, we need
a probability p that a given breakable node will be
selected. Eventually S will be empty. Here is the
algorithm:

Algorithm 1: Redex selection during the
second phase.

Result: proofnet and LC-graph
1 S = all breakable nodes;
2 while S is not empty do
3 MaxDepth = max depth o f node in S ;
4 U = {u|u 2 S , u0s depth = MaxDepth};
5 S = S \U;
6 while U is not empty do
7 u = pick node f rom U uni f ormly;
8 f lag = S ample f rom Bernoulli(p);
9 if flag==1 then

10 let u be x1 and add lambda node a;
11 U = U � u;
12 if a is breakable then
13 U = U + a;
14 end
15 else
16 U = U � u;
17 end
18 end
19 end

The set U is finite, so lines 6–18 will eventually
terminate. During each iteration of line 2–19, the
size of S strictly decreases, so the entire algorithm
eventually terminates.

At line 4, @u, v 2 U such that u , v and u v.
During lines 6–18, denote Ui as the U at line 6 and
at iteration i. For all u 2 Ui, all v 2 Ui+1, u 6
v. Theorem 5.3 ensures that lines 9–17 will not
change the breakability of the nodes in Ui+1. Also,
if we denote Ui as the U in line 4, the nodes in
Ui+1 have smaller depth, so for all u 2 U, all v 2
Ui+1, u 6 v. Theorem 5.3 also ensures lines 3–18
will not change the breakability of the nodes in
Ui+1.

Returning to our tiny corpus, during the second
phase, p1 traverses lines 10–14 once and line 16
zero times, while p2 traverses lines 10–14 once
and line 16 once. Therefore p= 2

3 . Thus:

P(p1) = 25
256 ⇥ 2

3 ⇥ 1
2 =

25
768

P(p2) = 125
16384 ⇥ 2

3 ⇥ 1
3 ⇥ 1

2 =
125

147456 .

6 Experimental Investigation

6.1 Dataset
We trained and tested our probabilistic generative
model on LCGbank (Fowler, 2016), a conversion of
CCGbank (Hockenmaier and Steedman, 2007) to
LCG. CCGbank is in turn a conversion based upon
the Penn TreeBank (Marcus et al., 1993). We use
LCGbank section 23, which contains 2416 proof
nets as the test set. For the training set, we use
sections 1-22 and 24 which contain 44870 proof

11

nets. LCGbank uses the 5 primitives, ”S”, ”NP”,
”N”, ”conj” and ”PP”. The number of tokens is
slightly di↵erent between CCGbank and PTB for
the following two reasons:

• Some tokens like punctuation do not have cat-
egories in CCGbank. So we ignore those to-
kens in both LCGbank and PTB.

• Tokens like ”interest-rate” count as one token
in CCGbank but count as three in PTB.

6.2 Comparison with Probabilistic Context
Free Grammar

Since our model uses MLE, we also estimate the
parameters for a PCFG using MLE on the PTB (us-
ing the same sections as the training and test set).
Also, we exclude the lexica for both the PCFG and
PLC. For the PCFG, the task is merely to gener-
ate sequences of POS tags, and for PLC, it is to
generate sequents with the right-hand side of S .

Our model can generate every sequence in the
test set because all primitives in the test set had
been seen in the training set. Thus it can also as-
sign a positive probability to every proof net in
the test set. Some production rules in the PTB
test set, however, never appear in the training set,
and so PCFG fails to assign a non-zero probability
to some sentences in the test set. Table1 shows
that 260 sentences have zero probability in the re-
sulting PCFG. On the other hand, the majority of

PCFG PLC
P � 0 2144 2416
P = 0 272 0

Table 1: Number of sentences receiving positive and
zero probabilities.

sentences assigned a non-zero probability by both
PLC and PCFG are assigned a lower probability
by PLC than by PCFG. Table2 shows the number
of cases (excluding zero-probability cases) that re-
ceive larger and smaller probabilities using PCFG.
Table 3 shows the log probability of the entire test
set (sum of log probability of each sentence) di-
vided by the number of tokens. This evidence is
consistent with the conclusion that PLC spreads
probabilities more evenly across the seen and un-
seen category sequences induced by the set of prim-
itives, at the expense of the data likelihood of the
corpus.

Positive Negative
1964 180

Table 2: Number of sentences for which p(PCFG) �
p(PLC) is positive and negative, respectively.

PCFG PLC
-2.95 -4.06

Table 3: Log probability of test set normalized by the
number of tokens.

7 Conclusion and Future work

In this work, we have presented a probabilistic
generative model for sequent derivability in the
Lambek calculus. Any sequent that is derivable
in the Lambek Calculus can be generated by our
model. We also compared PLC with PCFG using
MLE, both trained and tested on comparable cor-
pora. The results show a trade-o↵ to using PLC, in
which the probabilities are more evenly distributed.

This probabilistic model may be used to parse
with Lambek Grammar, although further investi-
gation of early stopping when categories expand
outside the coverage of the lexicon is still needed.

Another advantage of numerically parametrizing
a grammar is to improve the speed of parsing, typi-
cally by forcing early failures. This is a direction
that we have not yet pursued.

References
S. Bangalore and A. Joshi, editors. 2010. Supertagging:

Using Complex Lexical Descriptions in Natural Lan-
guage Processing. MIT Press.

G. Bonfante and P. de Groote. 2004. Stochastic lambek
categorial grammars. Electronic Notes in Theoretical
Computer Science, 53:34–40.

T. A. Fowler. 2016. Lambek Categorial Grammars
for Practical Parsing. Ph.D. thesis, University of
Toronto.

J. Hockenmaier and M. Steedman. 2007. CCGbank: A
corpus of CCG derivations and dependency structures
extracted from the Penn Treebank. Computational
Linguistics, 33(3):355–396.

T. Huang and K.S. Fu. 1971. On stochastic context-free
languages. Information Sciences, 3(3):201–224.

S. Kübler, R. McDonald, and J. Nivre. 2009. Depen-
dency Parsing. Synthesis Lectures on Human Lan-
guage Technologies. Morgan & Claypool.

12

J. Lambek. 1958. The mathematics of sentence
structure. The American Mathematical Monthly,
65(3):154–170.

K. Lari and S.J. Young. 1991. Applications of stochas-
tic context-free grammars using the inside-outside
algorithm. Computer Speech & Language, 5(3):237–
257.

M. P. Marcus, B. Santorini, and M. A. Marcinkiewicz.
1993. Building a large annotated corpus of En-
glish: The Penn Treebank. Computational Linguis-
tics, 19(2):313–330.

M. Osborne and T. Briscoe. 1997. Learning stochastic
categorial grammars. In Proc. CoNLL, pages 80–87.

G. Penn. 2004. A graph-theoretic approach to sequent
derivability in the lambek calculus. Electronic Notes
in Theoretical Computer Science, 53:274–295.

M. Pentus. 1993. Lambek grammars are context free. In
[1993] Proceedings Eighth Annual IEEE Symposium
on Logic in Computer Science, pages 429–433.

M. Pentus. 1997. Product-free lambek calculus and
context-free grammars. J. Symb. Log., 62:648–660.

D. Roorda. 1991. Resource Logics: Proof-Theoretical
Investigations. Ph.D. thesis, Universiteit van Amster-
dam.

13

	Proceedings of the 17th Meeting on the Mathematics of Language
	ISBN
	Preface
	Programme Committee
	Table of Contents
	A Generative Process for Lambek Categorial Proof Nets
	German Verb Particle Constructions in CCG
	Strong Learning of some Probabilistic Multiple Context-Free Grammars
	More Efficiently Identifying the Tiers of Strictly 2-Local Tier-Based Functions
	Tier-Based Modeling of Gradience and Distance-Based Decay in Phonological Processes
	Embedding Intentional Semantic into Inquisitive Semantics

