
Proceedings of the 1st Workshop on Multimodal Semantic Representations (MMSR), pages 32–44
June 16, 2021. ©2021 Association for Computational Linguistics

32

Seeing past words: Testing the cross-modal capabilities of
pretrained V&L models on counting tasks

Letitia Parcalabescu1 Albert Gatt2 Anette Frank1 Iacer Calixto3,4

1Heidelberg University, Department of Computational Linguistics
2University of Malta, Institute of Linguistics and Language Technology

3New York University 4ILLC, University of Amsterdam
{parcalabescu,frank}@cl.uni-heidelberg.de

albert.gatt@um.edu.mt, iacer.calixto@nyu.edu

Abstract

We investigate the reasoning ability of pre-
trained vision and language (V&L) models in
two tasks that require multimodal integration:
(1) discriminating a correct image-sentence
pair from an incorrect one, and (2) counting
entities in an image. We evaluate three pre-
trained V&L models on these tasks: ViLBERT,
ViLBERT 12-in-1 and LXMERT, in zero-shot
and finetuned settings. Our results show that
models solve task (1) very well, as expected,
since all models are pretrained on task (1).
However, none of the pretrained V&L models
is able to adequately solve task (2), our count-
ing probe, and they cannot generalise to out-of-
distribution quantities. We propose a number
of explanations for these findings: LXMERT
(and to some extent ViLBERT 12-in-1) show
some evidence of catastrophic forgetting on
task (1). Concerning our results on the count-
ing probe, we find evidence that all models are
impacted by dataset bias, and also fail to in-
dividuate entities in the visual input. While
a selling point of pretrained V&L models is
their ability to solve complex tasks, our find-
ings suggest that understanding their reason-
ing and grounding capabilities requires more
targeted investigations on specific phenomena.

1 Introduction

Recently, many vision and language (V&L) mod-
els that combine images and text have been pro-
posed (Lu et al., 2019; Tan and Bansal, 2019; Li
et al., 2019; Chen et al., 2020; Li et al., 2020; Su
et al., 2020). These models follow the pretrain-and-
finetune paradigm, i.e. they are pretrained using
self-supervision on large amounts of image-caption
pairs1 and are then finetuned on the task(s) of inter-
est. Such V&L models have obtained state-of-the-
art performance across a number of different V&L

1Sometimes models are also pretrained on other image-text
datasets, e.g., visual question answering data.

tasks, e.g. visual question answering (VQA); vi-
sual commonsense reasoning; grounding referring
expressions; and image retrieval, among others.

Pretrained V&L models use a combination of
masked multimodal modelling – i.e., masking out
words and object bounding boxes from the input
and predicting them – and image-sentence align-
ment, i.e., predicting whether an image-sentence
pair is correctly aligned or not. Such models hold
the promise of partially addressing the ‘meaning
gap’ in unimodal pretrained language models such
as BERT (Devlin et al., 2019) by directly connect-
ing language to visual representations (Bender and
Koller, 2020; Bisk et al., 2020).

In this paper, we use foiling to investigate how
well pretrained V&L models integrate and reason
upon textual and visual representations. The foil-
ing strategy, introduced by Shekhar et al. (2017)
in the context of vision and language tasks, relies
on replacing an element in a text with another el-
ement, such that the replacement results in a mis-
match with the image. We propose two tasks which
require effective multimodal integration: (1) dis-
criminating a correctly aligned image-sentence pair
from an incorrectly aligned one, and (2) counting
entities in the image.

V&L models are commonly pretrained on task
(1), and should not have many difficulties detect-
ing incorrect image-sentence pairs. Counting, our
task (2), nicely puts together visual and textual
reasoning. It requires the detection of object in-
stances in the visual input, mapping these instances
to categories, as well as properly aligning such in-
stances to references in the textual input. Model
architectures have been proposed specifically for
counting, which is known to be a hard V&L prob-
lem (Zhang et al., 2018; Acharya et al., 2019; Trott
et al., 2018; Chattopadhyay et al., 2017). Unlike
these specialised approaches, we focus on general-
purpose V&L models. Related V&L work has also

33

investigated generalised quantifiers (such as most)
in a V&L context, but this work has generally ex-
ploited synthetic datasets (Sorodoc et al., 2018;
Pezzelle and Fernández, 2019; Testoni et al., 2019).
Here, we task the model to judge whether an unam-
biguous question or statement about the number of
entities visible in a natural image is correct.

We use three publicly available, representative
V&L models in our investigation: LXMERT2 (Tan
and Bansal, 2019), ViLBERT and ViLBERT 12-
in-13 (Lu et al., 2019, 2020). ViLBERT and ViL-
BERT 12-in-1 use the same BERT-based model
architecture, which incorporates two separate vi-
sual and linguistic streams that interact through
multiple co-attention transformer layers. ViLBERT
is trained using self-supervised learning on image-
caption pairs, while ViLBERT 12-in-1 is further
finetuned on 12 different tasks using multi-task
learning. LXMERT is also a dual-stream architec-
ture and combines textual and visual transformer-
based encoders with cross-modal layers. However,
LXMERT is pretrained not only on image-caption
pairs but also directly on the visual question an-
swering (VQA) task using multiple VQA datasets.

While all models are trained on image-sentence
alignment, only ViLBERT is not directly trained
on VQA; hence the model can be probed “zero-
shot” on our counting task. LXMERT, by contrast,
is pretrained on VQA (including how many ques-
tions, the focus in our counting probe). Hence,
LXMERT was exposed to examples where an-
swering a question correctly requires the model
to detect and categorise instances in an image, and
then aligning these to the text. Finally, the tasks
ViLBERT 12-in-1 are finetuned on also include
VQA, including instances with numerical answers
requiring counting abilities. We therefore believe
it serves as a solid baseline and should be well
equipped to detect foiled probing instances. To our
surprise, we find that none of these models perform
particularly well in our counting experiments.

Our main contributions are: i) We show that
all three models perform image-sentence align-
ment well, as expected given their pretraining;
ii) We build a counting probe, which requires a
model to adequately perform cross-modal ground-
ing; iii) We find that ViLBERT, ViLBERT 12-in-1
and LXMERT perform similarly to the random
baseline when directly applying the image-sentence

2github.com/huggingface/transformers
3github.com/facebookresearch/

vilbert-multi-task

alignment head to perform counting without fine-
tuning; iv) We find that all models seem to ex-
ploit dataset bias and fail to generalise to out-of-
distribution quantities. Even when finetuned, they
only partially solve our counting probe.4

2 V&L Models

The pretrained V&L models we use are ViLBERT
(Lu et al., 2019), ViLBERT 12-in-1 (Lu et al.,
2020), and LXMERT (Tan and Bansal, 2019).
ViLBERT is pretrained on Google Conceptual
Captions (Sharma et al., 2018) on (i) multimodal
masked prediction, i.e., masking objects and words
and predicting them; and (ii) image-sentence align-
ment, i.e., determining whether a text corresponds
to an image or not. LXMERT uses losses (i) and
(ii) and is additionally pretrained on multiple VQA
datasets, as well as object labelling. Finally, ViL-
BERT 12-in-1 starts from a pretrained ViLBERT
model checkpoint and is additionally finetuned on
12 different tasks, once again including VQA.

2.1 Evaluation

In both image-sentence alignment and counting
probes, models are exposed to either correct or
foiled image-text pairs. We evaluate pretrained
V&L models on our probes using accuracy (acc),
which is the overall accuracy on all classes; pre-
cision (pc), which measures how well the models
identify the correct examples; and foil precision
(pf), which measures how well a model identifies
foiled instances:

acc =
P +N

P +N + P̃ + Ñ
,

pc = P/(P + P̃),

pf = N/(N + Ñ),

where P and N are the number of true positives
and true negatives, and P̃ and Ñ are the number of
false positives and false negatives, respectively.

We also evaluate our models using a pairwise
ranking accuracy accr computed using the image-
sentence alignment score φ that the model assigns
to correct and foiled image-text pairs. Given an
image (i) paired with a correct (c) versus a foil
(f) text, if the score of the positive/correct pair is
greater than that of the foiled pair, the prediction is

4We will release all data necessary to reproduce our exper-
iments, including our counting dataset, upon publication.

github.com/huggingface/transformers
github.com/facebookresearch/vilbert-multi-task
github.com/facebookresearch/vilbert-multi-task

34

considered successful.

accr =

∑
(i,c)∈C

∑
f∈F s(i, c, f)

|C|+ |F |
,

s(i, c, f) =

{
1, if φ(i, f) ≤ φ(i, c),
0, otherwise,

where C is the set of correct image-caption pairs
(i, c), and F is the set of foils for the pair (i, c).

3 Image-Sentence Alignment Probe

In this set of experiments, we probe whether pre-
trained V&L models can distinguish correct image-
sentence pairs from foiled ones. While all models
under consideration have been pretrained on this
task, results are not usually reported for pretraining.
Our aim is to explicitly establish their capabilities
on a fundamental V&L task that we would expect
them to perform well at, before probing them on
the more challenging counting task.

3.1 Data

To probe our models on the image-sentence align-
ment task, we construct evaluation sets using 5000
images each from the MSCOCO (Lin et al., 2014)
and Google Conceptual Captions (GCC; Sharma
et al., 2018) validation splits. MSCOCO images
are collected from Flickr and its captions are crowd-
sourced. GCC’s images are obtained from the web
with captions harvested from online alt-text en-
abled sources, and therefore contain more noise
and variability. ViLBERT is pretrained on GCC
image-caption pairs; LXMERT is pretrained on
five datasets including MSCOCO, but not GCC.
For both datasets we select one correct caption for
each image, and create foils by pairing the image
to one random caption from the remaining 4999
images. All models are tested on the same data.

3.2 Experiments

In these experiments, we probe pretrained V&L
models without any additional fine-tuning. Table 1
reports the results of applying the models’ pre-
trained image-sentence alignment prediction head
to image-caption pairs from MSCOCO and GCC.
We also highlight which models can be considered
“zero-shot” in this setting: GCC is used to pretrain
the two ViLBERT models, while MSCOCO is used
when pretraining LXMERT.

ViLBERT performs very well on both datasets
and achieves 96–97 acc overall. It predicts both

Model ZS? acc pc pf

Random 50.0 50.0 50.0

C
O

C
O ViLBERT 3 97.4 98.0 96.8

ViLBERT 12-in-1 3 96.4 93.4 99.4
LXMERT 7 85.5 71.5 99.6

G
C

C ViLBERT 7 96.8 96.7 96.9
ViLBERT 12-in-1 7 84.9 73.1 96.7
LXMERT 3 67.9 31.9 97.9

Table 1: Image-sentence alignment results on our
COCO and Google CC validation sets. ’ZS?’ indicates
whether the model is applied zero-shot, i.e., the model
was never trained on examples from MSCOCO/GCC.
We report the overall accuracy acc, precision on cor-
rect examples pc, and precision on foiled examples pf .

correct and foiled examples well, as shown by 96–
98 pc and ∼ 96 pf . When using ViLBERT 12-in-1,
results on GCC are considerably worse compared
to ViLBERT. This is surprising, since ViLBERT
12-in-1 was trained using more tasks and consider-
ably more data than ViLBERT. Finally, LXMERT
performs worst overall among all three models.

These results suggest that LXMERT (and to a
lesser extent, ViLBERT 12-in-1) may be exhibit-
ing catastrophic forgetting, a well-studied problem
in neural networks (Robins, 1995) which has re-
ceived attention in NLP (Kirkpatrick et al., 2017;
Yogatama et al., 2019) as well as in V&L tasks in
particular (Greco et al., 2019): LXMERT is fine-
tuned on visual question answering in the last 10
epochs of pretraining, and ViLBERT 12-in-1 is
finetuned on 12 different tasks. This finetuning
may be responsible for the worse results observed,
resulting in a downgrading of performance on the
task the models were originally pretrained on.

In summary, all models solve the image-sentence
alignment probe well (as expected) but the models
show notable differences in performance; we con-
jecture catastrophic forgetting may be impacting
the finetuning procedure of each model differently.

4 Counting Probe

In our second task we probe pretrained V&L mod-
els on their ability to count, i.e., to correctly predict
the number of entities visible in an image, given the
image itself and either a corresponding question
coupled with a numerical answer, or a declarative
statement about the number of entities of a specific
kind derived from the question-answer pair (see
Figure 1).

35

Figure 1: How many question from Visual7W dataset.

4.1 Data

We collect our counting probe data from Visual7W
(Zhu et al., 2016), a VQA dataset with diverse ques-
tion types including how many questions, where
a correct answer requires the model to count the
number of entities of a certain type in an image.

4.1.1 Data Formats
The data is originally in question-answering format,
where the answer is a number. We experiment with
two alternative formats.

Q+A format We concatenate the original ques-
tion with the separator token [SEP] and each an-
swer (correct and foil), e.g. the example in Fig. 1
becomes “How many magnets are on the bottom
of the fridge? [SEP] 2/3/4/5”.

Declarative format ViLBERT is never pre-
trained on questions and answers with a separator
token [SEP]. We therefore create a version of the
counting data where we transform the question and
answer into a declarative statement using simple
templates, described in detail in Appendix A.2. For
instance, we create the following statements for
the example shown in Fig. 1: “There are 2/3/4/5
magnets on the bottom of the fridge.” Examples
which could not be converted were removed.

4.1.2 Data Splits
To avoid leaks, instances extracted from a given
Visual7W split are put into the same split in our
counting dataset.5

We create three splits for our counting dataset:
standard, hard, and interpolated. In the standard
split we include all examples of how many ques-
tions in the train, dev and test splits in Visual7W,
excluding examples that cannot be transformed into

5I.e., V7W train → counting train, V7W valid → counting
valid, V7W test → counting test.

Figure 2: Percentage of numerals in the counting data.
Outer circle: standard split, inner circle: hard split.

a declarative statement with our templates. The dis-
tribution of numerals in the standard split is highly
skewed and answers such as “1” or “2” are by far
the most common (see the outer circles in Fig. 2).
We mitigate this by introducing a hard split (see the
inner circles in Fig. 2), in which high-frequency
classes are capped at k = 200 examples for train,
dev and test sets, and any training examples where
the answer is a number greater than 20 are removed.
Finally, in the interpolated setting we split the orig-
inal data so that only examples whose answers are
even are in the training set, with validation and test
sets only containing examples with odd answers.

Data statistics are reported in full in Appendix
A.3. We note that both the capping in the hard split,
and the interpolation in the interpolated split, result
in fewer instances. The hard split is more balanced
with regards to the number of classes, whereas
quantities in the standard split follow a more natu-
ral distribution, where numerals like “one”, “two”
or “three” are more common than large quantities
or mentions of empty sets (Figure 2). The less
skewed distribution in the hard split would be ex-
pected to be harder, since we artificially lower the
relative frequency of frequent answers.

4.2 Experiments

We conduct a number of experiments where count-
ing capabilities are probed in different ways, via
image-sentence alignment (Section 4.2.1), masked
language modelling (MLM; Section 4.2.2), and
visual question answering (Section 4.2.3).

36

Split Format acc pc pf accr

Random baseline 50.0 50.0 50.0 50.0

ViLBERT

std. Q+A 37.8 74.3 25.5 49.0
decl. 37.6 77.9 24.1 57.0

hard Q+A 38.6 73.1 27.1 51.9
decl. 38.0 75.3 25.5 55.9

LXMERT

std. Q+A 50.5 45.7 55.2 57.2
decl. 54.7 51.0 58.5 72.8

hard Q+A 50.4 47.4 53.4 59.3
decl. 52.3 50.5 54.2 64.4

ViLBERT 12-in-1

std. Q+A 43.3 80.2 30.9 77.3
decl. 62.4 73.7 58.7 75.4

hard Q+A 46.9 67.1 40.1 70.3
decl. 61.3 70.0 58.3 72.6

Table 2: Counting: test results for models without fine-
tuning on our counting dataset, including ViLBERT
“zero-shot”. We report overall accuracy acc, precision
on correct examples pc, precision on foiled examples
pf , and pairwise accuracy accr. Splits: standard (std.)
and hard. Formats: Q+A and declarative (decl).

It is important to note that there is a differ-
ence between the three models in terms of their
prior exposure to the VQA task in general, and to
questions involving counting in particular. Specifi-
cally, while ViLBERT was exclusively pretrained
on GCC, LXMERT’s pretraining involved VQA in
the final ten epochs, and this included the Visual7W
training set. In the case of ViLBERT 12-in-1, VQA
was also one of the tasks on which it was finetuned,
and again this included Visual7W. In the experi-
ments reported below, we distinguish between a
no finetuning and a finetuned scenario. In the for-
mer, we present results on models which were not
directly finetuned on our counting training set, irre-
spective of whether they were exposed to Visual7W
during pretraining (as in the case of LXMERT) or
training (as in the case of ViLBERT 12-in-1). In
the finetuned scenario, we finetune each model us-
ing three different random seeds and report mean
and standard deviation for all metrics.

4.2.1 Counting as Image-Sentence Alignment
In this setup, we frame the counting task as an
image-sentence alignment problem. We use the
pretrained V&L models’ image-sentence alignment
head either to predict whether the sentence (in Q+A
or declarative format) matches the image or not
(i.e., in a per-example comparison evaluated with

acc, pc, pf), or to score correct and foiled pairs (i.e.,
in a pairwise comparison evaluated with accr). See
Section 2.1 for details on how we compute these
metrics. In Tables 2 and 3, we report our main
results without and with additional finetuning on
the counting training data, respectively.

No Finetuning As Table 2 shows, accuracy for
both ViLBERT and LXMERT is below or close
to the random baseline, improving slightly on the
baseline on pairwise accuracy. We note that ViL-
BERT identifies correct image-sentence pairs rela-
tively well (73–79 pc), while failing on foils (24–27
pf). This trend is also visible in ViLBERT 12-in-1;
however all scores tend to improve when compared
to ViLBERT (especially precision on foiled exam-
ples). Roughly, we can rank models according to
their performance from worse to best: ViLBERT,
LXMERT, ViLBERT 12-in-1. ViLBERT 12-in-1 is
the only model that performs considerably above
chance level according to standard accuracy when
applied without direct finetuning (declarative for-
mat, standard and hard splits). From these initial
results, it seems that whereas ViLBERT 12-in-1 is
able to identify correct image-sentence pairs well
(i.e., up to ∼ 80 pc), its most important gains come
from improved precision on foiled examples (up to
58 pf).

Overall, results when performing pairwise scor-
ing (accr) agree with the general trends in per-
example results. We can clearly observe that
ViLBERT performs close to chance, LXMERT is
somewhat better (57–73), and ViLBERT 12-in-1
performs best (70–77). All models perform bet-
ter when evaluated using pairwise accuracy com-
pared to per-example accuracy. For example, ViL-
BERT 12-in-1 performs below chance level in per-
example metrics (43 acc) but has good pairwise
accuracy (77 accr). Thus, accr is a less strict met-
ric than standard accuracy acc.

With Finetuning In Table 3 we note that when
models are directly finetuned on counting training
data, results tend to improve (except for the interpo-
lated data split, which we discuss separately further
below). ViLBERT improves overall accuracy (acc)
on the standard split considerably to about 71–74,
but it still struggles on the hard and interpolated
splits. Results on the hard split are not good and
have very high variance, which could be due to the
model overfitting on the small amount of counting
training data. When finetuning ViLBERT 12-in-1

37

Split Format acc pc pf accr acc pc pf accr

Random baseline 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0

ViLBERT ViLBERT 12-in-1

std. Q+A 74.4 (0.2) 49.3 (0.3) 88.9 (0.3) 78.2 (0.6) 81.1 (0.3) 60.3 (0.7) 90.2 (0.2) 83.5 (0.1)
decl. 71.7 (3.6) 46.3 (4.1) 88.6 (1.1) 76.7 (2.7) 81.1 (0.1) 60.6 (0.1) 89.7 (0.1) 83.3 (0.1)

hard Q+A 56.7 (22.2) 16.9 (11.9) 75.4 (0.6) 56.2 (0.7) 64.3 (4.2) 38.7 (3.3) 86.0 (2.7) 69.8 (2.6)
decl. 54.0 (21.4) 38.6 (14.4) 52.3 (37.0) 57.5 (0.9) 71.9 (1.9) 46.4 (1.9) 89.4 (0.8) 77.5 (0.6)

interp. Q+A 48.0 (0.2) 0.2 (0.1) 65.6 (0.1) 12.8 (0.3) 52.5 (0.5) 0.1 (0.1) 67.6 (0.2) 11.4 (1.4)
decl. 49.1 (0.6) 0.3 (0.2) 66.2 (0.3) 17.9 (0.8) 52.7 (0.3) 0.0 (0.0) 67.7 (0.1) 13.5 (2.8)

Table 3: Counting: test results for models fine-tuned on our counting training data. We report mean (std) over
three runs: overall accuracy acc, precision on correct examples pc, precision on foiled examples pf , and pairwise
accuracy accr. Splits: standard (std.), hard, and interpolated (interp.). Formats: Q+A and declarative (decl).

further on counting data, results also improve com-
pared to the ‘no finetuning‘ setting. As expected,
ViLBERT 12-in-1 clearly outperforms ViLBERT
on both standard and hard splits according to all
metrics evaluated: on per-example metrics (acc,
pc, pf) and also according to a pairwise ranking
comparison (accr).

Pairwise results exhibit more consistent differ-
ences between splits, i.e., interpolated ≤ hard ≤
standard. Both ViLBERT and ViLBERT 12-in-1
yield satisfying results of 76–83 accr in the stan-
dard and 56–77 in the hard split.

Interpolated Finally, in our interpolated split,
we train on examples where correct answers are
even numbers and test on examples where correct
answers are odd numbers. By doing that, we gain
a glimpse into whether models are really learn-
ing to count, in which case interpolating even/odd
numbers should be a relatively simple task. We first
note that models fail badly when finetuned and eval-
uated on interpolated data, achieving per-example
accuracies between 48–61 while still failing almost
completely at identifying correct matches, as illus-
trated by precision pc close to zero. Failure in the
interpolated split is more clearly seen by inspect-
ing pairwise accuracies, which are in the range
11–18 and well below the random baseline of 50.
Although ViLBERT 12-in-1 achieves reasonable
results on the standard and hard splits, it still fails
completely on the interpolated split. This is in
stark contrast to recent findings with text-only pre-
trained language models, which have a good grasp
of numeracy and perform well when interpolating
quantities (Wallace et al., 2019).

4.2.2 Counting as Masked Language
Modelling

In this experiment, we set the image-sentence align-
ment head aside and employ the MLM capacity
of LXMERT to further test its pretrained visual-
linguistic representations on counting.

We mask the numeral in the declarative state-
ments of our counting dataset and use LXMERT
to predict the [MASK] token (see Figure 3). The
model assigns probabilities to all words in its En-
glish vocabulary, comprising more than 30k words.
We remove vocabulary items that are neither nu-
merals nor denote numerical quantities,6 sort the
remaining items in order of descending probabil-
ity, and obtain a list of all numerical quantities
LXMERT predicts for the masked token, ordered
by likelihood. In that list, we count the rank of
the correct numeral in any formulation (e.g. “1”,
“one”, “a”) and compute Recall@k and mean rank
(MR). We report the results in Table 4, where we
also show aggregate results per answer.

The results of the overall Recall@k and MR
show clear differences between the standard and
hard splits, whereas Recall@k and MR per nu-
meral exhibit very consistent results for the same
splits. Recall that in the hard split numerals are
more evenly distributed, whereas in the standard
split the frequencies of different answers follow a
more Zipfian distribution (Figure 2). This shows
that the model has a strong preference for the nu-
merals “2”, followed by “1” and “0”, suggesting
that performance is largely determined by the sta-
tistical bias in the training data, rather than the
specifics of the visual input in relation to the text.

6We include the indefinite article ‘a’ and the negation ‘no’
in our definition of a vocabulary item that denotes a numerical
quantity, since they are interpretable as indicating ‘one’ and
‘zero’ respectively.

38

Figure 3: Two examples of applying masked language
modelling on the counting dataset with LXMERT.

Num. Recall@1 Recall@2 MR
std. hard std. hard std. hard

overall 55.0 31.5 71.1 45.0 6.6 13.5

zero 59.8 63.7 65.2 69.1 2.89 2.5
one 86.2 86.6 89.7 89.0 1.6 1.7
two 81.9 80.1 92.4 90.9 1.3 1.3
three 15.6 12.9 85.2 87.1 2.0 2.0
four 6.5 6.2 20.9 19.9 3.0 3.0
five 0.4 0.0 2.5 2.9 5.1 5.1
six 0.5 0.0 0.5 0.0 6.7 6.7
7 0.0 0.0 0.0 0.0 11.0 10.7
8 0.0 0.0 0.0 0.0 9.7 9.3
9 0.0 0.0 0.0 0.0 12.3 12.3
10 0.0 0.0 0.0 0.0 17.6 18.2
11 0.0 0.0 0.0 0.0 20.4 20.4
12 0.0 0.0 0.0 0.0 15.1 15.2
13 0.0 0.0 0.0 0.0 25.4 25.5
...

Table 4: Masked language modelling with LXMERT.
We report Recall@k and the mean rank (MR) of the
predicted numeral on our counting dataset’s test split.

Bias can also be observed when the MLM pre-
dictions are wrong. While Table 4 reports metrics
depicting how often the model is correct, we fur-
ther analyse the cases where model predictions
are wrong. Among image-sentence pairs in the
hard split where the model prediction is wrong, the
model predicts: “two” 51% of the time, “no” 12%
of the time (which we count as “0”), followed by
“three” (12%), “four” (5%) and “five” (1%).

Good performance on low quantities reflects
their frequent occurrence in V&L datasets (Goyal
et al., 2017). The very poor performance on under-
represented quantities suggests both a lack of gener-
alisation of the V&L model, as well as limitations
arising from models’ Faster R-CNN (Ren et al.,
2015) visual backbone.

Answer VQA accuracy Answer VQA accuracy
std. hard std. hard

overall 53.9 41.8 seven 4.0 3.8
zero 94.4 93.7 eight 18.0 14.5
one 75.0 69.7 nine 3.6 2.5
two 62.0 62.4 ten 12.0 11.6
three 32.8 31.4 eleven 10.0 8.7
four 25.0 21.3 twelve 28.6 32.3
five 15.6 17.1 thirteen 12.5 7.1
six 17.4 19.4

Table 5: Overall (in bold) and per-answer accuracy of
LXMERT further fine-tuned on the VQA task (Antol
et al., 2015) on the standard and hard counting splits.

4.2.3 Counting as VQA
Finally, we frame the counting probe in its standard
setting as a VQA problem, without foiling. We use
the publicly available LXMERT model further fine-
tuned on the VQA v2.0 dataset (Goyal et al., 2017).
The test setting is the same as for the original VQA
task: the model receives questions (“How many
...?”) from our counting dataset as input and has to
predict the most likely answer from a list of 3,129
possible answers. All answers in our dataset are
contained in the model’s answer list. We report
detailed results in Table 5.

The model achieves an overall 53.9 accuracy on
the standard split and 41.8 on the hard split. The de-
tailed accuracies per numeral show the same trend
as Table 4. Differences in performance between
the standard (Zipfian) and the hard (more balanced)
splits are predominantly due to the different pro-
portion of quantities in the splits. Once again, this
reveals a lack of generalisation coupled with a sur-
plus of bias exploitation potential: the model relies
on highly frequent quantities like “one” or “two”
as a “safe bet” when predicting under uncertainty.

A notable difference between using LXMERT’s
MLM head without direct finetuning (as in Table 4),
and using LXMERT’s VQA head further finetuned
on VQA v2.0 (Table 5) is seen for the numeral
“zero”: the model’s capacity to predict “zero” is
enhanced by the finetuning process, to the detri-
ment of the frequent quantities “one” and “two”.
Fine-tuning also seems to improve prediction for
numerals “four” to “six”, and also for “12”.7 Count-
ing further than that is a challenge for LXMERT.

5 Related Work

Originally proposed for text-only models (Devlin
et al., 2019; Wang et al., 2019; Lewis et al., 2020),

7“12” or “a dozen” is a frequent answer in VQA v2.0.

39

the pretrain-and-finetune paradigm has become the
de facto standard for vision and language tasks.
The core idea is that pretraining on large and di-
verse datasets should lead to robust multimodal
representations, so that models can be easily fine-
tuned for different tasks.

Pretrained Vision & Language Models Based
on the pretrain-and-finetune paradigm, many pre-
trained V&L models have recently been proposed
which combine images and text using BERT-like
architectures. They include ViLBERT (Lu et al.,
2019, 2020), LXMERT (Tan and Bansal, 2019), Vi-
sualBERT (Li et al., 2019), UNITER (Chen et al.,
2020), Unicoder-VL (Li et al., 2020), VL-BERT
(Su et al., 2020), among others. They can be
classified into single- or dual-stream architectures:
single-stream models concatenate words to object
bounding box features and encode this sequence
using a single transformer stack; dual-stream mod-
els have separate transformer stacks for visual and
textual inputs, with layers to fuse these into multi-
modal features (i.e., co-attention layers). ViLBERT,
ViLBERT 12-in-1, and LXMERT, i.e. the models
we use with in this work, are all dual-stream.

Bugliarello et al. (2020) find that single- and
dual-stream models perform comparably under
similar conditions. Ilharco et al. (2020) show
that contextual text-only language models such as
BERT encode visual representations reasonably
well, though they fall short of human performance.
In the context of the VALUE benchmark, Cao et al.
(2020) report results on multiple V&L tasks, some
of which we also corroborate, notably, the domi-
nance of textual features compared to visual fea-
tures in the model’s predictions.

Vision & Language Models for Counting
Counting is known to be hard for V&L models,
and has been studied extensively (Seguı́ et al.,
2015; Chattopadhyay et al., 2017; Trott et al., 2018;
Zhang et al., 2018; Acharya et al., 2019).

Chattopadhyay et al. (2017) investigate strate-
gies based on object detection, regression, subitis-
ing and averaging over the results returned by
a model ensemble. Trott et al. (2018) create
the HowMany-QA counting dataset. Their Inter-
pretable RL Counter (IRLC) model solves counting
by iteratively including objects in a pool, whose
size is then reported. Acharya et al. (2019) propose
TallyQA, a large counting dataset which includes
both simple questions (e.g. How many giraffes?)

and harder cases involving additional properties
(e.g. How many giraffes are sitting down?). Fi-
nally, Zhang et al. (2018) argue that attention bottle-
necks compromise counting capabilities (see Zhang
et al., 2018, Section 3), showing that an alternative
architecture which includes a branch specifically
designed to overcome the bottleneck for counting
leads to considerable improvements.

Counting and the attention bottleneck The ‘at-
tention bottleneck’ noted by Zhang et al. (2018) and
further discussed by Acharya et al. (2019) gener-
ally afflicts architectures where the image pipeline
has the general form “image → CNN → convo-
lutional feature maps → attention bottleneck →
prediction”. The ‘bottleneck’ is created by the at-
tention mechanism between input and prediction
layer. For details and examples, see Appendix A.4.

This issue does not apply to the pretrained V&L
models reviewed above, or the models we exper-
iment with. ViLBERT, ViLBERT 12-in-1, and
LXMERT have two multi-layer transformer stacks
to encode image and text, respectively. None of
these models have an attention bottleneck; rather,
the outputs of modality-specific encoders are in-
tegrated via multiple co-attention layers. When
finetuning the model on a target task, a prediction
head is commonly trained from scratch and uses
the output of the last co-attention layer as input.

6 Conclusions and Future Work

We probed three pretrained V&L models on image-
sentence alignment and counting: two tasks that
require joint understanding of image, text and their
correspondence. Our results show image-text align-
ment capabilities which range from good (for ViL-
BERT andViLBERT 12-in-1) to satisfactory (for
LXMERT). Our results highlight that LXMERT
(and to a lesser extent, ViLBERT 12-in-1) may
be suffering from catastrophic forgetting. As for
counting, we observe sub-optimal performance in
all models investigated, even after finetuning on
counting data. In these models, there is limited
evidence of grounding of symbols in visual data
after pretraining; all models exploit biases in the
data and seem to lack the capability to individuate
entities in the visual input, a prerequisite for count-
ing. Our results raise concerns about heavyweight
V&L models, whose main selling point is their abil-
ity to solve complex tasks. Our findings suggest
that understanding their capabilities requires more
targeted investigations on specific phenomena. In

40

line with this reasoning, our ongoing work is aim-
ing towards a benchmark that will address several
linguistic phenomena in addition to counting. We
hope such a benchmark will serve the community
to probe the grounding capabilities of vision and
language models on a broad range of linguistic
phenomena.

More generally, we encourage researchers i) to
report the performance on pretraining tasks, ii) to
work towards effective pretraining, and iii) to test
for catastrophic forgetting during finetuning. The
high computational and environmental cost of cur-
rent pretraining practices may outweigh the bene-
fits of reusing such models, leaving the prospect of
lightweight and green AI as a distant goal.

References
Manoj Acharya, Kushal Kafle, and Christopher Kanan.

2019. Tallyqa: Answering complex counting ques-
tions. Proceedings of the AAAI Conference on Arti-
ficial Intelligence, 33(01):8076–8084.

Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Mar-
garet Mitchell, Dhruv Batra, C Lawrence Zitnick,
and Devi Parikh. 2015. Vqa: Visual question an-
swering. In Proceedings of the IEEE international
conference on computer vision, pages 2425–2433.

Emily M Bender and Alexander Koller. 2020. Climb-
ing towards NLU : On Meaning , Form , and Under-
standing in the Age of Data. In Proceedings ofthe
58th Annual Meeting ofthe Association for Compu-
tational Linguistics (ACL’20), pages 5185–5198.

Yonatan Bisk, Ari Holtzman, Jesse Thomason, Jacob
Andreas, Yoshua Bengio, Joyce Chai, Mirella Lap-
ata, Angeliki Lazaridou, Jonathan May, Aleksandr
Nisnevich, Nicolas Pinto, and Joseph Turian. 2020.
Experience grounds language. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 8718–8735,
Online. Association for Computational Linguistics.

Emanuele Bugliarello, Ryan Cotterell, Naoaki
Okazaki, and Desmond Elliott. 2020. Multimodal
pretraining unmasked: Unifying the vision and
language berts. arXiv preprint arXiv:2011.15124.

Jize Cao, Zhe Gan, Yu Cheng, Licheng Yu, Yen-Chun
Chen, and Jingjing Liu. 2020. Behind the scene:
Revealing the secrets of pre-trained vision-and-
language models. arXiv preprint arXiv:2005.07310.

P. Chattopadhyay, R. Vedantam, R. R. Selvaraju, D. Ba-
tra, and D. Parikh. 2017. Counting everyday objects
in everyday scenes. In 2017 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR),
pages 4428–4437.

Yen-Chun Chen, Linjie Li, Licheng Yu, Ahmed El
Kholy, Faisal Ahmed, Zhe Gan, Yu Cheng, and
Jingjing Liu. 2020. Uniter: Universal image-text
representation learning. In ECCV.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Yash Goyal, Tejas Khot, Douglas Summers-Stay,
Dhruv Batra, and Devi Parikh. 2017. Making the
v in vqa matter: Elevating the role of image under-
standing in visual question answering. In Proceed-
ings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 6904–6913.

Claudio Greco, Barbara Plank, Raquel Fernández, and
Raffaella Bernardi. 2019. Psycholinguistics meets
Continual Learning: Measuring Catastrophic For-
getting in Visual Question Answering. In Pro-
ceedings ofthe 57th Annual Meeting ofthe Associa-
tion for Computational Linguistics (ACL’19), pages
3601–3605, Florence, Italy. Association for Compu-
tational Linguistics.

Gabriel Ilharco, Rowan Zellers, Ali Farhadi, and Han-
naneh Hajishirzi. 2020. Probing text models for
common ground with visual representations. arXiv
preprint arXiv:2005.00619.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz,
Joel Veness, Guillaume Desjardins, Andrei A. Rusu,
Kieran Milan, John Quan, Tiago Ramalho, Ag-
nieszka Grabska-Barwinska, Demis Hassabis, Clau-
dia Clopath, Dharshan Kumaran, and Raia Hadsell.
2017. Overcoming catastrophic forgetting in neural
networks. Proceedings of the National Academy of
Sciences, 114(13):3521–3526.

Mike Lewis, Yinhan Liu, Naman Goyal, Mar-
jan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Veselin Stoyanov, and Luke Zettlemoyer.
2020. BART: Denoising sequence-to-sequence pre-
training for natural language generation, translation,
and comprehension. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, pages 7871–7880, Online. Association
for Computational Linguistics.

Gen Li, Nan Duan, Yuejian Fang, Ming Gong, and
Daxin Jiang. 2020. Unicoder-vl: A universal en-
coder for vision and language by cross-modal pre-
training. In The Thirty-Fourth AAAI Conference
on Artificial Intelligence, AAAI 2020, The Thirty-
Second Innovative Applications of Artificial Intelli-
gence Conference, IAAI 2020, The Tenth AAAI Sym-
posium on Educational Advances in Artificial Intel-
ligence, EAAI 2020, New York, NY, USA, February
7-12, 2020, pages 11336–11344. AAAI Press.

https://doi.org/10.1609/aaai.v33i01.33018076
https://doi.org/10.1609/aaai.v33i01.33018076
https://www.business2community.com/s
https://www.business2community.com/s
https://www.business2community.com/s
https://doi.org/10.18653/v1/2020.emnlp-main.703
https://doi.org/10.1109/CVPR.2017.471
https://doi.org/10.1109/CVPR.2017.471
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
http://arxiv.org/abs/1906.04229
http://arxiv.org/abs/1906.04229
http://arxiv.org/abs/1906.04229
https://doi.org/10.1073/pnas.1611835114
https://doi.org/10.1073/pnas.1611835114
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://aaai.org/ojs/index.php/AAAI/article/view/6795
https://aaai.org/ojs/index.php/AAAI/article/view/6795
https://aaai.org/ojs/index.php/AAAI/article/view/6795

41

Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui
Hsieh, and Kai-Wei Chang. 2019. Visualbert: A
simple and performant baseline for vision and lan-
guage. In Arxiv.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James
Hays, Pietro Perona, Deva Ramanan, Piotr Dollár,
and C. Lawrence Zitnick. 2014. Microsoft coco:
Common objects in context. In Computer Vision –
ECCV 2014, pages 740–755, Cham. Springer Inter-
national Publishing.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In International Con-
ference on Learning Representations.

Jiasen Lu, Dhruv Batra, Devi Parikh, and Stefan
Lee. 2019. Vilbert: Pretraining task-agnostic visi-
olinguistic representations for vision-and-language
tasks. In Advances in Neural Information Process-
ing Systems, pages 13–23.

Jiasen Lu, Vedanuj Goswami, Marcus Rohrbach, Devi
Parikh, and Stefan Lee. 2020. 12-in-1: Multi-task
vision and language representation learning. In The
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR).

Sandro Pezzelle and Raquel Fernández. 2019. Is the
red square big? MALeViC: Modeling adjectives
leveraging visual contexts. In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 2865–2876, Hong Kong,
China. Association for Computational Linguistics.

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian
Sun. 2015. Faster r-cnn: Towards real-time ob-
ject detection with region proposal networks. In
Advances in neural information processing systems,
pages 91–99.

Anthony Robins. 1995. Catastrophic Forgetting, Re-
hearsal and Pseudorehearsal. Connection Science,
7(2):123–146.

Santi Seguı́, Oriol Pujol, and Jordi Vitria. 2015. Learn-
ing to count with deep object features. In Proceed-
ings of the IEEE Conference on Computer Vision
and Pattern Recognition Workshops, pages 90–96.

Piyush Sharma, Nan Ding, Sebastian Goodman, and
Radu Soricut. 2018. Conceptual captions: A
cleaned, hypernymed, image alt-text dataset for au-
tomatic image captioning. In Proceedings of ACL.

Ravi Shekhar, Sandro Pezzelle, Yauhen Klimovich,
Aurélie Herbelot, Moin Nabi, Enver Sangineto, and
Raffaella Bernardi. 2017. FOIL it! find one mis-
match between image and language caption. In Pro-
ceedings of the 55th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 255–265, Vancouver, Canada. Asso-
ciation for Computational Linguistics.

Ionut Sorodoc, Sandro Pezzelle, Aurélie Herbelot,
Mariella Dimiccoli, and Raffaella Bernardi. 2018.
Learning quantification from images: A structured
neural architecture. Natural Language Engineering,
24(3):363–392.

Weijie Su, Xizhou Zhu, Yue Cao, Bin Li, Lewei Lu,
Furu Wei, and Jifeng Dai. 2020. Vl-bert: Pre-
training of generic visual-linguistic representations.
In International Conference on Learning Represen-
tations.

Hao Tan and Mohit Bansal. 2019. LXMERT: Learning
cross-modality encoder representations from trans-
formers. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
5100–5111, Hong Kong, China. Association for
Computational Linguistics.

Alberto Testoni, Sandro Pezzelle, and Raffaella
Bernardi. 2019. Quantifiers in a Multimodal World:
Hallucinating Vision with Language and Sound. In
Proceedings ofthe Workshop on Cognitive Model-
ing and Computational Linguistics, pages 105–116,
Minneapolis, MN. Association for Computational
Linguistics.

Alexander Trott, Caiming Xiong, and Richard Socher.
2018. Interpretable counting for visual question an-
swering. In International Conference on Learning
Representations.

Eric Wallace, Yizhong Wang, Sujian Li, Sameer Singh,
and Matt Gardner. 2019. Do NLP models know
numbers? probing numeracy in embeddings. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 5307–
5315, Hong Kong, China. Association for Computa-
tional Linguistics.

Alex Wang, Yada Pruksachatkun, Nikita Nangia,
Amanpreet Singh, Julian Michael, Felix Hill, Omer
Levy, and Samuel Bowman. 2019. Superglue: A
stickier benchmark for general-purpose language un-
derstanding systems. In Advances in Neural Infor-
mation Processing Systems, volume 32, pages 3266–
3280. Curran Associates, Inc.

Dani Yogatama, Cyprien de Masson d’Autume, Jerome
Connor, Tomas Kocisky, Mike Chrzanowski, Ling-
peng Kong, Angeliki Lazaridou, Wang Ling, Lei
Yu, Chris Dyer, et al. 2019. Learning and evaluat-
ing general linguistic intelligence. arXiv preprint
arXiv:1901.11373.

Yan Zhang, Jonathon Hare, and Adam Prügel-Bennett.
2018. Learning to count objects in natural images
for visual question answering. In International Con-
ference on Learning Representations.

https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://doi.org/10.18653/v1/D19-1285
https://doi.org/10.18653/v1/D19-1285
https://doi.org/10.18653/v1/D19-1285
https://doi.org/10.1080/09540099550039318
https://doi.org/10.1080/09540099550039318
https://doi.org/10.18653/v1/P17-1024
https://doi.org/10.18653/v1/P17-1024
https://doi.org/10.1017/S1351324918000128
https://doi.org/10.1017/S1351324918000128
https://openreview.net/forum?id=SygXPaEYvH
https://openreview.net/forum?id=SygXPaEYvH
https://doi.org/10.18653/v1/D19-1514
https://doi.org/10.18653/v1/D19-1514
https://doi.org/10.18653/v1/D19-1514
https://doi.org/10.18653/v1/w19-2912
https://doi.org/10.18653/v1/w19-2912
https://openreview.net/forum?id=S1J2ZyZ0Z
https://openreview.net/forum?id=S1J2ZyZ0Z
https://doi.org/10.18653/v1/D19-1534
https://doi.org/10.18653/v1/D19-1534
https://proceedings.neurips.cc/paper/2019/file/4496bf24afe7fab6f046bf4923da8de6-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/4496bf24afe7fab6f046bf4923da8de6-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/4496bf24afe7fab6f046bf4923da8de6-Paper.pdf
https://openreview.net/forum?id=B12Js_yRb
https://openreview.net/forum?id=B12Js_yRb

42

Yuke Zhu, Oliver Groth, Michael Bernstein, and Li Fei-
Fei. 2016. Visual7W: Grounded Question Answer-
ing in Images. In IEEE Conference on Computer
Vision and Pattern Recognition.

43

A Appendix

A.1 Training and evaluation setup

In our experiments with ViLBERT and ViL-
BERT 12-in-1, we use the https://github.com/

facebookresearch/vilbert-multi-task code-
base. In our “zero-shot” experiments, we use
ViLBERT pretrained on image-sentence rank-
ing8 and ViLBERT 12-in-1 pretrained on twelve
tasks.9 In our experiments with LXMERT,
we use the https://github.com/huggingface/

transformers codebase. For evaluating LXMERT
on image-sentence alignment or counting as MLM,
we use the publicly available pretrained model.10

When evaluating LXMERT on counting as VQA,
we use the publicly available model additionally
fine-tuned on the VQA 2.0 dataset (Goyal et al.,
2017).11

When finetuning ViLBERT and
ViLBERT 12-in-1 on our counting dataset,
we train models on the training split and evaluate
on the concatenation of the validation and test
splits (see Table 6 for details on the splits). We
train all models for 20 epochs and evaluate
always at the end of each epoch, therefore 20
times. For each model, we report the best scores
obtained across all 20 evaluations. ViLBERT and
ViLBERT 12-in-1 are finetuned on our counting
data following the standard finetuning procedure of
ViLBERT 12-in-1: AdamW optimiser (Loshchilov
and Hutter, 2019) with a learning rate 4e-5 and
a linear warm-up scheduler, batch size 16, and a
maximum of 100 detected objects per image, a text
backbone bert-base-uncased and configuration
file bert base 6layer 6conect.json. We finetune
models using the binary cross-entropy loss where
the task is to decide if an image-sentence pair is
correct or a foil, and each instance consists of a
question (or statement, see Section A.2 below)
about the number of objects in the image and an
answer (that might be correct or foiled).

A.2 Question-to-statement template

We create a few simple templates to convert
<question, answer> pairs into a declarative state-

8https://dl.fbaipublicfiles.com/
vilbert-multi-task/pretrained_model.bin

9https://dl.fbaipublicfiles.com/
vilbert-multi-task/multi_task_model.bin

10LxmertForPreTraining.from pretrained
and model name ”unc-nlp/lxmert-base-uncased”.

11LxmertForQuestionAnswering.from pretrained
and model name ”unc-nlp/lxmert-vqa-uncased”.

ment. We denote the answer as A, and by definition
it is always a number. Other capitalised letters (e.g.,
B, C, etc.) denote entire sets of words that are either
copied over to the declarative sentence or removed
according to the template. If a set of words is op-
tional in the template, it is enclosed in brackets, e.g.
[D]. A template is selected if there is substring
match between the template’s key and the question.
We denote negation by ∼. We process templates in
order so that if a template matches, it “consumes”
the QA pair and produces a declarative sentence. If
no template matches, the QA pair is ignored and
not added to our counting dataset.

“are there” How many B are there
[C]? → There are A B [C]. E.g.:
“How many black cats are there in the picture?” →
“There are A black cats in the picture.”

“can you see” How many B can you see
[C]? → You see A B [C]. E.g.: “How
many elephants can you see?” → “You see A ele-
phants.”

“do you see” How many B do you see
[C]? → There are A B [C]. E.g.: “How
many people do you see by the tree?” → “There
are A people by the tree.”

“are” How many B are C? → There
are A B C. E.g.: “How many glasses are on
the table?” → “There are A glasses on the table.”

“can” How many B can C? → A B
can C. E.g.: “How many surcoats can be found
in the storage?” → “A surcoats can be found in the
storage.”

“do” and “have” How many B do C
have [D]? → C have A B [D]. E.g.:
“How many headphones do the people have?” →
“The people have A headphones.”

“does” and “have” How many B does C
have D? → C has A B C. E.g.: “How
many holes does he have in his pants?” → “He
has A holes in his pants.”

“have” How many B have C? → A B
have C. E.g.: “How many bottles have blue
caps?” → “A bottles have blue caps.”

∼ “is” and ∼ “will” and ∼ “does” and
∼ “has” How many B? → There are A
B. E.g.: “How many cars in the picture?” →
“There are A cars in the picture.”

https://github.com/facebookresearch/vilbert-multi-task
https://github.com/facebookresearch/vilbert-multi-task
https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
https://dl.fbaipublicfiles.com/vilbert-multi-task/pretrained_model.bin
https://dl.fbaipublicfiles.com/vilbert-multi-task/pretrained_model.bin
https://dl.fbaipublicfiles.com/vilbert-multi-task/multi_task_model.bin
https://dl.fbaipublicfiles.com/vilbert-multi-task/multi_task_model.bin

44

Split #Train #Valid #Test

Standard
Correct 6, 001 2, 439 3, 622
Foiled 17, 896 7, 283 10, 800

Total 23, 897 9, 722 14, 422

Hard
Correct 1, 567 1, 130 1, 352
Foiled 4, 672 3, 378 4, 040

Total 6, 239 4, 508 5, 392

Interpolated
Correct 3, 303 1, 331 2, 013
Foiled 9, 840 3, 969 5, 998

Total 13, 143 5, 300 8, 011

Table 6: Counting data statistics.

Numeral Percentage (%)
Train Valid Test

std. hard std. hard std. hard

zero 9 11 7 15 7 12
one 30 11 26 14 27 12
two 25 9 32 15 19 13
three 14 11 13 13 16 12
four 8 9 9 15 7 12
five 5 12 4 10 5 13
six 3 11 3 6 3 9
7 1 5 1 2 1 4
8-10 3 11 2 5 3 8
10-20 2 7 2 4 2 5
21+ 0 0 0 1 0 1

Table 7: Percentage of numerals in the counting data.

A.2.1 Plurals
Finally, after applying the above mentioned tem-
plates we check if the original answer to the ques-
tion is the number 1. When that is the case,
we convert all sentences starting with “There are”
by There are B.→ There is B. We also
transform the following words: “people”→ “per-
son”, “men” → “man”, “women” → “woman”,
and also remove the final “s” of words up to the
fourth word in the declarative sentence (all words
but “has”).

A.3 Counting Data

In Table 6 we show the statistics in our counting
datasets.

We note that: the hard split has considerably
fewer examples than the other two splits, due to
the capping at k = 200 examples per answer type;
furthermore, the interpolated split also has fewer
examples than the standard split because we dis-
card all examples with odd answers from its train-
ing set and all examples with even answers from
its validation and test sets.

The hard split is more balanced with regards to
the number of classes, whereas quantities in the

standard split follow a more natural distribution,
where numerals like “one”, “two” or “three” are
more common than large quantities or mentions
of empty sets (see Figure 2). This more skewed
distribution is made even more evident in Table
7, which shows the percentage of occurrence of
numerals in the standard split. The less skewed
distribution in the hard split would be expected to
be harder, since we artificially lower the relative
frequency of frequent answers (compare the inner
to the outer circles in Figure 2).

A.4 Counting and the attention bottleneck
The attention bottleneck takes place when there is
an image encoder model and there is a bottleneck
between the model input and the layer that makes
the predictions of interest. This situation can be
exemplified where the image pipeline has the gen-
eral form “image→ CNN→ convolutional feature
maps→ attention bottleneck→ prediction”. We
now use an idealised example meant to illustrate
the attention bottleneck issue, similar to the one
used in Zhang et al. (2018). The goal is to clarify
when the issue should arise and in what conditions.

Imagine there is a cat prediction model, and we
present it with an image with a single cat. After
a number of CNN layers, the model computes a
convolutional feature map ci,j. In the attention bot-
tleneck, a perfectly trained model will assign proba-
bility close to 1 to the “cat” feature vector, e.g., say
feature map c4,7, and 0 elsewhere, and the attention
output will roughly be 1 · c4,7 + 0 ·

∑
i 6=4,j 6=7 ci,j .

We can now think of an idealised scenario where
we create an identical copy of the cat image and
paste it side-by-side with the original image (so
that there are two cats), or we can think of another
image which depicts two identically looking cats.
When encoding any such image, each “cat” feature
vector should get ∼ 0.5 probability in the attention
layer, again assuming an idealised and perfectly
trained model. By design of the attention mecha-
nism, the attention output will consist of the two
sets of “cat” features multiplied by ∼ 0.5 each and
summed together. Therefore the attention output
for the image with two cats would virtually be in-
distinguishable from the output for the image with
a single cat. If the model only has access to these
features, i.e., the attention mechanism is a bottle-
neck, it becomes very hard for the model to count,
which by definition would require being able to
differentiate the number of cats in the input image.

