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Welcome to the ACL 2021 Workshop on Meta Learning and Its Applications to Natural Language
Processing (MetaNLP).

Deep learning based natural language processing (NLP) has become the mainstream of research in
recent years and significantly outperforms conventional methods. However, deep learning models are
notorious for being data and computation hungry. These downsides limit such models’ application from
deployment to different domains, languages, countries, or styles, since collecting in-genre data and model
training from scratch are costly. The long-tail nature of human language makes challenges even more
significant.

Meta-learning, or ‘Learning to Learn’, aims to learn better learning algorithms, including better
parameter initialization, optimization strategy, network architecture, distance metrics, and beyond. Meta-
learning has been shown to allow faster fine-tuning, converge to better performance, and achieve
outstanding results for few-shot learning in many applications. Meta-learning is one of the most
important new techniques in machine learning in recent years, but the method is mainly investigated with
applications in computer vision. It is believed that meta-learning has excellent potential to be applied in
NLP, and some works have been proposed with notable achievements in several relevant problems, e.g.,
relation extraction, machine translation, and dialogue generation and state tracking. However, it does not
catch the same level of attention as in the image processing community.

The goal of this workshop is to bring concentrated discussions on meta-learning for the field of NLP via
several invited talks, oral and poster sessions with high-quality papers, and a panel of leading researchers
from industry and academia. Alongside research work on new meta-learning methods, data, applications,
and results, this workshop will call for novel work on understanding, analyzing, and comparing different
meta-learning approaches for NLP.

We hope you will enjoy MetaNLP 2021 at ACL and contribute to the future success of our community!

MetaNLP 2021 Organizers: Hung-Yi Lee, Mitra Mohtarami, Shang-Wen Li, Di Jin, Mandy Korpusik,
Shuyan Dong, Ngoc Thang Vu, Dilek Hakkani-Tur
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Abstract

Text-based games can be used to develop task-
oriented text agents for accomplishing tasks
with high-level language instructions, which
has potential applications in domains such as
human-robot interaction. Given a text instruc-
tion, reinforcement learning is commonly used
to train agents to complete the intended task
owing to its convenience of learning policies
automatically. However, because of the large
space of combinatorial text actions, learning a
policy network that generates an action word
by word with reinforcement learning is chal-
lenging. Recent research works show that
imitation learning provides an effective way
of training a generation-based policy network.
However, trained agents with imitation learn-
ing are hard to master a wide spectrum of task
types or skills, and it is also difficult for them
to generalize to new environments. In this pa-
per, we propose a meta-reinforcement learn-
ing based method to train text agents through
learning-to-explore. In particular, the text
agent first explores the environment to gather
task-specific information and then adapts the
execution policy for solving the task with this
information. On the publicly available testbed
ALFWorld, we conducted a comparison study
with imitation learning and show the superior-
ity of our method.

1 Introduction

A text-based game, such as Zork (Infocom, 1980),
is a text-based simulation environment that a player
uses text commands to interact with. For example,
given the current text description of a game envi-
ronment, users need to change the environmental
state by inputting a text action, and the environment
returns a text description of the next environmental
state. Users have to take text actions to change the
environmental state iteratively until an expected
final state is achieved (Côté et al., 2018). Solving

text-based games requires non-trivial natural lan-
guage understanding/generalization and sequential
decision making. Developing agents that can play
text-based games automatically is promising for en-
abling task-oriented, language-based human-robot
interaction (HRI) experience (Scheutz et al., 2011).
Supposing that a text agent can reason a given com-
mand and generate a sequence of text actions for
accomplishing the task, we can then use text as a
proxy and connect text inputs and outputs of the
agent with multi-modal signals, such as vision and
physical actions, to allow a physical robot operate
in the physical space (Shridhar et al., 2021).

Given a text instruction or goal, reinforcement
learning (RL) (Sutton and Barto, 2018) is com-
monly used to train agents to finish the intended
task automatically. In general, there are two ap-
proaches to train a policy network to obtain the
corresponding text action: generation-based meth-
ods that generate a text action word by word and
choice-based methods that select the optimal ac-
tion from a list of candidates (Côté et al., 2018).
The list of action candidates in a choice-based
method may be limited by pre-defined rules and
hard to generalize to a new environment. In con-
trast, generation-based methods can generate more
possibilities and potentially have a better general-
ization ability. Therefore, to allow a text agent to
fully explore in an environment and obtain best
performance, a generation-based method is needed
(Yao et al., 2020). However, the combinatorial ac-
tion space precludes reinforcement learning from
working well on a generation-based policy network.
Recent research shows that imitation learning (Ross
et al., 2011) provides an effective way to train
a generation-based policy network using demon-
strations or dense reinforcement signals (Shridhar
et al., 2021). However, it is still difficult for the
trained policy to master multiple task types or skills
and generalize across environments (Shridhar et al.,

1



2021). For example, an agent trained on the task
type of slicing an apple cannot work on a task of
pouring water. Such lack of the ability to gener-
alize precludes the agent from working on a real
interaction scenario. To achieve real-world HRI ex-
perience with text agents, two requirements should
be fulfilled: 1) a trained agent should master multi-
ple skills simultaneously and work on any task type
that it has seen during training; 2) a trained agent
should also generalize to unseen environments.

Meta-reinforcement learning (meta-RL) is a
commonly used technique to train an agent that
generalizes across multiple tasks through summa-
rizing experience over those tasks. The underlying
idea of meta-RL is to incorporate meta-learning
into reinforcement learning training, such that the
trained agent, e.g., text-based agents, could master
multiple skills and generalize across different envi-
ronments (Finn et al., 2017; Liu et al., 2020). In
this paper, we propose a meta-RL based method
to train text agents through learning-to-explore. In
particular, a text agent first explores an environment
to gather task-specific information. It then updates
the agent’s policy towards solving the task with
this task-specific information for better generaliza-
tion performance. On a publicly available testbed,
ALFWorld (Shridhar et al., 2021), we conducted ex-
periments on all its six task types (i.e., pick & place,
examine in light, clean & place, heat & place, cool
& place, and pick two & place), where for each
task type, there is a set of unique environments
sampled from the distribution defined by their task
type (see Section 5.1 for statistics). Results suggest
that our method generally masters multiple skills
and enables better generalization performance on
new environments compared to ALFWorld (Shrid-
har et al., 2021). We provide further analysis and
discussion to show the importance of task diversity
for meta-RL. The contributions of this paper are:

• From the perspective of human-robot interac-
tion, we identify the generalization problem of
training an agent to master multiple skills and
generalize on new environments. We propose
to use meta-RL methods to achieve it.

• We design an efficient learning-to-explore
approach which enables a generation-based
agent to master multiple skills and generalize
across a wide spectrum of environments.

2 Related Work

2.1 Language-based Human-Robot
Interaction

Enabling a robot to accomplish tasks with language
goals is a long-term study of human-robot interac-
tion (Scheutz et al., 2011), where the core problem
is to ground language goals with multi-modal sig-
nals and generate an action sequence for the robot
to accomplish the task. Because of the character-
istic of sequential decision making, reinforcement
learning (Sutton and Barto, 2018) is commonly
used. Previous research works using reinforcement
learning have studied the problem on simplified
block worlds (Janner et al., 2018; Bisk et al., 2018),
which could be far from being realistic. The re-
cent interests on embodied artificial intelligence
(embodied AI) have contributed to several realistic
simulation environments, such as Gibson (Xia et al.,
2018), Habitat (Savva et al., 2019), RoboTHOR
(Deitke et al., 2020), and ALFRED (Shridhar et al.,
2020). However, because of physical constraints in
a real environment, gap between a simulation envi-
ronment and a real world still exists (Deitke et al.,
2020; Shridhar et al., 2021). Researchers have also
explored the idea of finding a mapping between
vision signals of a real robot and language signals
directly (Blukis et al., 2020), but this mapping re-
quires detailed annotated data and it is usually ex-
pensive to obtain physical interaction data. An
alternative method of deploying an agent on a real
robot is to train the agent on abstract text space,
such as TextWorld (Côté et al., 2018), and then
connect text with multi-modal signals of the robot
(Shridhar et al., 2021). For example, by connect-
ing text with the simulated environment ALFRED
(Shridhar et al., 2020), researchers have shown that
the trained text agent has better generalization abil-
ity than training an embodied agent end-to-end
directly (Shridhar et al., 2021). However, how to
make a text agent generalize across different tasks
so that one robot can work on tasks of different
types and in unseen environments is still a chal-
lenging problem, which is the focus of this paper.

2.2 Text-based Games
The success of deep reinforcement learning (RL)
on Atari games (Mnih et al., 2015) inspires the
use of RL on text-based games. There are a va-
riety of ways to use deep reinforcement learn-
ing on text-based games. For example, using the
deep Q-learning (DQN) framework, Narasimhan
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et al. (2015) leverage the Long Short-Term Mem-
ory (LSTM) as the policy network to predict action
for each state. In (He et al., 2016), researchers
propose the deep reinforcement relevance network
(DRRN), which encodes states and actions sepa-
rately and then calculates Q-values by integrating
the information of the two channels. However, the
compositional and combinatorial properties of nat-
ural language lead to large state and action spaces,
which makes solving text-based games with deep
reinforcement learning very challenging. To deal
with this problem, in fiction-style text games, Ad-
hikari et al. (2020) use a graph-aided transformer
(GATA) to capture game dynamics so that it can
plan well and select text actions more effectively.
Ammanabrolu and Riedl (2019) learn a knowledge
graph during the exploration of an agent, and use
it to prune the action space. Furthermore, Muruge-
san et al. (2021) show that incorporating common
sense knowledge also helps reduce the action space
and allows an agent to choose an action more effec-
tively. Recently, Yao et al. (2020) show that given
a text state, a fine-tuned language model GPT can
generate a corresponding text action set, which
significantly reduces the action space and also im-
proves the performance. Previous research works
mainly focus on learning an agent to solve one text
game effectively. However, in reality, we usually
hope an agent can learn a wide spectrum of tasks
and generalize well to unseen environments. In
(Adolphs and Hofmann, 2020), in terms of environ-
ments and task descriptions, researchers show that
an actor-critic framework with action space pruning
can learn an agent to generalize to unseen games
that belongs to the same family when training. In
this paper, with meta-reinforcement learning, we
investigate if an agent can master multiple task
types and generalize to unseen environments.

2.3 Meta-reinforcement Learning

Meta-learning is a machine learning paradigm that
tries to leverage common knowledge among tasks
to generalize to new data (Thrun and Pratt, 1998;
Vilalta and Drissi, 2002). Meta-reinforcement
learning, in particular, augments Markov decision
processes with particular task labels, and tries to
use shared experience of interacting with differ-
ent tasks to adapt to a new task efficiently (Liu
et al., 2020). In general, there are three ways of
conducting meta-reinforcement learning: memory-
based methods, optimization-based methods, and

learning-to-explore. For memory-based methods,
researchers have proposed RL2 (Duan et al., 2016),
which uses a recurrent neural network (RNN) to
encode a “fast” RL algorithm, and the RNN mod-
ule is trained with another “slow” RL algorithm.
Memory-based methods are usually hard to opti-
mize and suffer from the sample efficiency problem
(Duan et al., 2016). For optimization-based meth-
ods, in (Finn et al., 2017), researchers propose a
model-agnostic meta-reinforcement learning algo-
rithm that uses a nested optimization procedure to
obtain maximal rewards with limited number of
sample trajectories. Optimization-based methods
usually require on-policy reinforcement learning
algorithms and are hard to use value-based meth-
ods (Finn et al., 2017), which also leads to the
sample efficiency problem. Learning-to-explore
is a newly proposed meta-reinforcement learning
approach that can potentially leverage any rein-
forcement learning method with good optimiza-
tion properties by decoupling an episode into two
stages: exploration and execution (Rakelly et al.,
2019; Liu et al., 2020). The exploration stage is
used to recognize task-specific information, which
could be useful for the execution stage for fast and
efficient adaptation.

For embodied AI, using meta-reinforcement
learning, researchers have explored to improve
generalization ability of an agent to unseen envi-
ronments (Wortsman et al., 2019). However, as
aforementioned, deploying such an agent on a real
robot is still a challenging problem owing to the
domain gap between a simulation environment and
a physical environment. In this paper, we instead
try to use the learning-to-explore method of meta-
reinforcement learning to increase the generaliza-
tion ability of a text agent so that it can master mul-
tiple skills and work on new environments, which
can potentially facilitate real-world human-robot
interaction applications.

3 Problem Formulation

3.1 Text-based Game Preliminary

Given a language goal g, playing a text-based game
can be modeled as a partially observable Markov
decision process (POMDP) (S, P,A,Ω, O,R, γ)
(Côté et al., 2018), where S is the set of environ-
mental states, P is the set of transition probabilities,
A is the set of actions, Ω is the set of observations,
O is the set of observation probabilities, R is the
reward function, and γ is the discount factor. If
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we input an action at to the environment, it will
transition from the current state st to a new state
st+1 with probability P (st+1|st, at), output an ob-
servation ot+1 based on the new state with proba-
bility O(ot+1|st+1), and get a reward R(g, at, st)
depending on the goal g, the current action at,
and the current state st. Given the initial environ-
ment state s0 and a goal g, we want to learn a pol-
icy π(a|o, g) that can generate an action sequence
(a0, a1, . . . , aT ) to accomplish the task and obtain
maximal discounted reward

∑T
t=0 γ

tR(g, at, st).
In text-based games, o and a refer to text sentences.

3.2 Learning-to-Explore in Text-based
Games

In meta-reinforcement learning, we consider a fam-
ily of POMDPs {(Sµ, Aµ,Ωµ, γ, Oµ, R, Pµ)} in-
dexed by µ, where µ ∈ M denotes a task and
M denotes the family of POMDPs or tasks. Here,
we consider that the reward function is indepen-
dent of tasks and can be applied for all POMDPs.
The tasks in the family have task-dependent set of
states Sµ, actions Aµ, observations Ωµ, observa-
tion probabilities Oµ, and dynamics Pµ. Following
the setting in (Liu et al., 2020), given a goal g, a
task-based meta-reinforcement learning problem
consists of sampling a task µ ∼ p(µ) and running a
trial, where a trial contains an exploration episode,
followed by several execution episodes. We also
call a goal as a task type or a skill because it usu-
ally constrains how an agent solves a task µ. We
call a POMDP without the reward function as an
environment, contextualized with the task speci-
fier µ, since it defines a game environment that an
agent can interact with. A task denoted by µ then
contains a task type, an environment, and a reward
function. Given a set of training tasksMtrain, we
want to train a policy π(a|o, g) that can generalize
well across a set of testing tasksMtest. For training,
we first fit a task-specific feature vector z′µ using
the exploration episode, and then use it to adapt to
the task quickly during execution. The task-specific
adaptation helps the policy π to recognize which
task type it works on and generalize well on a new
unseen environment.

4 Method

We use neural networks to map observations
to actions. Given the general setting of meta-
reinforcement learning through learning-to-explore,
our method contains three modules: an execution

!

"#(%&|(), !, +&)

-.(()|/)/ Task Identifier

()0

()

Environment

%&

12(()|!, +&)
Exploration Policy

12(%&|!, +&)

Execution Policy

Figure 1: Overview of our method, where g is the lan-
guage goal, µ denotes a task index, zµ and z′µ are hid-
den feature vectors of a task, and at is the generated
text action. The dotted line box is only used during
training. For simplicity, we did not draw the inputs of
roll-out trajectories.

policy neural network πψ, a task identifier neural
network qθ, and an exploration policy neural net-
work pφ, where ψ, θ, and φ denote parameters of
the three neural networks, respectively. As shown
in Figure 1, an exploration policy pφ is trained to
generate a task-specific feature vector z′µ, which is
then input to an execution policy πψ for generating
actions. During training, a task identifier is used
to generate supervised signals zµ of z′µ, and is not
used during testing. Because of z′µ, πψ can adapt
quickly and generalize well in a new task.

The πψ, qθ and pφ are all encoder-decoder
architectures. For πψ, it takes a goal
g and a K-step roll-out trajectory τt =
(o0, at−K , ot−K+1, . . . , at−1, ot) from time t−K+
1 to time t as inputs, and outputs the current ac-
tion at, where o0 is obtained by executing the
“look” action at the beginning. o0 is used be-
cause it is the only observation that lists the dif-
ferent areas of the room. qθ takes a task in-
dex µ as an input and outputs the task-specific
feature zµ, which is only used during training.
pφ takes a goal and a K-step roll-out trajectory
τt = (o0, at−K , ot−K+1, . . . , at−1, ot) as inputs
and outputs an estimated task-specific feature z′µ.

Our goal is to make an execution policy
π(at|g, τt) generalizable across tasks. If we train
π using imitation learning, it is critical to have
enough training samples of {(g, τt, at)} following
some distributions to have good generalization per-
formance. But because of the combinatorial com-
plexity of τt, it is hard to obtain enough data of at.
Learning from conditional variational auto-encoder
(CVAE) (Sohn et al., 2015), we factorize π with a
task-specific hidden variable z and use z to facili-
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tate the generation of at, namely,

π(at|g, τt) =

∫

z∈Z
p(z|g, τt)π(at|z, g, τt)dz,

(1)
where Z ∼ N (zµ, σ

2I) is assumed to follow a
Gaussian distribution, the aforementioned task-
specific feature vector zµ is the mean vector and σ2

is the variance. During testing, we can then gener-
ate actions by first generating a task-specific hidden
variable z with p(z|g, τt) and then generating the
action with π(at|z, g, τt). Because z encodes task-
specific features, it helps π generate more proper
actions for the current task µ.

Optimizing (1) amounts to maximise evidence
lower bound (ELBO) (Sohn et al., 2015):

ELBO(at, g, τt) = Eq(z|at,g,τt)[log π(at|z, g, τt)]
− KL(q(z|at, g, τt))||p(z|g, τt)),

(2)
where q(z|at, g, τt)) is the approximate posterior
probability of z and p(z|g, τt) is the prior proba-
bility of z. To implement (2), we use the execu-
tion policy network πψ(at|zµ, τt), the task identi-
fier qθ(zµ|µ), and the exploration policy network
pφ(z′µ|g, τt) to approximate the execution policy,
the posterior, and the prior, respectively, and as-
sume that both qθ(zµ|µ) and pφ(z′µ|g, τt) are Gaus-
sian. It is easy to show that the new objective is:

Eqθ(zµ|at,g,τt)[log πψ(at|zµ, g, τt)]−
||zµ − z′µ||22

2σ2
,

(3)
where we assume σ2 is the same for both the poste-
rior and prior. In the following, we introduce the
details of the execution policy network, the task
identifier, and the exploration policy network.

4.1 Execution Policy
The architecture of the execution policy network
is similar to the policy network in (Shridhar et al.,
2021). In particular, a QANet (Yu et al., 2018)
is used to first encode g, τt as a recurrent hidden
state ht and then decode ht to get at. Different
from (Shridhar et al., 2021), during encoding, we
concatenate the initial encoding hRNN and zµ as an
input to obtain ht, namely,

hRNN = Encode(g, τt),

ht = GRU(ReLU(W(hRNN ⊕ zµ) + b), ht−1),

where ⊕ denotes the concatenation operation,
W ∈ Rde×2de is a weight matrix, b ∈ Rde is a
bias vector, hRNN ∈ Rde , ht ∈ Rdh , de is the di-
mension of zµ, dh is the dimension of ht, GRU
denotes a gated recurrent unit, and ReLU denotes
a ReLU activation function. Compared to selecting
text actions from a set of valid actions, generat-
ing text actions word by word is more likely to
explore multiple possibilities for performing ac-
tions to achieve higher rewards (Yao et al., 2020).
However, Shridhar et al. (2021) show that when
trained from a sparse reinforcement learning sig-
nal in ALFWorld, generation-based methods are
hard to get good performance. Because it is rela-
tively easy to get demonstrations from a text-based
game, similar to (Shridhar et al., 2021), the imita-
tion learning method DAgger (Ross et al., 2011) is
used to train a generation-based execution policy
πψ. In this case, optimizing the execution policy
network is to optimize the first term of (3).

4.2 Task Identifier

We use a task identifier qθ(zµ|µ) to approximate
the approximate posterior q(z|at, g, τt). The task
identifier is used to generate task-specific features
during training. We implement it as a simple two-
layer fully connected network as:

zµ = ReLU(W2ReLU(W1e(µ) + b1) + b2),

where e(µ) is the one-hot encoding of the task
index µ, W2 ∈ Rde×de , W1 ∈ Rde×N , b1,b2 ∈
Rde , de is the dimension of the task embedding zµ,
N is the number of training game environments.

4.3 Exploration Policy

We use an exploration policy network pφ(z′µ|g, τt)
to approximate the prior p(z|g, τt). The explo-
ration policy needs to explore the environment to
gather task-specific trajectory within T exp. Be-
cause we train the model end-to-end, it will opti-
mize the agent to explore the environment in this
fixed number of steps, which also saves time. The
architecture is similar to the execution policy net-
work. An encoder takes g, τt as inputs and gener-
ates a hidden state ht, and the hidden state is then
used to obtain z′µ via a fully connected layer:

z′µ = ReLU(Wht + b),

where W ∈ Rde×dh , b ∈ Rde .
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Algorithm 1: The training procedure
Input: training tasksMtrain

Output: execution policies πψ , exploration policy pφ

initialize hyper-parameters Mstep, B, T
exp, T exec

initialize πψ , pφ, and qφ

i← 0
while True do

if i > Mstep then
break

end

randomly sample B gamesMB fromMtrain

// Evaluate the task identifier
calculate zµ with qφ

// Exploration
execute “look” and get o0
for t=1:T exp do

at ← pφ(at|g, τt)
compose τt by adding at and ot
evaluateMB with at and get ot+1

z′µ ← pφ(z
′
µ|g, τt)

calculate (4) and update
end

// Execution
execute “look” and get o0
for t=1:T exec do

at ← πψ(at|zµ, g, τt)
compose τt by adding at and ot
get demonstrations fromMB

calculate likelihood of at using
demonstrations and update

if done then
break

end
end

i← i+B
end

For the exploration policy, in addition to obtain
z′µ, we also decode ht to get an exploration ac-
tion at: pφ(at|g, τt). In other words, we adopt
a multi-task learning method to train the explo-
ration network. In this way, the exploration policy
also learns how to solve the problem, which could
help the learning of z′µ. We optimize the following
multi-task objective:

L = Lµ + Ldqn, (4)

where Lµ is the task embedding loss and Ldqn is
the DQN loss. In particular, Lµ is the second term
in (3), except that we do not consider the coefficient
1/2σ2. For the DQN loss Ldqn, we use the deep
Q-learning (DQN) method to train the exploration
policy. Unlike the execution policy network, we do
not use demonstrations here because we want the
policy network to explore the environment more.

DQN is an off-policy method that can leverage
replay buffer to deal with the sample efficiency
problem. Here, we use DQN for its simplicity, but
it is possible to use other more sophisticated off-
policy methods. Because it is generally difficult
to train a generation-based text agent with only
the sparse rewards provided by the environment,
we adopt the choice-based method to train the text
agent. We empirically turn the reward function to
be dense by adding the second term in Eq(3) to the
reward function: Rnew = 0.5×Rold+0.5×||zµ−
z′µ||22 to encourage per-step optimization, where
Rold is the reward provided by the environment.

The training procedure of the proposed method,
as presented in Algorithm 1, runs as follows: first,
we randomly samples a batch of tasksMB from
Mtrain; second, with task indices, we evaluates qθ
to obtain the task-specific features zµ; third, the
exploration agent exploresMB by taking actions
with pφ, and updates pφ according to Eq(4) through
a DQN learning. z′µ is also obtained by pφ during
exploring; fourth, the execution agent takes actions
with πψ and we update the likelihood (the first
term in Eq(3)) with demonstrations of the training
data. The end-to-end training runs iteratively up to
a maximal step Mstep. In Algorithm 1, B denotes
the sampling size of tasks, T exp is the step number
of exploration, and T exec is the step number of
execution.

5 Experiments

To demonstrate the generalization ability of our
meta-reinforcement learning algorithm across
tasks, we conducted a set of experiments with the
ALFWorld platform (Shridhar et al., 2021). Text
environments of ALFWorld are aligned with 3D
simulated environments from ALFRED (Shridhar
et al., 2020), which makes ALFWorld a good proxy
for our human-robot interaction scenario.

5.1 Dataset

The ALFWorld dataset (Shridhar et al., 2021) con-
tains six task types, including pick & place, ex-
amine in light, clean & place, heat & place, cool
& place, and pick two & place. While all the task
types require some basic common sub-tasks such as
finding an object, picking it up, and placing it to a
particular place; some task types require more com-
plex interactions with certain objects (e.g., heating
an object with a heat source). Each task type con-
tains a set of training environments, and two sets of
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test environments. The first test set (seen) contains
environments that are different, but sampled from
the same game distributions as the training set (e.g.,
same rooms but with different scene layouts). The
second test set (unseen) contains environments that
do not appear in the training set (i.e., unseen rooms
with different receptacles and scene layouts). The
statistics of the dataset is shown in Table 1. The
task types pick & place and pick two & place have
more training environments than others. Our gener-
alization goal is to train a text agent on the training
set of all tasks simultaneously, and during testing,
given any task type, the agent can have good perfor-
mance on both seen and unseen environments, i.e.,
the agent masters all the six task types and general-
izes well on both seen and unseen environments.

task type train seen unseen
pick & place 790 35 24

examine in light 308 13 18
clean & place 650 27 31
heat & place 459 16 23
cool & place 533 25 21

pick two & place 813 24 17
all tasks 3553 140 134

Table 1: The statistics of the ALFWorld dataset.

5.2 Baseline and Implementation Details

We compare our method (denoted as Ours) with the
state-of-the-art generation-based agent (denoted as
ALFWorld). Transfer learning is another way to
improve the generalization ability of an agent, but
it usually considers transferring knowledge from
a source task to a target task without the setting
of multiple tasks (Zhuang et al., 2021). We leave
it as a future direction to investigate. We adopt
the implementation of ALFWorld from the origi-
nal paper (Shridhar et al., 2021) and use their pre-
trained model for conducting all comparison ex-
periments. For the hyper-parameters in Algorithm
1, T exp is set as 10 empirically, Mstep = 500, 000
(50K), B = 10, T exec = 50 are kept as the default
values of ALFWorld. The trajectory lengthK is set
as 3 empirically. Following ALFWorld (Shridhar
et al., 2021), we use beam search with width 10 for
decoding. We ran all experiments on a server with
Intel(R) Xeon(R) Silver 4216 CPU @ 2.10GHz,
32G Memory, Nvidia GPU 2080Ti, Ubuntu 16.04.

5.3 Evaluation Metric

We use success rate as the evaluation metric for our
experiment. In particular, for |Mtest| text games

being evaluated, if an agent can finish S tasks, then
the success rate of the agent is sr = S

|Mtest| . Similar
to (Shridhar et al., 2021), we evaluate three times
on the testing data and report averaged scores.

ALFWorld Ours
task type seen unseen seen unseen

pick & place 46.7 34.7 51.4 50.0
examine in light 25.7 22.2 38.5 22.2
clean & place 44.4 39.8 48.1 54.8
heat & place 58.3 44.9 50.0 56.5
cool & place 38.7 47.6 44.0 76.2

pick two & place 23.6 27.4 12.5 23.5
all tasks 39.3 37.6 41.4 49.3

Table 2: Experiment results of the generalization ability
on each individual task type and the union of them.

5.4 Results and Analysis
We show the performance of our model on both
seen and unseen test sets in Table 2, compared
with numbers computed using the code and model
checkpoint provided by ALFWorld (Shridhar et al.,
2021). We observe that in most experiment set-
tings, our method outperforms ALFWorld. This is
especially obvious in the unseen setting, where the
testing environments contain unseen rooms with
different receptacles and scene layouts, our method
outperforms ALFWorld by a significant margin.
This suggests that the task-specific features gener-
ated by our agent indeed enable the agent learning
from a wide spectrum of task types. The larger
performance gap between our method and ALF-
World on the unseen test set (e.g., 49.3 vs 37.6
when testing on the union of all task types) further
advocates that the task-specific features generated
by our method are useful when tackling with com-
pletely unfamiliar environments.

On the other hand, we observe that our method’s
performance on the pick two & place tasks are
lower than ALFWorld. As mentioned in (Shrid-
har et al., 2021), the pick two & place task type is
unique and is considerably more difficult compared
to other tasks, in the sense that it is the only task
type which requires an agent to grasp and operate
more than one object. Intuitively, this aligns with
the common sense that a person who has learned
to ride all kinds of bicycles can easily ride a new
bicycle, but does not necessarily know how to drive
a car. We suspect that the decrease in performance
may be caused by the agent being overfitting to
the majority of training data in which only single
object is picked up. Namely, the current developed
method could work better on scenarios where a

7



text-based game has the same difficulty level. In
other words, the current developed method can
only work on scenarios where a text-based game
has the same difficulty level as the majority of train-
ing games, and it is still hard to generalize to tasks
with a higher difficulty level. As a future direc-
tion, we plan to investigate the explainability of
why an end-to-end trained agent works on certain
tasks through counterfactuals (Pearl and Macken-
zie, 2018), and improve our method to specifically
tackle such problems where a certain dimension of
task representations is significantly different from
and unbalanced in the majority of training data.

Finally, compared to a dedicated model trained
specifically on one task type (Table 2 left in (Shrid-
har et al., 2021)), the performance of our method
is generally 10% ∼ 20% behind, and there is still
a lot of room for improvement to achieve human-
level intelligence. However, our method shows
that learning task-specific features through meta-
reinforcement learning help an agent generalize
across a wide spectrum of task types, which is vi-
tal towards real-world applications of human-robot
interaction.

5.5 Discussion

To investigate whether different task types help im-
prove performance of each other, we experimented
with a setting where an agent is trained on the six
task types separately with our method. The results
are shown in Table 3. Compared to the setting
where the agent is trained on the union of all task
types (Table 2), the performance shows a signif-
icant drop in most of the task types. This trend
is especially clear in the pick two & place tasks.
When trained solely on this type of tasks, our agent
produces a zero success rate. This suggests that
for a meta-reinforcement learning based method
like ours, it is essential to have a diverse set of task
types as well as a large enough training dataset.

task type seen unseen
pick & place 57.1 25.0

examine in light 23.1 11.1
clean & place 51.9 58.1
heat & place 31.3 30.4
cool & place 12.0 9.5

pick two & place 0.0 0.0

Table 3: Testing results of training a separate agent on
each of the six task types.

6 Conclusion

We study the generalization issue of text-based
games, and develop a meta-reinforcement learn-
ing method with a learning-to-explore approach. In
particular, we first use an exploration policy net-
work to learn a task-specific feature vector, and
use this feature vector to help another execution
policy network adapt to a new task. To train the
exploration and execution policy network, we use a
task identifier to embed a task index, and maximize
the likelihood of the execution policy network end-
to-end. To demonstrate the generalization ability
of our method, we conducted a set of experiments
on the publicly available testbed ALFWorld. In
general, we find that our method has better gener-
alization performance on a wide spectrum of task
types and environments. We leave the investiga-
tion of explanability, the unbalance problem of task
types, and the training speed as the future research
directions.
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Abstract

Multilingual pre-trained contextual embed-
ding models (Devlin et al., 2019) have
achieved impressive performance on zero-shot
cross-lingual transfer tasks. Finding the most
effective strategy to fine-tune these models
on high-resource languages so that it trans-
fers well to the zero-shot languages is a non-
trivial task. In this paper, we propose a
novel meta-optimizer to soft-select which lay-
ers of the pre-trained model to freeze dur-
ing fine-tuning. We train the meta-optimizer
by simulating the zero-shot transfer scenario.
Results on cross-lingual natural language in-
ference show that our approach improves
over the simple fine-tuning baseline and X-
MAML (Nooralahzadeh et al., 2020).

1 Introduction

Despite the impressive performance of neural
models on a wide variety of NLP tasks, these mod-
els are extremely data hungry – training them re-
quires a large amount of annotated data. As col-
lecting such amounts of data for every language
of interest is extremely expensive, cross-lingual
transfer that aims to transfer the task knowledge
from high-resource (source) languages for which
annotated data are more readily available to low-
resource (target) languages becomes a promising
direction. Cross-lingual transfer approaches us-
ing cross-lingual resources such as machine trans-
lation (MT) systems (Wan, 2009; Conneau et al.,
2018) or bilingual dictionaries (Prettenhofer and
Stein, 2010) have effectively reduced the amount
of annotated data required to obtain reasonable
performance on the target language. However,
such cross-lingual resources are often limited for
low-resource languages.

Recent advances in cross-lingual contextual em-
bedding models have reduced the need for cross-

∗Work done while interning at Amazon AI.

lingual supervision (Devlin et al., 2019; Lample
and Conneau, 2019). Wu and Dredze (2019) show
that multilingual BERT (mBERT) (Devlin et al.,
2019), a contextual embedding model pre-trained
on the concatenated Wikipedia data from 104 lan-
guages without cross-lingual alignment, does sur-
prisingly well on zero-shot cross-lingual transfer
tasks, where they fine-tune the model on the anno-
tated data from the source languages and evaluate
on the target language. Wu and Dredze (2019) pro-
pose to freeze the bottom layers of mBERT dur-
ing fine-tuning to improve the cross-lingual per-
formance over the simple fine-tune-all-parameters
strategy, as different layers of mBERT captures
different linguistic information (Jawahar et al.,
2019).

Selecting which layers to freeze for a down-
stream task is a non-trivial problem. In this pa-
per, we propose a novel meta-learning algorithm
for soft layer selection. Our meta-learning algo-
rithm learns layer-wise update rate by simulating
the zero-shot transfer scenario – at each round, we
randomly split the source languages into a held-
out language and the rest as training languages,
fine-tune the model on the training languages, and
update the meta-parameters based on the model
performance on the held-out language. We build
the meta-optimizer on top of a standard optimizer
and learnable update rates, so that it generalizes
well to large numbers of updates. Our method uses
much less meta-parameters than the X-MAML ap-
proach (Nooralahzadeh et al., 2020) adapted from
model-agnostic meta-learning (MAML) (Finn
et al., 2017) to zero-shot cross-lingual transfer.

Experiments on zero-shot cross-lingual natural
language inference show that our approach outper-
forms both the simple fine-tuning baseline and the
X-MAML algorithm and that our approach brings
larger gains when transferring from multiple
source languages. Ablation study shows that both
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the layer-wise update rate and cross-lingual meta-
training are key to the success of our approach.

2 Meta-Learning for Zero-Shot
Cross-lingual Transfer

The idea of transfer learning is to improve the per-
formance on the target task T 0 by learning from
a set of related source tasks {T 1, T 2, ..., T K}.
In the context of cross-lingual transfer, we treat
different languages as separate tasks, and our goal
is to transfer the task knowledge from the source
languages to the target language. In contrast to
the transfer learning case where the inputs of the
source and target tasks are from the same lan-
guage, in cross-lingual transfer learning we need
to handle inputs from different languages with
different vocabularies and syntactic structures. To
handle the issue, we use the pre-trained multi-
lingual BERT (Devlin et al., 2019), a language
model encoder trained on the concatenation of
monolingual corpora from 104 languages.

The most widely used approach to zero-shot
cross-lingual transfer using multilingual BERT is
to fine-tune the BERT model θ on the source lan-
guage tasks T 1...K with training objective L

θ∗ = Learn(L, T 1, ..., T K ; θ)

and then evaluate the fine-tuned model θ∗ on the
target language task T 0. The gap between training
and testing can lead to sub-optimal performance
on the target language.

To address the issue, we propose to train a meta-
optimizer fϕ for fine-tuning so that the fine-tuned
model generalizes better to unseen languages. We
train the meta-optimizer by

ϕ∗ = Learn(L, T k; MetaLearn(L, T 1...K\T k; ϕ))

where T k is a “surprise” language randomly se-
lected from the source language tasks T 1...K .

2.1 Meta-Optimizer
Our meta-optimizer consists of a standard opti-
mizer as the base optimizer and a set of meta-
parameters to control the layer-wise update rates.
An update step is formulated as:

θt = θt−1 − λ⊙∆θt

∆θt = fopt(g
1, ..., gt)

(1)

where θt represent the parameters of the learner
model at time step t, and ∆θt is the update vec-
tor produced by the base optimizer fopt given the

Algorithm 1: Meta-Training
Input: Training data {D1, ...,DK} in the

source languages, learner model M
with parameters θ, and meta-optimizer
with base optimizer fopt and
meta-parameters ϕ.

Output: Meta-optimizer with parameters ϕ.

1 s← 1

2 Randomly initialize ϕ0.

3 repeat N times

4 t← 1

5 Initialize θ0 with mBERT and random
values for the classification layer.

6 Randomly select a test language k to form
the test data Dtest = Dk.

7 Dtrain ← {D1, ...,DK} \ Dtest

8 repeat L times

9 Xt, Y t← random batch from Dtrain

10 Lt ← L(M(Xt; θt−1), Y t)
11 g1...t ← [g1...t−1,∇θt−1Lt]
12 ∆θt ← fopt(g

1, ..., gt)

13 θt ← θt−1 − σ(ϕs−1)⊙∆θt

14 t← t + 1

15 end

16 X, Y ← Dtest

17 Ltest ← L(M(X; θt), Y )

18 ϕs ← Update(ϕs−1,∇ϕs−1Ltest)

19 s← s + 1

20 end

gradients {gi = ∇θi−1Li}ti=1 at the current and
previous steps. The function fopt is defined by the
optimization algorithm and its hyper-parameters.
For example, a typical gradient descent algorithm
uses fopt = αgt where α represents the learning
rate. A standard optimization algorithm will up-
date the model parameters by:

θt = θt−1 − fopt(g
1, ..., gt) (2)

Our meta-optimizer is different in that we per-
form gated update using parametric update rates λ,
which is computed by λ = σ(ϕ), where ϕ
represents the meta-parameters of the meta-
optimizer fϕ. The sigmoid function ensures that
the update rates are within the range [0, 1]. Differ-
ent from Andrychowicz et al. (2016) in which the
optimizer parameters are shared across all coordi-

12



−∆𝜃!−∆𝜃"−∆𝜃#

Model

Base
Optimizer

∇$!ℒ

𝜃%

Model

Base
Optimizer

∇$"ℒ

𝜃# 𝜃"

(𝑋#, 𝑌#) (𝑋", 𝑌")

Model

Base
Optimizer

∇$#$"ℒ

𝜃!&#

(𝑋! , 𝑌!)

… 𝜃!

Model

(𝑋'()' , 𝑌'()')

ℒ(𝑀 𝑋'()'; 𝜃! , 𝑌'()')…

+

×𝜆 ×𝜆

+

×𝜆

+

Figure 1: Computational graph for the forward pass of the meta-optimizer. Each batch (Xt, Y t) is from the
training data Dtrain, and (Xtest, Y test) denotes the entire test set. The meta-learner is comprised of a base
optimizer that takes the history and current step gradients as inputs and suggests an update ∆θt, and the meta
parameters that control the layer-wise update rates λ for the learner model θ. The dashed arrows indicate that we
do not back-propagate the gradients through that step when updating the meta-parameters.

nates of the model, our meta-optimizer learns dif-
ferent update rates for different model layers. This
is based on the findings that different layers of
the BERT encoder capture different linguistic in-
formation, with syntactic features in middle layers
and semantic information in higher layers (Jawa-
har et al., 2019). And thus, different layers may
generalize differently across languages.

Figure 1 illustrates the computational graph for
the forward pass when training the meta-optimizer.
Note that as the losses Lt and gradients ∇θt−1Lt

are dependent on the parameters of the meta-
optimizer, computing the gradients along the
dashed edges would normally require taking
second derivatives, which is computationally
expensive. Following Andrychowicz et al. (2016),
we drop the gradients along the dashed edges and
only compute gradients along the solid edges.

2.2 Meta-Training

A good meta-optimizer will, given the training
data in the source languages and the training
objective, suggest an update rule for the learner
model so that it performs well on the target
language. Thus, we would like the training
condition to match that of the test time. However,
in zero-shot transfer we assume no access to the
target language data, so we need to simulate the
test scenario using only the training data on the
source languages.

As shown in Algorithm 1, at each episode in the
outer loop, we randomly choose a test language k
to construct the test data Dtest = Dk and use
the remaining data as the training data Dtrain.

Then, we re-initialize the parameters of the
learner model and start the training simulation.
At each training step, we first use the base
optimizer fopt to compute the update vector ∆θt

based on the current and history gradients g1...t.
We then perform the gated update using the
meta-optimizer ϕs−1 with Eq. (1). The resulting
model θt can be viewed as the output of a forward
pass of the meta-optimizer. After every L itera-
tions of model update, we compute the gradient of
the loss on the test data Dtest with respect to the
old meta parameters ϕs−1 and make an update to
the meta parameters. Our meta-learning algorithm
is different from X-MAML (Nooralahzadeh et al.,
2020) in that 1) X-MAML is designed mainly
for few-shot transfer while our algorithm is desig-
nated for zero-shot transfer, and 2) our algorithm
uses much less meta-parameters than X-MAML
as it only requires training the update rate for each
layer while in X-MAML we meta-learn the initial
parameters of the entire model.

3 Experiments

We evaluate our meta-learning approach on
natural language inference. Natural Language
Inference (NLI) can be cast into a sequence pair
classification problem where, given a premise
and a hypothesis sentence, the model needs to
predict whether the premise entails the hypothesis,
contradicts it, or neither (neutral). We use the
Multi-Genre Natural Language Inference Cor-
pus (Williams et al., 2018), which consists of 433k
English sentence pairs labeled with textual entail-
ment information, and the XNLI dataset (Conneau
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fr es de ar ur bg sw th tr vi zh ru el hi avg

Devlin et al. (2019) – 74.30 70.50 62.10 58.35 – – – – – 63.80 – – – –
Wu and Dredze (2019) 74.60 74.90 72.00 66.10 58.60 69.80 49.40 55.70 62.00 71.90 70.40 69.80 67.90 61.20 66.02
Nooralahzadeh et al. (2020) 74.42 75.07 71.83 66.05 61.51 69.45 49.76 55.39 61.20 71.82 71.11 70.19 67.95 62.20 66.28

Aux. language el el el el el el el el el el ur ur ur ur
Fine-tuning baseline 75.42 75.77 72.57 67.22 61.08 70.23 51.70 51.03 64.26 71.61 72.52 69.97 69.16 55.40 66.28
Meta-Optimizer 75.78 75.87 73.15 67.34 62.00 70.47 51.22 50.54 63.96 72.06 72.32 70.20 69.34 55.88 66.44

Aux. language: el + ur
Fine-tuning baseline 74.87 75.78 72.27 66.96 62.73 70.16 50.21 48.20 63.86 71.61 71.97 70.24 69.64 56.04 66.04
Meta-Optimizer 75.53 75.93 72.68 67.04 63.33 70.88 51.51 49.89 64.33 72.06 72.36 70.32 70.38 56.29 66.61

Table 1: Accuracy of our approach compared with baselines on the XNLI dataset (averaged over five runs). We
compare our approach (Meta-Optimizer) with our fine-tuning baseline with one or two auxiliary languages, the
fine-tuning results in Devlin et al. (2019), the highest scores (with a selected subset of layers fixed during fine-
tuning) in Wu and Dredze (2019), the best zero-shot results using X-MAML (Nooralahzadeh et al., 2020) with one
auxiliary language. We boldface the highest scores within each auxiliary language setting.

et al., 2018), which has 2.5k development and 5k
test sentence pairs in 15 languages including En-
glish (en), French (fr), Spanish (es), German (de),
Greek (el), Bulgarian (bg), Russian (ru), Turk-
ish (tr), Arabic (ar), Vietnamese (vi), Thai (th),
Chinese (zh), Hindi (hi), Swahili (sw), and
Urdu (ur). We use this dataset to evaluate the
effectiveness of our meta-learning algorithm
when transferring from English and one or more
low-resource auxiliary languages to the target
language.

3.1 Model and Training Configurations

Our model is based on the multilingual BERT
(mBERT) (Devlin et al., 2019) implemented in
GluonNLP (Guo et al., 2020). As in previous
work (Devlin et al., 2019; Wu and Dredze, 2019),
we tokenize the input sentences using WordPiece,
concatenate them, feed the sequence to BERT,
and use the hidden representation of the first to-
ken ([CLS]) for classification. The final output
is computed by applying a linear projection and a
softmax layer to the hidden representation. We use
a dropout rate of 0.1 on the final encoder layer and
fix the embedding layer during fine-tuning. Fol-
lowing Nooralahzadeh et al. (2020), we fine-tune
mBERT by 1) fine-tune mBERT on the English
data for one epoch to get initial model parameters,
and 2) continue fine-tuning the model on the other
source languages for two epochs. We compare us-
ing the standard optimizer (fine-tuning baseline)
and our meta-optimizer for Step 2. We use Adam
optimizer (Kingma and Ba, 2015) with a learning
rate of 2 × 10−5, β1 = 0.9, and β2 = 0.999 as
the standard optimizer and base optimizer in our

meta-optimizer. To train our meta-optimizer, we
use Adam with a learning rate of 0.05 for N = 10
epochs with L = 15 training batches per itera-
tion (Algorithm 1). Different from Nooralahzadeh
et al. (2020) who select the auxiliary languages
for each target language that lead to the best trans-
fer results, we simulate a more realistic scenario
where only a limited set of auxiliary languages
is available. We choose two distant auxiliary
languages – Greek (Hellenic branch of the Indo-
European language family) and Urdu (Indo-Aryan
branch of the Indo-European language family) –
and evaluate the transfer performance on the other
languages.

3.2 Main Results

As shown in Table 1, we compare our meta-
learning approach with the fine-tuning baseline
and the zero-shot transfer results reported in
prior work that uses mBERT. Our approach
outperforms the fine-tuning methods in Devlin
et al. (2019) by 1.6–8.5%. Compared with the
best fine-tuning method in Wu and Dredze (2019)
which freezes a selected subset of mBERT layers
during fine-tuning, our approach achieves +0.4%
higher accuracy on average. We compare our
approach with a strong fine-tuning baseline which
achieves competitive accuracy scores to the best
X-MAML results (Nooralahzadeh et al., 2020)
using a single auxiliary language, even though
we limit our choice of the auxiliary language
to Greek and Urdu, while Nooralahzadeh et al.
(2020) select the best auxiliary language among
all languages except for the target one. Overall,
our approach outperforms the strong fine-tuning
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fr es de ar ur bg sw th tr vi zh ru el hi avg

Meta-Optim 75.53 75.93 72.68 67.04 63.33 70.88 51.51 49.89 64.33 72.06 72.36 70.32 70.38 56.29 66.61
No layer-wise update 73.45 73.90 70.73 65.19 60.31 69.10 50.87 46.47 62.74 70.42 70.24 68.85 68.17 53.50 64.57
No cross-lingual meta-train 73.66 74.84 71.54 66.15 61.16 69.33 50.89 48.43 63.16 71.57 70.53 69.14 67.93 55.07 65.24

Table 2: Ablation results on the XNLI dataset using Greek and Urdu as the auxiliary languages (averaged over five
runs). Results show that ablating the layer-wise update rate or cross-lingual meta-training degrades accuracy on
all target languages.

baseline on 10 out of 14 languages and by +0.2%
accuracy on average.

Our approach brings larger gains when using
two auxiliary languages – it outperforms the fine-
tuning baseline on all languages and improves the
average accuracy by +0.6%. This suggests that our
meta-learning approach is more effective when
transferring from multiple source languages.1

3.3 Ablation Study

Our approach is different from Andrychowicz
et al. (2016) in that 1) it adopts layer-wise update
rates while the meta-parameters are shared across
all model parameters in Andrychowicz et al.
(2016), and 2) it trains the meta-parameters in
a cross-lingual setting while Andrychowicz et al.
(2016) is designated to few-shot learning. We con-
duct ablation experiments on XNLI using Greek
and Urdu as the auxiliary languages to understand
how they contribute to the model performance.

Impact of Layer-Wise Update Rate We com-
pare our approach with its variant that replaces
the layer-wise update rate with one update rate
for all layers. Table 2 shows that our approach
significantly outperforms this variant on all target
languages with an average margin of 2.0%. This
suggests that layer-wise update rate contributes
greatly to the effectiveness of our approach.

Impact of Cross-Lingual Meta-Training We
measure the impact of cross-lingual meta-training
by replacing the cross-lingual meta-training in our
approach with a joint training of the layer-wise
update rate and model parameters. As shown in
Table 2, ablating the cross-lingual meta-training

1Using two auxiliary languages improves over one aux-
iliary language the most on lower-resource languages in
mBERT pre-training (such as Turkish and Hindi), but
does not bring gains or even hurts on high-resource lan-
guages (such as French and German). This is consistent
with the findings in prior work that the choice of the auxil-
iary languages is crucial in cross-lingual transfer (Lin et al.,
2019). We leave further investigation on its impact on our
meta-learning approach for future work.

degrades accuracy significantly on all target lan-
guages by 1.4% on average, which shows that our
cross-lingual meta-training strategy is beneficial.

4 Related Work

4.1 Cross-lingual Transfer Learning
The idea of cross-lingual transfer is to use the an-
notated data in the source languages to improve
the task performance on the target language with
minimal or even zero target labeled data (aka zero-
shot). There is a large body of work on using
external cross-lingual resources such as bilingual
word dictionaries (Prettenhofer and Stein, 2010;
Schuster et al., 2019b; Liu et al., 2020a), MT sys-
tems (Wan, 2009), or parallel corpora (Eriguchi
et al., 2018; Yu et al., 2018; Singla et al., 2018;
Conneau et al., 2018) to bridge the gap between
the source and target languages. Recent advances
in unsupervised cross-lingual representations have
paved the road for transfer learning without cross-
lingual resources (Yang et al., 2017; Chen et al.,
2018; Schuster et al., 2019a). Our work builds
on Mulcaire et al. (2019); Lample and Conneau
(2019); Pires et al. (2019) who show that language
models trained on monolingual text from multiple
languages provide powerful multilingual represen-
tations that generalize across languages. Recent
work has shown that more advanced techniques
such as freezing the model’s bottom layers (Wu
and Dredze, 2019) or continual learning (Liu et al.,
2020b) can further boost the cross-lingual perfor-
mance on downstream tasks. In this paper, we ex-
plore meta-learning to softly select the layers to
freeze during fine-tuning.

4.2 Meta Learning
A typical meta-learning algorithm consists of two
loops of training: 1) an inner loop where the
learner model is trained, and 2) an outer loop
where, given a meta-objective, we optimize a
set of meta-parameters which controls aspects
of the learning process in the inner loop. The
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goal is to find the optimal meta-parameters such
that the inner loop performs well on the meta-
objective. Existing meta-learning approaches dif-
fer in the choice of meta-parameters to be op-
timized and the meta-objective. Depending on
the choice of meta-parameters, existing work can
be divided into four categories: (a) neural archi-
tecture search (Stanley and Miikkulainen, 2002;
Zoph and Le, 2016; Baker et al., 2016; Real et al.,
2017; Zoph et al., 2018); (b) metric-based (Koch
et al., 2015; Vinyals et al., 2016); (c) model-
agnostic (MAML) (Finn et al., 2017; Ravi and
Larochelle, 2016); (d) model-based (learning up-
date rules) (Schmidhuber, 1987; Hochreiter et al.,
2001; Maclaurin et al., 2015; Li and Malik, 2017).

In this paper, we focus on model-based meta-
learning for zero-shot cross-lingual transfer. Early
work introduces a type of networks that can up-
date their own weights (Schmidhuber, 1987, 1992,
1993). More recently, Andrychowicz et al. (2016)
propose to model gradient-based update rules us-
ing an RNN and optimize it with gradient de-
scent. However, as Wichrowska et al. (2017) point
out, the RNN-based meta-optimizers fail to make
progress when run for large numbers of steps.
They address the issue by incorporating features
motivated by the standard optimizers into the meta-
optimizer. We instead base our meta-optimizer on
a standard optmizer like Adam so that it general-
izes better to large-scale training.

Meta-learning has been previously applied
to few-shot cross-lingual named entity recogni-
tion (Wu et al., 2019), low-resource machine
translation (Gu et al., 2018), and improv-
ing cross-domain generalization for semantic
parsing (Wang et al., 2021). For zero-shot
cross-lingual transfer, Nooralahzadeh et al. (2020)
introduce an optimization-based meta-learning
algorithm called X-MAML which meta-learns
the initial model parameters on supervised data
from low-resource languages. By contrast, our
meta-learning algorithm requires much less meta-
parameters and is thus simpler than X-MAML.
Bansal et al. (2020) show that MAML combined
with meta-learning for learning rates improves
few-shot learning. Different from their approach
which learns layer-wise learning rates only for
task-specific layers specified as a hyper-parameter
as part of the MAML algorithm, our approach
learns layer-wise learning rates for all layers,
and we show the effectiveness of our approach

without being used with MAML on zero-shot
cross-lingual transfer.

5 Conclusion

We propose a novel meta-optimizer that learns to
soft-select which layers to freeze when fine-tuning
a pretrained language model (mBERT) for zero-
shot cross-lingual transfer. Our meta-optimizer
learns the update rate for each layer by simulating
the zero-shot transfer scenario where the model
fine-tuned on the source languages is tested on
an unseen language. Experiments show that our
approach outperforms the simple fine-tuning base-
line and the X-MAML algorithm on cross-lingual
natural language inference.
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Abstract

In this paper, we study the problem of rec-
ognizing compositional attribute-object con-
cepts within the zero-shot learning (ZSL)
framework. We propose an episode-based
cross-attention (EpiCA) network which com-
bines merits of cross-attention mechanism and
episode-based training strategy to recognize
novel compositional concepts. Firstly, EpiCA
bases on cross-attention to correlate concept-
visual information and utilizes the gated pool-
ing layer to build contextualized representa-
tions for both images and concepts. The up-
dated representations are used for a more in-
depth multi-modal relevance calculation for
concept recognition. Secondly, a two-phase
episode training strategy, especially the trans-
ductive phase, is adopted to utilize unlabeled
test examples to alleviate the low-resource
learning problem. Experiments on two widely-
used zero-shot compositional learning (ZSCL)
benchmarks have demonstrated the effective-
ness of the model compared with recent ap-
proaches on both conventional and generalized
ZSCL settings.

1 Introduction

Humans can recognize novel concepts through
composing previously learnt knowledge - known
as compositional generalization ability (Lake et al.,
2015; Lake and Baroni, 2018). As a key critical
capacity to build modern AI systems, this paper in-
vestigates the problem of zero-shot compositional
learning (ZSCL) focusing on recognizing novel
compositional attribute-object pairs appeared in
the images. For example in Figure 1, suppose
the training set has images with compositional
concepts sliced-tomato, sliced-cake, ripe-apple,
peeled-apple, etc. Given a new image, our goal
is to assign a novel compositonal concept sliced-
apple to the image by composing the element con-
cepts, sliced and apple, learned from the training
data. Although sliced and apple have appeared

Concept of Sliced

Sliced Tomato Sliced CakeSliced Bread

Concept of Apple

Diced Apple Peeled AppleRipe Apple

Sliced Apple

Diced Pizza

…

Train Phase:

Test Phase:

Localize, Learn and Compose Regional 
Visual Features

Compose the Learnt Regional Visual 
Features

Figure 1: Given the concepts of sliced and apple in the
training phase, our target is to recognize the novel com-
positional concept slice apple which doesn’t appear in
the training set by decomposing, grounding and com-
posing concept-related visual features.

with other objects or attributes, the combination
of this attribute-object pair is not observed in the
training set.

This is a challenging problem, because objects
with different attributes often have a significant di-
versity in their visual features. While red apple
has similar visual features as the apple prototype,
sliced apple presents rather different visual features
as shown in Fig 1. Similarly, same attributes can
have different visual effects depending on the mod-
ified objects. For example, old has different visual
effect in objects of old town compared to objects
of old car.

Despite recent progress (Misra et al., 2017; Li
et al., 2020), previous works still suffer several
limitations: (1) Most existing methods adopt met-
ric learning framework by projecting concepts and
images into shared latent space, and focus on regu-
larizing the structure of the latent space by adding
principled constraints without considering the re-
lationship between concepts and visual features.
Our work brings a new perspective, the relevance-
based framework inspired by Sung et al., to conduct
compositional concept learning. (2)Previous works
represent concept and image by the same vector
regardless of the context it occurs. However, cross
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concept-visual representation often provides more
grounded information to help in recognizing ob-
jects and attributes which will consequently help
in learning their compositions.

Motivated by the above discussions, we propose
an Episode-based Cross Attention (EpiCA) net-
work to capture multi-modal interactions and ex-
ploit the visual clues to learn novel compositional
concepts. Specifically, within each episode, we first
adopt cross-attention encoder to fuse the concept-
visual information and discover possible relation-
ships between image regions and element concepts
which corresponds to the localizing and learning
phase in Fig.1. Second, gated pooling layer is in-
troduced to obtain the global representation by se-
lectively aggregating the salient element features
corresponding to Fig. 1’s composing phase. Finally,
relevance score is calculated based on the updated
features to update EpiCA.

The contribution of this work can be summa-
rized as follows: 1) Different from previous work,
EpiCA has the ability to learn and ground the at-
tributes and objects in the image by cross-attention
mechanism. 2) Episode-based training strategy is
introduced to train the model. Moreover, we are
among the first works to employ the transductive
training to select confident unlabelled examples
to gain knowledge about novel compositional con-
cepts. 3) Empirical results show that our framework
achieves competitive results on two benchmarks in
conventional ZSCL setting. In the more realistic
generalized ZSCL setting, our framework signif-
icantly outperforms SOTA and achieves over 2×
improved performance on several metrics.

2 Related Work

Compositional Concept Learning. As a specific
zero-shot learning (ZSL) problem, zero-shot com-
positional learning (ZSCL) tries to learn complex
concepts by composing element concepts. Previ-
ous solutions can mainly be categorized as: (1)
classifier-based methods train classifiers for ele-
ment concepts and combine the element classifiers
to recognize compositional concepts (Chen and
Grauman, 2014; Misra et al., 2017; Li et al., 2019a).
(2) metric-based methods learn a shared space by
minimizing the distance between the projected vi-
sual features and concept features (Nagarajan and
Grauman, 2018; Li et al., 2020). (3) GAN-based
methods learn to generate samples from the se-
mantic information and transfer ZSCL into a tradi-

tional supervised classification problem (Wei et al.,
2019).
Attention Mechanism. The attention mechanism
selectively use the salient elements of the data to
compose the data representation and is adopted in
various visiolinguistic tasks. Cross attention is em-
ployed to locate important image regions for text-
image matching (Lee et al., 2018). Self-attention
and cross-attention are combined at different lev-
els to search images with text feedback (Chen
et al., 2020b). More recent works refer Transformer
(Vaswani et al., 2017) to design various visiolin-
guistic attention mechanism (Lu et al., 2019).
Episode-based Training. The data sparsity in low-
resource learning problems, including few-shot
learning and zero-shot learning, makes the typical
fine-tuning strategy in deep learning not adaptable,
due to not having enough labeled data and the over-
fitting problem. Most successful approaches in this
field rely on an episode-based training scheme: per-
forming model optimization over batches of tasks
instead of batches of data. Through training multi-
ple episodes, the model is expected to progressively
accumulate knowledge on predicting the mimetic
unseen classes within each episode. Representative
work includes Matching network (Vinyals et al.,
2016), Prototypical network (Snell et al., 2017)
and RelNet (Sung et al., 2018).

The related works to EpiCA are RelNet (Sung
et al., 2018) and cvcZSL (Li et al., 2019a). Com-
pared with these methods, we have two improve-
ments including an explicit way to construct
episodes which is more consistent with the test
scenario and a cross-attention module to fuse and
ground more detailed information between the con-
cept space and the visual space.

3 Approach

3.1 Task Definition

Different from the traditional supervised setting
where training concepts and test concepts are from
the same domain, our problem focuses on recog-
nizing novel compositional concepts of attributes
and objects which are not seen during the training
phase. Although we have seen all the attributes and
objects in the training set, their compositions are
novel 1.

We model this problem within the ZSL frame-
work where the dataset is divided into the seen

1We refer concept as compositional concept, element con-
cept as the attribute and the object in the rest of the paper.
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Figure 2: Illustration of the proposed EpiCA framework. It is a two-stage training framwork, including the induc-
tive learning and the transductive learning. Both phases are trained on episodes illustrated in Alg. 1.

domain S = {(vs, ys)|vs ∈ Vs, ys ∈ Ys} for train-
ing and the unseen domain U = {(vu, yu)|vu ∈
Vu, yu ∈ Yu} for test, where v is the visual fea-
ture of image I which can be extracted using deep
convolution networks and y is the corresponding
label which consists of an attribute label a and a
object label o as y = (a, o) satisfying au ⊆ as,
ou ⊆ os and Ys ∩ Yu = φ. Moreover, we address
the problem in both conventional ZSCL setting and
generalized ZSCL setting. In conventional ZSCL,
we only consider unseen pairs in the test phase and
the target is to learn a mapping function V �→ Yu.
In generalized ZSCL, images with both seen and
unseen concepts can appear in the test set, and the
mapping function changes to V �→ Ys ∪ Yu which
is a more general and realistic setting.

3.2 Overall Framework

As summarized in Fig. 2, EpiCA consists of the
cross-attention encoder, gated pooling layer and
multi-modal relevance network to compute the rel-
evance score between concepts and images. In
order to accumulate the knowledge between im-
ages and concepts, EpiCA is trained by episodes
including the following two phases:

• Inductive training phase constructs episodes
from the seen concepts and trains EpiCA
based on these constructed episodes.

• Transductive training phase employs the
self-taught methodology to collect confident
pseudo-labeled test items to further fine-tune
EpiCA.

3.3 Unimodal Representation

Concept Representation. Given a compositonal
concept (a, o), we first transform attribute and
object using 300-D GloVe (Pennington et al.,
2014) separately. Then we use one layer BiL-
STM (Hochreiter and Schmidhuber, 1997) to ob-
tain contextualized representation for concepts with
dk hidden units. Instead of using the final state, we
maintain the output features for both attribute and
object and output feature matrix C ∈ R2×dk for
each compoisitonal concept.
Image Representation. We extract the visual fea-
tures using pretrained ResNet (He et al., 2016)
from a given image. In order to obtain more de-
tailed visual features for concept recognition, we
keep the output from the last convolutional layer
of ResNet-18 to represent the image and there-
fore each image is split into 7 × 7 = 49 visual
blocks with each block as a 512-dim vector de-
noted as V = (v1,v2, . . . ,v49). Each element
represents a region in the image. We further con-
vert vi with a linear transformation vi = W�vi,
where W ∈ R512×dk is the weight matrix to trans-
fer the image into the joint concept-image space.

3.4 Cross Attention Encoder

Motivation. Previous works usually utilize vector
representation for both concepts and images and
construct a metric space by pushing aligned im-
ages and concepts closer to each other. The poten-
tial limitation of such frameworks is that the same
vector representations without context information
will miss sufficient detailed information needed for
grounding and recognizing objects and attributes
appeared in the images. We observe that certain vi-
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sual blocks in the image can be more related to cer-
tain element concept and certain element concept
may highlight different visual blocks. Inspired by
this observation, our model addresses the previous
limitation by introducing cross-attention encoder
and constructs more meaningful cross-modality
representation for both images and element con-
cepts for compositional concept recognition.

Cross Attention Layer. To fuse and ground in-
formation between visual space and concept space,
we first design a correlation layer to calculate the
correlation map between the two spaces, which is
used to guide the generation of the cross attention
map. Given an image and a candidate concept, after
extracting unimodal representations, the correlation
layer computes the semantic relevance between vi-
sual blocks {vi}49

i=1 and element concepts {cj}2j=1
2 with cosine distance and output the final image-to-
concept relevance matrix as R ∈ R49×2 with each
element rij calculated using Eq. 1. We can easily
have another concept-to-image relevance matrix by
transposing R.

rij =

(
vi

‖vi‖2

)T (
cj

‖cj‖2

)
, i ∈ [1, 49], j ∈ [1, 2]

(1)
In order to obtain attention weights, we need to

normalize the relevance score rij as Eq. 2 as (Chen
et al., 2020a).

r̄ij =
relu (rij)√∑n
j=1 relu (rij)

2
(2)

After obtaining the normalized attention score,
we can calculate the cross-attention representation
based on the selected query space Q and the context
space V , where V = K in our setting as shown in
Fig. 2. Taking image-to-concept attention for exam-
ple, given a visual block feature vi as query, cross
attention encoding is performed over the element
concept space C using Eq. 3.

v̂i =
n∑

j=1

αijcj , s.t. αij =
exp (λr̄ij)∑n

j=1 exp (λr̄ij)

(3)
where λ is the inverse temperature parameter of
the softmax function (Chorowski et al., 2015) to
control the smoothness of the attention distribution.

2Each compositional concept only has two elements, at-
tribute and object.

Visually-Attended Concept Representation.
The goal of this module is to align and represent
concepts with related visual blocks and help further
determine the alignment between element concepts
and image regions. We use concept embedding as
query and collect visual clues using Eq. 3 and the
final visually-attended features for compositional
concept is ĉ ∈ R2×dk .

Concept-Attended Visual Representation.
An image representation grounded with element
concept would be beneficial for compositional
concept learning. Following the similar procedure
as visually-attended concept representation, we
take visual block features as query and concept
embedding as context. We can calculate the
concept-attended visual representation using
Eq. 3. The final result v̂ ∈ R49×dk represents the
concept-attended block visual features with the
latent space dimension dk.

3.5 Gated Pooling Layer

After the cross-attention encoder, the output image
features V = [v1, . . . , v49] ∈ R49×dk and concept
features C = [c1, c2] ∈ R2×dk are expected to
contain rich cross-modal information. Our target
of gated pooling layer is to combine elements to
form the final representation for concepts and im-
ages separately. Pooling techniques can be directly
deployed to obtain such representation. However,
we argue that elements should have different ef-
fect on the final concept recognition. For example,
background visual blocks shouldn’t be paid much
attention during concept recognition. To address
the assumption, we propose gated pooling layer
to learn the relative importance of each element
and dynamically control the contribution of each
element in the final representation. Specially, We
apply one linear layers with parameter W ∈ Rdk×1

on the element feature xi and normalize the output
to calculate an attention weight αi that indicates the
relative importance of each element using Eq. 4.

x =
∑

i αixi s.t. αi = exp((Wxi))∑N
k=1 exp((Wxk))

(4)

3.6 Multi-Modal Relevance Network

After obtaining the updated features for both im-
ages v̂i and concepts (â, ô)j , we introduce the
multimodal relevance network shared the spirit as
(Sung et al., 2018) to calculate the relevance score
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Algorithm 1: Training EpiCA for ZSCL

Input: Dtrain = {(vm, (am, om)}|Tr|
m=1,

Dtest = {vn}|Ts|
i=n, task size S,

sample interval t
Output: Multi-Modal Rel. Function f
// Inductive Learning Phase

1 for epoch← 1 to Eind max do
2 for each image and the corresponding

pair in the training set do
3 Construct an episode

[vp, (ap, op), (an1 , on1), · · · , (ans , ons)].
4 Gated Cross-Attention Encoding

using Eq. 1, 2, 3 and 4
5 Calculating multi-modal relevance

score using Eq 5.
6 Updating EpiCA.

// Transductive Learning Phase

7 for epoch← 1 to Etrans max do
8 if epoch % t == 0 then
9 Pick confident samples from unseen

set by Eq. 7.
10 Updating EpiCA by Eq 9.

as shown in Eq. 5

si,j = gφ (concat[(v̂i), (â, ô)j ]) (5)

where g is the relevance function implemented by
two layer feed-forward network with trainable pa-
rameters φ.

In order to train EpiCA, we add Softmax activa-
tion on the relevance score to measure the proba-
bility of image i belonging to concept j within the
current episode as Eq. 5 and update EpiCA using
cross-entropy loss.

pj(v̂i) =
exp(si,j)∑C

k=1 exp (si,k)
(6)

3.7 Training and Prediction

Inductive Training. For each image and the cor-
responding pair label, we randomly sample neg-
ative pairs to form an episode which consists of
an image vp, a positive pair (ap, op) and a pre-
defined number nt of negative pairs in the form
of [vp, (ap, op), (an1 , on1), · · · , (ant , ont)]. Then
within each episode, we calculate the relevance
score between image and all candidate pairs using

Eq. 5. Finally, we calculate the cross entropy loss
using Eq. 6 and update EpiCA as shown in Alg. 1.

Transductive Training. The disjointness of the
seen/unseen concept space will result in domain
shift problems and cause the predictions biasing
towards seen concepts as pointed by (Pan and Yang,
2009). Transductive training utilizes the unlabeled
test set to alleviate the problem (Dhillon et al.,
2019). Specifically, transductive training has a
sampling phase to select confident test samples
and utilize the generalized cross entropy loss as
Eq. 8 to update EpiCA.

Following previous work (Li et al., 2019b), we
use threshold-based method as Eq. 7 to pick up
confident examples.

p1(v̂i)

p2(v̂i)
> γ (7)

where p is calculated by Eq. 6 and the threshold is
the fraction of the highest label probability p1(v̂i)
and the second highest label probability p2(v̂i)
which measures the prediction peakiness in current
episode. Only confident instances are employed to
update EpiCA which is controlled by γ.

Moreover, the recently proposed generalized
cross-entropy loss (Zhang and Sabuncu, 2018) is
used to calculate the loss for pseudo-labeled test
examples as Eq. 8.

Lu =
∑

(vi,(a,o)j)∈U

1− (pj(v̂i))
q

q
(8)

where pj(v̂i) is the probability of v̂i belonging to
pair (â, ô)j calculated using Eq. 6. q ∈ (0, 1] is
the hyper-parameter related to the noise level of
the pseudo labels, with higher noisy pseudo labels
requiring larger q.

Finally, the transductive loss is calculated as
Eq. 9, where Lu corresponds to the generalized
cross entropy loss from pseudo-labeled test exam-
ples and Ls is the cross entropy loss for the training
examples

L = Lu + Ls. (9)

Prediction. Given a new image with extracted fea-
ture vi, we iterate over all the candidate pairs and
select the pair with the highest relevance score as
(â, ô) = argmaxâ,ô si,j(v̂i, (â, ô)j) as Eq. 5 using
EpiCA.

4 Experiments

Dataset. We use similar dataset as in (Nagarajan
and Grauman, 2018; Purushwalkam et al., 2019) for
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both conventional and generalized ZSCL settings
with the split shown in Tab. 1. Notably, general-
ized ZSCL setting has additional validation set for
both benchmarks which allows cross-validation to
set the hyperparameters. The generalized ZSCL
evaluates the models on both seen/unseen sets.

• MIT-States (Isola et al., 2015) has 245 objects
and 115 attributes. In conventional ZSCL, the
pairs are split into two disjoint sets with 1200
seen pairs and 700 unseen pairs. In general-
ized ZSCL, the validation set has 600 pairs
with 300 pairs seen in the training set and 300
pairs unseen during training and the test set
has 800 pairs with 400 pairs seen and remain-
ing 400 pairs unseen in the training set.

• UT-Zappos (Yu and Grauman, 2017) contains
images of 12 shoe types as object labels and
16 material types as attribute labels. In conven-
tional ZSCL, the dataset is split into disjoint
seen set with 83 pairs and unseen set with 33
pairs. In generalized ZSCL, the 36 pairs in the
test set consists 18 seen and 18 unseen pairs.
15 seen pairs and 15 unseen pairs composes
the validation set.

Implementation Details. We develop our model
based on PyTorch. For all experiments, we adopt
ResNet-18 pre-trained on ImageNet as the back-
bone to extract visual features. For attr-obj pairs,
we encode attributes and objects with 300-dim
GloVe and fix it during the training process. We
randomly sample 50 negative pairs to construct
episodes. We use Adam with 10−3 as the initial
learning rate and multiply the learning rate by 0.5
every 5 epoch and train the network for total 25
epochs. We report the accuracy at the last epoch
for conventional ZSCL. For generalized ZSCL, the
accuracy is reported based on the validation set.
Moreover, the batch size is set to 64, λ in Eq. 3 is
set to 9, q in Eq. 8 is set to 0.5 and the threshold in
Eq. 7 is set to 10.
Baselines. We compare EpiCA with the following
SOTA methods: 1) Analog (Chen and Grauman,
2014) trains a linear SVM classifier for the seen
pairs and utilizes Bayesian Probabilistic Tensor
Factorization to infer the unseen classifier weights.
2) Redwine (Misra et al., 2017) leverages the com-
patibility between visual features v and concepts
semantic representation to do the recognition. 3)
AttOperator (Nagarajan and Grauman, 2018) mod-
els composition by treating attributes as matrix op-

Conventional ZSCL Generalized ZSCL
MIT-States Zappos MIT-States Zappos

# Attr. 115 16 115 16
# Obj. 245 12 245 12

# Train Pair 1262 83 1262 83
# Train Img. 34562 24898 30338 22998
# Test Pair 700 33 800 36
# Test Img. 19191 4228 12995 2914
# Val. Pair 600 30
# Val. Img. 10420 3214

Table 1: Conventional and Generalized Data Split for
MIT-States and Zappos Datasets.

erators to modify object state to score the com-
patibility. 4) GenModel (Nan et al., 2019) adds
reconstruction loss to boost the metric-learning per-
formance. 5) TAFE-Net (Wang et al., 2019) ex-
tracts visual features based on the pair semantic
representation and utilizes a shared classifier to rec-
ognize novel concepts. 6) SymNet (Li et al., 2020)
builds a transformation framework and adds group
theory constraints to its latent space to recognize
novel concepts. We report the results according to
the papers and the released official code 3 4 of the
aforementioned baselines.

Methods MIT-States(%) UT-Zappos(%)
Random 0.14 3.0

ANALOG 1.4 18.3
REDWINE 12.5 40.3

ATTOPERATOR 14.2 46.2
GenModel 17.8 48.3
TAFE-Net 16.4 33.2
SymNet 19.9 52.1

EpiCA(Inductive) 15.68 52.56
EpiCA(Transductive) 18.13 55.48

Table 2: Results of Conventional ZSCL setting

4.1 Conventional ZSCL Setting
Quantitive Results. Top-1 accuracy metric is re-
ported in this setting to compare different meth-
ods. The top-1 accuracy of the unseen attr-obj
pairs for conventional ZSCL is presented in Tab. 2.
EpiCA outperforms all baselines on Zappos bench-
mark and exceeds the state-of-the-art by 3.3%. It
achieves comparable performance on MITStates
benchmark. We will empirically analyze the
model’s behavior in later sections.

4.2 Generalized ZSCL Setting
In this setting, following the related work (Purush-
walkam et al., 2019), we measure the performance

3https://github.com/Tushar-N/attributes-as-operators
4https://github.com/ucbdrive/tafe-net.git
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Mit-States UT-Zappos
Val AUC Test AUC Val AUC Test AUC

Model Top k −→ 1 2 3 1 2 3 1 2 3 1 2 3

AttOperator 2.5 6.2 10.1 1.6 4.7 7.6 21.5 44.2 61.6 25.9 51.3 67.6
RedWine 2.9 7.3 11.8 2.4 5.7 9.3 30.4 52.2 63.5 27.1 54.6 68.8

LabelEmbed+ 3.0 7.6 12.2 2.0 5.6 9.4 26.4 49.0 66.1 25.7 52.1 67.8
TMN 3.5 8.1 12.4 2.9 7.1 11.5 36.8 57.1 69.2 29.3 55.3 69.8

SymNet 4.3 9.8 14.8 3.0 7.6 12.3 \ \ \ \ \ \

Inductive EpiCA 7.73 12.19 22.93 6.55 13.07 20.01 25.13 50.19 61.97 25.59 50.06 63.08
Transductive EpiCA 9.01 17.63 24.01 7.18 14.02 21.31 53.18 68.71 77.89 35.04 54.83 70.02

Table 3: AUC in percentage (multiplied by 100) on MIT-States and UT-Zappos. Our EpiCA model outperforms
the previous methods by a large margin on MIT-States based on most of the metrics on UT-Zappos.

with AUC metric. AUC introduces the concept of
calibration bias which is a scalar value added to the
predicting scores of unseen pairs. By changing the
values of the calibration bias, we can draw an ac-
curacy curve for seen/unseen sets. The area below
the curve is the AUC metric as a measurement for
the generalized ZSCL system.
Quantitative results. Tab. 3 provides comparisons
between our EpiCA model and the previous meth-
ods on both the validation and testing sets. As
Tab. 3 shows, the EpiCA model outperforms the
previous methods by a large margin. On the chal-
lenging MIT-States dataset which has about 2000
attribute-object pairs, all the baseline methods have
a relatively low AUC score while our model is able
to double the performance of the previous methods,
indicating its effectiveness.

4.3 Ablation Study

We conduct ablation study on EpiCA and compare
its performance in different settings.
Importance of Transductive Learning. The ex-
perimental results in Tab. 2 and Tab. 3 show the im-
portance of transductive learning. There are about
2% and 3% performance gains for MIT-States and
UT-Zappos in conventional ZSCL. A significant im-
provement is observed for both datasets in general-
ized ZSCL. This is within our expectation because
1) our inductive model has accumulated knowledge
about the elements of the concept and has the abil-
ity to pick confident test examples. 2) after training
the model with the confident pseudo-labeled test
data, it acquires the knowledge about unseen con-
cepts.
Importance of Cross-Attention (CA) Encoder.
To analyze the effect of CA encoder, we remove
CA (w/o CA) and use unimodal representations
for both concepts and images. From Tab. 4, it can
be seen that EpiCA does depend on multi-modal

information to do concept recognition and the re-
sults also verifies the rationale to fuse multi-modal
information by cross-attention mechanism.
Importance of Gated Pooling (GP) Layer. We
replace GP layer by average pooling (w/o GP).
Tab. 4 shows the effectiveness of GP in filtering
out noisy information. Instead of treating each el-
ement equally, GP help selectively suppress and
highlight salient elements within each modality.
Importance of Episode Training. We also con-
duct experiments by removing both CA and GP
(w/o GP and CA). In this setting, we concatenate
unimodal representation of images and concepts
and use 2-layer MLP to calculate the relevance
score. Although simple, it still achieves satisfac-
tory results, showing episode training is vital for
our EpiCA model.

EpiCA variants MIT-States(%) UT-Zappos(%)

Full EpiCA 15.79 52.56
- w/o cross attention (CA) 12.05 42.77
- w/o gated pooling (GP) 13.46 50.47

- w/o GP and CA 14.13 48.76

Table 4: Ablation study of EpiCA components. The
episode training and cross-attention encoder are im-
port to our model. Adding gated pooling layer further
boosts the accuracy.

4.4 Qualitative Analysis.
Fig. 3 shows some examples and their predicted la-
bels by EpiCA. Although it gives the correct predic-
tions for the two examples in the first row, EpiCA
still struggles in distinguishing the similar, even
opposite attributes, like New and Old. For example,
the second highest prediction for the image with
true label new truck is old car. The predicted object
is reasonable, but the predicted attribute is opposite.
Meanwhile, for the incorrect predictions, the pre-
dicted labels are meaningful and remain relevant
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(New Truck)

(Dented  Car)
(New Truck)
(New Toy)
(Old Car)
(New Tire)

(Ancient Clock)

(Engraved  Clock)
(Ancient Clock)
(Large Fan)
(Painted Wheel)
(Small Fan)

(Ancient Clock)

(Ancient Clock)
(Engraved  Clock)
(Modern Clock)
(Burnt Redwood)
(Painted Redwood)

(New Truck)

(New Truck)
(Old Car)
(Clean Truck)
(Dented Car)
(Wide Tire)

Figure 3: Predicting examples of EpiCA from MIT-
States dataset. True label and predicted labels are in
red and blue text respectively.

to the image. For example, Engraved Clock may
be a better label than Ancient Clock for the bottom
image. These examples show that EpiCA learns
the relevance between images and concepts. But
the evaluation of the models is hard and in some
cases additional information and bias is needed to
predict the exact labels occurring in the dataset.

5 Conclusion

In this paper, we propose EpiCA which combines
episode-based training and cross-attention mecha-
nism to exploit the alignment between concepts
and images to address ZSCL problems. It has
led to competitive performance on two benchmark
datasets. In generalized ZSCL setting, EpiCA
achieves over 2× performance gain compared to
the SOTA on several evaluation metrics. However,
ZSCL remains a challenging problem. Future work
that explores cognitively motivated learning mod-
els and incorporates information about relations
between objects as well as attributes will be inter-
esting directions to pursue.
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Abstract

Text-style transfer aims to convert text given
in one domain into another by paraphrasing
the sentence or substituting the keywords with-
out altering the content. By necessity, state-of-
the-art methods have evolved to accommodate
nonparallel training data, as it is frequently
the case there are multiple data sources of
unequal size, with a mixture of labeled and
unlabeled sentences. Moreover, the inherent
style defined within each source might be dis-
tinct. A generic bidirectional (e.g., formal
⇔ informal) style transfer regardless of dif-
ferent groups may not generalize well to dif-
ferent applications. In this work, we devel-
oped a task adaptive meta-learning framework
that can simultaneously perform a multi-pair
text-style transfer using a single model. The
proposed method can adaptively balance the
difference of meta-knowledge across multiple
tasks. Results show that our method leads to
better quantitative performance as well as co-
herent style variations. Common challenges of
unbalanced data and mismatched domains are
handled well by this method.

1 Introduction

Text-style transfer is a fundamental challenge in
natural language processing. Applications in-
clude non-native speaker assistants, child educa-
tion, personalization and generative design (Fu
et al., 2017; Zhou et al., 2017; Yang et al., 2018a;
Gatys et al., 2016b,a; Zhu et al., 2017; Li et al.,
2017). Figure 1 shows a prominent example on
applying style transfer into a hypothetical online
shopping platform, where the generated style vari-
ations can be used for personalized recommenda-
tions. However, compared with other domains, the
lack of parallel corpus and quality training data
is currently an obstacle for text-style transfer re-
search. For example, assume one supports a multi-
tenant service platform including tenant-specific

text data, but there is no guarantee that each tenant
will provide sufficient amount of data for model
training. To build a multi-task language model that
matches the text-style of each tenant is more prac-
tical and efficient than training individual models.
This single-model approach might also have rela-
tively favorable empirical performance.

Existing works on text style transfer have ad-
dressed different applications such as sentiment
transfer (Shen et al., 2017), word decipherment
(Knight et al., 2006), and author imitation (Xu
et al., 2012). If parallel training data is avail-
able, a wide range of supervised techniques in
machine translation (e.g., Seq2Seq models (Bah-
danau et al., 2014) and Transformers (Vaswani
et al., 2017)) can also be applied to style transfer
problems. For non-parallel data, He et al. (2020)
proposed a probabilistic formulation that mod-
els non-parallel data from two domains as a par-
tially observed parallel corpus, and learn the style
transfer model in a completely unsupervised fash-
ion. Unsupervised machine translation method
has also been adapted to this setting (Zhang et al.,
2018). In recent research focused on learning
disentangled content and style representations us-
ing adversarial training (John et al., 2018; Yang
et al., 2018b; Shen et al., 2017), models are de-
signed for non-parallel data while preserving con-
tent. Lample et al. (2018) argued that the adversar-
ial models are not really doing disentanglement,
and proposed a denoising auto-encoding approach
instead. Another way to approach this problem is
through identifying and substituting style-related
sub-sentences (Li et al., 2018; Sudhakar et al.,
2019), where the unchanged part guarantees con-
sistency over content. Additionally, state-of-the-
art language models (BERT (Devlin et al., 2018),
GPT-2 (Radford et al., 2019), CTRL (Keskar et al.,
2019), etc.) and text-to-text models (Raffel et al.,
2019) achieve good performance generating text
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(a) Credit Card - Original (b) Credit Card - Informal (c) Credit Card - Exclusive

(d) Shirt - Original (e) Shirt - Informal (f) Shirt - Exclusive

Figure 1: Text style transfer examples in generative design: the original text is meta-data from e-commerce web-
sites. Two target style variations are predefined for certain groups of customers.

in different styles on multiple tasks (Dathathri
et al., 2019; Wolf et al., 2019).

Building upon previous work, we aim to bridge
real applications while accounting for the afore-
mentioned data problems. Specifically, we wish
to design an efficient training method for a style
transfer model that 1. quickly learns and adapts
to different style domains with limited data; 2.
handling class-imbalance and out-of-distribution
tasks. To achieve this, we introduce meta-learning
into the style-transfer problem.

Meta-learning (Schmidhuber, 1987) is a method
to enable generalization ability to a model over a
distribution of tasks. We focus on optimization-
based meta-learning for our applications. MAML
(Finn et al., 2017) learns a common initialization
parameter for each task using a few gradient steps.
This standard MAML approach has been applied
to text style transfer problems with low resources
(Chen and Zhu, 2020) and achieved better perfor-
mance in this situation. However, this method did
not take into account the internal variations be-
tween tasks. A similar algorithm called Reptile
(Nichol et al., 2018) achieves better performance
by maximizing the inner product between gradi-
ent of different mini-batches from the same task
in its update. Recent works (Qiao et al., 2018; Lee
and Choi, 2018) improved a single meta-learner
to task-adaptive meta-learning models, which in-

cludes task-specific parameters to help generalize
better between tasks. Bayesian meta-learning is
another active area of research: Finn et al. (2018)
proposed a probabilistic version of MAML, where
the variational inference framework utilizes a task-
specific gradient update. More recently, Lee et al.
(2019) incorporated a Bayesian framework into
task-adaptive meta-learning. Specifically, they in-
troduce balancing variables for task and class-
specific learning and leverage the uncertainties of
these parameters derived from training data statis-
tics. In this paper, we will adapt the Bayesian task
adaptive meta-learning (TAML) for our applica-
tion shown in Figure 2 overview.

2 Balancing Variations between Tasks

A common challenge in aforementioned real ap-
plication is that data from multiple sources may
suffer from different problems, such as insufficient
training samples, unbalanced class labels, or do-
main mismatch. However, simply ignore these
differences and concatenate all tenants’ data for
model training will not lead to ideal results.

Meta-learning is one of the most relevant ap-
proaches for generalized learning from few sam-
ples of different tasks. Assume a task distribu-
tion p(τ) that randomly generates task τ consist-
ing of training set Dτ = {Xτ , X

τ} and a test set
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Figure 2: An overview of our multi-pair style transfer method: assume learning from each tenant’s data is a task,
and the training data available for each task varies. The style transfer model can adaptively learn tasks using our
method and the resulting model performs style transfer across multiple domains.

Dτtest = {Xτ
test, X

τ
test}. If parallel training data

is not available, then we only have Dτ = Xτ

and Dτtest = Xτ
test. The MAML algorithm initial-

ize task-specific parameter θτ using a few gradient
steps on a small amount of data. In this case, the
optimized parameters can generalize to new tasks.
Specifically, we have the loss minimization

min
θ

∑

τ∼p(τ)
L(θ − α∇θL(θ;Dτ );Dτtest), (1)

where α is the step size when learning each task.
The initial parameter of each task then becomes
θτ = θ−α∇θL(θ;Dτ ), which has been proved to
minimize the test loss L(θτ ;Dτtest). The training
set Dτ may consist of only a few samples.

Eq (1) is effective in numerous applications, yet
insufficient in addressing our data problems, as
it treats the initialization and learning parameters
with equal importance for each task. Inspired by
Lee et al. (2019), we now introduce three balanc-
ing variables: zτ , γτ , ωτ for every task τ .

Let ωτ = (ωτ1 , ..., ω
τ
C) ∈ [0, 1]C be the mul-

tiplier of each of the class specific gradients to
vary the learning rate for each class. In real ap-
plications, we often have a style transfer problem
with unbalanced training data. For instance, when
training formality style transfer models, the num-
ber of formal/positive sentences is normally much
larger than the number of informal/exclusive sen-
tences. Also, denote γτ = (γτ1 , ..., γ

τ
L) ∈ [0,∞)L

to be the multipliers of the original learning-
rate α, where the new learning rate becomes
γτ1α, γ

τ
2α, ..., γ

τ
Lα. Note that the value of γ is

task-dependent (e.g., sample size of the training
data from each task), and is meant to deal with the
small data problem in multi-pair text style trans-
fer. Moreover, since the text data collected from
every source or tenant is very hard to be aligned, it
is common to have training data with significantly
different context. We can treat this as an out of dis-

tribution problem and this can be reflected on the
value of initial parameters. We use zτ to modulate
the initial parameter θ for each task. Specifically,
zτ relocates the initial θ to a task-dependent start-
ing point prior to the learning process. We unify
these properties as the learning framework below:

θ0 = θ ∗ zτ , and for k = 1, ...,K :

θk = θk−1 − γτ ◦ α ◦
C∑

c=1

ωτc∇θk−1
L(θk−1;Dτc ),

(2)

where ωc andDc are class-specific parameters and
data; K is the total number of iterations for up-
dating parameters. We currently assume C = 2
in the following discussions of this paper, since
pair-wise style transfer is the primary problem of
interest so far.

3 Learning the Balancing Variables
through Variational Inference

We now discuss how to find the most suitable
value of each balancing variable. We employ
the variational inference framework from prob-
abilistic MAML (He et al., 2020) and TAML
(Lee et al., 2019) to extract the task-specific in-
formation. The variational inference framework
is used to compute posterior distributions for the
balancing variables zτ , γτ , ωτ . Assume the train-
ing data Xτ = {xτn}Nτn=1, Xτ

= {xτn}Nτn=1; test
data Xτ

test = {xτm}Mτ
m=1, Xτ

test = {xτm}Mτ
m=1,

and φτ = {ω̃τ , γ̃τ , z̃τ} to be a collection of
three balancing variables. The goal of learning
for each task τ is to maximize the conditional
log-likelihood of the joint dataset Dτtest and Dτ :
log p(X

τ
test, X

τ |Xτ
test, X

τ ; θ). To solve the op-
timization problem requires determining the true
posterior p(φτ |Dτ ,Dτtest), which is intractable.
We resort to variational inference with a tractable
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Figure 3: The inference network for generating posterior distribution of balancing variables γ, z, and ω for task i.

form of approximate posterior q(φτ |Dτ ,Dτtest;ψ)
parameterized by ψ. In order to make the infer-
ence network of meta training and meta testing
consistent, we drop the dependency of Dτtest since
the test labels are unknown in meta-testing. Hence
the approximate posterior becomes q(φτ |Dτ ;ψ).
We now have the approximated lower bound for
task adaptive meta learning:

Lτθ,ψ =
Nτ +Mτ

Mτ

Mτ∑

m=1

Eq(φτ |Dτ ;ψ)

[log p(ỹτm|x̃τm, φτ ; θ)]− KL[q(φτ |Dτ ;ψ)‖p(φτ )].
(3)

Given that each balancing variable is independent,
q(φτ |Dτ ;ψ) can therefore be fully factorized

q(φτ |Dτ ;ψ) =
∏

c

q(ωτc |Dτ ;ψ)
∏

l

q(γτl |Dτ ;ψ)
∏

i

q(zτi |Dτ ;ψ).

We assume each single dimension of
q(φτ |Dτ ;ψ) follows a uni-variate Gaussian
distribution with trainable mean and variance.
Given φτs ∼ q(φτ |Dτ ;ψ), we then use the
Monte-Carlo approximation on Eq (3) as a new
objective:

min
θ,ψ

1

Mτ

Mτ∑

m=1

1

S

S∑

s=1

− log p(ỹτm|x̃τm, φτs ; θ)

+
1

Nτ +Mτ
KL[q(φτ |Dτ ;ψ)‖p(φτ )]. (4)

To better model the variational distribution
q(φτ |Dτ ;ψ), an informative representation en-
coded from the training dataset Dτ is necessary.
In this case, the inference network can capture all
useful statistical information in Dτ to recognize
its imbalances. We use a two-stage hierarchical set
encoder, for a given text style transfer task, we first

encodes each class, and then encodes the whole set
of classes. Define the encoder StatisticsPooling(·)
that generates concatenation of the class statistics
such as mean, variance and cardinality. The two-
stage encoder first encodes all text sentences of
each class into sc, followed by encoding represen-
tations of the whole set of classes:

vτ = StatisticsPooling
(
{NN2(sc)}Cc=1

)
,

sc = StatisticsPooling
(
{NN1(x)}x∈Xτc

)
,

where c = 1, ..., C represents classes; Xτ
c is the

collection of class c examples in task τ ; NN1 and
NN2 are some neural networks parameterized by
ψ. Therefore, the summarized feature vectors of
Dτ can be used to infer the Gaussian distribu-
tion parameters of balancing variables ωτ , zτ and
γτ to be further applied in the update of meta-
learning. Note that since the balancing variable
ω is class-specific, inference its distributional pa-
rameters does not need to go through the second
stage of encoding. The overall structure of the in-
ference network is shown in Figure 3.

4 Task-Adaptive Style Transfer

We discuss formulation of multi-pair text-style
transfer problem using the TAML framework. An
overview of our method is shown in Figure 2. We
assume training data in each task could either be
parallel (task 1 and 4) or non-parallel (task 2 and
3). The number of training samples in task i is
represented by Ni, which is not necessarily equal
for each task. In addition, the class distribution in
non-parallel training data is heavily skewed.

We now formulate our problem as follows.
Given a distribution of similar tasks p(τ), each
task represents performing text style transfer on
a certain dataset Dτ . Define a generic loss func-
tion L and shared parameters θ within tasks, the
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Algorithm 1 Multi-Pair Text Style Transfer via TAML

1: Input: style pair for each task τ , {(sτ , sτ )}Tτ=1, parameters α, β,
2: Meta-training procedure:
3: while not done do
4: for each style pair (sτ , sτ ) do
5: Train inference network q(φτ |Dτ ;ψ) by minimizing objective (4)
6: Obtain balancing variables {zτ , γτ , ωτ} ∼ q(φτ |Dτ ;ψ)
7: Initialize sub-learner with θτ0 = θ ∗ zτ
8: for step in 1, ...,K do
9: Sample batch data from Dτs

10: Update parameters for task τ using θτk = θτk−1 − γτ ◦ α ◦
∑2
c=1 ω

τ
c∇θτk−1

L(θτk−1,Dτs )
11: end for
12: Sample batch data from Dτt
13: Evaluate L(θτK,Dτt )
14: end for
15: Update meta-learner fθ with θ = θ − β∇θ

∑T
τ=1 L(θτ ,Dτt )

16: end while
17: Meta testing: Y τ ← fθ(X

τ
test,Sτtest)

goal is to jointly learn a task-agnostic model fθ :
(Xτ ,Sτ ) 7→ Y τ , where for each τ , Sτ is the cor-
responding set of style labels of original text Xτ ,
and Y τ is the resulting style transformed text. Ide-
ally, Y τ should be consistent with Xτ , the corre-
sponding input text sentence in another style do-
main which may or may not be available in model
training. In fine-tuning with a new task, the param-
eters are initialized accounting for the imperfect
nature of the given dataset. Similar to the standard
meta-learning approach, the training data of task
τ is divided into a support set Dτs and a query set
Dτt , where Dτs is used to update each sub-task and
Dτt is used to evaluate the loss, and later used for
meta-learner updates. A detailed description can
be found in Algorithm 1.

5 Experiments

We conduct experiments on multiple style-transfer
datasets: Shakespeare (Xu et al., 2012), Yelp re-
views (Shen et al., 2017) and an internal dataset
from a company that contains formal/informal text
sentences. Performing style transfer on each of the
above dataset defines a unique task. The Shake-
speare dataset contains 21k parallel sentences,
which includes original text style and Shake-
speare’s style. The maximum length of the sen-
tences is 20. The Yelp dataset contains around
252k sentences of positive and negative restau-
rant reviews, where we use a maximum length of
15 to conduct the experiment. We evaluate our
method using state-of-the-art transformers includ-
ing BERT, GPT-2, T5, and VAE (John et al., 2018)
designed for style transfer by learning disentan-
gled representations. Our baseline method in-

cludes regular model training without distinguish-
ing the difference between tasks, and the MAML
method in Eq (1) to fine-tune the style transfer
models on multiple distinct tasks, which has also
been proposed by Chen and Zhu (2020). We then
employ Algorithm 1 to adaptively fine-tune the
style transfer models for each task.

The unbalanced training data is created by sam-
pling from each class at different rate (75% pos-
itive class, 25% negative class). We use the pre-
trained transformers in Huggingface library (Wolf
et al., 2020) as our initial style transfer models.
Specifically, we build a two-head model (Figure
4) on top of the decoders where each head is com-
posed of multiple dense layers. We do not per-
form end-to-end training for the entire transformer
but only train the two-head model. The model in-
put is the sentence and style pairs (Xτ ,Sτ ) while
the forward propagation of transformer’s output
to each model head is dependent on the style la-
bels. The resulting output sentences are style de-
pendent, and one can perform text-style transfer
by flipping the style labels during the inference
phase. Similarly, we use both baseline and TAML
to train VAE and obtain disentangled style and
content representations, and replace the style em-
bedding during the inference stage to get style
transferred sentences. Note that we focus on im-
proving the fine-tuning part of text style transfer
models, while we do not modify the model struc-
ture themselves. In terms of content preservation,
the objective function of the VAE model proposed
by (John et al., 2018) contains a content-oriented
loss, while for other transformer-based models, we
designed the loss L to be the cross entropy loss
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Figure 4: Two-head architecture

Model
Shakespeare Yelp

BLEU↑ PPL↓ ACC↑ BLEU↑ PPL↓ ACC↑

BERT 12.04 26.43 78.77 9.56 15.31 74.68

GPT-2 2.83 38.47 74.45 4.81 45.49 76.67

T5 3.65 59.39 82.58 5.22 39.41 75.14

VAE 14.36 22.29 81.92 10.81 10.65 77.27

MAML-BERT 16.31 21.09 79.34 10.87 15.02 74.98

MAML-GPT-2 7.01 36.94 75.25 5.04 41.76 77.06

MAML-T5 4.77 50.44 83.02 6.46 33.72 75.86

MAML-VAE 15.52 21.45 81.96 11.74 11.04 77.24

TAML-BERT 17.56 19.36 79.34 11.02 16.82 75.22

TAML-GPT-2 7.42 36.67 76.02 5.63 37.66 77.18

TAML-T5 4.81 47.23 83.45 6.92 32.30 75.64

TAML-VAE 17.98 20.14 82.61 12.31 10.59 77.33

Table 1: Evaluations of multiple text style transfer
models on testing set of the listed data. TAML-based
model training methods achieve better performance on
multi-task text style transfer.

between Y τ and Xτ , or between Y τ and Xτ in
non-parallel situations.

For BERT, GPT-2, and T5, we use the built-in
vocabulary within the transformers library. Adam
optimizer is used with learning of 5 × 10−4 to
train the model. The batch size is set to 16 and
the model is trained for 100 epochs. We build the
two-head model by using 6 fully connected layers
with hidden size of 256 and ReLU activation func-
tion. The parameters are chosen empirically with
the best performance. For VAE approach, we use
the same parameter settings as reported in (John
et al., 2018). As for NN1 in inference network, we
used two consecutive blocks of 3 × 3 convolution
layer followed by 2 × 2 max pooling layer, the
output is then fed into one fully connected layer
for statistics pooling. We then use two fully con-
nected layers for NN2. All the activation functions
are ReLU.

We evaluate competing methods on quality and
accuracy of style transfer. The adopted metrics are
common choices among recent works.
BLEU: We use BLEU (Papineni et al., 2002)

score to evaluate the content preservation, the
scores are calculated using ScareBLEU (Post,
2018). When parallel sentences are available, we

compute the BLEU score between the style trans-
ferred sentences Y τ and the ground truth sen-
tences Xτ . Otherwise, we use the original sen-
tences Xτ instead.
PPL: We implemented a bigram language

model (Kneser and Ney, 1995) to quantitatively
evaluate the fluency of a sentence. The language
model is trained on the target-style domain, and
we report the PPL of the generated sentences.
Accuracy: We also trained a TextCNN classi-

fier (Rakhlin, 2016) simultaneously while training
style transfer models. The trained classifier is then
used to evaluate the classification accuracy on the
generated sentences.

Table 1 shows our results for each method.
By applying task-adaptive meta learning on each
style-transfer model, the performance with re-
spect to every metric is generally improved on the
datasets we evaluated. We observe that the VAE
method performs better in style transfer, as other
models are not explicitly designed for this goal.

6 Conclusion

In this paper, we investigated meta-learning ap-
proaches applied to text-style transfer, for situa-
tions with multiple data sources. Given the distinct
context and total amount of data, we propose a
task-adaptive meta-learning approach to fine-tune
style-transfer models. The proposed method intro-
duces three balancing variables with probabilistic
distributions, which can be encoded from training
data. These balancing variables are then used to
solve class and task imbalance problems. Empir-
ically, we found that TAML improves the style-
transfer performance on multiple models. In the
future, we wish to explore generating style varia-
tions in more fine-grained levels (for C > 2) with
the help of meta-learning.
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Abstract

Supervised deep learning-based approaches
have been applied to task-oriented dialog and
have proven to be effective for limited do-
main and language applications when a suffi-
cient number of training examples are avail-
able. In practice, these approaches suffer
from the drawbacks of domain-driven design
and under-resourced languages. Domain and
language models are supposed to grow and
change as the problem space evolves. On one
hand, research on transfer learning has demon-
strated the cross-lingual ability of multilingual
Transformers-based models to learn semanti-
cally rich representations. On the other, in ad-
dition to the above approaches, meta-learning
have enabled the development of task and lan-
guage learning algorithms capable of far gener-
alization. Through this context, this article pro-
poses to investigate the cross-lingual transfer-
ability of using synergistically few-shot learn-
ing with prototypical neural networks and mul-
tilingual Transformers-based models. Experi-
ments in natural language understanding tasks
on MultiATIS++ corpus shows that our ap-
proach substantially improves the observed
transfer learning performances between the
low and the high resource languages. More
generally our approach confirms that the mean-
ingful latent space learned in a given language
can be can be generalized to unseen and under-
resourced ones using meta-learning.

1 Introduction

Traditionally, Natural Language Understanding
(NLU) is an intermediate module between the user
interface and the dialogue management module in
a dialogue system. It aims to extract semantic infor-
mation from a user’s query or utterance to fill slots
in a domain specific semantic frame. Domain clas-
sification, intent detection and slot filling are three
core components belonging to the NLU. They are
in charge of determining the domain or service of a
users query, its underlying goal or intent and asso-

ciating utterance segments with conceptual labels,
called slots, similar to named entity recognition.

NLU is usually defined as a supervised learning
problem, involving conventional machine learning
models on massive amount of annotated training
data, which are language dependent. This prereq-
uisite has prevented its widespread adoption for
poorly endowed languages and for small technol-
ogy companies that do not benefit from millions
of users to gather data. Besides the requirement of
a large amount of annotated data being available,
domains, intents and slots are language dependent.
Consequently, in practice, the resulting systems are
hardly adaptable to expand to new languages.

As a solution to this problem, cross-lingual trans-
fer approaches were developed to leverage the
knowledge from well-resourced languages, with
task specific data available to under-resourced lan-
guages with little or no data. Recent efforts fo-
cused on training Transformer models multilin-
gually such as the multilingual version of BERT
(Devlin et al., 2019). While earlier work demon-
strated the effectiveness of multilingual models to
learn representations which are transferable across
languages, they show limitations when applied to
low-resource languages (Pires et al., 2019; Con-
neau et al., 2020). From another perspective low-
shot learning such as few-shot and zero-shot, aims
to transfer knowledge learned from one language
to another when the training data is limited or is
missing some task labels.

As a core contribution, we explore the poten-
tial for cross-lingual transferability of multilingual
Transformer-based model (Vaswani et al., 2017)
(mBERT) combined with a few-shot learning algo-
rithm based on prototypical representations. We
also introduce a zero-shot scenario, where models
are trained on multiple languages and evaluated on
another. Our proposed approach relies on append-
ing a mBERT encoder module to the prototypical
neural network, which is a proven few-shot model,
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originally designed for image classification. Our
experimental results show that the generated model
trained with a limited number of annotated training
examples outperforms the transfer learning based
approach on MultiATIS++ dataset (Xu et al., 2020;
Upadhyay et al., 2018) and can be applied to un-
seen languages directly with decent performance.

2 Related work

The availability of large datasets has enabled deep
learning methods to achieve great success in a vari-
ety of fields. However, most of these successes are
based on supervised learning approaches, which
require lots of labeled data to train. Most datasets
are only available in English. Only a few other
languages are supported, and most of them are con-
sidered as under-resourced languages.

Recently, meta-learning approaches have en-
abled the development of task-agnostic learning
algorithms capable of far generalizations (cross-
domain or cross-lingual) in the context of having
a low-data regime. Because literature on low-shot
learning is vast and diverse, only the most relevant
approaches to this work are presented and we refer
the reader to Vanschoren (2019) and Wang et al.
(2019) for a surveys of earlier work.

2.1 Low-shot learning
Humans manifest a capacity of learning new con-
cepts from few stimuli quickly and efficiently by
utilizing prior knowledge and experience. Inspired
by this ability, there has been a resurgence of in-
terest in designing specialized models to perform
low-shot learning. An example of this form of
learning is metric-based approaches founded on
the simple idea of learning a discriminative metric
space in which similar samples are mapped close
to each other and dissimilar ones distant. Siamese
(Koch, 2015), Matching (Vinyals et al., 2016) or
Prototypical (Snell et al., 2017) networks belong to
this category.

2.1.1 Supervised generalization
In recent years, several approaches have been in-
troduced and refined to overcome the issue of data-
limited regime. As an example, the Prototypical
Neural Networks (PNNs), developed by Snell et al.
(2017) originally for image classification, were
used to extract representative characteristics of the
data by mapping data points into an embedding
space where each sample will cluster around their
respective prototype representation. Fort (2017)

proposed to extend their work by adding a confi-
dence region around prototypes with the help of
Gaussian covariance models.With the aim of im-
proving the generalization capacity of metric-based
methods, Wang et al. (2018) proposed to enforce a
large margin between the class prototypes by mod-
ifying the standard softmax loss function.

2.1.2 Semi-supervised generalization
Other approaches, closely related to the aforemen-
tioned ones, proposed to take advantage of labeled
and unlabeled data. Among them, Boney and Ilin
(2017) extended PNNs to address semi-supervised
image classification problems. They applied a hard
clustering to assign the class for the unlabeled ex-
amples within the latent space learned by the PNNs.
A close method was developed by Ren et al. (2018)
to refine the prototype generation process with clus-
tering. The authors introduced distractor classes
with the aim of handling unlabeled samples not
belonging to any of the known classes.

Most of these approaches have mainly been ex-
plored in the field of computer vision, and a few of
them were applied to NLP fields, such like Natural
Language Understanding (NLU).

2.2 NLU using low-shot learning

A number of different deep learning approaches
have been applied to the problem of language
understanding in recent years. For a thorough
overview of deep learning methods in conversa-
tional language understanding, we refer the readers
to Gao et al. (2018). In the context of relying on
limited training resources, few-shot learning has
been used for NLU tasks. Yazdani and Henderson
(2015) proposes a method to leverage unlabeled
data in order to find the separating hyperplanes that
divide the utterances with the same label from those
with different labels. Sun et al. (2019) extended
PNNs for intent classification using hierarchical at-
tention mechanisms when generating the prototype
representations.

Slot filling using few-shot models has also been
explored. Ferreira et al. (2015) presented a zero-
shot approach based on a knowledge base and on
word representations learned from unlabeled data.
Fritzler et al. (2019) applied PNNs to few-shot
named entity recognition by training a separate
model for each entity type and Hou et al. (2019)
proposed a conditional random forest-based ap-
proach enhanced with transfer mechanisms that
implicitly incorporate label dependencies and sim-
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ilarities. More recently, Dou et al. (2019), Bansal
et al. (2020a) and Bansal et al. (2020b) applied var-
ious meta-learned models to few-shot NLU across
domains and tasks.

Finally, besides the approaches of Gu et al.
(2018) and Zhang et al. (2020) that focus on han-
dling new and low-resource languages for machine
translation, to the best of our knowledge, there are
no approaches that combine cross-lingual transfer
and meta-learning methods for NLU tasks.

3 Approach

In this section, we present the design of a Proto-
typical Neural Network and its episodic training
procedure before introducing our approach.

3.1 Prototypical Neural Networks
Prototypical Neural Networks (Snell et al., 2017)
or PNNs are based on the computation of distance
measures between seen-class prototypes to unseen
ones. More specifically, a D-dimensional embed-
ding is generated for each example x ∈RD using
a neural network based function f(·) parameter-
ized by Θ. This function enhances the encoding
process with better separability properties through
a non-linear mapping fΘ :RD →RM . The M -
dimensional prototype of each class is formed as
the centroid ci of their embedded support points as
seen in Equation (1):

ci =
1

|Si|
∑

(xj ,yj)∈Si

fΘ(xj), (1)

where Si represents the set of examples labeled
with class i and yj the corresponding label of xj .
Equation (2) shows how, given a query (that is, a
new and an unlabeled sample) qi, the probability
distribution over the prototypes is computed from
d(·, ·), an arbitrary similarity measures function
such as the squared euclidean distance or cosine
similarity.

pΘ(yi|qi) =
exp(−d(fΘ(qi), ci))∑
i′ exp(−d(fΘ(qi), ci′))

(2)

Finally, the class with the highest probability
is chosen by a softmax over the distances and
at optimization time, the negative log-probability
J(Θ) = − log pΘ(yi|qi) of the true class of each
query point is minimized by stochastic gradient de-
scent during an episodic learning process described
in the next subsection.

3.2 Episodic learning

With the aim of generalizing unseen classes from
zero to few training examples per class, PNNs is
trained from a collection of N -way, k-shot classifi-
cation tasks through an episodic training procedure
(Vinyals et al., 2016). Specifically, each episode is
one mini-batch consisting of k examples from each
of the N classes (both randomly sampled), used
to form a labeled (support S) and an unlabeled
set of examples (query Q). The parameter k often
takes a very small value, meaning we have zero-to-
k labeled samples. During training, the model is
fed with S to construct the class prototypes using
Equation (1). Its parameters are learned in order to
minimize the prototypical loss of its predictions for
the examples in the given Q according to Equation
(3) of Section 3.1. The evaluation is done by aver-
aging the classification performances on query sets
of many testing episodes.

3.3 Transformer-based PNNs

Studies have demonstrated that contextualized rep-
resentations produced by language models such
as ELMo (Peters et al., 2018) or BERT (Devlin
et al., 2019) gave neural networks a better training
initializations. Rather than training the initialized
encoder of PNNs with feature extractors such as
convolution or recurrent networks we propose to
induce robustness of the pre-trained multilingual
BERT (mBERT) to test the distinctiveness of the
representation of each class accross languages. The
embedding layer is initialized with the pre-trained
mBERT embeddings and fine-tuned together with a
dense linear layer that defines the embedding space
where the prototype-based classifier operates. This
latent space is used to learn prototypes of each class
by estimating their mean and the chosen class is
derived from the output layer of the network based
on a softmax over distance to the class prototypes.
The motivation behind fine-tuning the encoder with
prototypical loss is to induce better generalization
properties at test-time to new class labels not seen
during training given only a few examples.

3.4 The cross-lingual way

As introduced earlier, even though recent works
demonstrate strong cross-lingual transfer capability
of multilingual pretrained BERT, they exhibit lim-
itations when applied to low-resource languages
(Pires et al., 2019; Conneau et al., 2020). To enable
cross-lingual transfer according to our few-shot
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Language
# utterances # tokens

# intents # slot types
train dev test train dev test

English

4488 490 893

50755 5445 9164

18 84

Spanish 55197 5927 10338
Portuguese 55052 5909 10228
German 51111 5517 9383
French 55909 5769 10511
Chinese 88194 9652 16710
Japanese

}

133890 14416 25939

}

Hindi 1440 160 893 16422 1753 9755 17 75
Turkish 578 60 715 6132 686 7683 17 71

Table 1: Details of the MultiATIS++ corpus.

scenario, we construct mutiple episodic batches E.
From the available data, we draw the task sets by
sampling a subset of labels to form a support set
from data in the high-resources languages and a
query set from data in the low-resource languages
to be evaluated. NLU data consists of utterances
composed of sentence-level intent labels and se-
quences of slot labels annotated in BIO format
(Ramshaw and Marcus, 1995) to define the bound-
ary of slots. The N -way k-shot NLU task is then
defined as follows: given an input query utterance
in a new language qi and a k-shot support set S as
references, find the most appropriate intent label or
slot label sequence y:

argmaxE
θ

∑

(qi,yi)∈Q
log pθ(yi|qi, S). (3)

4 Experiments

Our NLU experiments in cross-lingual and few-
shot learning for under-resources languages are
conducted on MultiATIS++ (Xu et al., 2020; Upad-
hyay et al., 2018) corpus, whose description fol-
lows.

4.1 The MultiATIS++ corpus

MultiATIS++ (Upadhyay et al., 2018; Xu et al.,
2020) is the multilingual extension of the ATIS cor-
pus (Hemphill et al., 1990), which belongs to the
air travel planning domain. Originally in English
(en), it has been human translated to 8 different
other (distant and close) languages i.e., Spanish
(es), German (de), French (fr), Portuguese (pt),
Hindi (hi), Chinese (zh), Japanese (ja), and Turkish
(tr). It contains 37,084 training examples and 7,859
test examples. Details of subsets statistics in terms

of the number of utterances, intents and slots are
shown in Table 1. Our main concerns about this
corpus are the Hindi and Turkish portions of the
data, which are smaller than the other languages,
covering only a subset of intents and slots and con-
taining extremely few labeled examples.

4.2 Models
We use the fine-tuning procedure (Devlin et al.,
2019) of the original mBERT model as our base-
line. In sequence-level and token-level classifica-
tion tasks, it takes the final hidden states (the last
layer output of the multi-head Transformer) of the
first [CLS] sequence token or each individual token
representation as input of the prediction layer to
compute classification scores. Since we plan to use
transfer learning in the context of PNNs, we fine-
tune the pre-trained mBERT model together with a
dense linear layer that defines the embedding space
(Section 3.3).

4.3 Training configurations
We perform three sets of experiments: target only,
multilingual and multilingual zero-shot.

• target only: this configuration consists of us-
ing only the target language data.

We also considered two cross-lingual classifica-
tion tasks with a varying quantity of data between
source and target languages to investigate the be-
haviour of different types of knowledge transfer.

• multilingual: where the training strategy
aims to train a network on the concatenation
of all of the nine languages and testing the
model for each target language.

• multilingual zero-shot: where the training
relies on the concatenation of all training
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config. encoder en es de zh ja pt fr hi tr
target only mBERT 98.54 97.31 98.43 97.09 97.20 97.54 98.88 90.93 83.36

mBERT + PNN (5w1s) 97.46 95.14 97.18 96.35 95.53 96.80 97.11 84.95 85.17
mBERT + PNN (5w10s) 98.77 96.97 98.54 97.0 96.64 97.42 97.98 91.33 89.33

multilingual mBERT 98.42 97.98 98.59 97.65 97.45 98.3 98.46 95.33 93.93
mBERT + PNN (5w1s) 95.33 93.71 95.93 95.89 94.42 94.00 94.78 91.4 90.91
mBERT + PNN (5w10s) 99.87 98.54 98.60 98.67 98.54 98.32 98.66 95.49 92.61

multilingual (zero shot) mBERT 96.42 97.98 97.54 96.71 97.45 97.42 97.87 94.37 91.61
mBERT + PNN (5w1s) 93.73 92.02 93.27 95.62 91.73 93.51 93.28 90.51 89.92
mBERT + PNN (5w10s) 96.47 97.87 96.86 97.65 96.64 98.10 97.45 93.17 90.67

Table 2: Averaged intent accuracies obtained with PNNs on 5-way k-shot classification k ∈ [1, 10] (best scores
are marked in bold) and baseline results.

datasets from all languages except the one
we want to test.

This works only for the baseline approach
(mBERT), but with our PNNs approach
(mBERT+PNN), we performs few-shot learning.
This means we use only a few training data in the
considered language (target only and multilingual
configurations).

For instance, when we evaluate our approach in
the English task, we consider only a fraction of the
English training dataset to train our mBERT+PNN
model in the target only. In the multilingual con-
figuration, our few-shot approach (mBERT+PNN)
is trained using only a fraction of all the examples
provided for each language.

4.4 Training details

For all the baseline models built, we use the pub-
licly available mBERT models pre-trained on over
a hundred different languages (Devlin et al., 2019).
We trained it using 20 epochs like Xu et al. (2020).

PNNs training was done using a number of 1000
episodes using Euclidean distance as suggested
by the original authors (Snell et al., 2017). We
consider a configuration parameter and tried a 5-
way k-shot intent classification with k ∈ [1, 10]
(5w1s and 5w10s) and 5-way 10-shots slot filling.

For all approaches we use AdamW optimizer
(Loshchilov and Hutter, 2017) using a learning rate
of 5e-5 to apply gradients with respect to the loss
and weight decay.

All results are reported using the average perfor-
mances of over 30 runs for intent classification and
over 5 runs for slot filling (fewer amount of runs
because of higher training time).

4.5 Results

Our experimental findings are summarized in Ta-
bles 2 and 3 for the intent classification and the

slot-filling tasks, respectively.

4.5.1 Intent classification results
Using the target only configuration, the baseline ob-
tains optimal scores when applied to high resource
languages, e.g. English (en), French (fr) or Ger-
man (de) reaching nearly identical high scores. We
obtain the highest baseline scores with an accuracy
of 98.8 on the French model, followed by the En-
glish model with an accuracy of 98.5. Unlike other
mainstream languages, the baseline is less accurate
on under-resourced languages, with a loss of 7 to
15 points for intent classification on Hindi (hi) and
Turkish (tr) respectively.

In multilingual configuration, baseline models
perform reasonably well over all the high-resource
languages with a significant performance boost due
to the availability of additional data. The mBERT +
PNN (5w10s) models outperformed the baseline for
all languages, except for the Turkish (tr) language.

When transferring from all languages to an un-
seen one (multilingual zero-shot configuration) we
observe the best results for the mBERT model, ex-
cept Portuguese (pt) and English (en) languages,
in which the mBERT + PNN (5w10s) is 0.5 points
better.

Finally, within the framework of the intent clas-
sification task, the mBERT + PNN (5w10s) model
achieves better overall performances in the multilin-
gual configuration, especially in the case of under-
resourced languages with a gain up to 9 points of
accuracy, compared to the target-only configuration
and an average of one point compared to the best
model in the multilingual zero-shot configuration.

4.5.2 Slot-filling results
Slot-filling result trends in the target only config-
uration are about one point better of F1 score for
the mBERT + PNN (5w10s) model compared to
the baseline model (mBERT). The mBERT + PNN
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config. encoder en es de zh ja pt fr hi tr
target only mBERT 95.64 85.52 94.88 92.93 93.13 91.71 92.78 85.12 78.22

mBERT + PNN (5w10s) 95.76 87.40 95.63 93.45 93.93 92.22 93.13 85.70 82.67
multilingual mBERT 96.02 88.03 95.03 93.63 93.01 92.31 91.18 87.39 86.83

mBERT + PNN (5w10s) 98.40 92.09 97.12 95.50 97.24 95.81 96.80 89.59 88.39
multilingual (zero shot) mBERT 94.10 87.14 94.23 92.17 92.61 91.59 90.79 86.14 85.86

mBERT + PNN (5w10s) 93.25 86.99 93.57 91.82 92.38 91.19 90.39 87.49 86.83

Table 3: Averaged slot F1s obtained with PNNs on 5-way 10-shot and baseline results (highest scores are marked
in bold).

(5w10s) model even outperformed the baseline by
more than 4 points of F1 in the Turkish task (tr).

We can observe the same trend in the multilin-
gual configuration: our approach outperformed the
baseline in all languages.

On the contrary, the mBERT + PNN (5w10s)
fails in most of language tasks in the multilingual
zero-shot configuration, except for the Hindi (hi)
and the Turkish (tr) languages.

Finally, like the intent classification task, the
mBERT + PNN (5w10s) model achieves better over-
all performance in the multilingual configuration
for all languages.

4.6 Result analysis

First, our baseline results are on par with those ob-
tained by Qin et al. (2019) and Xu et al. (2020)
when they trained BERT-based models using only
English training data (en) with intent accuracy
scores of 97.5% and 96.08% while we obtain
98.5%. This is the same in our slot-filling exper-
iment in which they report 94.7 F1 points while
we obtain 95.6. This difference comes from our
results averaging between 30 and 5 runs for intent
classification and slot filling, while previous works
only performed 5 runs. We also observe that, just
like Xu et al. (2020), slot filling on Spanish (es)
leads to lower results, similar to those obtained in
our few-shot setting.

When transferring from all languages to an un-
seen one (multilingual zero-shot configuration in
both tables 2 and 3) we obtained lower scores than
the multilingual configurations. This means the
multilingual representation captured in mBERT is
efficient enough when data is available in several
languages and none are available in the target con-
sidered language. But, in both cases, the combina-
tion of mBERT+PNN performs better when fewer
data is available using the few-shot approach (the
multilingual configuration). This means that our
approach quickly adapts to the considered target
language with only a few examples available and

enhances the mBERT multilingual transfer learning
capabilities. This is especially true in the case of
slot filling with gains in terms of F1-scores ranging
from 2 to 5 points.

Finally, using the mBERT baseline model, trans-
fer learning to French or German has performance
scores similar to English while using the Turkish
(tr) or Hindi (hi) yielded significant loss. This
leads us to the same conclusion as Xu et al. (2020):
exploiting language interrelationships learnt with
transfer learning improve the model performances.
This may come from the fact that French, English
and German are similar and share some vocabulary
while Turkish or Hindi are dissimilar to European
languages (Hock and Joseph, 2019).

A detailed inspection of the PNNs results shows
that in the target only and in the multilingual con-
figurations, there is an overall and important re-
duction in recall values, which is balanced by an
improvement of the precision values. If we analyze
deeper the mislabeled examples we can observe
that applying PNNs help to prevent overlapping
and annotation mismatch cases that occur in the
data.

We observed that MultiAtis++ corpus seems to
be a highly unbalanced labeled dataset with the
number of training examples per class varying from
1 to 3300. This impacts the model performance,
and it could explain why we observe a lower re-
call and an improvement in precision using our
approach, since it is based on the reduction of the
amount of data.

5 Conclusions

In this paper, we demonstrate the opportunities in
leveraging mBERT-based modeling using few-shot
learning for both intent classification and slot filling
tasks on under-resource languages. We found that
our approach model is a highly effective technique
for training models for low-resource languages.
This illustrates the performance gains that can be
achieved by exploiting language interrelationships
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learnt with transfer learning, a conclusion further
emphasised by the fact that multilingual results out-
performed other configuration models (target only
and specifically multilingual zero-shot) regardless
of the approach. Overall, PNNs models outperform
mBERT-based transfer learning approach, enabling
us to train competitive NLU systems for under-
resources languages with only a fraction of training
examples.

From this work a new challenge naturally comes
up and a possible direction is to adapt a few-shot
setting to a joint approach of intent detection and
slot filling, like in Zhang and Wang (2016), Liu and
Lane (2016) and Zhang et al. (2019), which demon-
strates that performing these two tasks jointly im-
proves the performance of both of them.
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Abstract
Meta-learning has recently been proposed to
learn models and algorithms that can gener-
alize from a handful of examples. However,
applications to structured prediction and tex-
tual tasks pose challenges for meta-learning al-
gorithms. In this paper, we apply two meta-
learning algorithms, Prototypical Networks
and Reptile, to few-shot Named Entity Recog-
nition (NER), including a method for incorpo-
rating language model pre-training and Con-
ditional Random Fields (CRF). We propose a
task generation scheme for converting classi-
cal NER datasets into the few-shot setting, for
both training and evaluation. Using three pub-
lic datasets, we show these meta-learning al-
gorithms outperform a reasonable fine-tuned
BERT baseline. In addition, we propose a
novel combination of Prototypical Networks
and Reptile.

1 Introduction

The usage of Natural Language Understanding
(NLU) technologies has spread widely in the last
decade thanks to the recent jump in accuracy due to
Deep Neural Networks (DNN). In addition, DNN
libraries have made easier than ever the produc-
tization of NLU technologies. Applications have
spread in quality and quantity with the broadened
usage of chat bots by customer services, the devel-
opment of virtual assistants (e.g. Amazon Alexa,
Google Home, Apple’s Siri or Microsoft Cortana)
and the need of document parsing (e.g. medical
reports, receipts, tweets, news articles) for data ex-
traction. These applications often rely on NER to
locate and classify named entities in text. NER
aims at extracting named entities (e.g. “artist”,
“city” or “restaurant type”) from a sequence of
words. This problem is often approached (Mc-
Callum and Li, 2003) as a sequence labeling task
that assigns to each word one of the different entity
types or the “other” label for words that do not
belong to any named entity.

The wide variety of applications has made the
need for domain specific data the main bottleneck
to train or fine-tune statistical models. This data
is often acquired by running the application itself
and collecting user inputs. Then, the annotation ef-
fort can be significantly reduced using active learn-
ing (Peshterliev et al., 2019) or semi-supervised
learning (Cho et al., 2019b). However, to reach
this bootstrapping stage, statistical models have to
perform reasonably before being exposed to users.
Indeed, low performing models can turn away users
or shift the input distribution as users lose engage-
ment with features that do not work.

Transfer learning (Do and Gaspers, 2019) is an
efficient way to cope with the data shortage by ex-
tracting task-agnostic high-level features. In partic-
ular, for NER, fine-tuning language models (Peters
et al., 2018; Devlin et al., 2018; Conneau and Lam-
ple, 2019) allows achieving state-of-the-art perfor-
mances (Wang et al., 2018a). However, fine tuning
to specific tasks still requires a reasonable amount
of data, especially for a task like NER with large
structured label spaces. In certain cases, for exam-
ple to learn personalized models or for products
with restricted budgets, only a handful “reference”
examples are available. As we will show, in such
scenarios where very few training examples are
available, transfer learning has its limitations.

Few-Shot Learning (FSL) is a rapidly growing
field of research, reviewed in Section 2, that aims at
building models that can generalize from very few
examples as detailed in (Miller et al., 2000; Koch
et al., 2015). This area of research is motivated by
the ability of humans and animals to learn object
categories from few examples, and at a rapid pace.
In particular, inductive bias (Mitchell, 1980) has
been identified for a long time as a key component
to fast generalization to new inputs. Previous work
has suggested that meta-learning (Schmidhuber,
1987) can help quickly acquire knowledge from
few examples by learning an inductive bias from
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a distribution of similar tasks but with different
categories.

In this paper, we leverage recent progress made
in transfer learning and meta-learning to address
few-shot NER. First, we provide a novel definition
of few-shot NER in Section 3.1 where few-shot
NER aims at building models to solve NER tasks
given only a handful of labeled utterances per en-
tity type. Then, in Section 3.2, we define a transfer
learning baseline consisting in fine-tuning a pre-
trained language model (BERT Devlin et al., 2018)
using only few examples. In addition, we intro-
duce an extension of Prototypical Networks (Snell
et al., 2017), a metric-based model, capable of han-
dling structured prediction. In particular, we detail
how it can be combined with Conditional Random
Fields (CRF) (Lafferty et al., 2001). In Section 3.3,
we explain how such models can be trained us-
ing meta-learning. In addition, we introduce the
application of an optimization-based algorithm to
NER, Reptile (Nichol et al., 2018), capable of meta-
learning a better initialization model. We also pro-
pose a novel combination of Prototypical Networks
and Reptile that brings the best of both worlds,
performance and the ability to handle a different
number of classes between training and testing. Fi-
nally, in Section 3.4, we show how to generate
diverse and realistic FSL tasks, corresponding to
the bootstrapping phase of NER systems, from clas-
sical NER datasets either for meta-training or meta-
testing.

In Section 4, we conduct an extensive evaluation
on three public datasets: SNIPS (Coucke et al.,
2018), Task Oriented Parsing (TOP Gupta et al.,
2018) and Google Schema-Guided Dialogue State
Tracking (DSTC8 Rastogi et al., 2019) where we
compare our three meta-learning approaches to the
transfer learning baseline. Source code and datasets
will be made available online.

2 Related Work

Few-shot learning has been addressed using
metric-learning, data augmentation and meta-
learning. Metric-learning relies on learning how to
compare pairs (Koch et al., 2015) or triplets (Ye and
Guo, 2018) of examples and use that distance func-
tion to classify new examples. Data augmentation
through deformation has been known to be effec-
tive in image recognition tasks. More advanced ap-
proaches rely on generative models (Gupta, 2019;
Hou et al., 2018; Zhao et al., 2019; Guu et al., 2018;

Yoo et al., 2018), paraphrasing (Cho et al., 2019a)
or machine translation (Johnson et al., 2019). All
the methods above rely somewhat on transfer learn-
ing with the hope that representations learned in
one domain can be applied to another one.

Meta-learning takes a different approach by
trying to learn an inductive bias on a distribu-
tion of similar tasks that can be utilized to build
models from very few examples. There are four
common approaches. Model-based meta-learning
relies on a meta-model to update or predict the
weights of a task specific model (Munkhdalai and
Yu, 2017). Generation-based meta-learning (Zhang
et al., 2018; Schwartz et al., 2018) produces gen-
erative models able to quickly learn how to gen-
erate task specific examples, often in the feature
space (Kumar et al., 2019). The other two ap-
proaches are explained in detail below.

Metric-based meta-learning is similar to nearest
neighbors algorithms. In particular, several metric-
based meta-learning methods (Vinyals et al., 2016;
Snell et al., 2017; Rippel et al., 2015) have been
proposed for few-shot classification where an em-
bedding space or a metric is meta-learned and used
at test time to embed the few support examples
of new categories and the queries. Prediction is
performed by comparing embedded queries and
support examples. In many cases, the loss func-
tion is based on a distance between the supports
and the queries. More advanced losses have been
proposed in (Triantafillou et al., 2017; Wang et al.,
2018b; Sung et al., 2018) for example based on
triplet, ranking and max-margin losses. One of
the issues with approaches listed above is that the
distance is the same for all categories. Thus, Fort
(2017); Hilliard et al. (2018) have explored scaling
the distance for new categories.

Optimization-based meta-learning explicitly
meta-learns an update rule or weight initializa-
tion that enables fast learning during meta-testing.
In Ravi and Larochelle (2017), they use an LSTM
meta-learner trained to be an optimization algo-
rithm. However, this approach incurs a high com-
plexity. In Finn et al. (2017), the authors explored
with success using ordinary gradient descent in the
learner and meta-learning the initialization weights.
However, this algorithm named MAML, requires
to back propagate through gradient updates and
so rely on second order derivatives which are ex-
pensive to compute. They also proposed an algo-
rithm, FOMAML, relying only on first order deriva-
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tives. This idea has been extended by Nichol et al.
(2018) to propose an algorithm, Reptile, that does
not need a training-test split for each task as ex-
plained in Section 3.3. Note that, Triantafillou et al.
(2019) gives an overview of many meta-learning
algorithms and propose a set of benchmarks to eval-
uate them. Finally, instead of just learning a model
initialization, Li et al. (2017) propose to learn a
full-stack Stochastic Gradient Descent (SGD), in-
cluding update direction, and learning rate.

Few-Shot Learning on textual data has been
explored recently, mostly for text classification
tasks. Yu et al. (2018) propose to meta-learn a
set of distances and learn a task-specific weighted
combination of those. Jiang et al. (2018) build on
top of MAML and attention mechanisms to pro-
pose an algorithm for text classification. Geng et al.
(2019) focuses on sentiment and intent classifica-
tion. Cheng et al. (2019) propose to use metric-
based meta-learning to learn task-specific metrics
that can handle imbalanced datasets. Recently,
Bansal et al. (2019) proposed a new optimization-
based meta-learning algorithm, LEOPARD, that
outperforms strong baselines on several text classi-
fication problems (entity typing, natural language
inference, sentiment analysis). Few-shot relation
classification has also attracted some attention in
the past two years, thanks to Han et al. (2018)
who proposed a new dataset and using Prototypi-
cal Networks. Several works built on top of this
to combine Prototypical Networks with attention
models (Sun et al., 2019; Ye and Ling, 2019).

NER has been addressed in several works.
In (Fritzler et al., 2019; Yang and Katiyar, 2020)
the task of interest consists of recognizing one class
of named entities, for tag set extension or domain
transfer. In our work, we extend the N-way K-shot
setting to structured prediction. (Hou et al., 2020)
propose a CRF with coarse-grained transitions be-
tween abstract classes. In (Krone et al., 2020) the
authors propose a task sampling algorithm based on
intents which can result in leakage between meta-
training and meta-testing sets. In (Hofer et al.,
2018) the authors don’t use pre-trained language
models. As we will show subsequently our work
differs significantly from those. First, our task sam-
pling method, that can generate a very large amount
of tasks, is key to learn efficiently an inductive
bias. Second, we utilize pre-trained language mod-
els. Third, using a fine-grained CRF, amenable to
meta-learning, our model can learn sequential de-

pendencies between labels. Fourth, we fine-tune
our meta-learned Prototypical Network per task
and even utilize optimization-based meta-learning
to improve the fine-tuning. Those contributions
are central in achieving the best performance on
few-shot NER as shown in Section 4.

3 Few-Shot Named Entity Recognition

3.1 Task Definition

We define the few-shot NER problem by describ-
ing what is a task. A task is defined by a set of N
target entity types (examples of entity types could
be “song”, “city” or “date”), a small training set of
N ×K utterances (with their labels) called support
set and another disjoint set of labeled utterances
called query set. Similarly to Triantafillou et al.
(2019), we refer to this setting as N -way-K-shot
with the difference that we have a total of N ×K
support utterances rather than K examples for each
of the N entity types, which is not feasible as one
utterance might contain several entities. Thus, the
number of mentions per entity type can be imbal-
anced. In addition, the support set follows the same
distribution as the query set. Evaluation is per-
formed by sampling a set of tasks from the meta-
testing set. For each task, an NER model is learned
from the support set. This model is evaluated on
the query set. The performance is finally averaged
across tasks. During meta-training, an additional
set of meta-training tasks is available with disjoint
entity types from the meta-testing set. Queries are
used to train the meta-model. At meta-testing, this
meta-model is tailored to the task using the support
examples as mentioned above.

3.2 Prototypical Networks for NER

This paper builds on top of Prototypical Networks,
introduced by Snell et al. (2017). Their model
embeds support and query examples into a vector
space. Then, one prototype per category is com-
puted by taking the mean of its supports. Finally,
queries are compared to prototypes using the eu-
clidean distance. The distances are converted to
probabilities using a Gibbs distribution. The model
is meta-trained to predict the query labels using
only few examples. This Section details the ar-
chitecture of Prototypical Networks for sequence
labeling. The next Section explains how the em-
bedding function is meta-learned. Without meta-
learning the architecture of Prototypical Networks
does not bring any advantage over classical ones.
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For a sequence labeling task, like NER, the
difference is that to each word is assigned one
label. Let S = {(x1,y1), . . . , (xn,yn)} be a
small support set of n labeled sequences where
xi = (xi1, . . . , x

i
L) is an utterance of length L and

yi = (yi1, . . . , y
i
L) a sequence of entity labels. For

each entity type k, we compute a prototype ck
by embedding all words tagged as k using an em-
bedding function fθ where θ represents the meta-
learned parameters. The fundamental difference
with the common implementation of Prototypical
Networks is that the embedding function fθ utilizes
the context of the current word to compute its rep-
resentation in a vector space. Although, we should
formally note fθ(xij ;x

i) the representation of xij in
the embedding space, we will just write fθ(xij) in
the sequel to not overload equations. Thus, proto-
types are defined by

ck =
1

|Sk|
∑

x∈Sk
fθ(x), (1)

where Sk = {xij | yij = k, (xi,yi) ∈ S}, i.e. the
set of all tokens with a particular label k. Note that
we compute one prototype per entity type and also
one for “other”. As mentioned in Section 5, we
leave better handling of “other” for future work.

In this paper, we use BERT to generate embed-
dings for each word. More specifically, we used
the pre-trained English BERT Base uncased model
from (Wolf et al., 2019). This BERT model has
12 layers, 768 hidden states, and 12 heads. Then,
we followed recommendation from Souza et al.
(2019) to fine-tune BERT. Since BERT uses Word-
Piece sub-word units and NER labels are aligned to
words, we elected to pick the last sub-word repre-
sentation of a word as the final word representation.
Then, we sum the outputs of the last 4 layers to get
a word-level representation and then add dropout
and a linear layer. 1 For our baseline model, the lin-
ear layer output size is the number of entity types
plus “other”. When using Prototypical Networks,
the linear layer output size is 64. Then, distances
to prototypes are computed for every word, giving
the same output size than for the baseline model.

1In our experiments, we also tried an alternative architec-
ture consisting of a frozen BERT model topped with three
ELU-activation linear layers with dropout (Clevert et al.,
2016), motivated by the fact that fine-tuning a large capac-
ity model with very few examples might degrade the perfor-
mances. As the first architecture worked better by a significant
margin for the baseline, we did not pursue further this alterna-
tive.

Finally, in our experiments, we tried two differ-
ent decoders. For the first one, we simply feed the
distances into a SoftMax layer and use the negative
log-likelihood (NLL) summed over all positions
for the loss function, as follow,

p(yt = k | x) = e−‖fθ(xt)−ck‖
2

∑
k′ e
−‖fθ(xt)−ck′‖2

, (2)

p(y | x) =
∏

t

p(yt | x, {ck}). (3)

For our second decoder, we use a CRF, as Lam-
ple et al. (2016) have shown they are effective for
NER when combined with neural networks. Using
a CRF instead of making independent tagging de-
cisions allows to model the dependencies between
labels by considering a transition score between
labels in addition to the standard emission scores
to obtain a probability distribution,

p(y | x) =
exp

(∑
t

[
U(xt, yt) + T (yt, yt+1)

])

Z(x) ,

(4)

Z(x) =
∑

y′
exp


∑

t

U(xt, y
′
t) + T (y′t, y

′
t+1)




(5)
where, T is a transition matrix, U the emission

network and Z the partition function - a normal-
ization factor used so that the probabilities sum
to 1, equal to the sum of the scores over all label
sequences. The loss function is the standard NLL.
The emission network is the same as the SoftMax
decoder.

For our baseline, the transition matrix is just a
parameter of our network. However, estimating
transitions between labels in the FSL setting is
very prone to over-fitting as many transition pairs
are likely to be absent from the limited training
data. This intuition will be confirmed empirically
in Section 4. Hence, we make use of prototypes and
transfer learning to estimate the transition matrix.
More specifically,

U(xt, yt) = −‖fθ(xt)− cyt‖2 and (6)

T (yt, yt+1) = gψ(cyt , cyt+1), (7)

where the weights ψ of our neural network g are
learned across tasks during meta-training and even-
tually fine-tuned during meta-testing. In our exper-
iments, g is implemented as a feed-forward neural
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network on stacked prototype representation with
one hidden layer of size 64 and ELU activation
function. Looking only at the learning of the tran-
sition matrix during meta-training, this setting is
equivalent to a standard training procedure that
uses classes, represented by prototypes, as training
examples and tries to predict transitions between
them. Hence, we rely on the generalization capa-
bility of our transition DNN during meta-testing
to handle new classes. We will see in Section 4,
that using our Prototypical CRF decoder is very
beneficial compared to a standard CRF.

3.3 Meta-Learning

In this Section, we introduce meta-learning and
how it can be used to meta-learn initialization
weights for the baseline architecture using Reptile,
the embedding function in Prototypical Networks
or both. In most cases, meta-learning algorithms,
i.e. algorithms that learn how to learn, are typically
comprised of two processes. The inner process is
a traditional learning process capable of learning
quickly using only a small number of task-specific
examples. The outer loop, or meta-learning loop,
slowly learns the inductive bias across a set of tasks.
Thus, the objective of the outer loop is to improve
generalization during the inner learning process.
This is often achieved thanks to a meta-model. For
Prototypical Networks the meta-model is the em-
bedding function that defines the prototypes and
the distance. For Reptile, the meta-model are the
initialization weights that will be fine-tuned during
meta-testing. During meta-testing, task specific
models are derived from the meta-model and the
support examples, for example by building proto-
types or by gradient descent. Then, all queries are
used to evaluate the task-specific model.

Meta-training runs in episodes. For each episode,
a task or a batch of tasks is sampled. In our setting,
we are only considering one task at a time. Then,
from the current meta-model, a task specific model
is built using the inner process and the support
examples. The loss is computed using the queries
and back-propagated through the inner process to
update the meta-model. Good performance is often
achieved when the inner process at meta-training
and meta-testing are alike.

In the case of Prototypical Networks for se-
quence labeling, the meta-learner learns a repre-
sentation amenable to generalization where queries
can be compared to prototypes built from few sup-

port examples. Hence, the inner process just builds
one prototype per entity type k ∈ E , where E is the
set of entity types for this task (including “other”)
as described in Algorithm 1.

Algorithm 1 ProtoNet
INITIALIZE θ
while has not converged do
E , S,Q← SAMPLETASK(T ,K,N)
for all entity type k in E do
ck ← 1

|Sk|
∑

x∈Sk fθ(x) as in eq. (1)
end for
L← NLL(p,BATCH(Q)) where p is defined
in eq. (3) or eq. (4)
θ ← UPDATE(θ, ∂L∂θ )

end while

During meta-testing, we can simply compute
the prototypes from the support examples as in
eq. (1), in that case training is done without any
backpropagation. However, in our experiments,
see Section 4, we found that fine-tuning the meta-
model using the task-specific supports was im-
proving the performance. To fine-tune the model
we further split the supports into two subsets us-
ing 80% to build the prototypes and the remain-
ing to compute the loss and backpropagating it
to update the model. By introducing this addi-
tional fine-tuning step at test time, the inner pro-
cess now differs between meta-training and meta-
testing. Similarly, for our baseline, we fine-tune
our BERT-based model using the support utter-
ances at meta-test time. In both cases, to better
align meta-training and meta-testing, we turned to
optimization-based meta-learning. Optimization-
based meta-learning encompasses methods where
the inner process consists in fine-tuning the meta-
model. Back-propagating through the inner opti-
mization loop allows computing a meta-gradient to
update the meta-model as done in MAML. How-
ever doing so requires to compute second order
derivatives. Instead, Reptile builds a first order ap-
proximation as shown in Algorithm 2, where T is
the number of steps used to compute the first order
approximation.

In addition, for MAML, the inner-loop optimiza-
tion uses support examples, whereas the loss is
computed using the queries. This way MAML
optimizes for generalization. However, Reptile
does not require a query-support split to compute
the meta-gradient, which makes it a better candi-
date to be combined with Prototypical Networks.
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Algorithm 2 Reptile

INITIALIZE θ0
while has not converged do
E , S,Q← SAMPLETASK(T ,K,N)
for t ∈ 1..T do
L← NLL(p,BATCH(S ∪Q))
θt ← UPDATE(θt−1, ∂L

∂θt−1
)

end for
θ0 ← UPDATE(θ0, θT − θ0)

end while

To combine MAML and Prototypical Networks,
Triantafillou et al. (2019) use the same support
examples to compute prototypes and to compute
the loss for backpropagation in the MAML inner
loop. However, having two disjoints support sets
is preferable so as not to compare examples to pro-
totypes computed from the same examples. With
Reptile, this issue is alleviated altogether as shown
in Algorithm 3.

Algorithm 3 Proto-Reptile

INITIALIZE θ0
while has not converged do
E , S,Q← SAMPLETASK(T ,K,N)
for all entity type k in E do
ck ← 1

|Sk|
∑

x∈Sk fθ(x) as in eq. (1)
end for
for t ∈ 1..T do
L← NLL(p,BATCH(Q))
θt ← UPDATE(θt−1, ∂L

∂θt−1
)

end for
θ0 ← UPDATE(θ0, θT − θ0)

end while

In Algorithms 1 to 3, NLL stands for the nega-
tive log-likelihood function, BATCH for a function
that samples a batch. T is the training set, K the
number of shots, N the number of ways, S the
support set and Q the query set, T is the number
of steps in Reptile. In addition, UPDATE can be
any optimizer, such that SGD or Adam (Kingma
and Ba, 2015). In our experiments, we use Adam
in Algorithm 1, and in the inner loop of Algo-
rithm 3. For the outer loop of Algorithm 3, we use
the classical SGD update rule without any momen-
tum. Note that, each loop has its own learning rate.
In addition, we used different learning rates for the
BERT encoder and the rest of the network.

3.4 Generating Tasks for Training or Testing

To generate training and testing data from classical
NER datasets, we first randomly partition entity
types and utterances to either the train, the valida-
tion or the test split. Utterances are assigned based
on the majority split of its entity types, counted
per word. In other words, for a given utterance
we count the number of words for entity types that
are in each split and utterances are assigned to the
partition that was the most represented in that utter-
ance. In case of tie, priority is given to the test split,
then the valid split and finally to the train split. Any
entity contained in an utterance that is not in the
corresponding partition is replaced with “other” to
ensure, e.g., no test entities are seen during train-
ing. Finally, utterances with no entities are dropped.
This task sampling procedure can both simulate a
realistic few-shot NER testing setting and generate
a large number of training tasks. During meta-
training, having a diverse enough distribution of
training tasks is crucial to learn an inductive bias ef-
fectively, similarly to having many examples helps
generalization.

4 Experiments

4.1 Datasets and Pre-Processing

Experiments were conducted on the SNIPS
(Coucke et al., 2018), Task Oriented Parsing (TOP
Gupta et al., 2018) and Google Schema-Guided
Dialogue State Tracking (DSTC8 Rastogi et al.,
2019) datasets. For evaluation, we sampled 50
tasks from the meta-test set to average the Micro
F1 across tasks. We use the Micro F1 metric in-
troduced in (Tjong Kim Sang, 2002) that does not
give any credit to partial matches. For SNIPS, we
combine B and I labels from the BIO (Ramshaw
and Marcus, 1995) encoding into a single label.
For DSTC8, we used utterances from both the sys-
tem and user, we discarded utterances containing
more than 1 frame. For the TOP dataset, which
contains hierarchical labels for slot labels and in-
tents, we used the finest-grained entity types (the
leaf nodes) as labels and discarded intents. We did
not adhere to any pre-defined train, valid and test
partitions, but followed our own task-based pro-
cedure defined in Section 3.4. Additional details
about data preparation and datasets statistics are
given in the appendix.
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4.2 Hyper-Parameter Tuning

During meta-testing, only a few support examples
are available to fine-tune the task specific model
derived from the meta-model. As such, it is im-
practical to set aside some as a validation set for
early stopping. However, early stopping is really
important in the few-shot setting as the model can
easily overfit. Hence, we find the best number of
fine-tuning epochs on the validation split and then
use it during meta-testing. For the baseline, this is
the only purpose of meta-training.

For each algorithm (Baseline, ProtoNet, Rep-
tile, Proto-Reptile) and decoder (SoftMax or CRF),
we conducted an extensive hyper-parameter op-
timization (HPO) procedure using the built-in
Bayesian optimization of AWS SageMaker (Ama-
zon Web Services, 2017) on the SNIPS meta-
validation dataset. The search space, the best hyper-
parameters, the best performance and the training
times are given in the appendix. We used the same
hyper-parameters in all our experiments. However,
after HPO, we retrained all our models with a num-
ber of meta updates and updates manually tuned
per algorithm on each meta-validation dataset to
avoid (meta-)stopping too early. All results on the
meta-validation set and training times can be found
in the appendix.

4.3 Results

We conducted four types of experiments. First, we
compared all approaches on the three datasets using
N = 4 and K = 10 in Table 1. Fine-tuning pro-
duces the largest gains, especially on SNIPS and
TOP (less on DSTC8). Indeed, starting with the
baseline, fine-tuning a pre-trained BERT model
with aggressive dropout (0.9) is quite effective.
Chen et al. (2019); Tian et al. (2020) also observed
that transfer learning baselines are often competi-
tive and neglected in FSL works. We also evaluated
Prototypical Networks without fine-tuning at meta-
test time using the supports. We refer to those
algorithms by ProtoNet* and Proto-Reptile*. Com-
pared to previous work on image recognition (Chen
et al., 2019), fine-tuning the Prototypical Network
seems to be extremely beneficial for textual appli-
cation that builds on top of pre-trained language
models instead of solely building the prototypes.
Hence, combining optimization-based and metric-
based meta-learning sounds a natural idea.

Comparing ProtoNet and Reptile, we can see
that the Prototypical Network architecture helps

generalization in the low data regime thanks to
being instance-based. In addition, gains are even
larger when combined with a CRF, with or with-
out fine-tuning, in particular on DSTC8. Indeed,
the CRF can only be slightly beneficial compared
to using a simple SoftMax decoder for the Base-
line and for Reptile. On the other hand, using our
Prototypical CRF achieves a significant jump in
Micro F1, especially on DSTC8, demonstrating
that the transition network can generalize to new
classes unseen at meta-training. We believe that,
Reptile’s meta-learning approach is inefficient be-
cause the initialization weights of the transition
matrix do not have enough capacity to encode an
inductive bias. Maybe other optimization-based
meta-learning methods relying on external neural
networks with larger capacity, e.g. a network that
predicts the update direction as proposed by Li et al.
(2017), could be more efficient than relying solely
on the initialization weights to learn the inductive
bias.

Comparing Reptile to Baseline and Proto-
Reptile to ProtoNet, we see that optimization-
based meta-learning can help significantly with
fine-tuning. Although the gap is less impressive
between Proto-Reptile to ProtoNet, Proto-Reptile
obtains the best result in most cases. Comparing
results between datasets, DSTC8 high diversity
seems to be a real game changer for meta-learning.
Indeed, all meta-learning approaches achieve twice
or more the Baseline Micro F1. We argue that, the
richer the task distribution, the better the learned
inductive bias.

In our second experiment, we evaluated cross-
domain transfer learning of the inductive bias by
meta-training on TOP or DTSC8 and meta-testing
on SNIPS. Note that early stopping was calibrated
on the source meta-validation set, which gives
an unfair advantage to the baseline to avoid over-
fitting. On inductive bias transfer, Proto and Proto-
Reptile outperform the baseline by a small but sta-
tistically significant margin. As already observed,
DTCS8 diversity is better to learn an inductive bias
that can transfer across domain. Showing that task
diversity is key to meta-learning.

In the third experiment, we varied N and K on
the DSTC8 dataset to observe the performance gap
between Proto-Reptile and the baseline. Results
are plotted in the first row of Figure 1. As expected,
Micro F1 increases when there are fewer entity
types to discriminate (smallerN ) or more examples
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Meta-train dataset SNIPS TOP DSTC8 TOP DSTC8
Meta-test dataset SNIPS SNIPS SNIPS TOP DSTC8

CRF 76.84± 3.75 N/A N/A 51.09± 5.06 34.57± 4.70
Baseline

SoftMax 73.68± 3.41 N/A N/A 48.18± 4.78 35.18± 3.27
CRF 89.67± 0.63 78.78± 1.14 82.88± 0.99 64.99± 3.51 75.69± 2.53

ProtoNet
SoftMax 87.11± 1.26 78.49± 1.37 80.37± 1.51 62.08± 3.58 66.39± 2.73
CRF 58.56± 1.78 44.75± 1.92 52.97± 2.04 29.53± 4.40 71.49± 3.81

ProtoNet*
SoftMax 54.52± 1.82 43.23± 2.08 45.77± 1.26 28.34± 3.74 60.07± 2.62
CRF 80.08± 3.58 74.85± 3.47 75.06± 3.32 57.18± 6.02 70.50± 2.60

Reptile
SoftMax 80.00± 3.51 75.82± 3.48 75.14± 3.45 57.64± 5.96 71.06± 2.77

Proto- CRF 89.20± 0.89 80.50± 1.24 82.96± 1.19 67.34± 3.87 78.96± 1.60
Reptile SoftMax 88.09± 0.90 77.53± 1.30 79.83± 1.74 64.06± 3.75 62.56± 2.14
Proto- CRF 49.98± 2.02 48.09± 1.85 51.63± 1.37 33.78± 3.41 75.22± 2.44
Reptile* SoftMax 58.41± 1.63 44.14± 1.88 37.93± 1.23 24.63± 3.68 58.09± 2.55

Table 1: Micro F1 averaged over 50 tasks. Results are reported with a Gaussian 95% confidence interval. Asterisks
indicate that prototypes were not finetuned. The best result per column is in bold.
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Figure 1: Micro F1 averaged over 50 tasks on N -way-K-shot DTSC8 for different value of (K,N). Error bars
represent Gaussian 95% confidence intervals. In the first row of plots, (K,N) match between training and testing.
In the second row, models trained on different N -way-K-shot settings are tested on 4-way-10-shot.

for each entity type (larger K). Indeed, either the
problem becomes easier — fewer entity types to
discriminate — or we get more data per entity type.
Nevertheless, the Micro F1 increases faster with
K for the baseline. We expect that, in the high
data regime (very large K), the baseline would
catch up to our approach. However, comparing
those approaches in the high data regime would not
be very relevant and the meta-learning would not
scale.

Finally, we looked at meta-training on N -way-
K-shot datasets but meta-testing on the 4-way-10-
shot dataset in the second row of Figure 1. Train-
ing with more shots or more ways does not seem
to improve or decrease performances significantly

for Proto-Reptile. This demonstrate our approach
is robust to variations in the meta-testing scheme,
compared to what is usually observed in the few-
shot literature. This is probably because we sample
imbalanced support sets. All results in Figure 1 are
reported numerically in the appendix.

5 Conclusions

In this paper, we have proposed a new definition
of few-shot learning for NER, not relying a coarse-
grain approach, like in (Fritzler et al., 2019), based
on the intent to generate tasks. We have shown
that, combining fine-tuning language models, CRF,
diverse task generation, optimization-based and
metric-based meta-learning, can significantly and
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consistently outperform transfer learning on three
datasets. Also, our combination of Prototypical
Network and Reptile is quite robust to mismatches
in the number of shots or ways between meta-
training and meta-testing. Thus, our approaches
are effective to bootstrap NLU systems.

For future works, one specificity of few-shot
NER has not been properly addressed yet. Al-
though different in every tasks, the definition of
the background class (“other”) is partially shared
between tasks. This assumption could be better
leveraged in our approaches to transfer some of
that knowledge across tasks instead of treating the
background class as a different entity type in ev-
ery tasks. Another interesting direction to explore
is few-shot integration, when we have to build a
model that performs well on tasks made of entity
types seen and unseen during meta-training.
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6 Appendix

6.1 Dataset preparation and statistics
This Section details how data was prepared. First,
utterances without any named entities and the ones
that are longer than 40 sub-word units (given by the
BERT tokenizer) were removed. For each dataset,
less than 1% of utterances were longer than 40 sub-
words. Removing long utterances allowed us to
increase the computation efficiency significantly
without impacting the results too much. datasets
statistics are given in Table 2. For SNIPS, we used
the data preprocessed in https://github.com/

MiuLab/SlotGated-SLU/.

6.2 Hyper-parameters Tuning
This section describes the search space for hyper-
parameters of each algorithm. The dropout param-
eter is the dropout of the additional layers on trop
of BERT. In all settings, we used 0.1 for the BERT
dropout and 64 for the batch size. During vali-
dation, we fine-tuned the current meta-model for
10 epochs, each epoch consisting of 64 batches,
for each tasks. Validation Micro F1 was averaged
over 5 sampled tasks with 128 queries each, using
the same tasks in-between epochs to reduce the
randomness. In the outer loop, we used early stop-
ping with a patience of 4 and a maximum of 12
meta-epochs. At every meta-epoch, we reported
the best epoch during the validation fine-tuning, to
be used for meta-testing. The number of task per
meta-epoch varies per algorithm and so is given
in Tables 3 to 6 along with all the other parame-
ters optimized. Bayesian optimization ran with 4

workers in parallel and a total of 30 training jobs,
optimizing for the validation Micro F1. For Reptile-
based algorithm, the number of steps stands for the
number of steps used to compute the first order ap-
proximation (T in algorithms 2 and 3 of the main
paper). Note that, Reptile was quite sensitive to
hyper-parameter tuning and less stable than other
approaches.

Training times are reported in Table 8. We used
p2.xlarge AWS instances to train our models. Most
of the training time actually is spent in validation
that requires fine-tuning the meta-model.

In Figure 2, we reported how the performance
of the best model increased overtime during hyper-
parameters tuning. Because, we used Bayesian
optimization instead of random search, it would
have been very computationally intensive to com-
pute the expected validation performance as sug-
gested by (Dodge et al., 2019). Indeed, because
random search produces i.i.d. trials, they can build
an estimator of the validation performance and its
variance at no cost. In our case, trials are depen-
dant from the previous ones. We believe, Figure 2
provides a decent estimation of the budget needed
for hyper-parameters tuning and how it affects the
performance.

The best hyper-parameters per algorithm and
per decoder is reported in Table 7 and the best
validation Micro F1 is reported in Table 8.

6.3 Number of parameters
All our models used almost the same number of pa-
rameters. The differences introduced by the CRFs
are negligible compared to BERT (110 millions
parameters). Putting aside BERT, without Proto-
typical Networks, the linear layer on top of BERT
adds 768×4×N parameters and the CRF transition
matrix adds N ×N parameters. With Prototypical
Networks, the linear layer on top of BERT adds
768 × 4 × 64 parameters and the CRF transition
network adds 64× 64 parameters.

6.4 Results on the meta-validation set
Table 9 list the validation Micro F1, the training
time, the best number of meta-epochs and the best
number of epochs that is reused to stop the training
during meta-testing. Note that most of the training
time of meta-training is spend during validation.
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SNIPS TOP DSTC8

Train Valid Test Train Valid Test Train Valid Test

Utterances 9166 3832 1486 12868 13316 11547 107763 26562 26851
Entity types 27 5 7 20 6 8 84 18 20

Table 2: Datasets statistics.

Hyper-parameter Range/Values Scaling

Learning rate [5× 10−5, 0.001] Logarithmic
BERT learning rate [1× 10−5, 2× 10−4] Logarithmic
Dropout [0.1, 0.9] Linear

Table 3: Hyper-parameter search space for the baseline.

Hyper-parameter Range/Values Scaling

# tasks 2048 Static
Learning rate [5× 10−5, 0.001] Logarithmic
BERT learning rate [1× 10−5, 2× 10−4] Logarithmic
Meta learning rate [5× 10−5, 0.001] Logarithmic
Meta BERT learning rate [1× 10−5, 2× 10−4] Logarithmic
Dropout [0.1, 0.9] Linear

Table 4: Hyper-parameter search space for ProtoNet.

Hyper-parameter Range/Values Scaling

# task 1024 Static
Learning rate [5× 10−5, 0.001] Logarithmic
BERT learning rate [1× 10−5, 2× 10−4] Logarithmic
Meta learning rate [0.1, 1] Linear
Meta BERT learning rate [0.1, 1] Linear
Dropout [0.1, 0.9] Linear
# steps [1..10] Discrete

Table 5: Hyper-parameter search space for the Reptile.

Hyper-parameter Range/Values Scaling

# task 512 Static
Learning rate [5× 10−5, 0.001] Logarithmic
BERT learning rate [1× 10−5, 2× 10−4] Logarithmic
Meta learning rate [0.1, 1] Linear
Meta BERT learning rate [0.1, 1] Linear
Dropout [0.1, 0.9] Linear
# steps [1..10] Discrete

Table 6: Hyper-parameter search space for Proto-Reptile.
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Algorithm Decoder # steps Meta LR Meta BERT LR LR BERT LR Dropout

Baseline SoftMax N/A N/A N/A 4.35× 10−4 8.94× 10−5 0.9
CRF N/A N/A N/A 1× 10−3 3.94× 10−5 0.897

ProtoNet SoftMax N/A 8.2× 10−4 6.88× 10−5 9.53× 10−4 1.99× 10−5 0.393
CRF N/A 9.73× 10−4 6.21× 10−5 3.54× 10−4 2.24× 10−5 0.558

Reptile SoftMax 10 0.909 0.126 3.32× 10−4 7.91× 10−5 0.104
CRF 10 0.107 0.188 7.97× 10−4 4.45× 10−5 0.71

Proto-Reptile SoftMax 2 0.641 0.580 4× 10−4 1.05× 10−5 0.496
CRF 10 0.847 0.329 6.92× 10−4 1.15× 10−5 0.446

Table 7: Best hyper-parameters found using Bayesian optimization.

Algorithm Decoder Micro F1 Best # meta-epochs Best # epochs Training time

Baseline
SoftMax 61.04± 5.23 N/A 10 01:33:44
CRF 59.49± 3.12 N/A 9 01:43:42

ProtoNet
SoftMax 70.48± 3.83 5 10 11:19:57
CRF 73.65± 2.92 8 5 14:53:58

Reptile
SoftMax 71.88± 2.19 8 3 13:57:09
CRF 70.64± 2.30 4 2 16:56:16

Proto-Reptile
SoftMax 70.89± 2.98 10 5 10:57:57
CRF 76.18± 4.22 6 8 24:18:03

Table 8: Best validation run found using Bayesian optimization. Micro F1 is averaged over 5 tasks. Results are
reported with Gaussian 95% confidence interval. However, note that the same 5 validations tasks are used for every
algorithms and models, which introduces a beneficial dependency.
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Figure 2: Averaged Micro F1 over the same 5 tasks randomly drawn from the SNIPS validation split during
Bayesian optimization of the hyper-parameters. Each dot represents one meta-training. The lines indicate the best
model performance overtime.
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Dataset Algorithm Decoder Micro F1 # Tasks # Meta Epochs # Epochs Time

SNIPS

ProtoNet
CRF 63.60± 5.43 5 9 2 50:31:06
SoftMax 60.61± 5.04 5 11 3 54:30:54

Reptile
CRF 60.02± 5.30 5 20 12 11:55:21
SoftMax 58.18± 4.54 5 20 13 11:14:58

Proto-Reptile
CRF 67.13± 4.01 5 4 13 55:05:08
SoftMax 62.05± 3.38 5 7 13 33:50:06

Baseline
CRF 48.82± 4.37 8 N/A 14 5:16:26
SoftMax 45.01± 4.75 8 N/A 11 4:47:26

TOP

ProtoNet
CRF 71.16± 5.77 5 8 1 72:04:31
SoftMax 67.68± 5.05 5 4 4 65:59:54

Reptile
CRF 59.16± 6.38 5 10 10 8:51:06
SoftMax 60.87± 5.55 5 5 4 5:44:05

Proto-Reptile
CRF 72.29± 4.37 5 2 14 72:06:05
SoftMax 69.90± 4.55 5 12 12 72:06:16

Baseline
CRF 59.16± 4.26 8 N/A 14 10:38:27
SoftMax 55.85± 4.61 8 N/A 5 9:31:50

DSTC8

ProtoNet
CRF 82.29± 4.13 5 17 15 72:08:26
SoftMax 73.56± 6.46 5 5 8 35:56:08

Reptile
CRF 75.03± 5.62 5 18 2 16:36:53
SoftMax 75.01± 3.35 5 22 5 17:30:08

Proto-Reptile
CRF 83.83± 4.13 5 6 10 72:07:55
SoftMax 75.87± 4.80 5 12 10 33:42:35

Baseline
CRF 47.08± 7.02 8 N/A 14 10:42:08
SoftMax 42.17± 8.23 8 N/A 1 10:00:21

Table 9: Validation Micro F1 with Gaussian 95% confidence interval and training times.
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Abstract

Speech separation is a problem in the field
of speech processing that has been studied
in full swing recently. However, there has
not been much work studying a multi-accent
speech separation scenario. Unseen speakers
with new accents and noise aroused the do-
main mismatch problem which cannot be eas-
ily solved by conventional joint training meth-
ods. Thus, we applied MAML and FOMAML
to tackle this problem and obtained higher av-
erage Si-SNRi values than joint training on al-
most all the unseen accents. This proved that
these two methods do have the ability to gen-
erate well-trained parameters for adapting to
speech mixtures of new speakers and accents.
Furthermore, we found out that FOMAML ob-
tains similar performance compared to MAML
while saving a lot of time.

1 Introduction

Speech separation has been a well-known task to
solve in the speech processing field. Many model
architectures mentioned in Section 2 have been pro-
posed and achieved high performance. This sug-
gests that deep learning based methods are suitable
for the speech separation task.

Despite having promising results, the generaliz-
ability of these models is still questionable. The
performance of switching to different datasets or
environments is not guaranteed. A straightforward
solution is to exhaustively collect data under all
kinds of environment settings and train a model
with these data jointly. Although this may sound
reasonable, it is difficult to always consider ev-
ery situation during training. To make sure that
models can be quickly adapted to mixtures spoken
by new speakers with not many samples, meta-
learning comes to the rescue. Meta-learning has

∗?The two first authors made equal contributions.

been widely applied on different speech tasks, espe-
cially on speech recognition mentioned in Section
2. Nonetheless, there is not much work that ap-
plied meta-learning on the speech separation task.
In our previous work, (Wu et al., 2020), we first
proposed to solve the speech separation problem
with meta-learning. Their setting is viewing utter-
ance mixtures of two different speakers as a meta
task. These speakers have the same accents. How-
ever, we hope that a speech separation model can
have the ability to adapt to mixtures with accents
never seen before. Thus, besides the setting of two
different speakers forming a meta task, we also
added a setting that meta tasks with speakers of
same accents form an accent task set. Section 4
and 5.1 describe more about the dataset and task
construction procedure.

Our contributions are listed below:

• To our best knowledge, we are the first to
conduct speech separation experiments on a
multi-accent dataset.

• We applied meta-learning to help improve the
multi-accent speech recognition task.

The remaining sections of this paper are orga-
nized as follows. In Section 2, we give a brief
overview of existing works related to speech sepa-
ration and meta-learning. In Section 3, we elabo-
rate the problem formulation of speech separation
in detail. In Section 4, we list out the two phases
of MAML, including the meta training phase and
meta testing phase. Additionally, we show how FO-
MAML is modified from MAML. The experimen-
tal setup, dataset, and model we used are presented
in Section 5. Finally, results and conclusions are
given in Section 6 and 7.
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Figure 1: Illustration of joint training and meta-learning for multi-accent speech separation. The oval area is the
accent task sets. Each accent task set contains multiple meta tasks. The solid lines are the pretraining process,
joint training on the left, and meta-learning on the right. The dashed lines represent the adaptation paths from
parameters θ to the unseen accents of unseen speakers. This figure is modified from Gu et al. (2018) and our
previous work Wu et al. (2020).

2 Related Work

Speech Separation End-to-end separation mod-
els have shown great success in separating speech
mixtures of the WSJ0-2mix dataset designed by
(Hershey et al., 2016) which is generated from the
WSJ0 corpus(Paul and Baker, 1992). (Luo and
Mesgarani, 2018) came up with a time-domain au-
dio separation network (TasNet) that takes wave-
forms as input to alleviate the separation model
from dealing with time-frequency representations.
They further proposed convolutional TasNet (Luo
and Mesgarani, 2019) which substitutes the LSTM
layers in TasNet with convolutional layers. This
overcame the problem of long temporal dependen-
cies of LSTM and reduced the model size. Before
long, they came up will the Dual-path RNN model,
which used intra- and inter-blocks to capture local
and global information dependencies within the
speech mixtures. (Nachmani et al., 2020) utilized
the idea of Dual-path RNN and added a speaker
identity loss to improve performance on separat-
ing mixtures with an unknown number of speak-
ers. (Tzinis et al., 2020) proposed to use a separa-
tor constructed with U-ConvBlocks which can not
only reduce the number of layers while still having
high performance but also require less computa-
tional resources and time. This helped the model to
more likely be used in real-time speech separation.
(Zeghidour and Grangier, 2020) integrated speaker
identity information into the separating process,

and obtained state-of-the-art performance.

Meta-learning Meta-learning has recently be-
come a trend when it comes to solving multi-
task problems. This training method has been
widely applied in the computer vision field, for
instance, (Vinyals et al., 2016; Rusu et al., 2018;
Sun et al., 2019). Meta-learning is also used
in the natural language processing field. (Gu
et al., 2018) used MAML (Finn et al., 2017) for
low-resource neural machine translation (NMT).
Moreover, in the speech processing domain, some
speech-related problems are solved with meta-
learning, too. (Winata et al., 2020) applied meta-
transfer learning on code-switched speech recog-
nition. (Xiao et al., 2020; Hsu et al., 2020) ap-
plied meta-learning to solve the multilingual low-
resource speech recognition problem. (Winata
et al., 2019) also used MAML to adapt models
to unseen accents on speech recognition. (Indurthi
et al., 2019) adopted meta-learning algorithms to
perform speech translation on speech-transcript
paired low-resource data. (Chen et al., 2021) came
up with some improvements of meta-learning to
help the speaker verification task.

3 Speech Separation

In this work, we perform single channel speech
separation. Given a mixture

x =

C∑

c=1

sc (1)
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where C is the number of speakers in mixture
x ∈ RT and sc ∈ RT are the ground truth
sources. For speech separation, the goal is to es-
timate C sources {ŝ1, · · · , ŝC} ∈ RT such that
the estimates sources are as similar as the ground
truth sources. The model we used in this work
is Conv-TasNet (Luo and Mesgarani, 2019). In
their work, the similarity of the estimated sources
and ground truth sources are measured by scale-
invariant signal-to-noise ratio (Si-SNR) shown in
Eq.(4):

sproj =
s · ŝ
‖s‖2 s (2)

error = ŝ− sproj (3)

Si-SNR = 10 log10
‖sproj‖2
‖error‖2 (4)

The Conv-TasNet model is a mask-based model
which consists of an encoder, separator, and de-
coder. The encoder encodes the mixture x to a
latent space as shown in Eq.(5).

xenc = enc(x) (5)

xenc ∈ RH×T ′ is the encoder output, where H
is the dimension of the latent space and T ′ is the
length of xenc. The separator then calculates C
masks mi ∈ RH×T ′ , i ∈ {1, · · · , C} based on
xenc shown in Eq.(6).

mi = sep(xenc) (6)

The masks are then multiplied with the encoder
output, forming separated features di shown in
Eq.(7),

di = xenc �mi (7)

where � is the element-wise multiplication. The
separated features di can be viewed as source rep-
resentations, and are further input to a decoder to
estimate separated sources shown in Eq.(8).

ŝi = dec(di) (8)

At this point, before measuring the estimated
sources with Si-SNR, there is a label permuta-
tion problem. An align between {ŝ1, · · · , ŝC}
and {s1, · · · , sC} needs to be decided. We used
the utterance-level permutation invariant train-
ing(uPIT) method described in (Kolbæk et al.,
2017) to solve this problem.

4 MAML

The procedure of MAML (Finn et al., 2017) is
stated as follows. Given a set of multi-accent tasks
T = {{T i1 }tq1i=1, · · · , {T iK}

tqK
i=1}, where K is the

number of accents. Tk = {T ik }
tqk
i=1 is the accent

task set containing tasks only with the kth accent
and tqk denotes the task quantity of the kth accent
task set. The set of tasks T is split into the source
task set Tsource and the target task set Ttarget. The
model denoted as f , will be trained on the source
task set Tsource in the hope of having the ability to
quickly adapt to the target task set Ttarget.

4.1 Meta Training Phase
During the meta training phase, the MAML algo-
rithm aims to find initialized parameters θ that can
further be quickly adapted to new tasks. Moreover,
these initialized parameters should be sensitive to
the difference between two different tasks, such
that adaptation of the initialized parameters can sig-
nificantly improve the performance on new tasks
sampled from the source task set Tsource. This is
achieved by the inner loop and outer loop optimiza-
tion. A batch of tasks τsource = {τ1, · · · , τb} is
sampled from T proportional to the task quantity
of every accent task set, e.g., for an accent task set
Tk, the larger tqk is, the more likely a task is to be
sampled from it. Each task in τsource is further split
into a support set τ sup and a query set τ qry. The
support set is used to adapt the model parameters
by performing a one-step gradient decent, which is
known as the inner loop shown in Eq.(9).

θ′j ← θ − α∇θLτsupj
(fθ) (9)

where α is the learning rate. The goal of the inner
loop is to minimize the loss of τ supj with respect to
fθ. More concisely,

θ′j = argmin
θ
Lτsupj

(fθ) (10)

At this point, the sum of the query loss of each
query set in τsource is calculated by

Lqry =
b∑

j=1

Lτqryj
(fθ′j ) (11)

The goal of the meta training phase is to minimize
the total loss of the query sets. This is also per-
formed by a one-step gradient decent, known as
the outer loop shown in Eq.(12).

θ ← θ − β∇θLqry (12)
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4.2 Meta Testing Phase

During the meta testing phase, we perform a pro-
cedure (see Eq.(13)) similar to the inner loop in
the meta training phase. This procedure adapts the
parameters θ obtained in the meta training phase to
the target tasks τtarget = {τ ′1, · · · , τ ′b}.

θj ← θ − β∇θLτ ′supj
(fθ) (13)

4.3 First-order MAML (FOMAML)

Eq.(14) is the calculation of the gradient in the
outer loop, where Lτqryj

is denoted as Lj for sim-
plicity.

∇θLqry = ∇θ
b∑

j=1

Lj(fθ′j ) =
b∑

j=1

∇θLj(fθ′j )

(14)
When performing the outer loop during the meta
training phase, high computational cost is needed
to calculate the second-order derivatives with back-
propagation. Eq.(15) is the first-order approxima-
tion of the second-order derivative,

∂Lj(fθ′j )
∂θd

=

D∑

i=1

∂Lj(fθ′j )
∂θ′ij

∂θ′ij
∂θd
≈
∂Lj(fθ′j )
∂θ′dj

(15)
where θ is a D dimensional parameter, θd is the d-
th dimension of θ and θ′ij is the i-th dimension
of θ′j . The difference between FOMAML and
MAML is that this approximation is used instead
of the second-order derivatives. Thus, compared to
MAML, FOMAML can save a lot of computational
time, resulting in a faster gradient calculation.

5 Experiments

5.1 Dataset

The multi-accent speech utterances are collected
from the speech accent archive (Weinberger, 2014).
This archive currently has more than 200 kinds of
accents and 2939 samples. Each native or non-
native speaker speaks the same English paragraph.
We selected 123 accents that contain more than one
speaker since we need utterances of two different
speakers to generate mixtures. We split these ac-
cents into three sets, 85 accents for generating the
training tasks and 19 accents each for generating
the developing and testing tasks. The utterance of
each speaker is split into segments with a duration
of 4 seconds. For each accent, we construct meta
tasks by following the task construction method

Figure 2: Illustration of a meta task. For two different
speakers with the same accent, we sample 3 utterance
segments to form a meta task. Thus, there will be 9
mixtures. However, during training, we only sample
one mixture to form the support set since our setting
is one shot learning. The other 4 mixtures that do not
contain the utterance segments in the support set are
selected to form the query set.

described in (Wu et al., 2020). We select at most
12 speakers for each accent and generate speech
mixtures for each pair of speakers with the same
accents. Thus, there will be at most

(
12
2

)
= 66

meta tasks and at least
(
2
2

)
= 1 meta task for each

accent. In each meta task, 3 utterance segments
are selected from each speaker and mixed with an
SNR level randomly selected between 0 to 5 dB
and resampled at an 8kHz sample rate. This results
in 3 × 3 = 9 speech mixtures in one meta task.
Fig.(2) is an illustration describing the support set
and query set of a meta task. Finally, for the train-
ing, developing, and testing set, 22.4, 3.8, and 3.9
hours of speech mixtures are generated.

5.2 Model

The model we used is Conv-TasNet (Luo and Mes-
garani, 2019). It consists of an encoder, separator,
and a decoder. The encoder is a 1-dim convolu-
tion, which transforms the input mixture into a
representation. The separator then calculates two
masks based on the encoder output. More specifi-
cally, it consists of R stacks of temporal convolu-
tional networks (TCN). Each TCN layer consists of
M 1-dim exponentially increasing dilated convolu-
tional blocks. TheseM blocks each have a residual
connection and a skip connection. The residual
connection is the input of the next block and the
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skip connection of all blocks are summed together,
passing a parametric relu, linear projection, and a
sigmoid function to produce two masks. The two
masks are multiplied with the representation output
from the encoder respectively and further input into
the decoder to generate two separate waveforms
of the two speakers. The decoder is also a 1-dim
convolution. The configuration that we used is the
one that obtained the best performance reported in
(Luo and Mesgarani, 2019).
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Figure 3: For fine-tuning after joint training, we eval-
uated the performance by adjusting the learning rate β
in the range of 10−5 to 10−1.

5.3 Joint Training and Transfer Learning
There are many other works such as (Chen et al.,
2020; Tong et al., 2017), that try to solve the do-
main mismatch problem, where the source domain
and target domain datasets do not have a simi-
lar distribution. Joint training refers to pretrain-
ing a model with different source domain data to-
gether. Transfer learning refers to adapting the
pretrained model to some partial target domain
data and testing the fine-tuned model on the tar-
get domain data. The most common adaptation
method is fine-tuning. Moreover, the domain mis-
match scenario has a low-resource problem if the
target domain has only fewer data compared to the
scale of the source domain data. There are also sev-
eral works that tried to solve this problem, such as
(Chen and Mak, 2015; Zoph et al., 2016; Hsu et al.,
2020). Our jointly trained model is also based on
this low-resource scenario.

5.4 MAML and FOMAML
To deal with the domain mismatch and low-
resource problem, we applied MAML as our train-
ing method in the hope of performing better than

joint training. We set the number of the support
set in each task as 1, meaning that the model needs
to have the ability to adapt to a new task by only
seeing one speech mixture of two new different
speakers with a new accent never seen before. We
also trained our model with FOMAML in order
to know whether calculating gradients with first-
order approximation still obtains relatively good
performance compared to training with MAML.

5.5 Experiment Settings

For both the joint training and MAML methods,
we trained the model from randomly initialized pa-
rameters for 100 epochs with the Adam optimizer
of 0.001 learning rate and 0.00001 weight decay.
For the MAML methods, during the meta training
phase, we set α = 0.01. For joint training, we also
fine-tuned the model parameters with the method
in Eq.(13). We tested the fine-tuning learning rate
β on the testing set, reported it in section 6, and
used the learning rates that obtained the best perfor-
mance for joint training as our baseline. However,
for the models trained with MAML methods, the
fine-tuning learning rate β is fixed at 0.01 since
other values lead to significant performance degra-
dation.

6 Results

6.1 Joint Training

For joint training, we tested the fine-tuning learn-
ing rate β on the testing set as shown in Fig.(3),
and found out that β = 5e−4 obtained the best per-
formance on the clean testing set, while β = 1e−3
obtained the best performance on the testing set
with noise. We use these two experiment settings
as our baseline.

6.2 MAML and FOMAML

Comparing models (d), (f) with model (b), we can
see that MAML and FOMAML perform better than
the joint training baseline. This suggests that the
initial model parameters obtained by MAML and
FOMAML have the better potential to be adapted
to new unseen tasks. Besides, the standard devi-
ation of the testing accent task sets of models (d)
and (f) are both less than model (b). This implies
that the performance of the models trained with
MAML and FOMAML have small dispersion with
respect to the mean Si-SNRi value of all the ac-
cents compared to the model jointly trained. From
Fig.(4), we can see that model (b) performs better
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method fine-tune test w/o noise test w/ noise
(a) before 8.40 ± 2.25 6.67 ± 2.10
(b)

Joint Training
after 8.52 ± 2.20 6.89 ± 1.84

(c) before 8.45 ± 3.19 6.66 ± 2.59
(d)

FOMAML
after 10.13 ± 2.12 8.19 ± 1.62

(e) before -6.19 ± 1.38 -6.85 ± 1.31
(f)

MAML
after 10.11 ± 1.86 8.26 ± 1.52

Table 1: Evaluation results of joint training and MAML methods on the testing accent task sets with and without
noise. The two numbers in a cell denote the average Si-SNRi of all the testing tasks and the standard deviation of
all the testing accent task sets.
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Figure 4: Evaluation results of each testing accent task set for model (b) and (d) in table 1.

on all accents when there is no noise involved and
performs better on most of the accents when there
is noise in the mixtures.

By comparing models (d) and (f), we found out
that these two training methods have similar per-
formance. Model (d) has a slightly higher perfor-
mance than model (f) under the circumstances that
the mixtures are clean in the testing tasks, while
model (d) has a slightly lower performance than
model (f) under the circumstances that there is
noise in the testing tasks. However, MAML re-
quires more than 10 times the training time com-
pared to FOMAML, indicating that the first-order
approximation takes advantage over calculating the
second-order derivatives by saving a lot of time
while still obtaining similar performance. More-
over, FOMAML without fine-tuning (model (c))
has similar performance compared to the baseline
model, and yet somehow, initialized parameters
obtained by MAML (model (e)) do not have the
ability to perform speech separation.

7 Conclusion

Our results show that MAML and FOMAML train-
ing methods are effective on multi-accent speech
separation. More specifically, it is confirmed that
these two methods are better than joint training
when adapting to new speakers with new accents
and even noisy environments. Besides, FOMAML
is shown to be sufficient for dealing with the multi-
accent speech separation task and can reduce a
large amount of training time. Despite the fact that
FOMAML outperforms joint training on the testing
set, we can still see that the performance of each
accent task set varies a lot from Fig.(4). This is
probably due to the task-difficulty imbalance is-
sue described in (Xiao et al., 2020), perhaps some
speakers with special accents may be hard to sep-
arate. Thus, in the future, we will try to solve this
problem with meta sampling methods mentioned
in (Xiao et al., 2020).
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Abstract

Meta-learning aims to optimize the model’s
capability to generalize to new tasks and do-
mains. Lacking a data-efficient way to cre-
ate meta training tasks has prevented the ap-
plication of meta-learning to the real-world
few shot learning scenarios. Recent studies
have proposed unsupervised approaches to cre-
ate meta-training tasks from unlabeled data
for free, e.g., the SMLMT method (Bansal
et al., 2020a) constructs unsupervised multi-
class classification tasks from the unlabeled
text by randomly masking words in the sen-
tence and let the meta learner choose which
word to fill in the blank. This study proposes
a semi-supervised meta-learning approach that
incorporates both the representation power of
large pre-trained language models and the gen-
eralization capability of prototypical networks
enhanced by SMLMT. The semi-supervised
meta training approach avoids overfitting pro-
totypical networks on a small number of la-
beled training examples and quickly learns
cross-domain task-specific representation only
from a few supporting examples. By incor-
porating SMLMT with prototypical networks,
the meta learner generalizes better to unseen
domains and gains higher accuracy on out-of-
scope examples without the heavy lifting of
pre-training. We observe significant improve-
ment in few-shot generalization after training
only a few epochs on the intent classification
tasks evaluated in a multi-domain setting.

1 Introduction

Recent developments of large scale pre-trained
models, such as BERT (Devlin et al., 2019), GPT
(Brown et al., 2020) and XLNet (Yang et al., 2020),
have significantly advanced the natural language
processing (NLP) techniques. However, these mod-
els still rely on fine-tuning on a relatively large num-
ber of labeled samples (> 1000) to achieve high ac-
curacy even for tasks seen during training (Howard
and Ruder, 2018). Recent studies (Brown et al.,

2020; Bansal et al., 2019; Dou et al., 2019) have
demonstrated that these large language models
have the potential to be few shot learners, i.e., ca-
pable of adapting to a new task or a new domain
by training only on a few examples with the aid
of meta-learning. Meta-learning tackles the few-
shot learning problem through learning a robust yet
flexible representation from a variety of tasks in a
so-called meta training stage, so that the model can
quickly adapt to new tasks with only a few exam-
ples. In addition, random sampling is introduced
in the design of meta training tasks to avoid memo-
rization, a phenomenon in which the meta learner
memorizes a function that directly associates an in-
put with the label when no real learning occurs (Yin
et al., 2019).

Meta-learning approaches such as the
optimization-based MAML (Finn et al., 2017), the
metric-based Prototypical Networks (ProtoNet)
(Snell et al., 2017) and etc., have been successfully
applied in NLP domain (Yin, 2020). Dou et al.
(2019) successfully applied MAML and its
variants to low-resource text classification tasks
on the GLUE dataset (Wang et al., 2018). It
showed models trained with MAML, first-order
MAML and REPTILE (Nichol and Schulman,
2018) outperform strong baseline models such as
BERT and MT-DNN (Liu et al., 2015). Bansal
et al. (2019) developed a method LEOPARD
that generalizes MAML to handle diverse NLP
tasks. They used pre-trained BERT (Devlin
et al., 2019) as the underlying task-agnostic base
model, coupled with a task-dependent softmax
classification parameter generator. The meta
trained BERT learns better initial parameters,
which helped to reach high accuracy across 17
down steam NLP tasks with very few examples per
class.

However, successful implementations of meta-
learning depend on the availability of a diverse
set of tasks with plenty of labeled data during
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meta training. To create meta-learning tasks in
a data-efficient manner, a number of papers have
tried to explore the idea of unsupervised meta-
learning. These methods explore to learn repre-
sentations through automatically constructing tasks
from unlabeled dataset and utilize learned represen-
tation functions for specific task prediction. Hsu
et al. (2018) proposed to leverage clustering em-
beddings to construct tasks from unlabeled data
and then apply meta-learning method for explicitly
optimizing for adapting to new tasks. Khodadadeh
et al. (2020) proposed to sample objects with syn-
thetic labels from the latent space and generate
meta-tasks using generative models. In the do-
main of natural language processing, Bansal et al.
(2020b) proposed Subset Masked Language Mod-
eling Tasks (SMLMT), which automatically con-
struct self-supervised tasks by masking out certain
tokens from sentences as labels to create few shots
classification tasks from unlabeled data. The study
showed that meta training with these diverse unsu-
pervised tasks can prevent over-fitting to specific
supervision tasks, leading to better generalization
than pre-training language-model followed by fine-
tuning.

In this study, we focus on cross-domain few shot
classification with the goal to investigate whether
we can meta train a large pre-trained language
model (e.g., BERT) in a semi-supervised fashion
without access to a large number of labeled data
or meta training tasks. The resulting representa-
tion should generalize and adapt well to a new
domain, and provide clear separations between in-
domain and out-of-scope (OOS) examples (Zhang
et al., 2020). Our base meta learner consists of
an embedding function (e.g., BERT) and ProtoNet
(Snell et al., 2017) as the general supervised clas-
sifier, which can be fine-tuned either using the su-
pervised N -way K-shot classification tasks (su-
pervised meta training) or together with the self-
supervised SMLMT tasks (semi-supervised meta
training). We compares classifiers with supervised
meta-training against classifiers trained without the
diverse meta training tasks. We then compare the
semi-supervised meta-learner with the supervised
approach without adding additional labeled data.
The resulting text representations will be evaluated
in terms of their few-shot generalization accuracy,
their capability to detect OOS examples, and their
ability to adapt when more training examples are
included.

While Bansal et al. (2020b) focuses on the cross-
problem transfer capability of SMLMT trained
with a general-purpose corpus like Wikipedia, our
study further investigates the cross-domain trans-
fer capability of SMLMT within a problem, i.e.,
whether additional self-supervised training on the
unlabeled data from the domain of interest (e.g.,
dialogues) can help generalize a seen problem to a
new unseen domain. Moreover, SMLMT as a clas-
sification task combines well with metric-based
meta learners like ProtoNet (Snell et al., 2017).
Compared to optimization-based meta learners like
MAML (Finn et al., 2017), ProtoNet is easier to
optimize and scale, has a simpler inductive bias
therefore works well for very-few-shot classifica-
tion problems. These properties are complementary
to MAML and can provide good initialization for
the latter (Triantafillou et al., 2019).

2 Methods

2.1 Model architecture of ProtoNet with
BERT

Prototypical networks (ProtoNet) (Snell et al.,
2017) is a metric-based meta-learning approach
for the problem of few-shot classification, where
an encoder model learns to project samples to an
embedding space. In stead of training on batches of
training data, meta learners are trained on episodes
that contain support set Dtr for training and query
set Dts for evaluation. The support set will be pro-
jected to the embedding space to formulate class
prototypes cn, and then classification of the query
example is done by computing the softmax of the
negative distances between the embedded query
and each class prototype.

yts = g(Dtr, xts) = softmax(−d(fθ(xts), cn))
(1)

Compared to optimization-based MAML, Pro-
toNet is more memory efficient and easy to opti-
mize. Similar to Nearest Neighbor, ProtoNet is a
non-parametric method that can be integrated with
any embedding function fθ, where θ is the learn-
able meta parameters. This method reflects simpler
inductive bias and so far it is limited to classifica-
tion problems.

The design of the embedding function fθ can
vary depending on the NLP applications. For in-
tent classification, we find the best performance
can be achieved by integrating the metric-based
meta-learning approach ProtoNet with the popu-
lar pre-trained model (e.g., BERT (Devlin et al.,
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N=5, K=5 N=5, K=10

Dataset
Meta-Test
Accuracy

Meta-Test
Std

Meta-Test
Accuracy

Meta-Test
Std

1.unseen examples (banking) 0.935 0.044 0.940 0.042
2.unseen examples 0.914 0.056 0.948 0.040
3.unseen classes 0.883 0.060 0.917 0.049
4.unseen domains 0.870 0.066 0.908 0.055

Table 1: Meta test accuracy and standard deviations for ProtoNet on CLINC150 few shot intent classification
dataset.

2019), RoBERTa (Liu et al., 2019)). These large
pre-trained language models are quite effective for
learning task-agnostic features as well as the task-
specific representations with proper fine-tuning.
We take advantage of this transfer learning feature
of these pre-trained models and use it as the em-
bedding function fθ. Here the meta parameters θ
are the weights of the pre-trained model which will
be fine-tuned during meta training to learn a task-
agnostic representation that should also generalize
well to a new domain during meta testing.

2.2 Subset Masked Language Modeling
Tasks

With the hope of further improving classification
accuracy, we would like to leverage the unla-
beled data set through self-supervision during meta
training stage. The key for self-supervised meta-
learning is how to construct self-supervised tasks
and how it can be combined with the supervised
tasks. Following the Subset Masked Language
Modeling Tasks (SMLMT) approach (Bansal et al.,
2020a), we first construct a vocabulary from tokens
in all the sentences except those labeled sentences
used as hold-out test set and calculate their fre-
quency. To balance the number of tokens and the
number of sentences associated to each token, we
select tokens appeared from 30 times to 100 times
to be labels and then masked these tokens in asso-
ciated sentences as training samples for SMLMT,
with the token as labels. Since SMLMT is also a
classification task, the meta-learner introduced in
the last section can be used to solve both the self-
supervised and the supervised classification tasks,
yielding a new semi-supervised meta training ap-
proach to tackle the few shot intent classification
problem.

2.3 Out-of-Scope Evaluation
In addition to the standard few shot learning evalu-
ation where the model is only evaluated on samples
from in-scope class distribution, a more realistic
evaluation setting involves the Out-of-Scope (OOS)
class, in which samples come from a different dis-
tribution, e.g., random utterances not related to any
registered intent class in a dialogue.

We adopt the OOS evaluation strategy (Zhang
et al., 2020; Larson et al., 2019) which adds an
additional OOS class in the meta testing stage,
while the meta training stage remains to be the
same. A sample is assigned to the OOS class if
the probabilistic prediction for the best class is un-
der a specified threshold T with value between 0
and 1. The threshold values is chosen to maxi-
mize Jin oos (Equation 4), the sum of In-Domain-
Accuracy (Ain, Equation 2) and OOS-Recall (Roos,
Equation 3).

Ain = Cin/Nin (2)

where Cin is the number of correctly predicted in-
domain intent examples andNin is the total number
of in-domain intent examples.

Roos = Coos/Noos, Poos = Coos/(N
′
oos) (3)

where Coos is the number of correctly predicted
OOS intent examples, Noos is the number of OOS
intent examples and N ′

oos is the number of pre-
dicted OOS examples.

Jin oos = Ain +Roos (4)

We also report the OOS precision Poos and OOS
F1 score F1oos for an optimized threshold T .

3 Experiments, Results and Discussion

There have been a number of papers that have
explored the idea of unsupervised meta-learning,
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where tasks are constructed automatically from an
unlabeled dataset and a meta-learner is pre-trained
on these tasks without using any labeled dataset.
Can we extend these ideas to the case where we
have a small number of supervised meta-training
tasks rather than zero meta-training tasks, to con-
struct a semi-supervised meta-learner? We hope to
explore answers to the following questions through
experiments: (a) Whether meta training effectively
improve domain adaptation? and (b) Will the semi-
supervised approach outperform the supervised
meta-learning given the same number of labeled
data?

3.1 CLINC150 Few Shot Intent Classification
The CLINC150 (Larson et al., 2019) intent clas-
sification dataset consists of 150 different intent
classes across 10 different domains, i.e., Banking,
Credit Cards, Work and Travel. Each domain has
15 tasks, each comes with 150 labeled examples.
The data is split in the following ways to evalu-
ate meta-learning for different few shot learning
settings:

1. single domain unseen examples: Pick only
one domain Banking. The training data is sam-
pled from 15 classes from the banking domain,
where each class has 100 examples. The val-
idation and testing data is sampled from the
same class distributions with 20 and 30 exam-
ples per class respectively.

2. multi-domain unseen examples: Distribute
the 150 classes uniformly among training,
validation and testing splits, with a ratio of
100:20:30. The training data is sampled from
150 classes with 100 examples each class from
all domains. The validation and testing data
consist of 20 and 30 examples per class re-
spectively.

3. multi-domain unseen classes: In order to
test the model’s generalization capability to
unseen new classes, the 15 classes under each
domain are separated according to 10:2:3 ra-
tio, so that no tasks in testing set or valida-
tion set will appear in the training time. The
training data, validation set and testing set
is sampled from 100, 20, 30 classes among
10 different domains respectively, where each
class contains 150 examples.

4. multi-domain unseen domain: The problem
is made more difficult by creating a data splits

in which the training, validation and testing
data all come from different domains, which
will test whether the model will efficiently
adapt to domains unseen. The training data is
sampled from 75 classes among 5 different do-
mains (banking, kitchen, home, auto commute
and small talk), where each class contains 150
examples. The validation and testing data is
sampled from the 2 (utility, credit cards) and
3 (travel, work, meta) domains respectively,
where each domain has 15 classes and each
class has 150 examples.

We run ProtoNet with BERT on each few shot
setting and the results are shown in Table 1. The
few shot test accuracy decreases when examples in
meta testing time come from a class or a domain
that is unseen during meta training time. Increase k
or the number of support samples per task improves
the test accuracy. For k = 5 the best results are
achieved by training with learning rate 4e − 6, 6
ways for 300 episodes during meta training. Note
the learning rate is reduced by half for every 50
episodes.

3.2 Cross Domain Intent Classification with
Limited Labeled Data

A more challenging but realistic few shot learning
setting is that during meta training we don’t have
enough labeled data available per class, and labeled
data in the same domain is not available. Yet we
have large amount of unlabeled data from the same
domain. How will the result change if we reduce
the available labeled examples per class during
meta training from 150 to 50 or less for the unseen
domain set up?

Following the set up of unseen domains, the
problem is made more challenging by sampling
training tasks from only 25 classes among 5 differ-
ent domains (banking, kitchen, home, auto com-
mute and small talk), where each class only con-
tains 50 labeled examples. The validation and test-
ing data is sampled from the 2 (utility, credit cards)
and 3 (travel, work, meta) other domains respec-
tively, where each domain has 15 classes and each
class has 50 examples. The rest of the examples is
aggregated into a pool of unlabeled data for unsu-
pervised training. Details about the data splits is
shown in Table 2. To evaluate model performance
on OOS examples, we also randomly sample OOS
intents from the 1200 Out-of-Scope examples that
are not belonged to the 150-intent classes provided
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unlabeled train valid test
# domains 10 5 2 3
# classes 223 25 30 45
# examples 11900 1250 1500 2250

Table 2: The data splits for meta training, meta valida-
tion and meta testing

ProtoNet with meta training
# labeled data
per class

Meta Test
Acc

Meta Test
Std

20 0.832 0.077
50 0.851 0.068
100 0.846 0.073
150 0.864 0.073

Table 3: Meta test accuracy changes with the number
of available labeled data per class

by Larson et al. (2019) during meta testing time.
By varying the number of available labeled ex-

amples during meta training, we observe how meta
test accuracy and standard deviation changes in re-
spond to more labeled training data. As shown in
Table 3, increasing the number of labeled samples
per class from 20 to 150 improves the test accuracy
from 0.832 to 0.864 for 5-way 5-shot learning.

3.3 CLINC150 with ProtoNet + SMLMT

The next research question is whether we can lever-
age the unlabeled data to improve the meta test ac-
curacy. Here we create the unsupervised tasks fol-
lowing the SMLMT (Bansal et al., 2020b), where
additional meta training tasks are created by mask-
ing a randomly picked token (here we use [MASK]
from BERT’s vocabulary) and let the model clas-
sifies which token has been replaced. The token

ProtoNet
ProtoNet
with SMLMT

learning rate 4e-6 8e-6
N way
(meta training)

6 9

K shots
(smlmt task)

NA 15

# of episodes
per epoch

50 100

# of epoch 6 8
smlmt sample ratio NA 0.6

Table 4: Hyperparameters used for ProtoNet

is selected to appear at least 30 times in the ex-
amples, but no more than 100 times, which filters
out common words and leaves enough examples
for the model to learn the representations of im-
portant words that differentiate different intents.
The most important hyperparameters to tune are
learning rate, sampling ratio and number of ways
during training. Sampling ratio controls when to
train with the SMLMT tasks and when to train with
the supervised tasks. The best validation accuracy
is reached at learning rate 8e − 6, sampling ratio
0.7 and 9 ways during meta training. Here the train-
ing “ways” is typically selected to be larger than
the testing “ways” to gain good performance (Snell
et al., 2017). The details on the hyper parameters
chosen for this experiment can be found in Table 4.
After running for 800 episodes, the test accuracy is
shown in Table 5. Note the learning rate is reduced
by half for every 100 episodes.

As suggested by Table 5 supervised meta train-
ing on diverse tasks from different domains (5th

and 8th row) improves generalization to tasks in un-
seen domains. Figure 1 highlights the meta test ac-
curacy and meta test standard deviation of three dif-
ferent approaches for 5 shots and 10 shots scenarios
with BERT as the embedding function. ProtoNet
with meta training consistently outperforms the
baseline results from the nearest neighbor and Pro-
toNet (meta test only), in which no meta training
involved. Even though Nearest Neighbor with the
BERT encoder is a strong baseline, which achieves
80% for 5 shots and 85% for 10 shots, the ProtoNet
improves the baseline by 5 points through meta
training on different tasks in different domains.

The results also suggest that additional self-
supervised training through SMLMT further im-
prove few-shot generalization if we compare the
ProtoNet results to the ProtoNet + SMLMT results.
The blue bar in Figure 1 shows the ProtoNet re-
sults, which trained using only supervised task, and
the orange bar shows the semi-supervised ProtoNet
results using both labeled and unlabeled data. Semi-
supervised ProtoNet improves the ProtoNet results
further by an additional 5 points, which achieves
90.6% for K = 5 and 93.9% for K = 10. Note
that the the semi-supervised ProtoNet with 50 la-
beled data outperforms the supervised ProtoNet
with 150 labeled data (86.4% in Table 3). These
results (details see Table 5) show that meta train-
ing on diverse tasks, especially the SMLMT tasks
generated from unlabeled data yield better general-
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N=5, K=5 N=5, K=10

Approach
Meta-Test
Accuracy

Meta-Test
Std

Meta-Test
Accuracy

Meta-Test
Std

Nearest Neighbour + BERT 0.795 0.079 0.852 0.066
ProtoNet + BERT
(no meta training)

0.795 0.083 0.842 0.073

ProtoNet + BERT
(supervised meta training)

0.851 0.068 0.891 0.061

ProtoNet + BERT + SMLMT
(semi-supervised meta training)

0.906 0.066 0.939 0.047

ProtoNet + RoBERTa
(no meta training)

0.887 0.078 0.924 0.066

ProtoNet + RoBERTa
(supervised meta training)

0.975 0.037 0.981 0.033

ProtoNet + RoBERTa + SMLMT
(semi-supervised meta training)

0.980 0.038 0.986 0.025

Table 5: Meta test accuracy and standard deviations of applying different meta-learning approaches with K=5 and
K=10 respectively for CLINC150 dataset.

Approach Threshold OOS F1 OOS Recall OOS Precision In-domain Accuracy
ProtoNet + BERT
(no meta training)

0.4 0.471 0.772 0.339 0.723

ProtoNet + BERT 0.9 0.494 0.703 0.381 0.796
ProtoNet + BERT
+ SMLMT

0.9 0.601 0.787 0.487 0.856

ProtoNet + RoBERTa
(no meta training)

0.3 0.286 1.000 0.167 0.200

ProtoNet + RoBERTa 0.9 0.632 0.562 0.722 0.958
ProtoNet + RoBERTa
+ SMLMT

0.9 0.766 0.771 0.761 0.959

Table 6: Evaluation statistics on OOS examples with N=5, K=10 respectively for protoNet with BERT and
RoBERTa

Figure 1: Meta test accuracy of applying four different meta-learning approaches with K=5 and K=10 respectively.
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Figure 2: Meta test accuracy of ProtoNet increases with
K shots, while performance plateaus around K = 20

ization capability.
Varying number of supporting examples K used

per task during meta testing also has an effect on
the meta testing accuracy. As shown in Figure 2,
increase K from 5 to 15 improves test accuracy
of ProtoNet with SMLMT from 85% to 94.5%,
and ProtoNet from 85.0% to 91.3% while the per-
formance plateaued for K = 20 (details see Ta-
ble 7). Changing embedding function from BERT
to RoBERTa (7th, 8th, 9th rows in Table 5) signifi-
cantly improves the meta test accuracy, suggesting
that RoBERTa is a better pre-trained model for in-
tent classification.

3.4 Results on Out-of-Scope Examples

We also evaluate the performance of our meta learn-
ers on OOS examples by including an extra OOS
class during meta testing. Two embedding func-
tions, i.e., BERT and RoBERTa are evaluated in
three settings: no meta training, with supervised
meta training and with semi-supervised meta train-
ing (with SMLMT). The meta training procedure
remains the same as previous setup. During meta
testing, we first pick the threshold T (see sec-
tion 2.3) and then report the F1, precision, recall
for OOS and In-domain Accuracy with the selected
threshold. While OOS precision and recall usually
fluctuates a lot with thresholds, OOS F1 score is a
better indicator of OOS accuracy.

As shown in Table 6 meta training improves
OOS F1 score significantly and semi-supervised
meta training gives the best OOS F1 score, 0.601
with BERT and 0.766 with RoBERTa. RoBERTa
as embedding function performs better than BERT
after meta training, with a nearly 10-point improve-
ment for in-domain accuracy (0.959 vs 0.856) and
OOS F1 score (0.766 vs 0.601). RoBERTa with-
out fine tuning performs worse than BERT when
OOS examples are included, probably due to the

selecting criterion for the threshold. The inclusion
of OOS examples clearly reduce the in-domain
accuracy. For example, the in-domain accuracy
for ProtoNet + BERT + SMLMT changes from
0.939 without OOS examples (Table 5) to 0.856
with OOS examples (Table 6). However, the ac-
curacy gain compared to no meta training (0.723)
and supervised-only meta training (0.796) is quite
significant.

3.5 Visualization of Word Importance

To have a better understanding of why meta training
on semi-supervised tasks yield better generaliza-
tion capability, we analyze the token importance
by plotting the gradients of the prediction with re-
spect to the token embedding for each token as
shown in Figure 3. The token with larger gradi-
ent indicates it’s more important for the prediction
result. Meta training changes the distribution of
word importance. For example, for the sentence “I
want to schedule a pto request on march 1 - 2”. We
see that the meta learner shifts its attention from
“on march” before training, to the most important
word “schedule pto request” after training, which
helps it to effectively identify this sentence as a
pto request intent. The same observation is
true for the sentence “tell me where my flight is
scheduled to start boarding”, where the top 3 im-
portant tokens has changed from “me, where, is” to
“my, flight, is” after training, leading to the predic-
tion of intent “flight status”. Therefore, the better
generalization is powered by effective representa-
tion learning (a pre-trained BERT already yields
good representation for intent classification) and
also learning to attend to the right words.

4 Conclusion

We proposed a semi-supervised meta-learning ap-
proach for cross-domain few-shot intent classifica-
tion by incorporating the representation power of
pre-trained language model with the fast adapta-
tion capability of ProtoNet enhanced through self-
supervision. This methodology tackles the realistic
few shot learning setting where not enough meta
training tasks exist and meta learner trained only
on supervised tasks suffers from over-fitting on a
small number of labeled data. The experiments
have shown that meta learner generalizes better
to new domains and predicts more accurately on
out-of-scope examples if trained with additional
meta training tasks created through self-supervision
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Figure 3: The importance of tokens of each sentence before and after training.

from unlabeled data. Compared to pre-training lan-
guage models using self-supervision, the volume
of unlabeled data required for our semi-supervised
meta training is rather small and the optimization
is much easier. However, it effectively improve the
few-shot generalization and out-of-scope accuracy
by learning a better cross-domain representation
and learning to quickly attend to the right word in
new domains. While ProtoNet has its limitations
due to simpler inductive bias, the resulting presen-
tation can be used to initialize more sophisticated
meta learner and extend beyond the classification
problems. Future directions include exploring dif-
ferent ways to combine various types of meta learn-
ers, different designs of self-supervised tasks as
well as validating our algorithms on other datasets.

5 Acknowledgement

This work is inspired by our CS330 course project
at Stanford. We would like to thank Professor
Chelsea Finn for the discussion of research direc-
tions and her wonderful lectures on meta-learning.

References
Trapit Bansal, Rishikesh Jha, and Andrew McCal-

lum. 2019. Learning to few-shot learn across di-
verse natural language classification tasks. CoRR,
abs/1911.03863.

Trapit Bansal, Rishikesh Jha, Tsendsuren Munkhdalai,

and Andrew McCallum. 2020a. Self-Supervised
Meta-Learning for Few-Shot Natural Language
Classification Tasks. arXiv.

Trapit Bansal, Rishikesh Jha, Tsendsuren Munkhdalai,
and Andrew McCallum. 2020b. Self-Supervised
Meta-Learning for Few-Shot Natural Language
Classification Tasks. arXiv.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen,
Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam Mc-
Candlish, Alec Radford, Ilya Sutskever, and Dario
Amodei. 2020. Language models are few-shot learn-
ers.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing.

Zi-Yi Dou, Keyi Yu, and Antonios Anastasopoulos.
2019. Investigating meta-learning algorithms for
low-resource natural language understanding tasks.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 1192–
1197, Hong Kong, China. Association for Computa-
tional Linguistics.

74



ProtoNet with meta training ProtoNet with SMLMT

# labeled data
per class

N way K shot
Meta
Test
Acc

Meta
Test
Std

Meta
Test
Acc

Meta
Test
Std

50 5 5 0.850 0.072 0.906 0.066
50 5 10 0.894 0.056 0.939 0.047
50 5 15 0.900 0.055 0.946 0.044
50 5 20 0.913 0.052 0.945 0.045

Table 7: Meta test accuracy of ProtoNet increases with K shots, while performance plateaus around K = 20

Chelsea Finn, Pieter Abbeel, and Sergey Levine. 2017.
Model-agnostic meta-learning for fast adaptation of
deep networks.

Jeremy Howard and Sebastian Ruder. 2018. Universal
Language Model Fine-tuning for Text Classification.
arXiv.

Kyle Hsu, Sergey Levine, and Chelsea Finn. 2018.
Unsupervised learning via meta-learning. CoRR,
abs/1810.02334.

Siavash Khodadadeh, Sharare Zehtabian, Saeed Vahid-
ian, Weijia Wang, Bill Lin, and Ladislau Bölöni.
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Abstract

In this paper, we place ourselves in a classi-
fication scenario in which the target classes
and data type are not accessible during train-
ing. We use a meta-learning approach to de-
termine whether or not meta-trained informa-
tion from common social network data with
fine-grained emotion labels can achieve com-
petitive performance on messages labeled with
different emotion categories. We leverage few-
shot learning to match with the classification
scenario and consider metric learning based
meta-learning by setting up Prototypical Net-
works with a Transformer encoder, trained in
an episodic fashion. This approach proves
to be effective for capturing meta-information
from a source emotional tag set to predict pre-
viously unseen emotional tags. Even though
shifting the data type triggers an expected per-
formance drop, our meta-learning approach
achieves decent results when compared to the
fully supervised one.

1 Introduction

Training a model for a classification task without
having access to the target data nor the precise tag
set is becoming a common problem in Natural Lan-
guage Processing (NLP). This is especially true for
NLP tasks applied to company data, highly spe-
cialized, and which is most of the time raw data.
Annotating these data requires to set up a lengthy
and costly annotation process, and annotators must
have specific skills. It also raises some data pri-
vacy issues. Our study is conducted in this context.
It deals with private messages, that shall be anno-
tated with emotions as labels. This task is highly
difficult because of the subjective and ambiguous
nature of the emotions, and because of the nature
of the data. We tackle this problem in an emotion
classification task from short texts. We assume that
meta-learning can serve for emotion classification
in different text structures along with a different
tag set.

Predicting and classifying emotions in text is a
widely spread research topic, going from polarity-
based labels (Strapparava and Mihalcea, 2007;
Thelwall et al., 2012; Yadollahi et al., 2017) to
more complex representations of emotion (Alm
et al., 2005; Bollen et al., 2009; Yu et al., 2015;
Zhang et al., 2018a; Zhu et al., 2019; Zhong et al.,
2019; Park et al., 2019). In this paper, we place
ourselves in a situation where we have no access to
target data or models of target classes. Therefore,
we want to learn information from related data sets
to predict labels on our target data, even though la-
bel sets differ. Thus, we apply meta-learning using
a few-shot learning approach to predict emotions in
messages from daily conversations (Li et al., 2017)
based on meta-information inferred from social me-
dia informal texts, i.e. Reddit comments (Demszky
et al., 2020a).

With this setup, our goal is to investigate if com-
bining few-shot learning and meta-learning can
yield competitive performance on data of a dif-
ferent kind from those on which the model was
trained. Indeed, recent work already showed meta-
learning is useful when shifting to different topics
on a classification task with the Amazon data set
(Bao et al., 2020) or different entity relations on the
dedicated Few-Rel data set (Han et al., 2018; Gao
et al., 2019a). In this paper, we take another step
forward by leveraging meta-learning when shifting
not only emotional tag sets but also data sources, in-
volving different topics, lexicons and phrasal struc-
tures. For instance, the "surprise" emotion is set for
"Wow you found the answer, wish you were on top,
will link to you in my post" in GoEmotions (Dem-
szky et al., 2020a) and for "Are you from south?"
in DailyDialog (Li et al., 2017), varying both the
lexicon used (post related vocabulary for GoEmo-
tions) and the sentence structure (cleaner syntactic
structures in DailyDialog).

Our contribution relies on the implementation
of a two-level meta-learning distinguishing data
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by their label set and data source at the same time.
We also try to quantify the impact of switching
data sources in this framework. After summarizing
the related work (Section 2), we present the data
sets and labels (Section 3) that we consider in our
methodology and experiments (Section 4). We then
present the results (Section 5) before discussing
some key points (Section 6) and conclude (Section
7).
The data preparation code and files, and the
implementations are available in a public repos-
itory: https://github.com/gguibon/
metalearning-emotion-datasource.

2 Related Work

Emotion classification approaches (Alm et al.,
2005; Strapparava and Mihalcea, 2007; Bollen
et al., 2009; Thelwall et al., 2012; Yu et al., 2015;
Yadollahi et al., 2017; Zhang et al., 2018a; Zhu
et al., 2019; Zhong et al., 2019; Park et al., 2019)
usually benefit from using as many examples as
possible when training the classifier. However, it
is not always possible to obtain large data sets for
a specific task: we need to learn from a few ex-
amples by applying specific strategies. Few-shot
learning (Lake, 2015; Vinyals et al., 2016; Ravi and
Larochelle, 2016) is an approach dedicated to learn
from a few examples per class and thus to create
efficient models on a specific task.

Meta-Learning. While they can be used for dif-
ferent purposes, few-shot learning frameworks are
often used for meta-learning (Schmidhuber, 1987),
defined as "learning to learn". Like few-shot learn-
ing, meta-learning considers tasks for training but
with the aim of being effective at a new task in
the testing stage (Yin, 2020). To do so, meta-
learning can focus on different aspects such as
learning a meta-optimizer (various gradient descent
schemes, reinforcement learning, etc.), a meta-
representation (embedding by metric learning, hy-
per parameters, etc.), or a meta-objective (few-shot,
multi-task, etc.), three aspects respectively repre-
sented as "How", "What" and "Why" (Hospedales
et al., 2020). Both few-shot learning and meta-
learning approaches have mainly been developed
in computer vision using different optimization
schemes. The main meta-learning approaches use
an episodic setting (Ravi and Larochelle, 2016)
which consists in training on multiple random tasks
with only a few examples per class. Then, each task
is an episode made of a number of shots (examples

per class), a support set (set of examples to train
from), a query set (set of examples to predict and
compute a loss), and a number of ways (classes).

Optimization-based. Optimization-based meta
learning is an approach represented mainly by
the Model Agnostic Meta Learning (MAML)
(Finn et al., 2017a) which learns parameters meta-
initialization and meta-regularization. It possesses
multiple variations, such as First-Order MAML
(Finn et al., 2017b), which reduces computation;
Reptile (Nichol et al., 2018), which considers all
training tasks and requires target tasks to be close
to training tasks; and Minibatch Proximal Updates
(Zhou et al., 2019), which learns a prior hypothe-
sis shared across tasks. Another recent approach
focuses on learning a dedicated loss (Bechtle et al.,
2021).

Metric learning. Meta-representation and meta-
objective aspects of meta-learning are often used
together. In this work, regarding the meta-
representation aspect, we focus on approaches
aiming to learn a distance function, usually
named metric-learning. Among these approaches,
Siamese Networks (Koch et al., 2015) do not take
tasks into account and only focus on learning the
overall metric to measure a distance between the ex-
amples. Matching Networks (Vinyals et al., 2016)
use the support set examples to calculate a cosine
distance directly. Prototypical Networks (Snell
et al., 2017), for their part, consider class represen-
tations from the support set and use an euclidean
distance instead of the cosine one. Lastly, Relation
Networks (Sung et al., 2018) consider the metric
as a deep neural network instead of an euclidean
distance, using multiple convolution blocks and
the last sigmoid layer to compute relation scores.
When applied to image data sets, a recent work
showed Prototypical Networks (Snell et al., 2017)
possess better efficiency with the lowest amount of
training examples (Al-Shedivat et al., 2021) which
leads us to use this approach due to our data con-
figuration.

Meta-learning and NLP. Other approaches
have recently made use of several optimization
schemes (Bernacchia, 2021; Al-Shedivat et al.,
2021) and have been adapted to NLP tasks (Bao
et al., 2020) especially on Few-Rel dataset, a NLP
corpus dedicated to few-shot learning for relation
classification (Gao et al., 2019b; Han et al., 2018;
Sun et al., 2019). For text classification, meta-
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learning through few-shot learning has been used
on Amazon Review Sentiment (ARSC) dataset (Yu
et al., 2018; Geng et al., 2019; Bao et al., 2020;
Bansal et al., 2020) by training sentiment classi-
fiers while varying the 23 topics. We draw on their
work on Amazon topics to better tackle another
type of labels, emotions, while further adapting
Prototypical Networks on texts by considering at-
tention in the process.

Meta-learning and Emotions. Recent studies
on acoustic set up a generalized mixed model for
emotion classification from music data (Lin et al.,
2020), or even meta-learning for speech emotion
recognition whether it is monolingual (Fujioka
et al., 2020) or multilingual (Naman and Mancini,
2021). On the other hand, on textual data one used
distribution learning (Zhang et al., 2018b) through
sentence embedding decomposition and K-Nearest
Neighbors (Zhao and Ma, 2019) while others stud-
ied emotion ambiguity by meta-learning a BiLSTM
(Huang et al., 2015) with attention in the scope of
4 labels (Fujioka et al., 2019).

Considering both our use-case scenario and the
aforementioned recent meta-learning efficiency
comparison (Al-Shedivat et al., 2021), we focus on
using Prototypical Networks for this work, while
varying the encoders to better adapt Prototypical
Networks to textual data in a few-shot and meta-
learning setting. Thus, we contribute by using met-
ric learning based meta learning while considering
emotion classes as tasks for NLP. Moreover, as
far as we know, this work is the first one on meta-
learning considering a two-level meta-learning by
transferring knowledge to new tasks, despite the
use of new data sources at the same time.

3 Datasets and Tag Sets

We consider two different English data sets to stay
in line with our will to use a source data set on
which the meta-model will be trained and a target
data set on which we will evaluate the transferring
capabilities of our model.

GoEmotions (Demszky et al., 2020a) is the data
set we use to train and tune hyper-parameters. It is a
corpus made of 58,000 curated Reddit comments la-
beled with 27 emotion categories. We split it into 3
tag sets (EmoTagSets) for meta-training afterwards
which detail later on. GoEmotions (Demszky et al.,
2020a) also comes with predefined train/val/test
splits by ratio, ensuring the presence of all labels

in each split. We use them to apply the fully super-
vised learning.

DailyDialog (Li et al., 2017) corresponds to the
target data to be labeled using the meta-trained
model. This corpus is initially structured as 13,118
human-written daily conversations, going through
multiple topics; but for the purpose of our study,
we only use it as individual utterances. We chose
this corpus because of its propinquity with our case
study: messages from conversational context are
usually private and unlabeled. We retrieve utter-
ances from the official test set with their associated
emotion label, because studying the conversational
context exceeds the scope of this paper. We only
focus on utterances, language structure differences,
and different emotion tag sets for meta-learning.
This leads to a total of 1,419 utterances for 6 emo-
tion labels (EmoTagSet3). As for GoEmotions, Dai-
lyDialog comes with official train/val/test splits that
we use for comparison purposes while using super-
vised or meta learning approaches.

Tag Sets. To apply meta-learning on emotion la-
bels we consider 3 different tag sets named Emo-
TagSets. As previously said, we made these tag
sets considering the different labels from each data
set: let ZG represent the set of GoEmotions’ la-
bels and ZD the set of DailyDialog’s labels, we
consider the intersection ZD ∩ ZG as the target
labels named EmoTagSet3. These target labels are
the labels we want to hide from both training and
validation phases to only use them during the test
phase. The purpose of using the intersection is to
enable results comparison on both data sets. The
complement of the resulting intersection is then
used to create EmoTagSet1 and EmoTagSet2, while
taking into account class balance and polarity distri-
bution to ensure each EmoTagSet1 and 2 possesses
a variety of classes. The resulting tag sets and their
dedicated usage are visible in Table 1. Table 1 also
shows the mapping between the 6 target emotion
classes of EmoTagSet3 and their possible corre-
spondences in regard to other labels. This mapping
comes directly from GoEmotions’ mapping1.

1https://github.com/google-research/
google-research/blob/master/goemotions/
data/ekman_mapping.json
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EmoTagSet3 EmoTagSet1 EmoTagSet2
(DailyDialog tags)

For test For training For validation
and supervised

↓ ↓ ↓
anger→ annoyance disapproval

disgust→ / /
fear→ nervousness /

joy→

amusement, gratitude,
approval, optimism,

excitement, relief,
love, pride, desire,
admiration caring

sadness→ remorse
disappointment,
embarrassment,

grief

surprise→ realization, curiosityconfusion

Table 1: Tag set mapping to the 6 basic emotions of
EmoTagSet3. All these labels are present in GoEmo-
tions while only the EmoTagSet3 is present in DailyDi-
alog. EmoTagSet1 and 2 are mapped to EmoTagSet3
following the GoEmotions’ official mapping (Demszky
et al., 2020b).

4 Methodology and Experimental
Protocol

First, the objective is to retrieve label-level meta-
information using Reddit comments (GoEmotions)
and the different label sets (EmoTagSets). Then,
we seek to transfer the meta-information to daily
conversation-extracted utterances (DailyDialog),
hence varying in data structure and vocabulary.

Meta-training. The first step consists of an
emotion-based meta-learning on GoEmotions’
training and validation sets in order to learn meta-
information that we evaluate on DailyDialog’s test
set later on. Figure 1 shows this approach. We
want to meta-train a classifier from few examples
by using few-shot learning with 5 examples per
class from GoEmotions’ train set, our classes being
the different emotion labels. We adopt the Proto-
typical Networks (Snell et al., 2017) in an episode
training strategy to apply few-shot learning to the
meta-learning process. For each episode, Prototyp-
ical Networks apply metric-learning to few-shot
classification by computing a prototype ck for each
class k (way) with a reduced number of examples
from the support set Sk (shots). Each class proto-
type being equal to the average of support examples
from each class as follows:

ck ←
1

NC

∑

(xi,yi)∈Sk
fφ(xi)

where fφ corresponds to the encoder. We then
minimize the euclidean distance between proto-
types and elements from the query set Qk to la-
bel them and compare the resulting assignments
d (fφ(x), ck)) where x represents an element from
the query set. This follows the standard Prototypi-
cal Networks with the following loss

1

NCNQ
[d (fφ(x), ck)) + log

∑

k′
exp (−d (fφ(x), ck′))]

One key element of the Prototypical Networks is
the encoder fφ, which will define the embedding
space where the class prototypes are computed.
Moreover, it is in fact the encoder which is meta-
learned during the training phase. In our exper-
iments, we use various encoders to represent a
message as one vector: the average of the word
embeddings (AVG), convolutional neural networks
for sequence representation (CNN) (Kim, 2014) or
a Transformer encoder layer (Vaswani et al., 2017)
(Tr.). We define our episodic composition by set-
ting Nc = 6, Ns = 5 and Nq = 30 making it a
5-shot 6-way 30-query learning task where Nc is
constrained by the number of test classes: indeed,
down the line, the model will be tested on the 6
basic emotions from the DailyDialog tag set. This
setting renders obsolete the notion of an unbalanced
data set.

Episodic composition for training and validat-
ing are the same. We meta-train for a maximum
of 1,000 epochs, one epoch being 100 random
episodes from training classes (EmoTagSet1). We
set early stopping to a patience of 20 epochs with-
out best accuracy improvement. Validation is also
done using 100 random episodes but from vali-
dation classes (EmoTagSet2). For testing, how-
ever, we test using 1,000 random episodes from
test classes (EmoTagSet3), in which the query set
(Nq) is randomly chosen from the test split in a
6-way 5-query fashion. This means 5 elements to
classify in one of the 6 target emotions. Figure 1
shows a global view of our meta-learning strategy,
from meta-training to evaluation.

Experimental protocol details are as follows. For
each data set, we follow previous studies (Bao et al.,
2020) and use pre-trained fastText (Joulin et al.,
2017) embeddings as our starter word representa-
tion. We also compare the different approaches by
using a fine-tuned pre-trained BERT (Devlin et al.,
2019) as encoder, provided by Hugging Face Trans-
formers (Wolf et al., 2019) (bert-base-uncased),
and by using the ridge regressor with attention gen-
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Figure 1: Global view of the meta-learning strategy.
While testing on DailyDialog, only utterances from the
official test set are considered. EmoTagSet1 ∪ Emo-
TagSet2 ∪ EmoTagSet3 = ∅.

erator representing distributional signatures (Bao
et al., 2020).

Supervised Learning for comparison. We first
apply supervised learning by using only DailyDi-
alog’s training, validation, and test sets (official
splits by ratio) in order to enable later comparison
with the meta-learning approach. We use the super-
vised results as reference scores illustrating what
can be achieved in ideal conditions. Ideal condi-
tions also means this does not follow our previously
defined scenario. Indeed, a classic supervised learn-
ing approach learns using the same labels during
training, validation and testing phases, which dif-
fer from our scenario. In these supervised results
we only used the 6 emotions from EmoTagSet3
by filtering GoEmotions’ elements. Moreover, the
encoder and classifier are not distinct as we sim-
ply add a linear layer followed by a softmax and
use a negative log likelihood loss to compute cross
entropy over the different predictions.

The objective here is to enable comparison be-
tween our approach and a direct naive supervised
one. By naive, we mean that no transfer learning
method is used; rather, it only consists in train-
ing a fully supervised model on GoEmotions or
DailyDialog training and validation sets and ap-
plying it on DailyDialog or GoEmotions test sets.
Table 2 shows the results of this naive fully super-
vised approach along with the meta-learning one.
However, even with the advantage of using the tar-
get labels during training, this fully supervised ap-
proach yields lesser scores than our meta-learning
approach. This confirms that meta-learning is a
viable solution for our use-case scenario which
adapts itself to unknown target labels while allow-
ing faster training due to the episodic composition
approach (i.e. smaller number of batches).

Hyper-parameters tuning. In this paper, we
consider the case in which we want to train an
emotion classifier while having no access to the
target data information. However, to ensure a fair
comparison, we use the hyper-parameters obtained
through a limited grid-search in our baseline su-
pervised setup. This makes the whole experiment
less dependent on specific parameters, leading to a
better evaluation process despite not representing
a ’real’ application case. Hyper parameters are as
follows.

The Prototypical Networks’ hidden size is set
to [300, 300] which is equal to the base embed-
ding size (300 from pre-trained FastText on Wiki
News2), global dropout is set to 0.1. The CNN
encoder consists in three filter sizes of 3, 4 and 5
and is the same architecture as Kim’s CNN (Kim,
2014) except for the number of filters which we
set to 5000. For the Transformer encoder, we set
the learning rate at 1e− 4, the dropout at 0.2, the
number of heads at 2 and the positional encoding
dropout to 0.1. The embedding and hidden sizes
follow the same size as the input embedding with
d = 300. We considered using multiple Trans-
former encoder layers but sticking to only 1 layer
gave the most optimal results and efficiency.

During supervised learning, we consider an en-
coder learning rate of 1e− 3 except for the Trans-
former layer where a learning rate of 1e− 4 gave
better results. However, for meta-learning phases
we follow optimization methods from recent litera-
ture by searching the best learning rate, positive or
negative, in a window close to zero and finally set
it to 1e−5 (Bernacchia, 2021). Hence, the learning
rate is the only parameter that we do not directly
copy from the supervised learning phase’s hyper
parameters.

Evaluation Metrics. We evaluate the perfor-
mance of the models by following previous work
on few-shot learning (Snell et al., 2017; Sung et al.,
2018; Bao et al., 2020) and using few-shot classifi-
cation accuracy. We go further in the evaluation by
adding a weighted F1 score and the Matthews Cor-
relation Coefficient (MCC) (Cramir, 1946; Baldi
et al., 2000) as suggested by recent studies in bi-
ology (Chicco and Jurman, 2020), but in its multi-
class version (Gorodkin, 2004) to better suit our
task. Reported scores are the mean values of each

2https://dl.fbaipublicfiles.
com/fasttext/vectors-english/
wiki-news-300d-1M.vec.zip
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metrics on all testing episodes with their associated
variance ±.

5 Results

Table 2 shows two main different result sets: the
ones obtained using supervised learning, and those
obtained using meta-learning.

Supervised Learning Results. Results pre-
sented in Table 2 come from using the official splits
from DailyDialog. As explained in Section 4, we
tuned hyper-parameters for each classifier and en-
coder using this supervised learning phase. Using
the Transformer (Vaswani et al., 2017) as classifier
requires carefully setting up hyper parameters to
converge, especially if the data set size is relatively
small. This is the case in this study, and we believe
it to be the main reason for the Transformer clas-
sifier to perform below the CNN classifier in this
fully supervised setting.

Supervised results (top section of Table 2) can be
divided into two sub-parts: the supervised learning
trained using GoEmotions’ training and validation
sets then applied on either GoEmotions’ test set or
DailyDialog’s test set, and the results using only
DailyDialog’s splits. These results serve as a good
indication of performance goals for the later meta
learning phase. We can see that the naive strategy
to use a model trained on GoEmotions to predict
DailyDialog’s test set yields poor results with up
to 34.58% F1-score even though it only considers
the same 6 labels (EmoTagSet3) during training,
validation and test to befit a standard supervised
approach.

Meta Learning Quantitative Results. The bot-
tom section of Table 2 shows two sets of results:
the meta-training phase on GoEmotions (Demszky
et al., 2020a) using splits by emotion labels (the
EmoTagSets from Table 1) and evaluation of these
models on the DailyDialog official test set. As
expected, meta-learning yields results lesser than
the supervised learning when the datasets come
from the same source, but highly better ones when
the dataset is from a different source. Indeed, the
meta-learning process trains on data from different
sources, with different tag sets, sentence lengths
and conversational contexts. Results show that the
more similar the linguistic structure of the train and
target data are, the easier the work of meta-learning
is, yielding better performance. Indeed, results of
meta-learning obtained on GoEmotions are better

Supervised Learning

Supervised Learning trained on GoEmotions
tested on GoEmotions (val set – 6 filtered classes)

Enc Clf Acc ± F1 ± MCC ±

AVG MLP 72.67 00.8 0.7254 00.8 67.23 00.9

CNN MLP 76.37 00.7 0.7617 00.7 71.74 00.8

Tr. MLP 98.94 00.7 98.94 00.6 98.73 00.8

Eval models trained on GoEmotions
on DailyDialog (6 classes)

AVG MLP 32.93 13.6 31.07 13.1 19.14 15.7

CNN MLP 34.71 13.9 32.18 13.4 21.28 15.8

Tr. MLP 39.88 18.5 34.58 18.2 27.42 23.2

Supervised Learning on DailyDialog Splits
(6 classes)

Enc Clf Acc ± F1 ± MCC ±

AVG MLP 49.73 18.9 42.06 19.2 42.32 23.7

CNN MLP 62.57 18.7 54.89 20.6 59.12 22.0

Tr. MLP 55.35 21.11 48.52 21.4 49.24 26.1

Meta-Learning

Meta-Learning using GoEmotions
6 way 5 shot 30 query

Enc. Clf Acc ± F1 ± MCC ±

AVG Proto 25.20 03.5 23.92 03.6 10.61 04.4

CNN Proto 31.35 04.5 29.82 04.6 17.95 05.5

BERT Proto 39.82 04.9 39.11 05.1 28.11 05.9

Dist. RR 31.92 04.9 31.1 05.1 18.81 06.0

Tr. Proto 93.02 04.6 91.64 06.1 92.08 05.2

Eval Meta-Learned Models
on DailyDialog’s test set (1,000 episodes)

AVG Proto 23.95 06.9 22.52 07.0 09.11 08.6

CNN Proto 17.61 07.5 15.36 07.2 01.23 09.5

BERT Proto 42.59 09.7 41.50 09.7 31.80 11.9

Dist. RR 25.78 08.1 24.38 07.8 11.28 10.0

Tr. Proto 61.77 20.8 58.55 24.1 58.82 22.4

Fine-tuning meta-learned models
on GoEmotions test set (1 epoch of 10 episodes)
Eval on DailyDialog’s test set (1,000 episodes)

Enc. Clf Acc ± F1 ± MCC ±

AVG Proto 20.82 06.9 19.23 07.1 05.07 08.5

CNN Proto 20.34 05.7 18.91 05.4 04.73 07.6

Tr. Proto 28.59 09.9 21.13 10.6 17.22 13.1

Table 2: Top section: Supervised learning on utterances
(official DailyDialog splits). Bottom section: meta
learning trained by splitting classes from GoEmotions
(train on 11, validate on 10, test on 6). The trained meta
model is then applied on DailyDialog’s test set. Eval-
uated using accuracy (Acc), F1-score (F1) and multi-
class Matthews Correlation Coefficient (MCC). ± rep-
resents the variance over test episodes.
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than the ones obtained on Daily Dialog. Contrary
to what can be observed in supervised learning
results, the Transformer, here associated with Pro-
totypical Networks for meta-training, significantly
outperforms other encoders. Even though, using
the fine-tuned BERT as encoder yields a slightly
better F1-score than recent models such as ridge
regressor with distributional signature in our use-
case scenario but, more importantly, BERT results
show less variance (±) than our best model. How-
ever, our data being not segmented at the sentence
level and possessing excessive variable numbers of
tokens, BERT cannot be used to its full extent. This
confirms prior conclusions from related work (Bao
et al., 2020). We believe the poor results yielded
by using the CNN (Kim, 2014) as encoder demon-
strate the need of attention in the training process
to better capture usable meta-information. These
results using a Transformer layer (Tr.), BERT or
attention generator with ridge regressor (RR) as
encoders would confirm previous studies making
the same observation (Sun et al., 2019).

If we compare our approaches, using attention
based algorithms, to the architecture using distribu-
tional signatures with Ridge Regressor presented
by Bao et al. (Bao et al., 2020), we can see we
constantly outperform it on the evaluation metrics
used. Moreover, fine-tuning the models trained on
GoEmotions using GoEmotions’ test set for 10 ad-
ditional episodes did not improve the final scores.
We believe this is due to the fine-tuning starting to
change the model’s parameters but, by doing so,
changing the previously learned meta information.

Meta Learning Qualitative Results. Our best
model manages to obtain good results based on
quantitative evaluation even if those scores de-
crease a lot when applied on data from another
source and phrasal structure, as shown in Section
1. Table 3 presents one mistake example for each
emotion label in the test set. These examples show
the most common mistake for each emotion. For
instance, the True label "joy" is most commonly
mistaken with "surprise" (the predicted – Pred –
label) by the model; "sadness" is most commonly
mistaken with "surprise", and so on. These two
datasets coming from different platforms, further
analysis is needed to dive into the different topics
tackled in these messages, which may be one of
the main obstacles to obtaining higher performance.
We discuss it in the next section (Section 6). The
message structure relates to the type of conversa-

Text True Pred

Oh, yes, I would! joy surprise
Yelling doesn’t do sadness surpriseany good.

Yes. Then I noticed he was
anger disguston the sidewalk behind me.

He was following me.
What’s wrong with you? fear surpriseYou look pale.
This is all too fast. He’s

disgust surprisemy best friend,
and now he’s gone.

What? What kind of surprise angerdrugs was he using?

Table 3: Some mistakes made by our best meta-model
(Table 2) meta-trained on GoEmotions and applied on
DailyDialog. Each line is one example from the most
frequent label confusion (eq. "joy" mistaken for "sur-
prise" by the model).

tions: GoEmotions (i.e. Reddit) seems to have a
higher number of general comments about a third
object/topic/person, while DailyDialog seems to be
made of personal discussions between people that
are close to each other.

6 Discussions

How do meta-trained models manage to per-
form on previously unseen tags? Prototypical
Networks use the support set to compute a proto-
type for each class (i.e. way), hence new prototypes
are computed for each episode. This means the
trained encoder does not rely on predicting classes,
but gathers representative information that will de-
termine the position of the elements in the embed-
ding space. Because it is the relative proximity
that serves to assign a query element to a specific
prototype, having a different tag set that will be
embedded "far away" should not hinder how well
the model can classify data.

Emotion Label Ambiguity. The 21 emotions
from GoEmotions that we use for training and val-
idation are fine-grained but could have overlaps
("annoyance" and "embarrassment" for instance);
this is why a mapping to the same 6 emotions as the
EmoTagSet3 is provided with the data set (Table
1). Considering how well the meta-learning works
on the emotion label part (see GoEmotions results
in Table 2), achieving 91.64% in F1 score, labels’
ambiguity and the different granularity seem to be
handled well. Moreover, it should be noted that the
labels were obtained differently for the two data
sets: in isolation for GoEmotions and consider-
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ing the conversation context for DailyDialog. This
makes the task even more difficult.

Meta-learning through Different Data Sources.
We want here to investigate whether the difficulty
of this meta-learning task comes from varying tag
sets or data sources. We fine-tune the models meta-
trained on GoEmotions in order to slightly adapt
the encoder to the target tag set (EmoTagSet3) by
leveraging meta-information related to emotion la-
bels. The training tag set is now the same as Dai-
lyDialog. The fine-tuning consists of 1 epoch of
10 more episodes instead of a maximum of 1,000
epochs made of 100 episodes during training. Re-
sults are reported at the bottom of Table 2. This
fine-tuning produced worse results compared to
simply meta-training and applying on a different
target tag set. This leads to the hypothesis that
the different linguistic structures from the two data
sources (social network and daily communications)
are the main sources of errors in this setup.
To confirm this, we look further in the data sources’
specifics of GoEmotions (User Generated Content)
and DailyDialog (an idealized version of dyadic
daily conversations) by using machine learning
based exploration. We study the most frequent
nouns that are specific to each corpus. We use
SpaCy3 in order to obtain the Universal Part-of-
Speech (UPOS) tags (Nivre and al., 2019) along
with the lemmas for both corpora. Then, we re-
trieve the sets of nouns for each corpus and com-
pute the symmetric difference between both sets
in order to see the differences in language level.
GoEmotions being User Generated Content (UGC)
from Reddit, its top 5 most frequent exclusive
nouns are "lol", "f**k" (censored), "op", "reddit",
and "omg". On the other hand, the top 5 most
frequent exclusive nouns in DailyDialog are "reser-
vation", "madam", "doesn" (tagging error), "taxi",
and "courses". It shows a first indication both
of language register and lexical field differences4.
To further confirm the language structure differ-
ences, we retrieved the UPOS tags frequencies
for both corpora. GoEmotions’ top 3 UPOS are
"NOUN", "VERB", and "PUNCT” while DailyDia-
log’s top 3 are "PUNCT", "PRON", "VERB". This
indicates DailyDialog’s language follows a well
formed structure with punctuation and pronouns
while GoEmotions’ language structure is more di-

3https://spacy.io/
4For more details, see the tables 8 and 9 in appendix.

happiness sadness anger fear disgust surprise

-9.30 -9.65 -8.80 -9.23 -9.32 -8.71
-7.91 -8.12 -8.15 -8.18 -8.09 -8.11

Table 4: Average euclidean (l2) distance from queries
to predicted emotions using our best model (Tr.+Proto),
on GoEmotions (go) and DialyDialog (dd).

rect with mainly nouns and verbs5. All these data
sources’ specifics can provide explanation for the
lower performance of our system on DailyDialog.
The data sources’ differences lead to prototypes
differences during the two testing phases. Table 4
shows that the average euclidean distance between
query elements x and class prototypes ck′ from the
same class −d (fφ(x), ck′) is greater when tested
on GoEmotions than on DailyDialog.

Varying Pre-Trained Language Models. To
confirm our preliminary results on pre-trained lan-
guage models on this task, we further explore fine-
tuning several of them. Results are visible in Table
5. In addition to BERT, we fine-tune XLNet (Yang
et al., 2019) (xlnet-base-cased) and RoBERTa (Liu
et al., 2019) (roberta-base) from the Transformers
library (Wolf et al., 2019) along with their distilled
variants. Results show fine-tuning BERT is better
than other pre-trained language models on this task.
This confirms our initial results on Table 2 of our
model being better at retaining meta-information
while only considering static pre-trained embed-
dings from FastText (Joulin et al., 2017).

Enc. Acc ± F1 ± MCC ±

DistilBERT 23.24 ±04.0 22.98 ±04.1 08.11 ±04.8

XLNET 25.80 ±04.2 25.85 ±04.1 11.06 ±04.8

roBERTa 25.58 ±04.1 25.17 ±04.0 10.76 ±05.0

distilroBERTa 27.38 ±04.5 26.83 ±04.4 12.86 ±05.3

BERT 42.59 09.7 41.50 09.7 31.80 11.9

Table 5: Results on DailyDialog’s test set using multi-
ple pre-trained language models for meta learning fol-
lowing the same scenario as Table 2’s bottom section:
meta trained on GoEmotions and meta test on Daily-
Dialog. These language models are fine-tuned during
meta-training.

Using Empathetic Dialogues as Training
Source. We consider the same meta learning
scenario using a different data set to train the
meta-models. We choose utterances from the
Empathetic Dialogues (Rashkin et al., 2019) full

5For more details, see figures 3 and 4 in the appendix.
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data set while considering the dialogues label
(i.e. the "context" column) as the label for each
utterance. To apply meta learning on emotion
labels, we select labels based on balancing polarity
and numbers of occurrences, leading us to consider
the following sets: 13 labels for training (caring,
confident, content, excited, faithful, embarrassed,
annoyed, devastated, furious, lonely, terrified,
sentimental, prepared), 13 different labels for
validation (grateful, hopeful, impressed, trusting,
proud, embarrassed, annoyed, devastated, furious,
lonely, terrified, sentimental, prepared) and 6
test emotions, keeping the set from DailyDialog
(joyful, sad, angry, afraid, disgusted, surprised).
Results for this meta learning experiment using
Empathetic Dialogues are shown in Table 6.

Meta-Learning using ED
6 way 5 shot 30 query

Enc. Clf. Acc ± F1 ± MCC ±

AVG Proto 27.43 ±04.2 25.95 ±04.3 13.16 ±05.2

Dist. RR 31.73 ±04.7 31.11 ±05.1 18.51 ±05.8

Tr. Proto 97.80 ±03.4 97.54 ±04.1 97.49 ±03.8

Eval Meta-Learned Models
on DailyDialog’s test set (1,000 episodes)

AVG Proto 18.07 ±03.0 16.58 ±03.1 02.21 ±03.8

Dist. RR 26.29 ±08.1 24.90 ±08.1 11.86 ±10.0

Tr. Proto 66.24 ±18.2 66.09 ±18.0 60.43 ±21.9

Table 6: Meta learning trained on Empathetic Dia-
logues (ED) before applying the model on DailyDia-
log’s test set.

Empathetic Dialogues is a merge of multiple
data sets, with DailyDialog among them. Hence,
evaluating the meta model learnt using Empathetic
Dialogues on DailyDialog’s test set does not al-
low for fair comparison with our previous model.
Indeed, we obtain here significantly better results
on DailyDialog’s test set. However, results show
similar trends between evaluation sets and types of
models as our main meta learning scenario (Table
2), which confirms our overall conclusions on this
task.

7 Conclusion

In this paper, we are interested in a classification
scenario where we only possess a certain kind of
training data, with no guarantee that the testing
data will be of the same type nor use the same la-
bels. We choose our training data from common
social media sources (Reddit) with fine-grained
emotion labels. We address this problem using
meta-learning and few-shot learning, to evaluate

our model on conversation utterances with a sim-
pler emotion tag set.

We consider metric learning based meta-learning
by setting up Prototypical Networks with a Trans-
former encoder, trained in an episodic fashion. We
obtained encouraging results when comparing our
meta-model with a supervised baseline. In this
use-case scenario with a two-level meta-learning,
our best meta-model outperforms both other en-
coder strategies and the baseline in terms of meta-
learning for NLP. Moreover, our approach works
well for learning emotion-related meta-information
but still struggles while varying data types.

For future work, we wish to investigate if this
meta-learning approach could integrate the conver-
sational context for classifying the utterances of the
target dialog data. We also plan on applying this
approach to another language than English.
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A Open Source Code

The anonymous code is available to reviewers in
supplementary materials. A link to the Public
Github repository containing the code to run ex-
periments along with data will be added to the
article. The code base has been implemented in
Python using, among others, PyTorch and Hugging
Face Transformers (Wolf et al., 2019) for BERT.
All training runs were made using an Nvidia V100
Tensor Core GPU6.

B Hyper Parameters

Prototypical networks hidden size is set to
[300, 300] which is equal to the base embed-
ding size (300 from pre-trained FastText on Wiki
News7), global dropout is set to 0.1.
CNN hyper parameters:

• cnn filter sizes: 3, 4, 5

• number of filters: 5000

• learning rate: 0.001

Transformer hyper parameters:

• learning rate: 0.0001

• transformer dropout: 0.2

• embedding size: 300 (from FastText)

• attention heads: 2

• hidden size: 300

• transformer encoder layers: 1

• position encoding dropout: 0.1

Please note that these hyper parameters are the
one inferred from the supervised learning. During
meta-learning we only change the learning rate and
set it to 1e − 5 as explained in Section 4 of the
paper.

6https://www.nvidia.com/en-us/
data-center/v100/

7https://dl.fbaipublicfiles.
com/fasttext/vectors-english/
wiki-news-300d-1M.vec.zip

C Training Additional Information

Models trained for 72 epochs using average em-
beddings as encoder, 42 epochs using Transformer
encoder, and 35 epochs using CNN as encoder.
Depending on the run, our best meta-model (Trans-
formers with Prototypical Networks using a learn-
ing rate of 1e-5) converges between the 87th epoch
and the 165th epoch. The total training time does
not exceed one hour.

D Additional Results Information

Figure 2 shows the confusion matrix for our best
meta-model trained on GoEmotions and applied on
DailyDialog (the row obtaining 58.55% F1 score
in Table 2).

Figure 2: Confusion matrix for our Tr.+Proto meta-
learning trained on GoEmotions and tested on DailyDi-
alog. This is the 1,000 test episodes’ outputs merged to-
gether. Rows represent reference labels while columns
represent predicted labels.

To ensure the relative stability of our best model,
we did 3 meta-learning runs using our Transformer
encoder in Prototypical Networks using a learning
rate a 1e-5. The results of these runs (including the
one reported in Table 2) are visible in Table 7.

E Data Comparison & Information

In Section 6 we discussed data sources differences.
Here you can see more in-depth information. On
the other hand, Tables 8 and 9 shows side by side
the top ten most frequent tokens for the predicted
NOUN UPOS. Figures 3 and 4 show the predicted
part-of-speech distribution for each corpus.
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Runs (trained and applied on GoEmotions)
Encoder Classifier Accuracy F1-score MCC

Transformer Proto 0.9302 ±0.0463 0.9164 ±0.0607 0.9208 ±0.0515

Transformer Proto 0.9183 ±0.0423 0.9016 ±0.0572 0.9075 ±0.0468

Transformer Proto 0.9301 ±0.0464 0.9163 ±0.0608 0.9207 ±0.0516

Runs (same model applied on DailyDialog)
Encoder Classifier Accuracy F1-score MCC

Transformer Proto 0.6177 ±0.2078 0.5855 ±0.2408 0.5882 ±0.2241

Transformer Proto 0.6573 ±0.2016 0.6256 ±0.2354 0.6248 ±0.2179

Transformer Proto 0.6253 ±0.2093 0.5929 ±0.2442 0.5937 ±0.2258

Table 7: Additional runs of our best model to ensure results’ stability.

token count

lol 576
f**k 248
op 204
reddit 147
omg 145
lmao 143
’ ’ 133
congrats 115
* 110
meme 106

Table 8: Top 10 frequent nouns (SpaCy) exclusive
to GoEmotions

token count

reservation 267
madam 143
doesn 142
taxi 127
courses 102
shipment 79
noon 50
aren 49
aisle 47
exhibition 45

Table 9: Top 10 frequent nouns (SpaCy) exclusive
to DailyDialog

Figure 3: GoEmotions POS distribution (POS tagged us-
ing SpaCy)

Figure 4: DailyDialog POS distribution (POS tagged us-
ing Spacy)
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