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Abstract

Multilingual pre-trained contextual embed-
ding models (Devlin et al., 2019) have
achieved impressive performance on zero-shot
cross-lingual transfer tasks. Finding the most
effective strategy to fine-tune these models
on high-resource languages so that it trans-
fers well to the zero-shot languages is a non-
trivial task. In this paper, we propose a
novel meta-optimizer to soft-select which lay-
ers of the pre-trained model to freeze dur-
ing fine-tuning. We train the meta-optimizer
by simulating the zero-shot transfer scenario.
Results on cross-lingual natural language in-
ference show that our approach improves
over the simple fine-tuning baseline and X-
MAML (Nooralahzadeh et al., 2020).

1 Introduction

Despite the impressive performance of neural
models on a wide variety of NLP tasks, these mod-
els are extremely data hungry – training them re-
quires a large amount of annotated data. As col-
lecting such amounts of data for every language
of interest is extremely expensive, cross-lingual
transfer that aims to transfer the task knowledge
from high-resource (source) languages for which
annotated data are more readily available to low-
resource (target) languages becomes a promising
direction. Cross-lingual transfer approaches us-
ing cross-lingual resources such as machine trans-
lation (MT) systems (Wan, 2009; Conneau et al.,
2018) or bilingual dictionaries (Prettenhofer and
Stein, 2010) have effectively reduced the amount
of annotated data required to obtain reasonable
performance on the target language. However,
such cross-lingual resources are often limited for
low-resource languages.

Recent advances in cross-lingual contextual em-
bedding models have reduced the need for cross-
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lingual supervision (Devlin et al., 2019; Lample
and Conneau, 2019). Wu and Dredze (2019) show
that multilingual BERT (mBERT) (Devlin et al.,
2019), a contextual embedding model pre-trained
on the concatenated Wikipedia data from 104 lan-
guages without cross-lingual alignment, does sur-
prisingly well on zero-shot cross-lingual transfer
tasks, where they fine-tune the model on the anno-
tated data from the source languages and evaluate
on the target language. Wu and Dredze (2019) pro-
pose to freeze the bottom layers of mBERT dur-
ing fine-tuning to improve the cross-lingual per-
formance over the simple fine-tune-all-parameters
strategy, as different layers of mBERT captures
different linguistic information (Jawahar et al.,
2019).

Selecting which layers to freeze for a down-
stream task is a non-trivial problem. In this pa-
per, we propose a novel meta-learning algorithm
for soft layer selection. Our meta-learning algo-
rithm learns layer-wise update rate by simulating
the zero-shot transfer scenario – at each round, we
randomly split the source languages into a held-
out language and the rest as training languages,
fine-tune the model on the training languages, and
update the meta-parameters based on the model
performance on the held-out language. We build
the meta-optimizer on top of a standard optimizer
and learnable update rates, so that it generalizes
well to large numbers of updates. Our method uses
much less meta-parameters than the X-MAML ap-
proach (Nooralahzadeh et al., 2020) adapted from
model-agnostic meta-learning (MAML) (Finn
et al., 2017) to zero-shot cross-lingual transfer.

Experiments on zero-shot cross-lingual natural
language inference show that our approach outper-
forms both the simple fine-tuning baseline and the
X-MAML algorithm and that our approach brings
larger gains when transferring from multiple
source languages. Ablation study shows that both
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the layer-wise update rate and cross-lingual meta-
training are key to the success of our approach.

2 Meta-Learning for Zero-Shot
Cross-lingual Transfer

The idea of transfer learning is to improve the per-
formance on the target task T 0 by learning from
a set of related source tasks {T 1, T 2, ..., T K}.
In the context of cross-lingual transfer, we treat
different languages as separate tasks, and our goal
is to transfer the task knowledge from the source
languages to the target language. In contrast to
the transfer learning case where the inputs of the
source and target tasks are from the same lan-
guage, in cross-lingual transfer learning we need
to handle inputs from different languages with
different vocabularies and syntactic structures. To
handle the issue, we use the pre-trained multi-
lingual BERT (Devlin et al., 2019), a language
model encoder trained on the concatenation of
monolingual corpora from 104 languages.

The most widely used approach to zero-shot
cross-lingual transfer using multilingual BERT is
to fine-tune the BERT model θ on the source lan-
guage tasks T 1...K with training objective L

θ∗ = Learn(L, T 1, ..., T K ;θ)

and then evaluate the fine-tuned model θ∗ on the
target language task T 0. The gap between training
and testing can lead to sub-optimal performance
on the target language.

To address the issue, we propose to train a meta-
optimizer fϕ for fine-tuning so that the fine-tuned
model generalizes better to unseen languages. We
train the meta-optimizer by

ϕ∗ = Learn(L, T k;MetaLearn(L, T 1...K\T k;ϕ))

where T k is a “surprise” language randomly se-
lected from the source language tasks T 1...K .

2.1 Meta-Optimizer
Our meta-optimizer consists of a standard opti-
mizer as the base optimizer and a set of meta-
parameters to control the layer-wise update rates.
An update step is formulated as:

θt = θt−1 − λ⊙∆θt

∆θt = fopt(g
1, ..., gt)

(1)

where θt represent the parameters of the learner
model at time step t, and ∆θt is the update vec-
tor produced by the base optimizer fopt given the

Algorithm 1: Meta-Training
Input: Training data {D1, ...,DK} in the

source languages, learner model M
with parameters θ, and meta-optimizer
with base optimizer fopt and
meta-parameters ϕ.

Output: Meta-optimizer with parameters ϕ.

1 s← 1

2 Randomly initialize ϕ0.

3 repeat N times

4 t← 1

5 Initialize θ0 with mBERT and random
values for the classification layer.

6 Randomly select a test language k to form
the test data Dtest = Dk.

7 Dtrain ← {D1, ...,DK} \ Dtest

8 repeat L times

9 Xt,Y t← random batch from Dtrain

10 Lt ← L(M(Xt;θt−1),Y t)
11 g1...t ← [g1...t−1,∇θt−1Lt]
12 ∆θt ← fopt(g

1, ..., gt)

13 θt ← θt−1 − σ(ϕs−1)⊙∆θt

14 t← t+ 1

15 end

16 X,Y ← Dtest

17 Ltest ← L(M(X;θt),Y )

18 ϕs ← Update(ϕs−1,∇ϕs−1Ltest)
19 s← s+ 1

20 end

gradients {gi = ∇θi−1Li}ti=1 at the current and
previous steps. The function fopt is defined by the
optimization algorithm and its hyper-parameters.
For example, a typical gradient descent algorithm
uses fopt = αgt where α represents the learning
rate. A standard optimization algorithm will up-
date the model parameters by:

θt = θt−1 − fopt(g
1, ..., gt) (2)

Our meta-optimizer is different in that we per-
form gated update using parametric update rates λ,
which is computed by λ = σ(ϕ), where ϕ
represents the meta-parameters of the meta-
optimizer fϕ. The sigmoid function ensures that
the update rates are within the range [0, 1]. Differ-
ent from Andrychowicz et al. (2016) in which the
optimizer parameters are shared across all coordi-
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Figure 1: Computational graph for the forward pass of the meta-optimizer. Each batch (Xt,Y t) is from the
training data Dtrain, and (Xtest,Y test) denotes the entire test set. The meta-learner is comprised of a base
optimizer that takes the history and current step gradients as inputs and suggests an update ∆θt, and the meta
parameters that control the layer-wise update rates λ for the learner model θ. The dashed arrows indicate that we
do not back-propagate the gradients through that step when updating the meta-parameters.

nates of the model, our meta-optimizer learns dif-
ferent update rates for different model layers. This
is based on the findings that different layers of
the BERT encoder capture different linguistic in-
formation, with syntactic features in middle layers
and semantic information in higher layers (Jawa-
har et al., 2019). And thus, different layers may
generalize differently across languages.

Figure 1 illustrates the computational graph for
the forward pass when training the meta-optimizer.
Note that as the losses Lt and gradients ∇θt−1Lt
are dependent on the parameters of the meta-
optimizer, computing the gradients along the
dashed edges would normally require taking
second derivatives, which is computationally
expensive. Following Andrychowicz et al. (2016),
we drop the gradients along the dashed edges and
only compute gradients along the solid edges.

2.2 Meta-Training

A good meta-optimizer will, given the training
data in the source languages and the training
objective, suggest an update rule for the learner
model so that it performs well on the target
language. Thus, we would like the training
condition to match that of the test time. However,
in zero-shot transfer we assume no access to the
target language data, so we need to simulate the
test scenario using only the training data on the
source languages.

As shown in Algorithm 1, at each episode in the
outer loop, we randomly choose a test language k
to construct the test data Dtest = Dk and use
the remaining data as the training data Dtrain.

Then, we re-initialize the parameters of the
learner model and start the training simulation.
At each training step, we first use the base
optimizer fopt to compute the update vector ∆θt

based on the current and history gradients g1...t.
We then perform the gated update using the
meta-optimizer ϕs−1 with Eq. (1). The resulting
model θt can be viewed as the output of a forward
pass of the meta-optimizer. After every L itera-
tions of model update, we compute the gradient of
the loss on the test data Dtest with respect to the
old meta parameters ϕs−1 and make an update to
the meta parameters. Our meta-learning algorithm
is different from X-MAML (Nooralahzadeh et al.,
2020) in that 1) X-MAML is designed mainly
for few-shot transfer while our algorithm is desig-
nated for zero-shot transfer, and 2) our algorithm
uses much less meta-parameters than X-MAML
as it only requires training the update rate for each
layer while in X-MAML we meta-learn the initial
parameters of the entire model.

3 Experiments

We evaluate our meta-learning approach on
natural language inference. Natural Language
Inference (NLI) can be cast into a sequence pair
classification problem where, given a premise
and a hypothesis sentence, the model needs to
predict whether the premise entails the hypothesis,
contradicts it, or neither (neutral). We use the
Multi-Genre Natural Language Inference Cor-
pus (Williams et al., 2018), which consists of 433k
English sentence pairs labeled with textual entail-
ment information, and the XNLI dataset (Conneau
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fr es de ar ur bg sw th tr vi zh ru el hi avg

Devlin et al. (2019) – 74.30 70.50 62.10 58.35 – – – – – 63.80 – – – –
Wu and Dredze (2019) 74.60 74.90 72.00 66.10 58.60 69.80 49.40 55.70 62.00 71.90 70.40 69.80 67.90 61.20 66.02
Nooralahzadeh et al. (2020) 74.42 75.07 71.83 66.05 61.51 69.45 49.76 55.39 61.20 71.82 71.11 70.19 67.95 62.20 66.28

Aux. language el el el el el el el el el el ur ur ur ur
Fine-tuning baseline 75.42 75.77 72.57 67.22 61.08 70.23 51.70 51.03 64.26 71.61 72.52 69.97 69.16 55.40 66.28
Meta-Optimizer 75.78 75.87 73.15 67.34 62.00 70.47 51.22 50.54 63.96 72.06 72.32 70.20 69.34 55.88 66.44

Aux. language: el + ur
Fine-tuning baseline 74.87 75.78 72.27 66.96 62.73 70.16 50.21 48.20 63.86 71.61 71.97 70.24 69.64 56.04 66.04
Meta-Optimizer 75.53 75.93 72.68 67.04 63.33 70.88 51.51 49.89 64.33 72.06 72.36 70.32 70.38 56.29 66.61

Table 1: Accuracy of our approach compared with baselines on the XNLI dataset (averaged over five runs). We
compare our approach (Meta-Optimizer) with our fine-tuning baseline with one or two auxiliary languages, the
fine-tuning results in Devlin et al. (2019), the highest scores (with a selected subset of layers fixed during fine-
tuning) in Wu and Dredze (2019), the best zero-shot results using X-MAML (Nooralahzadeh et al., 2020) with one
auxiliary language. We boldface the highest scores within each auxiliary language setting.

et al., 2018), which has 2.5k development and 5k
test sentence pairs in 15 languages including En-
glish (en), French (fr), Spanish (es), German (de),
Greek (el), Bulgarian (bg), Russian (ru), Turk-
ish (tr), Arabic (ar), Vietnamese (vi), Thai (th),
Chinese (zh), Hindi (hi), Swahili (sw), and
Urdu (ur). We use this dataset to evaluate the
effectiveness of our meta-learning algorithm
when transferring from English and one or more
low-resource auxiliary languages to the target
language.

3.1 Model and Training Configurations

Our model is based on the multilingual BERT
(mBERT) (Devlin et al., 2019) implemented in
GluonNLP (Guo et al., 2020). As in previous
work (Devlin et al., 2019; Wu and Dredze, 2019),
we tokenize the input sentences using WordPiece,
concatenate them, feed the sequence to BERT,
and use the hidden representation of the first to-
ken ([CLS]) for classification. The final output
is computed by applying a linear projection and a
softmax layer to the hidden representation. We use
a dropout rate of 0.1 on the final encoder layer and
fix the embedding layer during fine-tuning. Fol-
lowing Nooralahzadeh et al. (2020), we fine-tune
mBERT by 1) fine-tune mBERT on the English
data for one epoch to get initial model parameters,
and 2) continue fine-tuning the model on the other
source languages for two epochs. We compare us-
ing the standard optimizer (fine-tuning baseline)
and our meta-optimizer for Step 2. We use Adam
optimizer (Kingma and Ba, 2015) with a learning
rate of 2 × 10−5, β1 = 0.9, and β2 = 0.999 as
the standard optimizer and base optimizer in our

meta-optimizer. To train our meta-optimizer, we
use Adam with a learning rate of 0.05 for N = 10
epochs with L = 15 training batches per itera-
tion (Algorithm 1). Different from Nooralahzadeh
et al. (2020) who select the auxiliary languages
for each target language that lead to the best trans-
fer results, we simulate a more realistic scenario
where only a limited set of auxiliary languages
is available. We choose two distant auxiliary
languages – Greek (Hellenic branch of the Indo-
European language family) and Urdu (Indo-Aryan
branch of the Indo-European language family) –
and evaluate the transfer performance on the other
languages.

3.2 Main Results

As shown in Table 1, we compare our meta-
learning approach with the fine-tuning baseline
and the zero-shot transfer results reported in
prior work that uses mBERT. Our approach
outperforms the fine-tuning methods in Devlin
et al. (2019) by 1.6–8.5%. Compared with the
best fine-tuning method in Wu and Dredze (2019)
which freezes a selected subset of mBERT layers
during fine-tuning, our approach achieves +0.4%
higher accuracy on average. We compare our
approach with a strong fine-tuning baseline which
achieves competitive accuracy scores to the best
X-MAML results (Nooralahzadeh et al., 2020)
using a single auxiliary language, even though
we limit our choice of the auxiliary language
to Greek and Urdu, while Nooralahzadeh et al.
(2020) select the best auxiliary language among
all languages except for the target one. Overall,
our approach outperforms the strong fine-tuning
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fr es de ar ur bg sw th tr vi zh ru el hi avg

Meta-Optim 75.53 75.93 72.68 67.04 63.33 70.88 51.51 49.89 64.33 72.06 72.36 70.32 70.38 56.29 66.61
No layer-wise update 73.45 73.90 70.73 65.19 60.31 69.10 50.87 46.47 62.74 70.42 70.24 68.85 68.17 53.50 64.57
No cross-lingual meta-train 73.66 74.84 71.54 66.15 61.16 69.33 50.89 48.43 63.16 71.57 70.53 69.14 67.93 55.07 65.24

Table 2: Ablation results on the XNLI dataset using Greek and Urdu as the auxiliary languages (averaged over five
runs). Results show that ablating the layer-wise update rate or cross-lingual meta-training degrades accuracy on
all target languages.

baseline on 10 out of 14 languages and by +0.2%
accuracy on average.

Our approach brings larger gains when using
two auxiliary languages – it outperforms the fine-
tuning baseline on all languages and improves the
average accuracy by +0.6%. This suggests that our
meta-learning approach is more effective when
transferring from multiple source languages.1

3.3 Ablation Study

Our approach is different from Andrychowicz
et al. (2016) in that 1) it adopts layer-wise update
rates while the meta-parameters are shared across
all model parameters in Andrychowicz et al.
(2016), and 2) it trains the meta-parameters in
a cross-lingual setting while Andrychowicz et al.
(2016) is designated to few-shot learning. We con-
duct ablation experiments on XNLI using Greek
and Urdu as the auxiliary languages to understand
how they contribute to the model performance.

Impact of Layer-Wise Update Rate We com-
pare our approach with its variant that replaces
the layer-wise update rate with one update rate
for all layers. Table 2 shows that our approach
significantly outperforms this variant on all target
languages with an average margin of 2.0%. This
suggests that layer-wise update rate contributes
greatly to the effectiveness of our approach.

Impact of Cross-Lingual Meta-Training We
measure the impact of cross-lingual meta-training
by replacing the cross-lingual meta-training in our
approach with a joint training of the layer-wise
update rate and model parameters. As shown in
Table 2, ablating the cross-lingual meta-training

1Using two auxiliary languages improves over one aux-
iliary language the most on lower-resource languages in
mBERT pre-training (such as Turkish and Hindi), but
does not bring gains or even hurts on high-resource lan-
guages (such as French and German). This is consistent
with the findings in prior work that the choice of the auxil-
iary languages is crucial in cross-lingual transfer (Lin et al.,
2019). We leave further investigation on its impact on our
meta-learning approach for future work.

degrades accuracy significantly on all target lan-
guages by 1.4% on average, which shows that our
cross-lingual meta-training strategy is beneficial.

4 Related Work

4.1 Cross-lingual Transfer Learning
The idea of cross-lingual transfer is to use the an-
notated data in the source languages to improve
the task performance on the target language with
minimal or even zero target labeled data (aka zero-
shot). There is a large body of work on using
external cross-lingual resources such as bilingual
word dictionaries (Prettenhofer and Stein, 2010;
Schuster et al., 2019b; Liu et al., 2020a), MT sys-
tems (Wan, 2009), or parallel corpora (Eriguchi
et al., 2018; Yu et al., 2018; Singla et al., 2018;
Conneau et al., 2018) to bridge the gap between
the source and target languages. Recent advances
in unsupervised cross-lingual representations have
paved the road for transfer learning without cross-
lingual resources (Yang et al., 2017; Chen et al.,
2018; Schuster et al., 2019a). Our work builds
on Mulcaire et al. (2019); Lample and Conneau
(2019); Pires et al. (2019) who show that language
models trained on monolingual text from multiple
languages provide powerful multilingual represen-
tations that generalize across languages. Recent
work has shown that more advanced techniques
such as freezing the model’s bottom layers (Wu
and Dredze, 2019) or continual learning (Liu et al.,
2020b) can further boost the cross-lingual perfor-
mance on downstream tasks. In this paper, we ex-
plore meta-learning to softly select the layers to
freeze during fine-tuning.

4.2 Meta Learning
A typical meta-learning algorithm consists of two
loops of training: 1) an inner loop where the
learner model is trained, and 2) an outer loop
where, given a meta-objective, we optimize a
set of meta-parameters which controls aspects
of the learning process in the inner loop. The
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goal is to find the optimal meta-parameters such
that the inner loop performs well on the meta-
objective. Existing meta-learning approaches dif-
fer in the choice of meta-parameters to be op-
timized and the meta-objective. Depending on
the choice of meta-parameters, existing work can
be divided into four categories: (a) neural archi-
tecture search (Stanley and Miikkulainen, 2002;
Zoph and Le, 2016; Baker et al., 2016; Real et al.,
2017; Zoph et al., 2018); (b) metric-based (Koch
et al., 2015; Vinyals et al., 2016); (c) model-
agnostic (MAML) (Finn et al., 2017; Ravi and
Larochelle, 2016); (d) model-based (learning up-
date rules) (Schmidhuber, 1987; Hochreiter et al.,
2001; Maclaurin et al., 2015; Li and Malik, 2017).

In this paper, we focus on model-based meta-
learning for zero-shot cross-lingual transfer. Early
work introduces a type of networks that can up-
date their own weights (Schmidhuber, 1987, 1992,
1993). More recently, Andrychowicz et al. (2016)
propose to model gradient-based update rules us-
ing an RNN and optimize it with gradient de-
scent. However, as Wichrowska et al. (2017) point
out, the RNN-based meta-optimizers fail to make
progress when run for large numbers of steps.
They address the issue by incorporating features
motivated by the standard optimizers into the meta-
optimizer. We instead base our meta-optimizer on
a standard optmizer like Adam so that it general-
izes better to large-scale training.

Meta-learning has been previously applied
to few-shot cross-lingual named entity recogni-
tion (Wu et al., 2019), low-resource machine
translation (Gu et al., 2018), and improv-
ing cross-domain generalization for semantic
parsing (Wang et al., 2021). For zero-shot
cross-lingual transfer, Nooralahzadeh et al. (2020)
introduce an optimization-based meta-learning
algorithm called X-MAML which meta-learns
the initial model parameters on supervised data
from low-resource languages. By contrast, our
meta-learning algorithm requires much less meta-
parameters and is thus simpler than X-MAML.
Bansal et al. (2020) show that MAML combined
with meta-learning for learning rates improves
few-shot learning. Different from their approach
which learns layer-wise learning rates only for
task-specific layers specified as a hyper-parameter
as part of the MAML algorithm, our approach
learns layer-wise learning rates for all layers,
and we show the effectiveness of our approach

without being used with MAML on zero-shot
cross-lingual transfer.

5 Conclusion

We propose a novel meta-optimizer that learns to
soft-select which layers to freeze when fine-tuning
a pretrained language model (mBERT) for zero-
shot cross-lingual transfer. Our meta-optimizer
learns the update rate for each layer by simulating
the zero-shot transfer scenario where the model
fine-tuned on the source languages is tested on
an unseen language. Experiments show that our
approach outperforms the simple fine-tuning base-
line and the X-MAML algorithm on cross-lingual
natural language inference.
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