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Abstract

The proliferation of Hate Speech and misin-
formation in social media is fast becoming a
menace to society. In compliment, the dis-
semination of hate-diffusing, promising and
anti-oppressive messages become a unique al-
ternative. Unfortunately, due to its complex
nature as well as the relatively limited mani-
festation in comparison to hostile and neutral
content, the identification of Hope Speech be-
comes a challenge. This work revolves around
the detection of Hope Speech in Youtube com-
ments, for the Shared Task on Hope Speech De-
tection for Equality, Diversity, and Inclusion
(Chakravarthi and Muralidaran, 2021). We
achieve an f-score of 0.93, ranking 1st on the
leaderboard for English comments.

1 Introduction

With the rampant adoption of social media, prob-
lems like hostile speech detection have caught ex-
tensive attention in Natural Language Processing
(NLP) research (Chakravarthi et al., 2020; Mandl
et al., 2020; Chakravarthi et al., 2021; Suryawan-
shi and Chakravarthi, 2021). However, there has
been little work on the identification of text that
promotes positivity and social well-being. As so-
cial media becomes predominant in the daily lives
of people, it is crucial, not only to protect users
from hateful and discriminative content but also
encourage communication that triggers optimism
and hope. Such expression in a narrow sense may
be referred to as Hope Speech and its identification
in the digital space as Hope Speech Detection (Pu-
ranik et al., 2021; Ghanghor et al., 2021). However,
such a task is further challenging as the definition is
highly subjective and evolving. Neutral or Positive
content with no indication of hostility is not neces-
sarily a sufficient determinant. Advocacy of ideas
that promote social well-being, ethics, equality, in-
clusion, tolerance, diversity, a fair representation of

minorities, or either the appreciation or motivation
for an individual or a group, are a few indicators of
Hope Speech. Moreover, criticism of oppressive or
malicious elements of society may also fall under
such a category. Furthermore, one does not need
to express such beliefs with the present but may
incorporate past or future developments.

2 Related Work

Hope Speech Detection is a nascent research task
by (Palakodety et al., 2020). The authors proposed
automatic identification of positive web content
that may diffuse hostility on social media plat-
forms due to political tensions around the 2019
Pulwama Terror Attack1. The authors mined a mul-
tilingual (Hindi and English) corpus by scrapping
comments from Youtube videos related to the cri-
sis. The authors developed a comprehensive system
that took statistical NLP features: n-grams, along
with temporal sentiment scores. The system also
employed language identification using polyglot
FastText (Bojanowski et al., 2017), to achieve an
F1-score of 78.51 and 95.48 AUC. However, the
work differs from HopeEDI (Chakravarthi, 2020)
as it focuses on alleviation of tension and violence
and ignores other aspects of hope.

The study focuses on HopeEDI dataset as part
of the Shared Task on Hope Speech Detection for
Equality, Diversity, and Inclusion. We compare
our experimental outcomes with the results with
(Chakravarthi, 2020) as the baseline. Chakravarthi
(2020) employed TFIdf: token frequency-inverse
document frequency along with classifiers such as
Multinomial Naive Bayes, K-nearest neighbours,
Support Vector Machine, Decision Tree and Logis-
tic Regression. Decision tree delivered the highest
F-Score for English and Malayalam while Tamil
performed well with Logistic Regression. A more
thorough comparison occurs in Section 4.
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3 Experiments

The HopeEDI dataset consists of 3 languages: En-
glish, Tamil and Malayalam. The task can be ad-
dressed as a sequence classification problem with 3
class: Hope Speech, Not Hope Speech and Not be-
longing to the given language. Weighted F1 score
is employed as an evaluation metric over the 3
languages separately. Moreover, Tamil and Malay-
alam consist of text samples in romanized and na-
tive scripts. This section describes the experiments
conducted for the task and states their outcomes
over the validation set.

3.1 Transfer Learning

Customarily, models involving NLP Tasks were
trained after random initialization of the network
parameters. In Transfer Learning, a neural network
is fine-tuned on a particular task after being pre-
trained on a general task enabling a given neural
network to converge faster and lesser amount of
data. Originally, transfer learning has been mainly
linked with the fine-tuning of deep learning models
trained on the ImageNet dataset(Deng et al., 2009).
Recently, the field of NLP has witnessed the emer-
gence of various transfer learning techniques and
architectures which considerably improved upon
the state-of-the-art on a wide array of NLP tasks.
Transfer learning can be employed for applications
where there is a lack of availability of sufficient
training data. The target dataset should ideally
be related to the priorly trained dataset for effec-
tive learning. This nature of training is generally
attributed as Semi-Supervised training where the
network is first trained as a language model on
a comprehensive dataset followed by supervised
training on a labelled training dataset.

We evaluate such models for the task of hostility-
diffusing speech detection, trained over a batch size
of 128 over 4 epochs. For English, we experiment
with BERT(Devlin et al., 2019) and RoBERTa(Liu
et al., 2019).

Model F1-Score
BERT-base-cased 0.9230
BERT-large-cased 0.9253
RoBERTa-base 0.9313
RoBERTa-large 0.9261

Table 1: Weighted F1 score over English Validation Set

3.2 Paraphrasing is not always Adversarial

Adversarial perturbations attempt to fool models
by feeding deceptive input. In general, when a data
sample is perturbed, they appear to maintain the
same fidelity for humans but manage to get the
confuse model prediction. The model mispredicts
the target for the perturbed sample as opposed to
predicting correctly in the original scenario.

Paraphrasing(Lei et al., 2019) is one such attack
that preserves both semantic meaning and syntac-
tically validity as well as transforms text into suit-
able replacements. However, we apply an earlier
variation of sentence-level paraphrasing(Mallinson
et al., 2017) as a means for language-targetted data
augmentation.

Figure 1: Paraphrase Generation

In this approach, we consider Dutch as the trans-
lating language. Both English and Dutch fall under
the West Germanic hierarchy of Proto-Germanic
languages, with English being Anglo-Frisian and
Dutch being Netherlandic-German. Therefore, by
choosing a similar language, the generated para-
phrases do not lose much semantic meaning but
add variability for effective data augmentation. It
may noted, this approach cannot be extended to
other languages in the task such as Malayalam and
Tamil, because translation method (googletrans)
employed cannot handle romanized and transliter-
ated text effectively.

Approach F1-Score
BERT + Paraphrasing Aug. 0.90
RoBERTa + Paraphrasing Aug. 0.90

Table 2: Weighted F1 score over Test Sets using Para-
phrasing Data Augmentation
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4 Results

Following are described results of the task evalu-
ated over the test set. Our system ranked 1st over-
all with F1-Score of 0.93 for English, and 4th for
Malayalam with 0.78 F-Score.

Model F1-Score
Baseline (Chakravarthi, 2020) 0.90
roBERTa-base 0.90
BERT-large-cased 0.88

Table 3: Weighted F1 score over English Test Set

Model F1-Score
Baseline (Chakravarthi, 2020) 0.73
mBERT-cased 0.81
XLM-RobERTa-Large 0.81

Table 4: Weighted F1 score over Malayalam Test Set

5 Conclusion

In this work, we present a simple means of Hope
Speech Identification using Pre-trained transform-
ers and Paraphrasing Generation for Data Augmen-
tation. Our future work shall concentrate on inter-
pretability, specifically answering questions like
what makes a text an instance of Hope Speech.
Moreover, we will attempt to couple more modali-
ties with text, such as audio recording and images
or even video clips that collectively promote hope
speech.
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