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Abstract

Languages evolve over time and the meaning
of words can shift. Furthermore, individual
words can have multiple senses. However, ex-
isting language models often only reflect one
word sense per word and do not reflect seman-
tic changes over time. While there are lan-
guage models that can either model semantic
change of words or multiple word senses, none
of them cover both aspects simultaneously. We
propose a novel force-directed graph layout al-
gorithm to draw a network of frequently co-
occurring words. In this way, we are able
to use the drawn graph to visualize the evolu-
tion of word senses. In addition, we hope that
jointly modeling semantic change and multi-
ple senses of words results in improvements
for the individual tasks.

1 Introduction

Language is dynamic and constantly evolving
which leads to changes in the context in which
individual words are used and thereby shifting the
meaning of words over time. In addition to this
semantic change, novel words are introduced or ex-
isting words get additional meanings. On the other
hand, certain old word meanings can also disap-
pear from active usage in a language. This results
in multiple word senses per word which in turn
can change or shift their meaning over time. Cur-
rent language models typically do not reflect the
dynamic and multi-sense aspect of words. There
are approaches which tackle one of the aspects, for
example, multiple senses (Reisinger and Mooney,
2010) or semantic change (Hamilton et al., 2016).

Static word embeddings, such as
word2vec (Mikolov et al., 2013), can only
reflect the prevalent meaning a the word as it
appears in the training data. Contextualized word
embeddings, such as BERT (Devlin et al., 2019),
circumvent this issue by including the surrounding

words for each usage of the word. However,
by using this approach, the representation of a
word has to be computed for each time it appears.
Furthermore, these models cannot inherently tell
which or even how many different senses a word
has or how it changed over time.

The boundary between a new word sense and a
shift in meaning is blurred. To illustrate this, con-
sider the term “rock”. It has various meanings, e.g.,
in the context of geology: stone and in the context
of music: genre. But those individual meanings are
not static. Rock music in the 1960’s is a lot differ-
ent compared to rock in the 1990’s, for example.
Nevertheless, in this case we would argue that the
meaning has evolved — the context of usage has
changed, and not that there was a new sense added.
The problem naturally decomposes into two parts:
identifying a sense for a given word in context and
tracking the shift in meaning over time.

In this work, we propose a novel data-driven ap-
proach that can reflect multiple senses of words as
well as how word senses change by jointly mod-
eling different senses over time. We deliberately
refrain from defining the senses of a word to be able
to also model subtle nuances of different contexts
and word usage. To do so, we define a special force-
directed graph layout algorithm to align networks
of frequently co-occurring words. By modeling
words as nodes and connecting co-occurring words
via edges, we create a web of language (Dorogovt-
sev and Mendes, 2001). The algorithm explicitly
models multiple word senses by dividing the input
data into time slices and duplicating nodes to ac-
commodate changing co-occurrence frequencies.
The resulting network layout allows for easy inter-
action and can be easily explained and understood.
This is in contrast to complex embedding models,
which function as a black box and are hard to under-
stand intuitively. With this approach, we model the
problems of word sense induction and evolution as
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a kind of community detection task within a graph.
But instead of defining a clustering over the nodes,
we propose to visualize the relatedness of words
using a force-directed graph layout approach.

2 Related Work

Modeling language as a graph has a long tradi-
tion (Dorogovtsev and Mendes, 2001; Mihalcea
and Radev, 2011; Cong and Liu, 2014; Nastase
et al., 2015). We propose to employ word co-
occurrence graphs to jointly solve the problems
of multiple senses and diachrony. Accordingly,
related work can be split into word sense disam-
biguation, word sense evolution, and approaches
that combine both tasks.

Current state-of-the-art models to represent
words make use of embeddings. Contextualized
word embeddings, such BERT, account for differ-
ent word senses by computing individual vectors
for a word based on its context. Classical, static
word embeddings, such as word2vec, use a sin-
gle vector to represent an individual word. This
is problematic because they fail to capture poly-
semy. Reisinger and Mooney (2010) presented a
multi-prototype vector-space model (VSM). The
meaning of a word is represented as a set of sense
specific vectors. Based on that, Huang et al. (2012)
developed a neural network architecture that learns
multiple word embeddings per word. However,
both of these approaches use a fixed number of
clusters, even though different words might have
a different number of senses. Brody and Lapata
(2009) use a model based on latent Dirichlet alloca-
tion (LDA) to solve the word sense induction (WSI)
problem. While this approach uses a fixed num-
ber of senses across all words, Lau et al. (2012)
combine LDA with a varying number of senses
per word. However, this approach requires prior
knowledge of the number of senses per word. Hier-
archical Dirichlet process (HDP), an extension of
LDA, can learn the number of topics (or senses in
this case) from the data automatically.

Besides the work on detecting word senses, there
is also a plethora of work on diachronic model-
ing of word senses. Kim et al. (2014) separated
a text corpus into multiple time slices and trained
a model on each time slice to get different word
embedding models over time. Diachronic word
embeddings were investigated by aligning embed-
dings trained on consecutive time slices (Hamilton
et al., 2016). Bamler and Mandt (2017) developed

the concept of dynamic word embeddings. Each
document has a timestamp. This allows the word
embeddings to change over time. Unlike previous
approaches, a single model is used to derive the
shifts of word embeddings over time. One advan-
tage of such an approach is that the complete train-
ing data can be used for one single model. While
these papers focus on shifts of words over time,
they do not discover if a word has multiple senses.
Spitz and Gertz (2018) use a network to model
the co-occurrence of terms in documents. Terms
that are co-occurring together are connected by an
edge. Topics are discovered by finding edges of
frequently co-occurring terms. For each document,
the publication time is stored which allows filtering
the results by a given time span. Gad et al. (2015)
use a layout with multiple vertical line segments
to visualize the trends of topics over time. Each
vertical line segment corresponds to a time slice.
For each time slice, the topic distribution is calcu-
lated. Common terms of the underlying topics are
grouped together and plotted on the vertical line
segments. This visualization shows how different
topics split up or converge over time. Very recently,
SemEval-2020 (Schlechtweg et al., 2020) featured
a task for unsupervised lexical semantic change
detection, which has led to a plethora of diachronic
approaches.

Mitra et al. (2014) use co-occurrence networks
to find changes in word senses over time. They
distinguish between four different types of the evo-
lution of language senses: the birth of new sense;
splits of a sense; joins of senses; death of senses.
Candidate nodes for splits are computed with a
distributed thesaurus. For each candidate node, a
clustering algorithm is run on the neighborhood
graph. Each cluster represents a sense of the term
associated with the candidate node. As shown by
Ehmüller et al. (2020) however, matching clusters
across more than two or three time slices causes
problems such as sense shifting when matching
partially overlapping clusters. Hu et al. (2019) use
deep contextualized embeddings to track the senses
of words over time. For each word, the distribution
of the senses is calculated on a temporal slice of
the corpus. Over time, these distributions show
which senses gain or loose importance. While this
approach tracks the senses over time, it does not
discover them. Instead, the senses are extracted
from the Oxford dictionary.
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3 Force-Direct Graph Layout Algorithm

In this section we describe our force-directed graph
layout algorithm for a network of co-occurring
words. In this network, each node corresponds
to a word in the vocabulary. We first split the cor-
pus in to disjunct sets of documents based on their
publication date to create partial corpora across
time. For each set, we compute a network of fre-
quently co-occurring words, where the weighted
edges represent the frequency of how often words
appear in the same context. In our preliminary ex-
periments, we saw promising results by limiting
the vocabulary to nouns and using sentences as con-
text windows. In future work, we intend to com-
pare the raw co-occurrence frequencies to more
sophisticated measures, such as pointwise mutual
information (PMI). We call the sub-networks for
individual time periods period graphs and edges
within each period graph intra-edges. We connect
nodes representing identical words in neighboring
period graphs with inter-edges. All edges are undi-
rected.

Force-Directed Layout. Our layout algorithm is
inspired by traditional force-directed algorithms.
Attractive and repulsive forces are applied on nodes
based on their edges and on their proximity to other
nodes on a two-dimensional canvas. During the lay-
out process, the positions are iteratively updated
to minimize the aggregated forces. Traditionally,
nodes are allowed to move freely in both dimen-
sions.

We restrict this layout as follows. We assign
each period graph to equidistant vertically aligned
parallel axes, which are ordered from left to right
according to their time period. Nodes of each pe-
riod graph are only allowed to move along their re-
spective axis similar to arc diagrams (Saaty, 1964).
All other concepts of traditional force-directed lay-
out algorithms remain the same. As two nodes
connected by an intra-edge move further apart on
the axis of their respective layer graph, the attrac-
tive force grows. Repulsive forces between nodes
prevent that all nodes are clustered together. Addi-
tionally, we introduce another force to reduce the
angle of inter-edges.

Figure 1 illustrates a period graph. Initially,
nodes are placed randomly along the axis. As a
result, some of the edge span long distances. The
positions are then iteratively updated until they con-
verge. As shown in Figure 1b, connected compo-
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Figure 1: Hand-crafted example of a period graph on
initialization and after running our layout algorithm.

nents are clearly separated and all edge lengths are
minimal.

Formally, we define the forces between nodes as
follows. Let Vt be the set of nodes of the period
graph for time slice t and Pv the position along the
vertical axis for node v. The updated position of
each node in each period graph in an iteration is
defined as

Pv := Pv + ψ
(
αFintra + (1− α)Finter − Fr

)
where ψ is the learning rate and Fintra, Finter and
Fr are the forces between nodes in the current
layout. We add α to balance the attractive forces
within and between different period graphs. The
forces acting on node v are defined as

Fintra :=
∑

u∈Nt(v)

k × w({u, v})× (Pu − Pv)
2.

where w({u, v}) is the edge weight and Nt(v) is
the set of nodes directly connected to v in the cur-
rent period graph and Nt+1(v) is the set of neigh-
bor nodes of v from the next period graph. Cor-
responding nodes in different period graphs are
vertically aligned by

Finter :=
∑

v′∈Nt−1(v)∪Nt+1(v)

k

(Pv′ − Pv)2
.

We use k as a parameter to control the overall
strength of the forces in our system. In physics, this
k is a proportionality constant called Coulomb’s
constant (Gerthsen, 2006). The value of k is pro-
portional to the electric permittivity of the charged
particles in a vacuum. As in other force-directed
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Figure 2: Hand-crafted example to illustrate a resulting
layout over three time slices of our proposed approach.

graph layout algorithms, we use a repulsive force
to prevent overlapping nodes:

Fr :=
∑
u∈Vt

k

(Pu − Pv)2

We limit the calculation of repulsive forces between
all pairs of nodes to nodes from the same period
graph.

Representing Multiple Meanings. Thus far, we
described a layout for a graph based on a fixed
vocabulary with only one meaning for each word.
To reflect multiple senses of a word, we allow the
addition of duplicate nodes in a period graph. Dur-
ing the iterative updates of the graph layout, words
with multiple senses will cause significantly more
stress in the force-directed layout than others. This
is due to the fact, that they are associated with dif-
ferent domains, which are likely located far from
one another.

We use this to our advantage to discover am-
biguous words. First, we run the layout algorithm
as described above until it converges. We call
the resulting layout our initial layout. In force-
based graph drawing algorithms, some nodes in-
duce higher forces on connected or surrounding
nodes, causing significant stress in the graph. We
identify such nodes duplicate them when the forces
of the connecting edges exceed a certain threshold,

which will be determined experimentally. Let node
v be such an ambiguous word, then we split it into
two nodes v′ and v′′. The intra-edges that were
previously incident to v are replaced by

∀v̂ ∈ Nt(v) :

{
(v̂, v′), if Pv̂ > Pv

(v̂, v′′), otherwise.

Afterwards, we add inter-edges to connect v′ and
v′′ to their respective nodes in the previous and
following period graphs. This splitting operation
can be repeated for the same word again to reflect
more than two meanings.

Figure 2 shows an example of the layout be-
fore and after adjustment for multiple meanings of
words and balancing the forces. Over time, the vo-
cabulary expands and a new meaning of the word
“mouse” appears in the context of computers. Note,
that in the early days of computing, mice were
not used as input devices yet, thus the new sense
surfaces only in the last time slice.

4 Evaluation Plan

Word sense detection is hard to evaluate given the
lack of annotated ground truth data (Usama et al.,
2019). General thesauri could be used but only
for the period graph for the latest time slice. To
our knowledge, there are no established datasets to
evaluate both, the multi-sense aspect of a model, as
well as the dynamic evolution of senses. Thus, it
is necessary to evaluate our approach with respect
to both aspects individually and compare results to
respective state-of-the-art approaches.

Evaluation of Word Similarities. Even though
our proposed algorithm focuses on word sense de-
tection, the underlying co-occurrence network can
as well be used for other analysis tasks, e.g., word
similarity. The vicinity of nodes in a period graph
should roughly compare to the neighborhood of
vectors in word embeddings trained or fine-tuned
on the same set of documents of one time slice.

Evaluation of the Number of Senses. The
Merriam-Webster dictionary stores metadata for
its entries, e.g., a section “First Known Use of . . . ”,
which lists the year where a sense of that word was
first used. Unfortunately, this information does not
exist for all entries. However, we can use the exist-
ing ones to estimate how well our model performs
in finding senses for a specific time period. In
addition, manually created thesauri, such as Word-
Net (Miller, 1995), can also be used.
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Contextualized Word Representations State-
of-the-art embedding models, such as BERT, com-
pute the representation of a word based on the con-
text it appears in. A competitive baseline could be
based on contextual word embeddings. Using a
pre-trained model, we apply it to each appearance
of a word in a corpus. Each meaning of a word
should form a cluster of contextual embedding vec-
tors. By doing this for every time slice, we can
compare the number of clusters and their similarity
neighborhoods to the layout of our graph.

Qualitative Evaluation of Selected Word Sense
Changes. In a collaboration with digital humani-
ties experts, we developed a use case for a qualita-
tive evaluation by analyzing the different contexts
of mentions of natural phenomena in German fic-
tion novels. This allows to qualitatively compare
selected parts of our layout to expected changes dis-
cussed in relevant literature on digital eco-criticism.

5 Conclusion

In this paper, we proposed a novel approach for a
multi-sense time-sensitive word similarity model.
As it is based on a force-directed graph layout
of aligned co-occurrence networks, it allows di-
rect and intuitive interpretation as opposed to most
black box embedding models. In future work, we
are developing the model further and plan to per-
form an extensive evaluation as discussed in Sec-
tion 4. To this end, we will compare our model to
existing state-of-the-art language models for word
sense disambiguation and evolution, as well as to
community detection methods working on graphs.
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