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Abstract

We present a method to support the annotation
of head movements in video-recorded conver-
sations. Head movement segments from an-
notated multimodal data are used to train a
model to detect head movements in unseen data.
The resulting predicted movement sequences
are uploaded to the ANVIL tool for post-
annotation editing. The automatically identi-
fied head movements and the original annota-
tions are compared to assess the overlap be-
tween the two. This analysis showed that move-
ment onsets were more easily detected than off-
sets, and pointed at a number of patterns in the
mismatches between original annotations and
model predictions that could be dealt with in
general terms in post-annotation guidelines.

1 Introduction

Communicative gestures, such as head movements,
gaze and hand gestures, are important in face-to-
face communication, where they provide relevant
and non redundant information that must be pro-
cessed together with speech (Kendon, 2004). The
automatic annotation of gestures is still problematic
while their manual annotation is challenging and
resource intensive.

Head movements are the most frequent gesture
type and their importance as feedback and turn man-
agement signals has been recognised in numerous
studies (Duncan, 1972; Hadar et al., 1983; McClave,
2000; Heylen et al., 2007; Allwood et al., 2007). For
this reason, the automatic identification of the most
frequent types of head movement has often been
addressed as a component in multimodal systems
where humans communicate with software agents
or robots (Morency, 2009; Germesin and Wilson,
2009; Türker et al., 2018).

Many factors influence the frequency and type of
gestures produced by speakers, e.g. the language
(Navarretta et al., 2011) and the communicative set-

ting. Therefore, it is important to have reliably an-
notated data of conversations in different languages
and contexts. There are a wealth of video-recorded
monologues and conversation on the internet that
could be used for multimodal analysis. However, al-
though several projects have developed multimodal
data annotated with gestural information (for a dis-
cussion, see Wagner et al., 2014), few of these ef-
forts have yet resulted in freely available annotated
corpora for multiple languages such as in Koutsom-
bogera and Vogel (2018). In parallel with this work,
the linguistics community interested in co-speech
gesture has created and annotated many multimodal
data collections, but typically for experimental pur-
poses and thus in very specific contexts (Holler,
2013).

In the NLP community there is a growing interest
for multimodal sentiment analysis, in which visual
and acoustic features are used to analyse sentiment
and emotion in video data (Zadeh et al., 2017; Soley-
mani et al., 2017). The data collections used for this
task are consequently annotated with sentiment and
emotion labels, not with gestural information. A
recent example is the CMU-MOSEI corpus (Zadeh
et al., 2018).

This paper describes work aimed to support the
annotation of head movements in video-recorded
spontaneous conversations. More specifically, we
propose a method in which automatically identified
head movement segments from dyadic conversa-
tions are uploaded to the ANVIL multimodal an-
notation tool (Kipp, 2004), from which human an-
notators will be able to correct them. To assess
how demanding it would be for human annotators
to work with the system’s suggestions, we compare
the automatically identified head movements with
manually annotated ones from the same corpus, and
present both quantitative and qualitative analyses
of this comparison. Finally we discuss possible
improvements of the system and future work.
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In section 2 we present background and related
studies; in section 3 we describe the corpus, partic-
ularly the head movement annotations; in section 4
we give a succinct account of the method used to
train models that predict head movements; in sec-
tion 5 we analyse the results in terms of how well
they match what the human annotators did; finally,
in section 6 we summarise our results and suggest
some feature perspectives.

2 Related Studies

The automatic identification of head movements
can be based on the use of different tracking sys-
tems, e.g. looking at the coordinates provided by
Kinect (Wei et al., 2013) or by various eye-tracking
systems (Al-Rahayfeh and Faezipour, 2013). A
number of researchers have worked with automatic
detection of head movements in video-recordings
of human-human and human-robot conversations,
and the results of these studies have been evalu-
ated using the manual annotations of the relevant
movements. Two main approaches have been used.
In the first one, computer vision techniques have
been applied (Murphy-Chutorian and Trivedi, 2009;
Gavrila, 1999), but most of these attempts have
posed certain requirements to the quality, light and
settings of the videos. The second approach con-
cerns training various classifiers on automatically
extracted visual and, possibly, audio features. For
the visual features the two freely available systems
OpenCV1 and OpenPose2 have been used, while
audio features have been extracted via different sys-
tems. The focus of the majority of these studies
has been that of determining the best visual and
auditory features and the most effective classifiers
for the task (Morency et al., 2005, 2007; Morency,
2009; Germesin and Wilson, 2009; Jongejan et al.,
2017; Frid et al., 2017; Ambrazaitis and House,
2017; Paggio et al., 2020).

Only a couple of studies have addressed the inte-
gration of automatically identified head movements
in annotation tools. Jongejan (2012) integrated
the OpenCV facetracker into ANVIL to support
head movement annotation for users of that system.
The Max Planck Institute for Psycholinguistics and
the Fraunhofer institutes HHI and IAIS developed
AVAtech (Lenkiewicz et al., 2012), a gesture recog-
niser which is integrated into the ELAN multimodal

1https://opencv.org/
2https://github.com/

CMU-Perceptual-Computing-Lab/openpose

annotation system (Wittenburg et al., 2006). The
recogniser identifies head movements and hand ges-
tures in videos. The system is based on skin recog-
nition and other computer vision techniques, and
therefore only works when videos follow specific
requirements with respect to video quality, back-
ground colour, position of the speaker(s) and light.
The system works best in cases when only one
speaker is recorded and both face and hands can
clearly been seen. When successful, AVAtech gen-
erates a video where the gestures are marked, and
ELAN tracks with the head and gesture annotations
given certain specifications. The system is not being
further-developed, but it is still an integrated part of
ELAN. We tested the recogniser on our data, but it
failed to process the videos because of their quality,
and in some cases, their format.

Given this background, additional efforts are
needed to provide the research community with
more and better automatic support for the creation
of gestural annotation of conversational data.

3 The corpus

The corpus used in our study is the Danish NOMCO
corpus of first encounter dialogues (Paggio and
Navarretta, 2016), which consists of twelve spon-
taneous conversations between young people (six
males and six females) of about five minutes each,
for a total recording time of approximately one hour.
Each participant took part in two dialogues with per-
sons of different genders. During the encounters,
the participants were standing facing each other and
were recorded by three cameras. For this study we
used recordings in which two frontal views of the
participants are joined as shown in Figure 1.

Figure 1: Screenshot from one of the NOMCO dia-
logues: split view

The videos were transcribed and annotated in
many different ways using the ANVIL tool, and
following the guidelines provided by the MUMIN

https://opencv.org/
https://github.com/CMU-Perceptual-Computing-Lab/openpose
https://github.com/CMU-Perceptual-Computing-Lab/openpose
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Figure 2: Screenshot of the ANVIL annotation board with manually and automatically annotated head movement
sequences outlined in red and green, respectively

coding scheme for formal and functional annotation
of gestural behaviour (Allwood et al., 2007). This
study is concerned with the formal annotation of the
speakers’ head movements, for which the coding
scheme provides the following labels: Nod, Up-nod,
Shake, HeadBackward, HeadForward, SideTurn,
Tilt, Waggle and HeadOther. A head movement
is annotated by defining start and end point of the
movement on the tool’s annotation board, and by
picking one of the labels.

The linguistic context was taken into account in
order to select and annotate only those head move-
ments that were judged to have a communicative
function. To familiarise themselves with the anno-
tation scheme and guidelines, the three annotators
involved went through an initial training exercise
in which they annotated the gestures in one video
together, and discussed all disagreements with one
another and with two expert researchers. After that,
they annotated a second video independently and
their mutual agreement was measured.

The inter-coder agreement for identification and
classification of head movements reached a Cohen’s
kappa score in the range 0.72-0.8 (Navarretta et al.,
2011). To produce the final version of the annota-
tions, all disagreements were adjudicated by involv-
ing an expert annotator.

The annotations have been used in numerous
studies addressing aspects such as the identification
of feedback and turn-taking signals given through
head movements and facial expressions (Paggio
and Navarretta, 2011; Navarretta and Paggio, 2013).
The manual annotations of head movements, as well
as of other gesture types, are available for research3.

3https://cst.ku.dk/projekter/
the-danish-nomco-corpus/

4 Automatic detection of head movement

In this section we summarise the method we use for
the automatic detection of head movements. A more
detailed explanation and discussion is provided in
Paggio et al. (2020).

The manual annotations of head movements were
used as a basis for training a classifier to detect
the presence of head movement in a frame-wise
fashion. To create a speaker-independent model, the
classifier had to detect movement for each speaker
after having being trained on the data from the other
eleven participants following a leave-one-out cross
validation strategy.

The training data consisted of visual, acoustic and
textual features. OpenPose (Cao et al., 2018) was
used to extract nose tip positions from the data. For
each of these positions we include both the carte-
sian (x and y) and polar (radius and angle) coordi-
nates, thus, four different scalar values. We then
calculate velocity, acceleration and jerk of these
positions by computing the first, second and third
order derivatives, using the previous 9, 11 and 13
frames, respectively. We include these three orders
of derivatives, resulting in a total of twelve visual
features.

Intensity and pitch measurements were extracted
from the audio files using PRAAT (Boersma and
Weenink, 2009). Finally, head movement labels, as
well as word information, were extracted from the
annotations.

As a result, for each frame in each video a vector
was created with labels expressing presence/absence
of movement and the head movement class; velocity,
acceleration and jerk features; pitch and intensity
values referring to the gesturer; and finally a bi-
nary feature expressing whether the same gesturer
is speaking or not.

Several classifiers were tested on the data. The

https://cst.ku.dk/projekter/the-danish-nomco-corpus/
https://cst.ku.dk/projekter/the-danish-nomco-corpus/
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best performing one was a Multilayer Perceptron
(MLP) with 4 layers, which achieved an average
accuracy across the twelve speakers of 0.730 and
an F1 score of 0.684 (macro average).

The frame-wise head movement predictions were
combined into sequences by conjoining directly ad-
jacent frames for which a positive movement value
had been assigned by the predictor and mapped
onto the XML format necessary to read them into
the ANVIL tool as independent tracks. In this way,
a comparison could be carried out between the man-
ual and the automatic annotations.

Figure 2 is a screenshot of the ANVIL annotation
board visualising an excerpt of the annotation with
tracks for one of the speakers (Speaker A). There
are eight tracks corresponding to i) the speech tran-
scription, ii-iv) the manual annotations of facial
expressions, head movements and body posture,
v) the head movement annotations detected by the
MLP classifier, and vi-viii) the values for movement
velocity, acceleration and jerk. The two tracks of
interest here are the ones containing the manually
annotated head movements, a sequence of which
has been highlighted in red, and the correspond-
ing automatically derived head movement elements,
marked in green. In this example, we see that three
head movements in the former track roughly corre-
spond to three larger and two smaller elements in
the latter. There are also, however, two additional
predictions in the middle of the sequence which
do not overlap with any annotated movement. In
a scenario in which a new annotation task has to
be produced, only the elements suggested by the
model would be available, making it possible for an
annotator to revise these suggestions as needed.

To get an impression of how much and what type
of revision may become necessary, in the next sec-
tion we look more closely at how well the two an-
notation tracks correspond to one other.

5 Analysis of results

5.1 Overlaps between manual and automatic
annotations

The total number of annotated head movements in
the Danish NOMCO corpus is 3117. The number of
movement sequences predicted by the MLP binary
classifier, however, is 7827.

The mean duration of an annotated movement se-
quence is 935 ms (sd: 579) while the mean duration
of a predicted movement is 286 ms (sd: 370). Thus
the model predicts a much higher number of shorter

Figure 3: Distribution of the duration of head move-
ments in the manual annotations vs model predictions

movements compared to the movement sequences
identified by the human annotators. The duration
distribution of annotated vs predicted movement is
visualised in a combined boxplot in Figure 3. It
is evident that the predicted movements are much
shorter on average, however there are also large
numbers of outliers in the upper end of both plots.

Figure 4: Number of overlaps in annotated and pre-
dicted head movements

To reach a general understanding of the way the
two sets of movements relate to one another in terms
of alignment, overlaps between annotated and pre-
dicted movement sequences were extracted. There
are multiple overlaps between the annotated and the
predicted movement sequences, such that 2685 of
the annotated sequences (86%) overlap with one
or more predicted ones. Conversely, 4191 of the
predicted sequences (53%) overlap with an anno-
tated movement. In other words, the model has
quite good recall, but also generates a relatively
high number of false positives (predictions that do
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Overlaps per Annotated elements Total predicted
annotation # % elements
One 1234 46 1234
Two 751 28 1502
Three 385 14 836
Four 209 8 285
Five 57 2 126
Six-Nine 49 2 208
Total 2685 100 4191

Table 1: Breakdown of number of overlaps per move-
ment annotation

not overlap with manual annotation). A visualisa-
tion is provided in Figure 4.

Table 1 shows a breakdown of the overlaps. The
table summarises how many annotated movements
overlap with one predicted movement, two of them,
three and so on. As can be seen, in the vast majority
of cases (88%), an annotated movement overlaps
with 1-3 predicted movement sequences. The exam-
ple displayed in Figure 2 shows one such situation,
in which three annotated elements correspond to
five predicted ones. In 12% of the cases one anno-
tation corresponds to more than three predictions,
and marginally (only two cases in fact) to as many
as nine different predicted elements.

For each annotated head movement that over-
lapped with some predicted movement, the longest
overlap of at least 0.01 ms was then extracted. This
generated a list of 2661 overlaps. The average
duration of the longest overlaps is 445.83 ms (sd:
317.06).

Figure 5: Overlap alignment at onset and offset points

None of these overlaps are complete. In other
words, in no case does an annotated movement
align completely both at onset and offset with a
predicted one. To investigate whether the longest
overlaps predicted by the model align better at onset
or offset, we calculated the differences at start and
end points between the annotated and the predicted
movement for each overlap. The result is two lists
of misalignments, which are visualised by means of

a combined density plot in Figure 5.
The onset misalignment is -68 ms on average (sd:

500), indicating that the overlapping predicted se-
quence tends to start slightly after the annotated one
(start of annotated − start of predicted). In compar-
ison, the mean offset misalignment is 232 ms (sd:
613), indicating that the offset of the overlapping
predicted sequence tends to occur earlier than the
offset of the corresponding annotated movement
(end of annotated − end of predicted). In other
words, annotated and predicted movements align
better at onset than at offset, albeit with consider-
able variation. The difference is significant on a
Wilcoxon rank sum test (W = 2019582, p-value <
2.2e-16).

Here we advance some conjectures for why on-
sets may be easier for the model to detect. Predict-
ing the offset of a movement may be more difficult
due to inherent characteristics of head movements,
and perhaps gestural movements in general, with
movements petering out in a way that makes it diffi-
cult to distinguish the exact end point. An additional
difficulty may also be due to movements containing
holds, where the human annotators would consider
such a hold part of a movement which has not yet
come to an end, whereas automatic detection would
probably divide such a movement up in several se-
quences. In fact in a number of cases, the offset mis-
alignment is due to the fact that multiple sequences
overlap with the tail of the annotated movements.

5.2 Comparing manual and automatic
annotations: a qualitative analysis

In this section, we present a qualitative comparison
of the manual and automatic annotations in ANVIL,
focusing on the annotations of the head movements
of one participant in a randomly chosen video. We
distinguish four different situations in which there
are differences between an annotated movement
sequence and what should be the corresponding
predicted one.

We start with cases in which head movements
identified by the model were not annotated by the
coders. There are several explanations for this dif-
ference between the two types of annotations:

a. The participant moves the head, but the gesture
has not been annotated because it does not
have a clear communicative function, e.g. the
participant moves the head to look at the other
speaker immediately before they shake hands
at the beginning of the interaction.
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b. The participant moves the whole body or her
shoulders and the head moves with the rest of
the body/upper body. In such cases, the anno-
tators were instructed to code the movement
as a body posture shift.

c. A non-movement is identified as a movement
by the system (true error).

The discrepancy explained under (a) is due to
the annotation guidelines adopted in the NOMCO
project (op. cit.), in which a basic distinction be-
tween communicative and non-communicative ges-
tures was adopted. An automatic annotator could
not be expected to make such a distinction, and in
fact other annotation projects may take a different
approach to this issue. Cases subsumed under (b), in
contrast, could perhaps be avoided with a more care-
ful use of visual features in which head and body
movement are handled separately. At the moment,
in fact, we are not using any visual body markers
from OpenPose. As for false positives due to true
errors as in (c), they can probably not be entirely
avoided. More analysis would be necessary to know
exactly how many of these cases we have.

There are then a number of cases in which one
manually annotated head movement overlaps with
several automatically identified ones, again due to
several reasons:

d. The manually identified head movement is a re-
peated gesture, e.g. a repeated nod was coded
as one uninterrupted gesture whereas the sys-
tem found a sequence of smaller independent
movements. However, it must be noted that in
some cases a manually coded repeated head
movement is also identified as a single head
movement by the system.

e. A movement of the upper body partially over-
laps with a head movement in the manual anno-
tations, whereas the model found two separate
head movements.

f. The annotated movement contains one or sev-
eral holds, or subsequences in which the move-
ment slows down to then pick up in velocity
again. The model typically identifies a number
of separate movement sequences in such cases.

Cases such as described under (d) are relatively
well-defined and could be handled in future annota-
tions by instructing the coders to conflate the auto-
matically generated components of a repeated ges-
ture into one uninterrupted element. Cases under

(e) are similar to (b) above. The same comments
therefore hold. The situation described under (f),
which was also discussed in the preceding section,
requires some consideration. An annotator would
have to judge whether the distinct elements should
be considered part of an uninterrupted gesture and
therefore joined, or not. A typical example of this
are tilts of the head. Quite often, the speaker who
performs a head tilt will keep the tilt for a few sec-
onds – sometimes longer than that – before bringing
the head back to normal position. In NOMCO a de-
cision was made always to annotate such cases as
uninterrupted gestures, however the hold may some-
times be so long as to warrant a different solution.

The third mismatch type considered consists of
cases in which one automatically identified head
movement corresponds to several manually anno-
tated head movements. All of these seem in fact
explainable in the same way:

g. The manually identified head movements are
different but consecutive ones, e.g. a manually
identified head forward movement followed
by a repeated shake overlap with a single pre-
dicted movement.

Since the model is a binary classifier, no other
solutions would have been possible for the (g) cases.
Two scenarios can be envisaged here. In the first
one, an annotator can be instructed to split a move-
ment element into a sequence of separate ones if
it corresponds to several different gestures. In the
second one, a more complex model must be trained
to detect not just presence of head movement but
different movement classes.

Finally, there are cases in which the annotators
coded a head movement that is clearly visible in
the video, but which the system failed to identify.
No explanation could be provided for such cases,
which are, however, relatively rare. Recall in fact
that 86% of the annotated head movements overlap
with at least one predicted one.

6 Conclusion and future work

In this paper we have presented work aimed at creat-
ing support for the annotation of head movements in
video-recorded data, an annotation which is a nec-
essary first step in any analysis of the role played by
head movements in the semantics and pragmatics
of face-to-face conversations.

The first step in our methodology is to train ma-
chine learning models to detect head movements
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based on visual and acoustic features that are ob-
tained from video-recorded materials without spe-
cific demands on the audio-visual quality. The
second step is to make the automatically derived
movement sequences available in the ANVIL multi-
modal annotation tool. The evaluation of the results
showed a good coverage in that 86% of annotated
movements were predicted with various degrees of
overlap. However, a high number of non-existing
movements were also incorrectly predicted.

Subsequent analysis showed that movement on-
sets were more easily detected than offsets, and
pointed at a number of patterns in the mismatches
between original annotations and model predictions
that could be dealt with in general terms in post-
annotation guidelines.

More work is needed to understand and possibly
reduce the impact of false positives. The sequence-
generation process may also be a source of errors,
thus alternative methods to combine frames into se-
quences should be explored. Another obvious exten-
sion of this work concerns the automatic classifica-
tion of head movement in different types. Moreover,
we plan to work on adapting our results to make the
predicted movement sequences compatible with the
ELAN tool.

Finally, we need to determine how useful the
automatic prediction is in a concrete annotation ex-
ercise. It is important to evaluate not only whether
the annotators would save time post-editing the pre-
dicted movements rather than creating new ones
from scratch, but also whether the same accuracy
can be reached and what kinds of error the annota-
tors would make in the post-editing scenario com-
pared to the traditional one. We plan to conduct
such a study in connection with the development
of a new corpus of online group discussions that is
being collected by the international network on GEs-
tures and Head Movements in language (GEHM)4
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