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Introduction

The papers of these proceedings have been presented at the 17th edition of KONVENS (Konferenz zur
Verarbeitung natürlicher Sprache/Conference on Natural Language Processing). KONVENS is a confer-
ence series on computational linguistics established in 1992 that was held biennially until 2018 and has
been held annually since. KONVENS is organized under the auspices of the German Society for Compu-
tational Linguistics and Language Technology, the Special Interest Group on Computational Linguistics
of the German Linguistic Society and the Austrian Society for Artificial Intelligence.

The 17th KONVENS took place from September 6 to September 9, 2021 at Heinrich Heine University
Düsseldorf. Due to the COVID-19 pandemic situation, KONVENS was held as a hybrid event in order
to allow both speakers and regular participants to attend the conference either on-site or online. The
special theme of this year’s meeting was Deep Linguistic Modeling. The KONVENS main conference
was accompanied by two workshops, three shared task meetings, and a ‘PhD Day’.

Many thanks to all who submitted their work to KONVENS and to our board of reviewers for supporting
us greatly with evaluating the submissions. Moreover we would like to thank Heinrich Heine University
Düsseldorf for providing the conference rooms and all people from the CL department in Düsseldorf who
made the conference possible. Our special thanks go to Tobias Koch from the ‘Multimediazentrum’ for
his generous technical support.

Kilian Evang
Laura Kallmeyer
Rainer Osswald
Jakub Waszczuk
Torsten Zesch
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Invited Talks

Afra Alishahi: Decoding what deep, grounded neural models learn about language

Humans learn to understand speech from weak and noisy supervision: they extract structure and meaning
from speech by simply being exposed to utterances situated and grounded in their daily sensory experi-
ence. Emulating this remarkable skill has been the goal of numerous studies; however, researchers have
often used severely simplified settings where either the language input or the extralinguistic sensory input,
or both, are small-scale and symbolically represented.

Recently, deep neural network models have been successfully used for visually grounded language un-
derstanding, where representations of images are mapped to those of their written or spoken descriptions.
Despite their high performance, these architectures come at a cost: we know little about the type of
linguistic knowledge these models capture from the input signal in order to perform their target task.

I present a series of studies on modelling visually grounded language learning and analyzing the emergent
linguistic representations in these models. Using variations of recurrent neural networks to model the
temporal nature of spoken language, we examine how form and meaning-based linguistic knowledge
emerges from the input signal.

Mirella Lapata: Summarization and Paraphrasing in Quantized Transformer Spaces

Deep generative models with latent variables have become a major focus n of NLP research over the
past several years. These models have been used both for generating text and as a way of learning latent
representations of text for downstream tasks. While much previous work uses continuous latent variables,
discrete variables are attractive because they are more interpretable and typically more space efficient. In
this talk we consider learning discrete latent variable models with Quantized Variational Autoencoders,
and show how these can be ported to two NLP tasks, namely opinion summarization and paraphrase
generation for questions. For the first task, we provide a clustering interpretation of the quantized space
and a novel extraction algorithm to discover popular opinions among hundreds of reviews, while for the
second task we show that a principled information bottleneck leads to an encoding space that separately
represents meaning and surface from, thereby allowing us to generate syntactically varied paraphrases.

Johann-Mattis List: Chances and Challenges for Computational Comparative Linguistics in the
21st Century

The quantitative turn at the beginning of the 21st century has drastically changed the field of comparative
linguistics. Had individual genious and expert insights dominated historical linguistics in the past, we now
find many studies by interdisciplinary teams who use complex computational techniques to investigate
the history of invididual language families based on large amounts of data. Had the identification of
linguistic universals in hand-crafted language samples dominated linguistic typology for a long time,
scholars now use large cross-linguistic databases to investigate dependencies among linguistic and non-
linguistic variables with the help of complex statistical models.

However, despite a period of more than two decades in which quantitative approaches have been in-
creasingly used in comparative linguistics, gaining constantly more popularity even among predominantly
qualitatively oriented linguists, we still find many problems, which have only sporadically been addressed.
In the talk, I will present three of these so far unsolved problems, which I find particularly important for
the future of the field of comparative linguistics. These are: (1) the problem of modeling and comparing
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sound change patterns across the languages of the world; (2) the problem of identifying cross-linguistic
patterns of semantic change, and (3) the problem of estimating the borrowability of linguistic traits across
languages and times.

While none of these problems has been solved so far, I will argue that substantial progress on their so-
lution can be made by improving the integration of cross-linguistic data and by developing dedicated
problem-solving strategies in computational linguistics which take the specifics of cross-linguistic data
and language evolution into account.
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Abstract

Using neural models to parse natural language
into dependency structures has improved the
state of the art considerably. These models
heavily rely on word embeddings as input rep
resentations, which raises the question whether
the observed improvement is contributed by
the learning abilities of the network itself or by
the lexical information captured by means of
the word embeddings they use. To answer this
question, we conducted a series of experiments
on German data from three different genres
using artificial embeddings intentionally made
uninformative in different ways. We found that
without the context information provided by
the embeddings, parser performance drops to
that of conventional parsers, but not below. Ex
periments with domainspecific embeddings,
however, did not yield additional improve
ments in comparison to largescale general
purpose embeddings.

1 Introduction

In recent years, using neural models has notably
improved the accuracy of dependency parsing,
compared to nonneural or ‘conventional’ statist
ical parsers. However, while typical nonneural
parsers normally have to extract all knowledge en
coded in their models, including lexical inform
ation, from the training data, i. e. a dependency
treebank, neural dependency parsers are usually
endowed with word embeddings in addition to
the treebank, not only at training, but also at test
time. Given that embeddings are highly informat
ive about distributional properties of the embed
ded entities (words in this case), which probably
correlate with the possibility or plausibility of syn
tactic relationships, and that they are generally
trained on corpora orders of magnitude larger than
the dependency treebanks available for any lan
guage, this can be seen as an additional external
source of information that conventional parsers do
not have at their disposal.
This raises the question of how much of the re

ported difference, if any, is due to the neural model

being better at modelling syntax and how much is
just due to the information in the embeddings. On
the one hand, one could argue that this distinction
is irrelevant because the comparison reflects the
way the systems would be used in practice. On the
other hand, however, it is scientifically unsound to
derive claims about capability differences of mod
els or formalisms from experiments where more
than just the model or formalism changes with re
spect to a control setting.
Furthermore, insight into the individual influ

ence of model parts on the overall output (or at
least its quality) can be seen as a step towards
(some kind of) interpretability. Understanding the
influence of embeddings is especially useful in lan
guage processing, where most knowledge is sym
bolic while neural networks necessarily operate on
continuous representations. As it is embeddings of
some kind that bridge this gap, systems should not
be too dependent on their quality.
To gain more insight into this dependence of de

pendency parsing on embeddings, we have con
ducted experiments with a neural dependency
parser provided with deterministically uninform
ative as well as random word embeddings and we
report on the results.

2 Related Work

To our knowledge, the mechanisms leading to
neural parsers exhibiting better performance than
conventional ones have not yet been investigated.
It has been shown that recurrent neural networks
are able to capture syntactic structures such as nest
ing in practice as long as the depth is bounded
(Bhattamishra et al., 2020), but this does not make
a statement about whether or why they are better at
it than conventional parsers, and it remains unclear
what influence the input embeddings have on this
capability.
The question how a model output changes when

trained and evaluated on different input embed
dings, specifically word embeddings, has been ad
dressed by Rios and Lwowski (2020). They train
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numerous word embeddings using Word2Vec,
GloVe or fastText, each with various different
initialization seeds and on different corpora, and
compare the performance of models when using
these different embeddings as input. We take a
similar approach, except that we use ‘artificial’
embeddings, and while their focus is on the con
sequences of embedding differences due to al
gorithm and initialization, we are interested in the
impact of the (distributional) semantics available
through the embedding in the first place.
For a short period in time there were even some

neural parsing architectures without (external) em
beddings, such as the ISBN parser by Titov and
Henderson (2007). Its reported performance was
well belowwhat current parsers (with external em
beddings) achieve, similar indeed to that of non
neural parsers.
Within a more recent apporach, parsing per

formance with and without external word em
beddings has been compared by Kiperwasser and
Goldberg (2016), who mention a counterintuitive
finding that external word embeddings degraded
the performance of one of their parsers. In the
small ablation study they report, however, the ad
dition of external embeddings was accompanied
by a change in parsing strategy (from graphbased
to greedy transitionbased), not allowing for con
clusions about the impact of the embeddings alone.
More generally, there has been growing interest

in the relationship between embeddings and down
stream tasks in recent years, usually with a fo
cus on the knowledge possibly encoded in the em
bedding, but also on how this knowledge and its
representation affect further processing to which
it is used as input. Much work on this topic has
been concerned with sentence embeddings; for ex
ample, Miaschi et al. (2020) find a correlation
between the amount of linguistic knowledge rep
resented in a sentence embedding and its ability
to solve a specific downstream task. They also
provide evidence that finetuning the embedding
makes it represent more taskspecific knowledge
at the expense of general knowledge.
A popular method for assessing what linguistic

knowledge an embedding represents is probing
tasks (a term that seems to have been coined by
Conneau et al., 2018, based onAdi et al., 2017, and
Shi et al., 2016), classifiers trained to reconstruct
known explicit linguistic properties from embed
dings. In one sense, dependency parsing can be

seen as a probing task where the linguistic prop
erty to be extracted is the dependency structure of
a sentence, and has indeed been used as a probing
task (Miaschi et al., 2020; Kunz and Kuhlmann,
2020). However, ‘viewing probing results in isol
ation can lead to overestimating the linguistic cap
abilities of a model’ (Mosbach et al., 2020, p. 780),
and Kunz and Kuhlmann (2020) point out that in
such scenarios, it is generally unknown to what ex
tent the output is indeed present in and extracted
from the embedding, as opposed to being learned
by the model (‘probe’) built on top of it. They con
sider embeddings to most likely lie between two
extremes: no useful information being represen
ted at all, or the information already being rep
resented in a humanreadable way. Apart from re
stricting the probing classifier to limited express
iveness, one possibility of distinguishing embed
ding from classifier power is therefore the compar
ison with the results of probing baseline embed
dings lacking any linguistic information content,
a common choice being random ones. We too use
randomness as oneway to create such embeddings.
A study relating wordlevel probing tasks to

higherlevel processing for several languages, in
cluding dependency parsing for German, can be
found in Şahin et al. (2020). They report signific
ant correlations between dependency parsing and
morphosyntactic probing performance, suggesting
that not only semantic, but also morphosyntactic
information encoded in a word embedding can be
influential. Note though that neural dependency
parsing based on word embeddings is different
from probing sentence embeddings for dependen
cies of the encoded sentence. One could say that
the situation is the converse: In the probing scen
ario, the embedding is the result of a procedure and
is probed to investigate its dependence on the ori
ginal input. In our case, the embeddings are the
input, and we want to investigate the dependence
of the procedure on it. There are similar findings
to the above for word embeddings, due to Köhn
(2016), attesting the choice of embeddings a no
ticeable impact on parser performance.

3 Experimental Setup

As we cannot directly inspect what the neural ar
chitecture learns and whether it is indeed better
than ‘conventional’ (nonneural) architectures at
learning the syntactic knowledge needed for pars
ing, we employ a proxy question instead and ask
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how the output of a neural parser changes when
depriving it of the knowledge encoded in the in
put word embeddings, as these embeddings are an
additional input that most conventional parsers do
not have at their disposal. If the neural parser per
forms significantly better than conventional pars
ers when provided with the same input, its neural
architecture is obviously a better learner of syntax
than the architectures of the conventional parsers.
On the other hand, if the neural parser needs more
input (i. e. the embeddings) than the conventional
parsers to outperform them, the comparison is in
herently unfair as it is hardly surprising that a sys
tem with more input can yield better predictions.
While this does not necessarily rule out the pos
sibility that the neural architecture is superior, the
performance impact of eliminating a source of in
formation sheds light on the dependence on that in
formation. Such a dependence may be undesirable
in certain contexts, such as lowresource settings
where highquality word embeddings are unavail
able.
Another common scenario is that of domain ad

aptation, where only a generic treebank of con
siderable size is available for training, but spe
cific embeddings can be obtained in an unsu
pervised1 way from indomain data (possibly the
same data one wishes to parse later), which may be
much smaller than the data employed for training
generalpurpose embeddings. We complement our
experiments on the impact of uninformative em
beddings by also providing the parser with embed
dings trained on the corpora from which we draw
our test data.

3.1 Parser

The parser we experiment with is Sticker (de Kok
and Pütz, 2020), a recent neural dependency parser
treating parsing as a sequence labelling problem:
Every token is assigned a complex tag encoding
where to attach it. In the case of Sticker, the tags
indicate the attachment point as its relative posi
tion among tokens with a part of speech (e. g. ‘the
second finite verb to the left’) and are computed
by a neural network. (From the different archi
tectural options we chose the LSTM architecture,
which had turned out to work best on our data.)
The only information that the neural network is
provided with as input are embedding vectors of

1 Or ‘selfsupervised’, referring to the fact that manual an
notation effort is unnecessary.

the tokens (words) in the sentence and of their part
ofspeech (POS) tags. At training time, the parser
trains the network based on these inputs (and the
gold dependency structure and labels), but it does
not alter the embeddings provided nor save any
other lexical information about words in the train
ing data; in particular, there is no attempt to ob
tain semantic knowledge about words not covered
by the embedding.2 This implies a substantial de
pendence on those embeddings.
As a conventional baseline we employ the five

nonneural parsers from Adelmann et al. (2018a),
excluding JWCDG, but only report the perform
ance of the best parser per test text as reference. In
all cases this was either Malt3 (Nivre, 2003) with
the ‘Covington nonprojective’ algorithm (Cov
ington, 2001) or Mate4 (Bohnet, 2010).

3.2 Uninformative Embeddings

As Sticker cannot be runwithout word embeddings
as input, we cannot entirely turn off this input, but
we can substitute artificially created pseudo (or
‘dummy’) embeddings that are ‘uninformative’ in
the sense that they do not encode any properties of
the words beyond the word form identity (in par
ticular, no semantics at all). We experiment with
such uninformative embeddings created in differ
ent ways, two of them deterministic and four ran
dom (sampled with respect to different distribu
tions, thus having different properties):
empty: an embedding not containing any words

at all. This will make any word form encountered
by the parser outofvocabulary (just like rare word
forms simply not covered by a ‘normal’ embed
ding).
zero: an embedding mapping every word to

the zero vector (the vector containing only zer
oes). The outofvocabulary words are therefore
the same as for the informative control embedding
(see further below), but as all of them are assigned
the same vector, they are entirely indistinguishable
when processing them only bymeans of their word
vectors.
cube: an embedding mapping every word to

a vector with stochastically independent compon
ents all uniformly distributed in the unit inter
val [0, 1). In contrast to the previous embedding,
words now have different vectors and are therefore
2 Details given here that are not from the cited paper are from
personal communication with Daniël de Kok.

3 http://www.maltparser.org/
4 https://code.google.com/archive/p/matetools/
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distinguishable, but as the vectors are chosen at
random, they are highly unlikely to correlate with
any linguistic relation: They do not carry any se
mantic information whatsoever.
ccube: like cube, but shifted into the origin,

i. e. with components drawn from [−0.5, 0.5).
gauss: an embedding mapping every word to a

standard normal random vector, i. e. a vector with
stochastically independent components all follow
ing a standard normal (‘Gaussian’) distribution.
sphere: an embedding mapping every word to

a vector of length one (i. e. on the Euclidean unit
sphere, hence the name), with every such vector
having equal probability. In this embedding, any
word vector can be separated from every other
word vector by some hyperplane, so distinguish
ing words should be especially easy.
As an informative control embedding we use

the German word embedding released with the
pretrained Sticker models.5 Except for ‘empty’,
which does not contain any vectors at all, all arti
ficially created embeddings share dimension (300)
and vocabulary with the control embedding.
For testing the influence of domainspecific em

beddings, we train additional embeddings on texts
sampled from the test corpora (see Section 3.4).
As mentioned above, the parser also requires

an embedding of the partofspeech (POS) tags
present in the input. The control embedding here
is based on one released with the pretrained
Sticker models which embeds the STTS (Schiller
et al., 1999).6 Additionally we created uninform
ative embeddings of the same six types as above,
again with vocabulary (tag inventory; except for
‘empty’) and dimension (50) the same as in the
control embedding.
However, we do not provide the parser with both

uninformative word and uninformative POS em
bedding, as the only input that the parser receives
are embedded words and POS tags, so making
both embeddings uninformative would actually
decouple the parser from its input.7 We have not
5 German word embeddings, trained on TüBaD/DP (de
Kok and Pütz, 2019), quantized using optimized product
quantization: https://github.com/stickeritis/stickermodels/
releases/tag/destructgram20190426opq (September 16,
2019, last retrieved April 14, 2021)

6 With PAV instead of PROAV; source of the original
embedding: https://blob.danieldk.eu/stickermodels/
destructgramtags20190426.fifu (last retrieved May 14,
2021)

7 As a sanity check we did try that, obtaining UAS values
between 17% and 22% and LAS values between 10% and
16%. Note that even in this scenario the parser still has ac

tried combining the uninformative POS embed
dings with the domainspecific word embeddings
either.
This leaves us with four types of neural parser

configuration: With control word and control
POS embedding (baseline), with uninformative
word and control POS embedding, with control
word and uninformative POS embedding, and with
domainspecific word and control POS embed
ding.
For every artificial embedding we train one

model for the parser and the respective embedding
on the first 91,999 sentences of part A of theHam
burg Dependency Treebank (Foth et al., 2014),
with the remaining 10,000 sentences (9.8%) as
validation set.

3.3 Test Data

To obtain test data, three annotators manually
annotated randomly drawn sentences from three
different corpora. The first one is a corpus of
636 modern dystopias written by German writers.
The second one is the dProse corpus (Gius et al.,
2020) containing 2,529 literary German prose texts
from between 1870 and 1920. The third one con
sists of 8,788 documents downloaded from the
internet, selected by the appearance of German
keywords related to telemedicine (Franken and
Adelmann, 2021). The sentences sampled from
each corpus were combined with the annotated
sentences of the respective texts from Adelmann
et al. (2018b). The three test sets comprise around
7,500 tokens and 450 sentences each, with sim
ilar sentence length distributions (for details see
Table 5; this, as well as some other tables, can be
found in the appendix).
These datasets can be expected to notably differ

both stylistically and thematically from the train
ing data and between each other, without being in
trinsically hard to annotate (and parse) like spoken
or Twitter data.
The three annotators annotated the texts with

dependency relations following the guidelines of
Foth (2006), obtaining an overall interannotator
reliability of Fleiss’ 𝜅 = 0.89 for unlabelled at
tachment accuracy and Fleiss’ 𝜅 = 0.93 for la
belled attachment accuracy on a balanced subset
of about 20% of the test data. The remaining data

cess to sentence lengths, and POS tags are available when
determining the attachment point based on the complex tag
being predicted by the neural network, which itself does not
have this information.
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was distributed among the annotators (so that sen
tences were annotated by only one annotator each)
and subsequently postedited based on some heur
istics for checking consistency.
The annotators only annotated dependencies.

POS tags (required by all parsers as input), lem
mata and morphological features (required by the
nonneural parsers) were predicted by a tagger en
semble.8 This is in contrast to training time, where
gold POS tags from the treebank were used.9

3.4 DomainSpecific Embeddings
To obtain domainspecific embeddings we trained
word embeddings on samples of similar total token
count as part A of the Hamburg Dependency Tree
bank (approx. 1,872,622 tokens) from each of our
test corpora, a reasonable order of magnitude for
domainspecific data. The samples were chosen at
random from the test corpora, taking care that no
sentences used as test data were also selected as
training data for the embeddings. Additionally, we
sampled a collection of sentences, again of roughly
the same total token count, from the union of all
three test corpora.

4 Results

We assess performance differences by compar
ing unlabelled and labelled attachment accuracy
(also known as unlabelled and labelled attachment
score, or UAS and LAS) with respect to our test
data between the best conventional (nonneural)
parser, the neural parser with the (‘informative’)
control embeddings, and the neural parser with
our manipulated (i. e. uninformative or domain
specific) embeddings. For the webcrawling data,
the bestperforming conventional parser was Malt;
for the other test sets, it was Mate.
Usually, such attachment accuracies are com

puted excluding punctuation since punctuation at
tachment and labelling is considered trivial. This,
however, may not be the case if uninformative em
beddings make it hard for the parser to determ
ine which tokens are in fact punctuation. For this
reason, we treat punctuation like any other tokens
and report attachment accuracies including punc
tuation. Between 12% and 17% of the tokens in
our test data are punctuation (according to auto
matic POS tagging), so they also increase the ef
fective amount of test data, and when excluding
8 See https://github.com/benadelm/hermAPipeline (last re
trieved August 7, 2021).

9 Again, with PAV instead of PROAV.

them, attachment accuracies are about 2 percent
age points lower than those we report, for both the
neural and the conventional baseline.

4.1 Uninformative Word Embeddings
With the control embedding, the neural parser has
a UAS 3 to 4 percentage points higher than the best
conventional parser and an LAS 5 to 6 percentage
points higher; this is a considerable baseline differ
ence. With uninformative word embeddings, this
margin decreases by 1 to 3 percentage points in
the case of UAS and by 1 to 7 percentage points
for LAS, depending on test set and the type of un
informative embedding. For instance, on the mod
ern dystopias data with the ‘cube’ embedding, the
UAS decreases from 0.93 to 0.90, and the LAS de
creases from 0.91 to 0.84, the UAS reducing to and
the LAS even falling short of Mate’s performance
(cf. Table 1). The other uninformative embeddings
have less dramatic effects, giving values generally
still above the conventional baseline. For all test
sets, the embeddingwith the highest UAS and LAS
is ‘sphere’, and the ‘cube’ embedding is among
those with the smallest UAS and LAS. The other
embeddings do not differ much from each other,
their accuracies being mostly closer to those of
the conventional than those of the neural baseline.
Performance differences between test sets are sim
ilar for the baseline models (both conventional and
neural) and the models with uninformative embed
dings.
As the UAS and LAS differences are small,

we also tested for statistical significance, us
ing the randomization test of Yeh (2000) (with
100,000 samples) because theoretical distributions
are not known. Except for the ‘sphere’ embed
ding tested on webcrawling data or the combina
tion of all three, the pvalue for the hypothesis that
the model performs as well as the neural baseline
is below 5%; in the vast majority of cases, it is
even below the stricter significance threshold of
0.25% proposed by Søgaard et al. (2014), so we
can be confident that the models do indeed per
form worse than the neural baseline. On the other
hand, the pvalue for the hypothesis that the model
performs as well as the conventional baseline is
mostly not below the strict threshold, but below
5% in more than half of the cases (see Table 4).
The hypothesis cannot be rejected for the UAS of
the ‘cube’ embedding (i. e. this embedding makes
the neural parser perform no better than the best
conventional parser, at least not with respect to
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text traditional normal empty zero cube ccube gauss sphere
Parser UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS

dystopias Mate 0.90 0.85 0.93 0.91 0.91 0.87 0.91 0.87 0.90 0.84 0.91 0.86 0.90 0.86 0.92 0.88
19th century Mate 0.88 0.83 0.91 0.88 0.89 0.84 0.89 0.84 0.88 0.83 0.89 0.84 0.88 0.84 0.90 0.85
webcrawling Malt 0.87 0.83 0.91 0.88 0.88 0.85 0.88 0.85 0.88 0.84 0.89 0.86 0.88 0.86 0.90 0.87
all three Mate 0.88 0.83 0.92 0.89 0.90 0.85 0.89 0.85 0.89 0.84 0.90 0.85 0.89 0.85 0.91 0.87

Table 1: Attachment accuracies for the uninformative word embeddings, including punctuation

text traditional normal empty zero cube ccube gauss sphere
Parser UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS

dystopias Mate 0.90 0.85 0.93 0.91 0.91 0.87 0.91 0.87 0.92 0.89 0.93 0.90 0.93 0.90 0.93 0.90
19th century Mate 0.88 0.83 0.91 0.88 0.89 0.85 0.90 0.86 0.91 0.86 0.91 0.88 0.91 0.88 0.91 0.88
webcrawling Malt 0.87 0.83 0.91 0.88 0.89 0.87 0.89 0.87 0.91 0.88 0.91 0.88 0.91 0.88 0.91 0.88
all three Mate 0.88 0.83 0.92 0.89 0.90 0.87 0.90 0.87 0.91 0.88 0.92 0.89 0.92 0.89 0.92 0.89

Table 2: Attachment accuracies for the uninformative POS embeddings, including punctuation

text traditional normal dystopias 19th century webcrawling total
Parser UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS

dystopias Mate 0.90 0.85 0.93 0.91 0.93 0.90 0.93 0.90 0.93 0.90 0.93 0.90
19th century Mate 0.88 0.83 0.91 0.88 0.90 0.87 0.91 0.88 0.91 0.87 0.91 0.87
webcrawling Malt 0.87 0.83 0.91 0.88 0.90 0.88 0.91 0.88 0.91 0.88 0.90 0.87
all three Mate 0.88 0.83 0.92 0.89 0.91 0.88 0.91 0.89 0.91 0.88 0.91 0.88

Table 3: Attachment accuracies for the domainspecific word embeddings, including punctuation

head attachments), but it can be rejected (evenwith
the stricter threshold) for the ‘sphere’ embedding
(i. e. this embedding makes the neural parser still
perform better than the best conventional parser).
For the other embeddings, the picture is mixed.
Evenwhere the pvalue is below 5%, it is notmuch
lower, so one should be cautious about rejecting
the null hypothesis.

4.2 Uninformative POS Embeddings

For the uninformative POS embeddings, UAS and
LAS values are higher than for the uninformat
ive word embeddings. The ‘ccube’, ‘gauss’, and
‘sphere’ embedding even result in the same UAS
as the control embedding (and so does the ‘cube’
embedding on the 19th century and webcrawling
data). This is not very surprising since there are
substantially fewer POS tags than words, and con
sequently, uninformative POS embeddings mean
less information loss than uninformative word em
beddings. Still, performance decreases with re
spect to the baseline can be observed over all test
sets for the ‘empty’ and ‘zero’ embeddings, and for
the other uninformative embeddings, there seems
to be a tendency towards reductions in LAS (see
Table 2). The increase in UAS from uninformative
word to uninformative POS embeddings is smal
ler (1.6 percentage points on average) than the in
crease in LAS (2.6 percentage points on average),
suggesting that there are in comparison more label
errors when word embeddings are uninformative

than when only POS embeddings are. Addition
ally, all values across the board are better now than
those of the conventional parsers.
Correspondingly, pvalues (Table 9) do clearly

not permit rejection of the hypothesis that the unin
formative ‘ccube’, ‘gauss’, or ‘sphere’ embedding
makes the neural parser perform worse than with
the control embedding, and the hypothesis that the
performance is only as good as that of the conven
tional baseline can be rejected to the strict signi
ficance level of 0.25%. The latter is even true for
the ‘cube’ embedding, while the pvalue for the
test against the neural baseline LAS is also below
0.25% for the dystopias and still below 5% for the
19th century novels. The ‘empty’ and ‘zero’ em
beddings exhibit mixed values. The pvalues are
below 5%when testing against either baseline (but
mostly not below 0.25% for the neural baseline),
with values below the stricter threshold appear
ing mostly for the LAS against the conventional
parsers. Hence, here the assertion that the neural
parser yields a better LAS than the conventional
ones even with uninformative POS embeddings is
more likely true than the corresponding one about
the UAS. Apparently uninformative word embed
dings have a stronger negative impact on LAS than
uninformative POS embeddings.

4.3 DomainSpecific Word Embeddings

A difference between the neural parser’s perform
ance with domainspecific word embeddings and
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text empty zero cube ccube gauss sphere
UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS

dystopias 0.0430 0.0010 0.0170 0.0010 0.0010 0.0010 0.1360 0.0010 0.0010 0.0010 3.0180 0.0190
19th century 0.0960 0.0010 0.1520 0.0010 0.0110 0.0010 0.7470 0.0010 0.0130 0.0010 3.1170 0.0910
webcrawling 0.0200 0.0080 0.0040 0.0010 0.0040 0.0010 0.4580 0.3800 0.0160 0.0840 7.0029 3.3850
all three 0.7350 0.0210 0.5000 0.0150 0.0570 0.0010 2.5480 0.0410 0.2090 0.0100 10.1369 1.8220

(a) pvalues for the hypothesis that the results are not worse than Sticker’s performance

text empty zero cube ccube gauss sphere
UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS

dystopias 4.5430 1.4080 8.9129 2.0470 26.1857 2.8720 2.4620 10.8949 44.2846 35.8266 0.1020 0.0020
19th century 4.8630 10.7799 3.7090 9.4529 17.6328 38.7696 1.3280 12.4229 14.2029 21.2568 0.3060 0.0840
webcrawling 1.5910 0.3840 3.4910 1.8410 6.4879 3.0440 0.1160 0.0120 1.8230 0.0450 0.0040 0.0020
all three 5.8059 3.7340 7.2999 4.9590 25.4797 41.4556 2.2270 3.7790 15.4428 8.3229 0.3610 0.0740

(b) pvalues for the hypothesis that the results are not better than the performance of the respective best conventional parser
(see Table 1)

Table 4: pvalues (in %) for Yeh’s randomized permutation test on performance differences between the uninform
ative word embeddings and the two baselines. Values below the significance threshold of 5% are marked in italics;
values below the stricter threshold of 0.25% are additionally marked in bold. Values for the combination of all
three corpora were computed on a subset of 461 sentences so that pvalues are comparable.

with the control embedding is almost nonexist
ent, and the pvalues are never below the signi
ficance threshold either. Conversely, they are al
ways below the strict threshold for the hypothesis
that the performance is not better than that of the
conventional parser. While it is notable that even
‘little’ data the size of a dependency treebank (em
beddings are usually trained on much bigger cor
pora) are sufficient to create an embedding suffi
ciently informative for the parser,10 this does so
far not facilitate insight into the role the embed
ding may play in domain adaptation. We did not
test for effects of the embeddings being used cross
domain (e. g. the embedding trained on 19th cen
tury novels being used for parsing webcrawling
data) as the performance differences among the
different embeddings for the same test set are
small where present at all, so we expect differences
between test sets to be largely due to other parser
challenging aspects (such as general sentence com
plexity).

4.4 LabelSpecific Evaluation

Finally, we take a brief look at some individual de
pendency labels. As pointed out in Adelmann et al.
(2018a), overall attachment accuracies are skewed
towards the performance on frequent phenomena
such as determiner attachment, obfuscating issues
with dependency relations that are of interest to
content analyses, but appear less often. This eval
uation only refers to the combination of all three
test sets in the hope that as many labels as possible
10 We have not tested how well the domainspecific embed
dings capture relationships between the embedded words.

will be frequent enough there to be meaningfully
evaluated.
For a number of labels, attachment precision

and recall changed by more than 10 percentage
points when parsed with uninformative embed
dings, compared to parsing with the control em
bedding. Out of those, eleven appear more than
100 times in our test data; Table 11 shows their at
tachment precision and recall. Similarly great or
in some cases even greater differences can also
be observed for eleven other labels, but those are
less frequent, some of them indeed very infrequent
(e. g. there are only four occurrences of OBJG),
so their values are probably unreliable. Among the
frequent labels, heavy losses (up to 56 percentage
points) can be observed for OBJD (dative object)
and OBJP (prepositional object), mainly for the
‘empty’, ‘zero’ and ‘cube’ embeddings. OBJA (ac
cusative object), PRED (predicative) and GMOD
(genitive modifier) show losses mainly for these
three embeddings, too, albeit not as big. With the
‘ccube’, ‘gauss’ and ‘sphere’ embeddings, losses
are generally smaller, and for KOM (comparison),
recall even rises with the ‘ccube’, ‘gauss’ and
‘sphere’ embedding.
There are also three labels where almost no dif

ference in precision and recall can be observed for
the deterministically uninformative embeddings
(‘empty’ and ‘zero’), but for the other (the random)
embeddings: APP (apposition), ROOT and S. The
latter two are especially interesting as S denotes the
root node of sentences (in HDT, this is usually the
finite verb) and ROOT is the label used exclusively
for punctuation. While the precision of ROOT is

7



always 1.00 (when the parser assigns this label, it
is always correct), recall drops from almost 1.00 by
13 to 14 percentage points for the ‘cube’, ‘ccube’
and ‘gauss’ embeddings, that is, with those embed
dings the parser fails to correctly identify about 13
to 14% of the punctuation tokens. This is strange
and remarkable given that punctuation is trivially
identified by its POS. The decrease does not occur
for the deterministic embeddings, nor for ‘sphere’.
S exhibits a similar phenomenon, but there it is
precision that drops while recall remains, meaning
that the parser misidentifies something as a sen
tence root.
Table 12 shows precision and recall when pars

ing with uninformative POS embeddings, for the
same labels as above. As with UAS and LAS, dif
ferences are less pronounced here, except for three
labels when parsing with the deterministic embed
dings: KOM shows a considerable increase in re
call and OBJI (object infinitive) in precision, while
ROOT decreases, again by 13 percentage points.
This is complementary to the situation with un
informative word embeddings, where ROOT does
not decrease for these two embeddings.
For the sake of completeness we note that there

were no particularly interesting label performance
differences when parsing with the domainspecific
embeddings (Table 13).

5 Conclusion and Future Work

The main motivation for this paper was the ques
tion of whether neural networks are better than
conventional, nonneural architectures at learn
ing the syntactic knowledge needed for parsing,
as opposed to just having the advantage of be
ing provided with extra information in the form
of word embeddings, and we approached this us
ing the proxy question of how the output of a
neural parser changes when depriving it of this ex
tra information. The answer to this question from
our results can be framed in two ways, depend
ing on the perspective: Even without access to
the knowledge encoded in a word embedding, the
neural parser still performs (at least) as well as
the best nonneural parser, so this lack of know
ledge does not impair it so much that a conven
tional tool would be clearly preferable. Or altern
atively: Without access to the knowledge encoded
in a word embedding, the neural parser performs
only about as well as the best nonneural parser,
implying that it may indeed very well be the know

ledge in the embedding that enables superior per
formance, not a superiority of the architecture.11

The results further suggest that a lack of word
embedding knowledge abets label errors, while a
lack of POS embeddings abets attachment errors,
with a general tendency towards an increase in
label errors in both cases. This could mean that
knowledge about the cooccurrence of POS tags
is more useful for predicting the correct head and
knowledge about the cooccurrence of words is
more useful for choosing the correct dependency
label, which would not be implausible from a lin
guistic point of view. More dedicated experiments
are necessary, however, to corroborate this hypo
thesis.
We also found that not all dependency labels

are affected equally, the losses being concentrated
mainly at ‘contentrelated’ labels such as OBJA
(accusative object), with the especially vexing
observation that uninformative word embeddings
hinder the correct labelling of punctuation even
though POS information should be sufficient to do
so. A qualitative analysis of the label errors could
be illuminative; possible reasons for this oddity
would have to be investigated in greater depth.
The experiment with domainspecific embed

dings was inconclusive, at least with the lim
ited amount of domainspecific data used; the
differences in vocabulary and in word semantics
between the corpora were possibly too small to
have a noticeable impact on parsing. We do ob
serve, though, that even embeddings trained on
little data make the parser perform almost as well
as the control embeddings trained on big data.
Given this finding, subsequent research would

have to dig further into the relationship between
the size of the data used for training word embed
dings and parser performance when using them.
We conducted our experiments with only one

single parser. To assess how well our results ap
ply to neural dependency parsing in general, future
work would have to examine other parsers as well,
particularly ones built on other parsing paradigms
such as transitionbased or graphbased parsing. It
could furthermore be insightful to draw a compar
ison with conventional parsers able to use word
embeddings (e. g. RBGParser).

11 Of course, the mere ability to utilize word embeddings can
be seen as an architectural superiority. This is not restricted
to neural networks, though: RBGParser (Lei et al., 2014),
too, can use word embeddings (cf. Köhn, 2016).
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Appendix

overall sentences

tokens count token count
text avg m stddev
dystopias 7,474 470 15.90 13 11.23
19th century 7,662 459 16.69 14 12.11
webcrawling 7,082 454 15.60 12 14.53
total 22,218 1,383 16.065 13 12.684

Table 5: Total number of tokens as well as sentence count and average, median and standard deviation of the number
of tokens per sentence in our test sets

text traditional normal empty zero cube ccube gauss sphere
Parser UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS

dystopias Mate 0.88 0.82 0.92 0.89 0.89 0.84 0.89 0.84 0.89 0.84 0.91 0.87 0.90 0.86 0.91 0.87
19th century Mate 0.85 0.80 0.89 0.86 0.87 0.81 0.87 0.81 0.87 0.82 0.88 0.84 0.88 0.83 0.88 0.83
webcrawling Malt 0.85 0.80 0.90 0.87 0.87 0.83 0.86 0.82 0.87 0.83 0.89 0.85 0.88 0.85 0.89 0.85
all three Mate 0.86 0.80 0.90 0.87 0.88 0.83 0.87 0.82 0.88 0.83 0.89 0.85 0.88 0.85 0.89 0.85

Table 6: attachment accuracies for the uninformative word embeddings (like Tab. 1), ignoring punctuation

text traditional normal empty zero cube ccube gauss sphere
Parser UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS

dystopias Mate 0.88 0.82 0.92 0.89 0.91 0.88 0.91 0.88 0.91 0.88 0.91 0.89 0.91 0.88 0.91 0.88
19th century Mate 0.85 0.80 0.89 0.86 0.89 0.85 0.89 0.85 0.89 0.85 0.89 0.86 0.89 0.85 0.89 0.85
webcrawling Malt 0.85 0.80 0.90 0.87 0.89 0.86 0.88 0.86 0.90 0.87 0.90 0.87 0.90 0.86 0.90 0.87
all three Mate 0.86 0.80 0.90 0.87 0.89 0.87 0.89 0.87 0.90 0.87 0.90 0.87 0.90 0.86 0.90 0.87

Table 7: attachment accuracies for the uninformative POS embeddings (like Tab. 2), ignoring punctuation

text traditional normal dystopias 19th century webcrawling total
Parser UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS

dystopias Mate 0.88 0.82 0.92 0.89 0.91 0.88 0.91 0.88 0.91 0.88 0.91 0.88
19th century Mate 0.85 0.80 0.89 0.86 0.89 0.85 0.89 0.85 0.89 0.85 0.89 0.85
webcrawling Malt 0.85 0.80 0.90 0.87 0.89 0.86 0.89 0.86 0.89 0.86 0.89 0.86
all three Mate 0.86 0.80 0.90 0.87 0.90 0.86 0.90 0.86 0.90 0.86 0.90 0.86

Table 8: attachment accuracies for the domainspecific word embeddings (like Tab. 3), ignoring punctuation
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text empty zero cube ccube gauss sphere
UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS

dystopias 0.0050 0.0010 0.0200 0.0010 6.5989 0.0670 27.6917 34.9537 20.3168 14.8269 25.7857 21.0308
19th century 0.9970 0.1160 2.4010 0.1450 29.1617 3.3620 49.0645 46.4145 43.1016 36.6626 47.5075 40.9466
webcrawling 0.3660 7.1739 0.3280 5.7079 26.5617 25.0447 44.1776 45.7915 42.6606 35.2796 45.0225 47.3175
all three 1.2110 0.7660 1.8830 0.7500 25.9947 8.0109 46.2675 48.6785 39.1796 33.5217 42.4446 39.6556

(a) pvalues for the hypothesis that the results are not worse than Sticker’s performance

text empty zero cube ccube gauss sphere
UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS

dystopias 20.1508 0.8100 8.9059 0.8490 0.0380 0.0010 0.0010 0.0010 0.0020 0.0010 0.0010 0.0010
19th century 1.0150 0.0550 0.4340 0.0460 0.0030 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010
webcrawling 0.2430 0.0010 0.3280 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010
all three 4.1960 0.1660 2.5450 0.1890 0.0330 0.0050 0.0080 0.0010 0.0090 0.0010 0.0080 0.0010

(b) pvalues for the hypothesis that the results are not better than the performance of the respective best conventional parser
(see Table 2)

Table 9: pvalues (in %) for Yeh’s randomized permutation test on performance differences between the uninform
ative POS embeddings and the two baselines. Values below the significance threshold of 5% are marked in italics;
values below the stricter threshold of 0.25% are additionally marked in bold. Values for the combination of all
three corpora were computed on a subset of 461 sentences so that pvalues are comparable.

text dystopias 19th century webcrawling total
UAS LAS UAS LAS UAS LAS UAS LAS

dystopias 15.4958 12.1299 19.7578 13.7949 18.7668 6.8609 22.4608 10.3269
19th century 26.1267 20.1548 36.5816 33.2397 34.4367 14.9089 45.3085 26.7537
webcrawling 15.7938 17.4818 27.3167 31.9647 23.1158 21.8738 11.2789 12.4249
all three 25.5267 22.8208 33.2327 31.5717 31.0637 20.3748 30.1267 21.8918

(a) pvalues for the hypothesis that the results are not worse than Sticker’s performance

text dystopias 19th century webcrawling total
UAS LAS UAS LAS UAS LAS UAS LAS

dystopias 0.0050 0.0010 0.0050 0.0010 0.0040 0.0010 0.0020 0.0010
19th century 0.0090 0.0010 0.0020 0.0010 0.0020 0.0010 0.0010 0.0010
webcrawling 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010
all three 0.0350 0.0010 0.0150 0.0010 0.0160 0.0010 0.0210 0.0010

(b) pvalues for the hypothesis that the results are not better than the performance of the respective best conventional parser
(see Table 3)

Table 10: pvalues (in %) for Yeh’s randomized permutation test on performance differences between the domain
specific embeddings and the two baselines. Values below the significance threshold of 5% are marked in italics;
values below the stricter threshold of 0.25% are additionally marked in bold. Values for the combination of all
three corpora were computed on a subset of 461 sentences so that pvalues are comparable.
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label gold normal empty zero cube ccube gauss sphere
count P R P R P R P R P R P R

APP 704 0.75 0.88 0.73 0.86 0.72 0.85 0.62 0.87 0.65 0.87 0.62 0.87 0.71 0.87
GMOD 384 0.95 0.96 0.79 0.85 0.78 0.84 0.88 0.90 0.90 0.91 0.89 0.91 0.91 0.90
KOM 110 0.89 0.72 0.88 0.68 0.89 0.70 0.87 0.69 0.88 0.89 0.87 0.90 0.86 0.73
NEB 224 0.84 0.83 0.76 0.72 0.81 0.66 0.79 0.78 0.86 0.79 0.88 0.81 0.82 0.79
OBJA 928 0.88 0.90 0.70 0.77 0.69 0.76 0.73 0.82 0.80 0.85 0.78 0.85 0.84 0.85
OBJD 163 0.78 0.77 0.39 0.17 0.36 0.21 0.64 0.37 0.62 0.64 0.64 0.64 0.63 0.67
OBJI 109 0.72 0.82 0.70 0.78 0.71 0.80 0.68 0.75 0.70 0.80 0.71 0.77 0.74 0.81
OBJP 114 0.51 0.28 0.25 0.02 0.50 0.06 0.32 0.05 0.38 0.24 0.34 0.18 0.41 0.22
PRED 277 0.83 0.85 0.71 0.69 0.73 0.67 0.70 0.66 0.81 0.75 0.77 0.74 0.77 0.77
ROOT 3466 1.00 0.99 1.00 0.99 1.00 0.99 1.00 0.86 1.00 0.85 1.00 0.85 1.00 0.95
S 1726 0.91 0.86 0.90 0.86 0.90 0.86 0.78 0.84 0.76 0.85 0.79 0.85 0.86 0.85

Table 11: Precision and recall for selected labels when parsing with the uninformative word embeddings. The
‘gold count’ column gives the number of occurrences of the label in our test data. Values differing by more than
10 percentage points from the baseline are marked in bold.

label gold normal empty zero cube ccube gauss sphere
count P R P R P R P R P R P R

APP 704 0.75 0.88 0.69 0.93 0.70 0.92 0.75 0.88 0.76 0.86 0.76 0.88 0.74 0.88
GMOD 384 0.95 0.96 0.92 0.96 0.95 0.96 0.96 0.96 0.95 0.95 0.95 0.95 0.95 0.95
KOM 110 0.89 0.72 0.89 0.89 0.90 0.91 0.88 0.68 0.89 0.68 0.87 0.67 0.86 0.68
NEB 224 0.84 0.83 0.84 0.85 0.86 0.86 0.83 0.80 0.84 0.81 0.85 0.82 0.81 0.80
OBJA 928 0.88 0.90 0.86 0.92 0.86 0.91 0.86 0.90 0.89 0.90 0.86 0.89 0.89 0.90
OBJD 163 0.78 0.77 0.81 0.76 0.80 0.80 0.76 0.79 0.75 0.83 0.75 0.79 0.77 0.82
OBJI 109 0.72 0.82 0.90 0.85 0.91 0.86 0.69 0.80 0.73 0.79 0.74 0.81 0.72 0.80
OBJP 114 0.51 0.28 0.47 0.25 0.52 0.30 0.46 0.28 0.45 0.29 0.42 0.24 0.46 0.29
PRED 277 0.83 0.85 0.79 0.83 0.79 0.82 0.84 0.84 0.80 0.84 0.83 0.86 0.80 0.83
ROOT 3466 1.00 0.99 1.00 0.86 1.00 0.86 1.00 0.91 1.00 0.99 1.00 0.99 1.00 0.99
S 1726 0.91 0.86 0.83 0.87 0.80 0.87 0.83 0.85 0.90 0.86 0.90 0.86 0.90 0.86

Table 12: Precision and recall for selected labels when parsing with the uninformative POS embeddings. The ‘gold
count’ column gives the number of occurrences of the label in our test data. Values differing by more than 10 per
centage points from the baseline are marked in bold.

label gold normal dystopias 19th century webcrawling total
count P R P R P R P R

APP 704 0.75 0.88 0.73 0.88 0.74 0.89 0.73 0.88 0.73 0.88
GMOD 384 0.95 0.96 0.94 0.93 0.94 0.94 0.93 0.94 0.94 0.92
KOM 110 0.89 0.72 0.88 0.69 0.90 0.71 0.88 0.71 0.88 0.71
NEB 224 0.84 0.83 0.86 0.82 0.88 0.80 0.88 0.82 0.81 0.81
OBJA 928 0.88 0.90 0.87 0.88 0.86 0.89 0.85 0.87 0.85 0.88
OBJD 163 0.78 0.77 0.70 0.79 0.75 0.74 0.67 0.72 0.72 0.78
OBJI 109 0.72 0.82 0.69 0.82 0.69 0.82 0.74 0.81 0.72 0.82
OBJP 114 0.51 0.28 0.46 0.25 0.46 0.28 0.49 0.29 0.41 0.27
PRED 277 0.83 0.85 0.81 0.81 0.82 0.83 0.81 0.81 0.81 0.79
ROOT 3466 1.00 0.99 1.00 0.99 1.00 0.99 1.00 0.99 1.00 0.99
S 1726 0.91 0.86 0.91 0.86 0.91 0.86 0.91 0.86 0.91 0.85

Table 13: Precision and recall for selected labels when parsing with the domainspecific word embeddings. The
‘gold count’ column gives the number of occurrences of the label in our test data. Values differing by more than
10 percentage points from the baseline are marked in bold.
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Abstract

Large Transformer-based language models are
pre-trained on corpora of varying sizes, for
a different number of steps and with differ-
ent batch sizes. At the same time fundamen-
tal components, such as the pre-training ob-
jective or architectural hyperparameters, are
modified. In total, it is therefore difficult
to ascribe changes in performance to specific
factors. Since searching the hyperparame-
ter space over the full systems is too costly,
we pre-train down-scaled versions of several
popular Transformer-based architectures on a
common pre-training corpus and benchmark
them on a subset of the GLUE tasks (Wang
et al., 2018). Specifically, we systemati-
cally compare three pre-training objectives for
different shape parameters and model sizes,
while also varying the number of pre-training
steps and the batch size. In our experiments
MLM + NSP (BERT-style) consistently out-
performs MLM (RoBERTa-style) as well as
the standard LM objective. Furthermore, we
find that additional compute should be mainly
allocated to an increased model size, while
training for more steps is inefficient. Based
on these observations, as a final step we at-
tempt to scale up several systems using com-
pound scaling (Tan and Le, 2019) adapted to
Transformer-based language models.

1 Introduction

The introduction of the Transformer (Vaswani et al.,
2017) together with the application of transfer
learning (Thrun and Pratt, 1998) has led to major
advances in Natural Language Processing (NLP).
While many different lines of research exist, most
attention is generally paid to the largest systems
which often reach new state-of-the-art (SOTA) re-
sults. The current trend is to scale up such systems
to ever new orders of magnitude: 213M parame-
ters in the Transformer, 300M parameters in BERT

(Devlin et al., 2019), 1.5B parameters in GPT-2
(Radford et al., 2019) and 175B in GPT-3 (Brown
et al., 2020). Since these models are pre-trained on
corpora of widely varying sizes, for a different num-
ber of training steps and with different batch sizes,
comparability suffers (Aßenmacher and Heumann,
2020). At the same time, new systems often apply
fundamentally different methods, such as using a
different pre-training objective or modified archi-
tectural hyperparameters. While altering multiple
components simultaneously can help achieve new
SOTA results, which is an important endeavor, it
is difficult to disentangle the effects of the various
factors. Though there exist various ablation stud-
ies, these often show only a small excerpt from
the broad spectrum of experimental opportunities
and can thus not provide a comprehensive picture.
In this work, we conduct a systematic study of
three Transformer-based architectures with respect
to several pre-training hyperparameters.

2 Related work

One line of research empirically derives generaliza-
tion results for large neural NLP systems. Rosen-
feld et al. (2019) study how the generalization error
of language models (LMs) depends on model and
data set size. Regarding model size, they provide
an approximation of the test loss, assuming that a
LM is scaled with respect to a pre-defined scheme,
such as increasing solely the embedding dimension.
A related but more comprehensive study was con-
ducted by Kaplan et al. (2020), examining power
laws of the test loss when scaling large neural LMs
with respect to a broad variety of different dimen-
sions. These dimensions include architectural hy-
perparameters, model size, data set size, number of
training steps and batch size. A central question in
their work is how these factors can be combined to
attain an optimal performance given a fixed amount
of compute.
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Compute efficient training is also investigated
by Li et al. (2020), recognizing that an optimal
allocation of computational resources is crucial
for improving model performance. Considering
Masked Language Modeling (MLM) pre-training,
Li et al. (2020) examine the optimal choice of num-
ber of training steps and batch size in the relation
to the model size. In a large-scale study, Raffel
et al. (2019) cover an even broader variety of mod-
eling scenarios than Kaplan et al. (2020), but train a
much smaller number of systems per scenario. For
instance, they include several variants of the Trans-
former, different pre-training objectives and vari-
ous fine-tuning strategies in their analysis. Finally,
based on their observations, Raffel et al. (2019)
also scale-up a system to 11B parameters.

3 Materials and Methods

Pre-training data We pre-train all models on
WikiText-1031 (Merity et al., 2016), a large-scale
text corpus for training and evaluating language
models on long-range contexts, which has served
as an evaluation data set (Radford et al., 2019; Dai
et al., 2019; Shoeybi et al., 2019) as well as for
pre-training (Howard and Ruder, 2018). We pre-
train all models on the training set of WikiText-103,
which allows for learning long-range dependencies
(Rae et al., 2019). The validation set is employed to
compare different architectures by their validation
loss during pre-training. WikiText-103 is much
smaller than most pre-training corpora of modern
language models. For instance, Devlin et al. (2019)
trained BERT on a 3, 300M words corpus, which is
approximately 32x the size of WikiText-103. Aside
from this, pre-training data sets of different models
often vary considerably in size, which makes fair
comparisons difficult (Aßenmacher and Heumann,
2020). Pre-training on the same corpus allows us
to exclude the amount and quality of pre-training
data as confounding factors when evaluating the
different model components.

Models We compare three different model types:
BERT (Devlin et al., 2019), RoBERTa (Liu et al.,
2019) and GPT-2 (Radford et al., 2019). BERT is a
bidirectional Transformer encoder which is trained
with both MLM as well as Next Sentence Predic-
tion (NSP). Its direct successor RoBERTa relies on
the exact same architecture and differs from BERT
solely in the pre-training procedure. Amongst other

1www.salesforce.com/products/einstein/ai-research/the-
wikitext-dependency-language-modeling-dataset/

changes, Liu et al. (2019) abandoned the NSP ob-
jective and introduced a dynamic masking2 proce-
dure for the MLM objective3. GPT-2 is a Trans-
former decoder, and thus a unidirectional model,
trained with the standard LM objective.

Since we train a multitude of down-scaled ver-
sions for each model type, thus modifying the
specifications of the original models, we intro-
duce the following conventions: We label models
trained with MLM & NSP as BERT-style, models
trained with MLM as RoBERTa-style, and mod-
els trained with LM as GPT-2-style. Alongside
with the pre-training objectives, we also use the
respective tokenizers of the different models. This
means using byte-level BPE (Radford et al., 2019)
for RoBERTa- and GPT-2-style and the WordPiece
algorithm (Schuster and Nakajima, 2012) for BERT-
style models, all of them exhibiting a uniform vo-
cabulary size of 30,000 tokens

Fine-tuning data We fine-tune and evaluate our
systems on GLUE (Wang et al., 2018). We mainly
compare performances on MNLI (Williams et al.,
2017), QQP (Shankar et al., 2017) and QNLI
(Wang et al., 2018), which are the three largest
GLUE tasks, since the results on these tasks are
the most reliable. In particular, we therefore cal-
culate the average score over the validation set
performances of the three tasks, which we denote
by GLUE-Large. For MNLI, we consider only
the matched validation set when calculating this
score. Whenever meaningful results for the two
next largest data sets SST-2 (Socher et al., 2013)
and CoLa (Warstadt et al., 2019) were achieved4,
those will also be reported.

Training details Hyperparameters and the pre-
training/fine-tuning procedure are largely adopted
from the original models (cf. Appendix A and B).

4 Experiments

4.1 Comparison of different Shapes5

In computer vision it has been observed that the per-
formance of a neural network strongly depends on
the choice of architectural hyperparameters, such

2We also use dynamic masking throughout this study.
3There were further alterations, none of which are crucial

for our experiments since we are using fixed pre-training data
sets, batch sizes, learning rates, etc. for better comparability.

4For the smaller model sizes the performance on these
smaller data sets did not significantly differ from zero.

5There exist several other choices, but examining the entire
spectrum of possible shapes is out of the scope of this study.
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as width or depth (Tan and Le, 2019). In contrast,
Kaplan et al. (2020) observed a similar LM test loss
over a wide range of shape parameters. Similarly,
for MLMs, Li et al. (2020) found that the valida-
tion loss does not depend strongly on the model
shape. This holds true also for the MNLI validation
accuracy of fine-tuned systems.

In this study, we examine the impact of
three different architectural hyperparameters in
Transformer-based models: depth, width and the
number of attention heads. Depth is given by
the number of layers L. Stacking many layers in
Transformer-based systems can be somewhat inef-
ficient and does not always lead to a considerable
increase in performance (Lan et al., 2019). Width
corresponds to the embedding dimension H . In-
creasing H has in general produced slightly better
results than increasing L in Transformer-based sys-
tems (Lan et al., 2019; Raffel et al., 2019; Li et al.,
2020). Attention Heads are used to discriminate
between different regions of the embedding space.
In most applications of the Transformer, the num-
ber of attention heads A is set in fixed relation to
H , such as H = 64×A. Decreasing performance
has been reported for larger ratios (Vaswani et al.,
2017; Brown et al., 2020).

4.2 Model Size, Training Steps and Batch size
Several recent studies have investigated the prob-
lem of compute efficient training of Transformer-
based systems (Raffel et al., 2019; Li et al., 2020;
Kaplan et al., 2020). The consensus among these
studies is that, under a restricted budget, optimal
performance is achieved by training very large mod-
els and stopping training well before convergence.
Furthermore, additional compute should rather be
used to increase the batch size instead of training
for more steps. To examine convergence character-
istics, we monitor the pre-training validation loss of
several systems and test how this loss corresponds
to different model sizes and shapes. Additionally,
we conduct experiments regarding the effect of the
batch size and the number of training steps. In par-
ticular, we evaluate how the training time and the
model performance depend on both factors.

4.3 Definition of the Model Size
We follow Kaplan et al. (2020) and use the approx-
imate number of non-embedding parameters to de-
fine the model size, which we denote as Nmodel.
Since the share of embedding parameters decreases
for larger models, similarly to Kaplan et al. (2020)

we expect that discarding the number of embed-
ding parameters allows for better generalization
of our results to large models. Another advantage
of defining the model size as the number of non-
embedding parameters is that it is closely linked
to the number of (non-embedding related) floating
point operations (FLOPs) per input token (Kaplan
et al., 2020). This enables us to design bench-
marking scenarios by training different models of
comparable size, which at the same time require
roughly similar amounts of computation.

Omitting biases and other sub-leading terms, the
number of non-embedding parameters is given by

Nmodel = 12LH2, (1)

assuming that queries, keys and values are all trans-
formed to dimension H

A and the feed-forward di-
mension is 4H . For a more in-depth explanation,
please see Appendix E.

5 Results6

We start by evaluating how varying single shape di-
mensions affects the performance on GLUE-Large
for the three different pre-training objectives (cf.
Sec. 5.1). This aims at investigating whether
the performance gain diminishes after a certain
level, comparing how the performance changes
when scaling different dimensions, and examining
whether models with different pre-training objec-
tives respond differently to single-dimension scal-
ing. Subsequently in Section 5.2, we change multi-
ple shape dimensions simultaneously to investigate
whether the different dimensions depend on each
other. In Sections 5.3 and 5.4 we study how to train
efficiently by varying the model size, the number
of training steps and the batch size. In Section 5.5
we put together our observations from the previous
sections and scale networks to different sizes.

5.1 Scaling Single Shape Dimensions
In this section, we separately scale L and H , while
holding all other dimensions constant. As shown
in Figure 1, BERT-style systems perform signifi-
cantly better than GPT-2-style and RoBERTa-style
systems on GLUE-Large, contrary to the results
of Liu et al. (2019) and in line with the original
findings of Devlin et al. (2019).

Observation 1 The pre-training objective has a
large impact on the performance of a fine-tuned

6Source code: https://github.com/PMSchulze/NLP-
benchmarking
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Figure 1: Average score on GLUE-Large, when varying H (left) vs. when varying L (right). For detailed perfor-
mance values on the single tasks, see Table 5 and Table 6 in Appendix C.

system. Pre-training with the combination of MLM
& NSP achieves the best results on sentence-pair
tasks7, while pre-training with the unidirectional
LM objective shows in general the worst perfor-
mance.

Furthermore, for BERT-style systems the average
performance is a relatively smooth function of the
model size. Scaling up H results in an increas-
ing performance, which saturates at approximately
72%, while for L we cannot clearly see this satu-
ration (even not at 75%). For RoBERTa-style sys-
tems, the difference between scaling L and H indi-
vidually is much larger. Furthermore, a saturation
(as for BERT-style systems) can not be observed.8

For GPT-2-style systems, the average score slightly
increases when scaling the embedding size, but in-
terestingly, stacking more layers shows no positive
effect at all. This suggests that GPT-2-style sys-
tems require more pre-training data compared to
BERT-style and RoBERTa-style systems.

Observation 2 In most cases, the performance of
a fine-tuned system increases up to a certain level
when scaling either width or depth, but the progres-
sion depends strongly on the pre-training objective.

5.2 Scaling Multiple Shape Dimensions

We next examine whether the performance can be
improved by scaling multiple dimensions at the
same time. First, we increase both H and L and

7Note that this does not necessarily generalize to other
languages or other types of tasks.

8Note that the relatively low average score for the 18-layer
RoBERTa-style system, shown in the right plot of Figure 1, is
due to a weak performance on the QNLI task.

compare the performance with the results from
Section 5.1. Fig. 2 shows that for RoBERTa-style
and BERT-style systems, scaling both dimensions
significantly improves the performance on GLUE-
Large.

Observation 3 Scaling multiple shape dimensions
can lead to a better performance than scaling sin-
gle dimensions.

Therefore, we conclude that the shape dimensions
are not independent of each other. For GPT-2-
style systems, however, we do not observe a perfor-
mance increase, as shown in Table 1.

BERT-Style Validation Set Performance
A H L Nmodel GLUE-Large

2 204 7 3,495,744 77.1
2 256 9 7,077,888 78.6
8 544 2 7,102,464 78.4

GPT-2-Style Validation Set Performance
A H L Nmodel GLUE-Large

2 204 7 3,495,744 63.6
2 256 9 7,077,888 63.8
8 544 2 7,102,464 66.0

RoBERTa-Style Validation Set Performance
A H L Nmodel GLUE-Large

2 204 7 3,495,744 72.9
2 256 9 7,077,888 75.0
8 544 2 7,102,464 70.9

Table 1: Performance on GLUE-Large when increasing
multiple shape dimensions at the same time.

So far, we did not increase A when scaling H
and observed that, without using more attention
heads, wide systems perform worse than deep sys-
tems (cf. Fig. 1). To evaluate whether a larger num-
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Figure 2: Performance on GLUE-Large when increasing multiple shape dimensions.

ber of attention heads can boost the performance of
wide systems, we re-implement our widest systems
with A = 8 attention heads, which corresponds to
H
A = 68. We observe that the score of the widest
system on GLUE-Large improved substantially by
doing so (cf. Fig. 1 and Tab. 1). In particular, when
using A = 8 instead of A = 2, the wide BERT-
style system (A = 8, H = 544, L = 2) performs
even better than the deep BERT-style system of
comparable size (A = 2, H = 128, L = 36). Fur-
thermore, as also shown in Table 1, the wide BERT-
style system (with increased A) performs close to
the balanced one (A = 2, H = 256, L = 9).

Observation 4 The fine-tuning performance can
be similar over a wide range of shapes. For BERT-
style systems, wide systems perform slightly better
than deep systems, if the number of attention heads
is adapted to the embedding dimension.

In contrast to BERT-style systems, deep RoBERTa-
style systems still perform better than wide sys-
tems, even when increasing the number of atten-
tions heads. For GPT-2-style systems, adding more
attention heads hardly increases the performance.

5.3 Monitoring the Validation Loss

In the previous sections, different models were
made comparable by their number of non-
embedding parameters. As stated in section 4.3,
this number is related to the computational cost
when evaluated as the number of FLOPs per to-
ken. Reporting the computational cost in FLOPs
neglects, however, that some operations can be run
in parallel, while others cannot. In order to assess
the speed of convergence, following Li et al. (2020),

we therefore directly report the wall-clock time in
seconds.

Figure 3 shows the validation loss for BERT-
style systems of different shape, when pre-trained
on the short sequences.9. The left plot depicts sev-
eral pre-training loss curves corresponding to the
single-dimension scaling experiments from Section
5.1. Interestingly, when comparing the validation
loss with the GLUE-Large results (cf. Fig. 1), we
find that, although increasing H (while holding
A fixed) results in a lower validation loss than in-
creasing L, the GLUE-Large score shows a higher
increase in the latter case.

Observation 5 The pre-training validation loss is
not necessarily a good indicator for the perfor-
mance of a fine-tuned system.

Dependent on the downstream task some archi-
tectures presumably favor fine-tuning more than
others, which can offset a relatively worse initial-
ization point. This finding suggests that, although
Kaplan et al. (2020) observe similar test losses for
different shapes, benchmarking the corresponding
fine-tuned versions may present a different picture.

In the left plot of Figure 3 we furthermore ob-
serve that shape has a significant effect on the pre-
training time. In particular, stacking many layers
requires much longer pre-training. It is also evident
that increasing the size does not lead to a propor-
tionate increase in the pre-training time. This holds
true especially when scaling multiple dimensions,
as depicted in the right plot of Figure 3. When dou-
bling the number of pre-training parameters, the

9We do pre-training on short and long sequences. For a
detailed description, see Appendix A and Appendix F.

18



2.0M Parameters

3.5M Parameters

7.1M Parameters

2.0M Parameters

3.5M Parameters

7.1M Parameters

3

4

5

6

7

0 5000 10000 15000 20000 25000
Wall Clock (Seconds)

V
al

id
at

io
n 

Lo
ss

 B
E

R
T

−
S

ty
le

Shape

A=2, H=288, L=2

A=2, H=384, L=2

A=2, H=544, L=2

A=2, H=128, L=10

A=2, H=128, L=18

A=2, H=128, L=36

3.5M Parameters

7.1M Parameters

3

4

5

6

7

0 5000 10000 15000 20000 25000
Wall Clock (Seconds)

V
al

id
at

io
n 

Lo
ss

 B
E

R
T

−
S

ty
le

Shape

A=2, H=204, L=7

A=2, H=256, L=9

Figure 3: Loss curves of BERT-Style systems of different shape. All loss curves are associated with the first stage
of pre-training, where we train on short sequences with a of 128 tokens (For the loss curves for the subsequent
training on the long sequences, see Appendix D). The depicted parameter counts refer to the model size Nmodel.

training time only increases from approximately
11, 800 seconds to approximately 14, 400 seconds.
In particular, the loss of the larger system is smaller
at any measured point in time.

Observation 6 Given a fixed time budget, training
large systems for a relatively small number of steps
is more efficient than training small systems for a
large number of steps.

The 9-layer system in the right plot of Figure 3
achieves a notably lower validation loss than the
7-layer system after 10, 000 seconds, which corre-
sponds to approximately 65, 800 and 79, 800 steps,
respectively. Li et al. (2020) made a similar obser-
vation by showing that larger Transformer-based
systems generally reach a lower pre-training valida-
tion perplexity in shorter time. A point of concern
might be that larger systems overfit more easily dur-
ing fine-tuning. However, Li et al. (2020) showed
that, when stopping models of different size at the
same pre-training validation perplexity, large sys-
tems generally achieve comparable downstream
task performances to small systems, which contra-
dicts the overfitting argument.

5.4 Number of Training Steps and Batch Size

The amount of processed data can be increased by
increasing either the number of trainig steps or the
batch size. In Table 2 we compare how halving the
number of steps vs. halving the batch size impacts
model performance. As baseline we use our best
performing system thus far (A = 2, H = 256, L =
9), pre-trained RoBERTa- and BERT-style.

In both cases we find that reducing the number
of training steps is more detrimental to the perfor-
mance than reducing the batch size. Conversely,
it follows that when scaling up a system, a better
model performance can be achieved when doubling
the amount of training steps than when doubling
the batch size, which is consistent with the results
of Raffel et al. (2019). On the other hand, we ob-
serve that the systems with the smaller batch size
were trained for a significantly longer time than
the systems with the reduced number of training
steps. Therefore, increasing the batch size may
result in a more favorable training duration than in-
creasing the number of training steps. The modest
drop in GLUE-Large performance, when halving
the number of training steps is consistent with our
findings from Section 5.3 and provides additional
evidence that training for a large number of steps
is inefficient.
Observation 7 Doubling the number of training
steps marginally increases the downstream task
performance, whereas doubling the batch size sig-
nificantly reduces the average training time of an
input sequence.
As stated, several other studies have shown that
using a larger batch size is in general more efficient
than training for more steps (Kaplan et al., 2020).
This means that the reduction of training time by
using larger batches dominates the marginal perfor-
mance gains resulting from an increased number
of training steps. However, for each specific model
and training configuration there exists a critical
batch size, after which the performance hardly im-
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BERT-Style Validation Set Performance
Training Strategy Total Time GLUE-Large MNLI-(m/mm) QQP QNLI SST-2

Baseline 21, 358s 78.6 72.0/72.7 81.2 82.5 83.4
1
2

x steps, 1x batch 10, 736s 77.4 70.2/71.2 80.5 81.5 82.5
1x steps, 1

2
x batch 14, 575s 78.2 71.5/71.9 80.9 82.3 83.9

RoBERTa-Style Validation Set Performance
Training Strategy Total Time GLUE-Large MNLI-(m/mm) QQP QNLI SST-2

Baseline 19, 760s 75.0 68.4/70.9 78.2 78.3 75.0
1
2

x steps, 1x batch 9, 906s 73.7 67.0/69.0 76.7 77.4 83.5
1x steps, 1

2
x batch 13, 101s 75.6 68.2/70.0 79.5 78.9 84.4

Table 2: GLUE results and total pre-training time when halving batch size vs. number of training steps.

proves, if at all (Kaplan et al., 2020; Li et al., 2020).
Our results suggest that this critical size is very
small in our experiments, which we believe is due
to the small size of the pre-training data set, as also
observed by Kaplan et al. (2020).

5.5 Systematic Scaling

In this section we apply a modified version of the
compound scaling method that was used to scale
up EfficientNet (Tan and Le, 2019), a model that
achieved a notably better accuracy on ImageNet
(Deng et al., 2009) than previous approaches using
less compute. For scaling, we only consider BERT-
style systems and propose the following compound
scaling method for Transformer-based systems:

L = αφ, H = βφ, A ≈ H/64,

s.t. αβ2 ≈ 2, with α ≥ 1, β ≥ 1.
(2)

For suitable values of α and β, a system is scaled
up by increasing the compound coefficient φ. Dou-
blingL doublesNmodel, whileH leads to a fourfold
increase. Since Nmodel dominates the amount of
compute in a Transformer, the constraint αβ2 ≈ 2
thus ensures that when scaling the network from
φold to φnew, the amount of compute (which is ap-
prox. independent of A) approximately increases
by the factor 2φnew−φold . Following existing ap-
proaches and using Observation 4, we therefore
set the number of attention heads to A ≈ H/64.

Grid search To determine α and β, we follow
Tan and Le (2019) and perform a grid search over
a set of nine small networks of comparable size
trained only on the short sequences. Subsequently,
we select the three systems with the lowest valida-
tion loss. Based on Observation 5, we then fine-
tune and evaluate these three systems on GLUE-
Large, which leads to the best performing system

having L = 3 and H = 104 (cf. Tab. 7 in Ap-
pendix C). From the constraint in Eq. (2) it fol-
lows that the size of this system corresponds to
a compound coefficient of φ = log2(LH

2) =

14.99 ≈ 15, such that we obtain α = 3
1
15 ≈ 1.076,

β = 104
1
15 ≈ 1.363. Note that the resulting coeffi-

cients favor scaling width over depth. In general,
we believe that this is reasonable, especially in light
of the much longer training times of deep networks
compared to wide networks (cf. Fig. 3). However,
we also want to emphasize that further research
is needed, whether these scaling coefficients are
suitable for BERT-style systems. For GPT-2-style
systems, Kaplan et al. (2020) proposed to scale
such that width/depth remains fixed. Importantly,
however, Kaplan et al. (2020) did not study the
effect of shape parameters on the GLUE-Large per-
formance, but instead only monitored the LM test
loss. In machine translation, on the other hand,
Transformer-based systems are scaled preferably
by increasing width (Shazeer et al., 2018; Li et al.,
2020). Other approaches focus on increasing depth,
while making modifications to the Transformer to
allow for more efficient training (Al-Rfou et al.,
2019).

Scaling Based on Observation 6, we successively
increase the compound coefficient to scale three
systems to larger sizes than all previously trained
systems, but train for less steps. For our smallest
system, we train for 5 epochs on both the long
and the short sequences.10 The results are listed
in Table 4. Furthermore, Table 3 shows a compari-
son of the smallest of the three systems to the best
performing system so far, as well as to a modifica-
tion of this system which fulfills the requirement

10Since validation loss on the long sequences did not further
decrease after 3 epochs, the two larger systems were only
trained for 3 epochs on these sequences (cf. Appendix D).

20



BERT-Style Validation Set Performance
φ A H L Nmodel Total Time Epochs GLUE-Large Final Loss

NA 2 256 9 7,0778,88 21,358s 6 78.6 3.24
NA 4 256 9 7,0778,88 21,703s 6 78.9 3.29

19.865 7 469 4 10,558,128 20,873s 5 79.4 3.13

Table 3: Verification of the scaling method: The proposed modifications lead to a better GLUE score and a lower
validation loss, while requiring less training time compared to previous best performing models.

BERT-Style Validation Set Performance
φ A H L Nmodel GLUE-Large MNLI-(m/mm) QQP QNLI SST-2 CoLA

20.578 9 585 5 20,553,500 80.7 75.3/75.5 83.5 83.4 85.1 16.5
21.716 13 832 5 41,553,440 81.4 75.6/75.9 84.1 84.4 85.8 21.3

Table 4: GLUE results of BERT-style systems, scaled up based on the observations made in the previous sections.

A ≈ H/64. As can be observed, both the perfor-
mance on the large GLUE-Large tasks and the final
validation loss are improved, while requiring less
training time. For the two larger systems, each ob-
tained by approximately doubling the model size,
downstream performance and validation loss are
further improved (cf. Tab. 4). Note that these sys-
tems are rather large compared to the amount of
pre-training data. This demonstrates the remark-
able robustness of these systems with respect to
overfitting on the pre-training data, which is in line
with the results of Kaplan et al. (2020).

6 Conclusion & Future work

Limitations The most severe limitation is the
small pre-training data set. Based on the obser-
vations of Kaplan et al. (2020), systems train faster
if more training examples are used. The small
size of the pre-training data set might also be the
cause of overfitting on smaller tasks. Therefore,
for further experiments, we suggest to expand the
amount of pre-training data. Furthermore, we did
no hyperparameter tuning, but instead adopted the
configurations from the original models. It would
be advisable to adjust the hyperparameters accord-
ingly (Li et al., 2020), especially since we used
different batch sizes as the original models.

Directions for Further Research Kaplan et al.
(2020) studied the effect of the amount of pre-
training data, however, not with regard to down-
stream task performance. Due to the fact that cur-
rent NLP systems are trained on vastly different
amounts of pre-training data, we believe that this
relationship should be explored further.

Although attempts have been made to study the

relationship between different pre-training objec-
tives and the performance on downstream tasks
(Arora et al., 2019), this relation is yet not well
understood. Empirically, contrastive pre-training
objectives, such as replaced token detection (Clark
et al., 2020) have shown very promising results. It
would be interesting to extend the study to such
contrastive objectives. Since we observed that the
NSP task is beneficial for learning sentence-pair
relationships, comparing it to ALBERT’s SOP task
(Lan et al., 2019) could yield further insights.

Finally, by fine-tuning on a larger variety of tasks
we could break down in more detail how different
modeling choices affect the performances on dif-
ferent tasks. We believe that further investigation
of such relationships will open many opportunities
for future research.

Conclusion In our experiments, BERT-style sys-
tems consistently outperform RoBERTa-style and
GPT-2-style systems. We therefore conclude that,
at least in case of a relatively small pre-training
data set, the combination of MLM & NSP is prefer-
able to MLM or LM. Although our experiments
were conducted on a much smaller scale than other
studies, we were able to reproduce many previous
findings. For instance, we observed that, provided
multiple dimensions are scaled, systems with very
different shapes can achieve similar performances.

Consistent with previous studies (Kaplan et al.,
2020; Li et al., 2020) we found that it is in general
inefficient to train until convergence and that train-
ing for more steps improves the performance rather
marginally. Instead, in accordance with Kaplan
et al. (2020), we believe that increasing the batch
size is more beneficial than training for more steps.
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More importantly, also consistent with the re-
sults of Kaplan et al. (2020) and Li et al. (2020),
we conclude that the model size is the key factor in
Transformer-based systems. We observed that even
for rather large systems, both the final pre-training
validation loss and the GLUE performance bene-
fit from further increasing the size. At the same
time, the total pre-training time increases at a rather
low rate. In particular, given a fixed time budget,
large systems reach a lower loss than small sys-
tems. Therefore, we believe that additional com-
pute should be allocated mainly to increase the
model size.
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ric Cistac, Tim Rault, Rémi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander M. Rush. 2020.
Transformers: State-of-the-art natural language pro-
cessing. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing:
System Demonstrations, pages 38–45, Online. Asso-
ciation for Computational Linguistics.

23



Appendix

A Pre-training details

Training duration To ensure a fair compari-
son of the different pre-training objectives, we
pre-train RoBERTa-style and GPT-2-style systems
for 10 epochs, and BERT-style systems for 6
epochs, which in all cases equates to approximately
137, 000 total training steps combined over both
partitions.11 Since the data is duplicated when train-
ing with MLM & NSP, it is natural to simply lower
the number of epochs in relation to the amount of
pre-training data. While the amount of pre-training
data of RoBERTa-style and GPT-2-style systems
amounts to more than 60% of the data of BERT-
style systems, we found that, on the other hand, the
average WordPiece token contains slightly more
information than the average byte-level BPE token.

Optimization Apart from the experiments in sec-
tion 5.4, we use a batch size of 64 when training
on the short sequences and a batch size of 16 for
the long sequences. We optimize all systems with
Adam (Kingma and Ba, 2014) using the follow-
ing parameters: β1 = 0.9, β2 = 0.999, ε = 1e-6
and L2 weight decay of 0.01. For BERT-style and
RoBERTa-style systems we use a maximum learn-
ing rate of 1e-4, and for GPT2-style systems the
maximum learning rate is 2.5e-4. In all cases we
use a linear warmup for the first 1000 steps, which
corresponds to approximately 1% of the total steps.
Furthermore, for all systems we employ dropout
with a rate of 0.1 on all layers. The activation func-
tion of all systems is the GELU (Hendrycks and
Gimpel, 2016). The hyperparameters are in gen-
eral chosen as in the original systems, except for
RoBERTa-style systems, because RoBERTa was
trained with significantly larger batches, which re-
quires different hyperparameters. For RoBERTa-
style systems we therefore choose the same hyper-
parameters as for BERT-style systems.

Implementation We pre-train all systems on a
single NVIDIA 16GB V100 GPU, making use of
the Hugging Face transformers library (Wolf et al.,
2020). The same also holds true for fine-tuning.

Short and long sequences With our pre-training
procedure we follow Devlin et al. (2019): The

11In sections where we do not compare the different objec-
tives the number of epochs may differ.

first 90% of the steps on short sequences (128 to-
kens), the remaining 10% on long ones (512 to-
kens). When inspecting the validation loss, we ad-
just the evaluation sequence lengths to the lengths
of the training sequences, so ensure the same distri-
bution for training and validation data. This causes
the validation loss on the long sequences to start at
a slightly higher point than the final validation loss
on the short sequences (cf. Appendix D).

B Fine-tuning details

We follow Devlin et al. (2019) and train for three
epochs on all GLUE tasks. We use a batch size of
16 and a learning rate of 2e-5 for each task. Apart
from these hyperparameter configurations, we ap-
ply the same fine-tuning procedures that were used
by the original systems. For GPT-2-style systems,
we implemented the fine-tuning approach of GPT
(because GPT-2 was not fine-tuned).

However, we do make one small modification
to the original implementations. In contrast to
BERT-style systems, the pre-training objective of
RoBERTa-style and GPT-2-style systems does not
contain a classification task. When performing the
NSP task, in the original BERT the contextualized
representation of the CLS token is obtained by feed-
ing the corresponding final hidden state through a
linear layer with dropout and tanh activation. Sub-
sequently, the contextualized representation is fed
through another linear layer with dropout, which is
the output layer mapping the contextualized repre-
sentation to the class probabilities. Consequently,
when fine-tuning BERT-style systems on a classi-
fication task, there are in fact two linear layers be-
tween the final hidden state and the output classes.
However, RoBERTa and GPT in their original im-
plementation use only one linear layer. In order
to be as consistent as possible, in contrast, we use
two linear output layers for all systems. The first
linear layer is followed by a tanh activation and
both layers are implemented with a dropout rate of
0.1. For more information regarding this issue see
huggingface’s discussion forum.

C Detailed performance values for single
shape dimensions and results for the
grid search

Performance values on GLUE-Large and SST-2
for scaling H (Tab. 5) and for scaling L (Tab. 6).
Table 7 shows the results of the grid search.
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BERT-Style Validation Set Performance
A H L Nmodel GLUE-Large MNLI-(m/mm) QQP QNLI SST-2

2 128 2 393,216 65.4 59.0/60.2 72.3 64.8 78.0
2 192 2 884,736 67.2 62.1/62.8 74.0 65.4 82.6
2 288 2 1,990,656 69.3 63.7/65.2 76.0 68.3 82.0
2 384 2 3,538,944 72.3 65.7/66.6 77.8 73.2 81.1
2 544 2 7,102,464 72.3 66.8/68.1 78.0 72.0 83.3

GPT-2-Style Validation Set Performance
A H L Nmodel GLUE-Large MNLI-(m/mm) QQP QNLI SST-2

2 128 2 393,216 61.6 56.3/56.2 66.1 62.3 79.8
2 192 2 884,736 62.9 58.0/58.4 68.7 61.9 79.7
2 288 2 1,990,656 63.9 58.7/58.7 70.9 62.2 81.7
2 384 2 3,538,944 64.9 59.8/59.6 71.9 63.0 81.2
2 544 2 7,102,464 65.0 59.8/59.7 72.4 62.9 82.5

RoBERTa-Style Validation Set Performance
A H L Nmodel GLUE-Large MNLI-(m/mm) QQP QNLI SST-2

2 128 2 393,216 60.1 53.7/55.1 64.7 61.9 79.2
2 192 2 884,736 60.5 54.4/55.4 65.0 62.0 80.8
2 288 2 1,990,656 63.0 57.5/58.0 68.1 63.4 80.3
2 384 2 3,538,944 64.3 59.4/59.8 69.0 64.6 81.9
2 544 2 7,102,464 66.5 60.2/60.7 72.7 66.5 81.8

Table 5: Performance on GLUE when increasing only the embedding dimension.

BERT-Style Validation Set Performance
A H L Nmodel GLUE-Large MNLI-(m/mm) QQP QNLI SST-2

2 128 2 393,216 65.4 59.0/60.2 72.3 64.8 78.0
2 128 5 983,040 68.9 62.1/64.2 75.0 68.6 79.8
2 128 10 1,966,080 72.0 65.3/66.9 76.7 74.1 81.8
2 128 18 3,538,944 74.2 67.2/68.6 77.8 77.7 82.2
2 128 36 7,077,888 75.9 69.7/70.4 79.7 78.3 83.3

GPT-2-Style Validation Set Performance
A H L Nmodel GLUE-Large MNLI-(m/mm) QQP QNLI SST-2

2 128 2 393,216 61.6 56.3/56.2 66.1 62.3 79.8
2 128 5 983,040 62.4 57.6/56.1 67.4 62.0 80.5
2 128 10 1,966,080 62.0 56.9/57.0 67.7 61.5 81.4
2 128 18 3,538,944 61.8 56.1/56.4 66.8 62.4 80.6
2 128 36 7,077,888 61.4 56.6/56.7 66.6 61.1 80.7

RoBERTa-Style Validation Set Performance
A H L Nmodel GLUE-Large MNLI-(m/mm) QQP QNLI SST-2

2 128 2 393,216 60.1 53.7/55.1 64.7 61.9 79.2
2 128 5 983,040 64.8 59.5/60.6 70.4 64.4 80.2
2 128 10 1,966,080 67.1 60.9/61.9 72.0 68.5 81.7
2 128 18 3,538,944 67.2 62.9/64.3 74.3 64.3 80.0
2 128 36 7,077,888 73.3 67.6/69.1 77.3 75.0 82.6

Table 6: Performance on GLUE when increasing only the number of layers.

BERT-Style Validation Loss (WikiText-103) Validation Performance (GLUE)
A H L Nmodel BERT-Style Loss GLUE-Large
2 128 2 393,216 5.66 66.6
2 104 3 389,376 6.34 68.2
2 90 4 388,800 6.41 67.1
2 74 6 394,272 6.47 -
2 64 8 393,216 6.50 -
2 58 10 403,680 6.54 -
2 52 12 389,376 6.58 -
2 48 14 387,072 6.62 -
2 46 16 406,272 6.62 -

Table 7: Grid search over nine small BERT-style systems.
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D Validation loss for scaled-up models
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Figure 4: Validation loss of scaled-up BERT-style sys-
tems when pre-training on the short sequences. The
depicted parameter counts refer to Nmodel.

E Definition of the model size

We follow Kaplan et al. (2020) and use the approx-
imate number of non-embedding parameters to de-
fine the model size, which we denote as Nmodel.
The embedding parameters consist of all token, po-
sition and (if present) segment embeddings. The
number of embedding parameters does not depend
on the network depth, and when scaling width
and/or depth, it is a sub-leading term of the total
number of parameters. Furthermore, the number of
FLOPs related to embedding (and de-embedding)
is also sub-leading term of the total number of
FLOPs. Consistent with this is the observation of
Kaplan et al. (2020) that discarding the number
of embedding parameters when calculating model
size and amount of compute results in significantly
cleaner scaling laws. Since the share of embedding
parameters decreases significantly for larger mod-
els, similarly to Kaplan et al. (2020) we expect that
discarding the number of embedding parameters
allows for a better generalization of our results to
large models. Another advantage of defining the
model size as the number of non-embedding pa-
rameters is that this number is closely linked to the
number of (non-embedding related) FLOPs. This
enables us to design benchmarking scenarios by
training different models of comparable size, which
at the same time require roughly similar amounts
of computation.
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Figure 5: Validation loss of scaled-up BERT-style sys-
tems when pre-training on the long sequences. The de-
picted parameter counts refer to Nmodel.

Number of Non-Embedding Parameters
Omitting biases and other sub-leading terms, the
number of non-embedding parameters, which is
our definition of the model size, is given by

Nmodel := 12LH2, (3)

where we have assumed that Hk = Hv = H
A and

Hff = 4H . Therefore, per layer there are approx-
imately 12H2 non-embedding parameters. This
number can be derived from the following three
steps performed in each layer of a Transformer:

1. Input projection For each attention head, the
queries, keys and values of dimension H

A are ob-
tained with the three matrices WQ

i , WK
i , and

W V
i , which are each of size H × H

A . In total, the
input projection thus consists of 3 ·A · H2

A = 3H2

parameters.

2. Output projection First, note that performing
attention on the projected inputs of dimension H

A in-
volves no additional parameters. The concatenated
attention results are projected back to dimension
H with the H × H matrix WO. Therefore, the
output projection involves an additional set of H2

parameters.

3. Feed-forward network The last sub-layer of
each layer consists of applying a feed-forward net-
work to the output projections. There exist H · 4H
connections between the output projections and the
neurons of the inner-layer, and another 4H · H
connections from the inner-layer to the final output
neurons. This step hence involves 8H2 parameters.
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Note that the feed-forward network accounts for the
majority of non-embedding parameters, followed
by the input and output projections, respectively.

Relation to FLOPs

As stated, the number of non-embedding param-
eters is closely linked to the number of non-
embedding related FLOPs. We start by deriving
the number of FLOPs per token and forward pass
for GPT-2-style systems, where sub-leading terms
such as biases and layer normalization are again
omitted.

1. Input projection The matrix-vector products
of each per-layer input with WQ

i , WK
i , and W V

i

involve approximately 3 · 2 · H · HA FLOPs per
attention head. Considering all attention heads, the
input projection thus requires approximately 6H2

FLOPs per token.

2. Attention The computation of the attention
operation can be divided into two sub-components:

• Computation of the weights: On average,
Nctx
2 attention weights have to be computed

per input token, since on average half of the
tokens are masked for each input token. Com-
putation of a dot-product attention weight re-
quires approximately 2HA FLOPs per head. In
total, the computation of the attention weights
hence involves approximately NctxH FLOPs
per token.

• Computation of the weighted sum: Since
only half of the tokens are summed on average,
given the attention weights, calculation of the
weighted sum of the values has an average
cost of approximately NctxH FLOPs for each
token.

3. Output projection The vector matrix product
of the attention outputs with WO requires approxi-
mately 2H2 FLOPs for each token.

4. Feed-forward network The feed-forward net-
work consists of two consecutive matrix multiplica-
tions, where each matrix contains 4H2 parameters.
Thus, the feed-forward network requires approxi-
mately 2 · 2 · 4H2 = 16H2 FLOPs per token.

The number of FLOPs per token and forward
pass in GPT-2-style systems, which we denote by

Cforward, can hence be approximated as

Cforward ≈ L(6H2 +NctxH +NctxH

+ 2H2 + 16H2)

= 24LH2 + 2LNctxH

= 2Nmodel + 2LNctxH.

(4)

BERT-style and RoBERTa-style systems require
slightly more FLOPs than GPT-2-style systems,
because these systems have no autoregressive at-
tention mask. Hence, in both steps of the attention
operation above, the computational cost is approx-
imately twice as much, i.e., 2NctxH in each step.
Therefore, BERT-style and RoBERTa-style sys-
tems require approximately 2Nmodel + 4LNctxH
FLOPs per token and forward pass. As mentioned
by Kaplan et al. (2020), if H > Nctx/12, the
context-dependent term in Eq. (4) only accounts
for a relatively small fraction of the compute of
GPT-2-style systems. In particular, when increas-
ing H , the importance of the context-dependent
term diminishes. For BERT-style and RoBERTa-
style systems the context-dependent term becomes
small ifH > Nctx/6. Both constraints are satisfied
by a large margin for all our systems, especially
since we mainly train on rather short sequences.
The backward pass requires approximately twice
as much compute as the forward pass (Kaplan et al.,
2020), such that the total amount of non-embedding
related compute per token and training step can be
approximated as

C := 6Nmodel. (5)

F Sequence characteristics

The following Table 8 provides an overview on the
number of tokens in short and long sequences.

System Partition Number of Tokens
Total Average

BERT-Style Short 110, 888, 186 110.04
Long 43, 274, 856 375.52

RoBERTa-Style Short 70, 025, 709 110.31
Long 27, 692, 351 457.04

GPT-2-Style Short 70, 564, 106 111.16
Long 27, 729, 551 457.65

Table 8: Number of tokens for the short and the long
sequences as well as the average sequence lengths re-
sulting from the different tokenizers.
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Abstract

Argumentation is an important tool within hu-
man interaction, not only in law and politics
but also for discussing issues, expressing and
exchanging opinions and coming to decisions
in our everyday life. Applications for argu-
mentation often require the measurement of
the arguments’ similarity, to solve tasks like
clustering, paraphrase identification or summa-
rization. In our work, BERT embeddings are
pre-trained on novel training objectives and af-
terwards fine-tuned in a siamese architecture,
similar to Reimers and Gurevych (2019b), to
measure the similarity of arguments. The ex-
periments conducted in our work show that a
change in BERT’s pre-training process can im-
prove the performance on measuring argument
similarity.

1 Introduction

Since today it is common to share opinions on so-
cial media to discuss and argue about all kinds
of topics, the interest of research in the field
of artificial intelligence in argumentation is con-
stantly rising. Tasks like counter-argument re-
trieval (Wachsmuth et al., 2018), argument cluster-
ing (Reimers et al., 2019a) and identifying the most
prominent arguments in online debates (Boltužić
and Šnajder, 2015) have been examined and au-
tomated in the past. Many of these tasks involve
measuring the textual similarity of arguments.

Transformer-based language models such as
the bi-directional encoder representations from
transformers (BERT) by Devlin et al. (2019) are
widely used for different natural language process-
ing (NLP) tasks. Nevertheless, for large-scale tasks
like finding the most similar sentence in a collec-
tion of sentences, BERT’s cross-encoding approach
is disadvantageous as it creates a huge computa-
tional overhead.

In our work, we focus on exactly these large-
scale tasks. We want to train embeddings of ar-
guments in order to measure their similarity, e.g.,
to automatically recognize similar user entries in
ongoing discussions in online argumentation sys-
tems. In this way redundancy can be avoided when
collecting arguments. We base our approach on
Sentence-BERT (SBERT), proposed by Reimers
and Gurevych (2019b), which is a bi-encoder, fine-
tuning the model’s parameters to place similar sen-
tences close to one another in the vector space.
This approach yields good results on paraphrase
identification tasks, but evaluating it on an argu-
ment similarity corpus shows a noticeable drop in
performance.

To improve this method, we propose and evalu-
ate three alternative pre-training tasks that replace
the next sentence prediction (NSP) in BERT’s pre-
training process to optimize SBERT for measuring
the similarity of arguments. These proposed tasks
are similarity prediction, argument order prediction
and argument graph edge validation. Being pre-
trained on these tasks and fine-tuned in a siamese
SBERT architecture, we call these models argue-
BERT throughout this work.

To examine the models’ applicability in practice,
we also propose a new evaluation task, which is
called similar argument mining (SAM). Solving
the task of SAM includes recognizing paraphrases
(if any are present) in a large set of arguments, e.g.,
when a user enters a new argument to an ongoing
discussion in some form of argumentation system.

In summary our contributions of this paper are
the following:

1. We propose and evaluate new pre-training ob-
jectives for pre-training argument embeddings
for measuring their similarity.

2. We propose a novel evaluation task for argu-
mentation systems called SAM.
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2 Related Work

Alternative Pre-Training Objectives The orig-
inal BERT model uses two different pre-training
objectives to train text embeddings that can be used
for different NLP tasks. Firstly masked language
modeling (MLM) and secondly next sentence pre-
diction. However, Liu et al. (2019) have shown that
BERT’s next sentence prediction is not as effective
as expected and that solely training on the MLM
task can slightly improve the results on downstream
tasks. Since then there have been attempts to im-
prove the pre-training of BERT by replacing the
training objectives.

Lewis et al. (2020) propose, inter alia, token dele-
tion, text infilling and sentence permutation as alter-
native pre-training tasks. Their experiments show
that the performance of the different pre-training
objectives highly depends on the NLP task it is
applied to. Inspired by this we want to explore
tasks that perform well on measuring the semantic
similarity of arguments.

Lan et al. (2020) propose a sentence ordering
task instead of the next sentence prediction, which
is similar to our argument order prediction. They
find that sentence ordering is a more challenging
task than predicting if a sentence follows another
sentence. Instead of continuous text, we use dialog
data from argumentation datasets, as we hope to
encode structural features of arguments into our
pre-trained embeddings.

Clark et al. (2020) use replaced token detection
instead of MLM, where they do not mask tokens
within the sentence, but replace some with alter-
native tokens that also fit into the sentence. In
this way they implement a contrastive learning ap-
proach into BERT’s pre-training, by training the
model to differentiate between real sentences and
negative samples. Their approach outperforms a
model pre-trained on MLM on all tasks.

Argument Embeddings Embeddings of textual
input that encode semantic and syntactical features
are crucial for NLP tasks. Some research has al-
ready been conducted using the BERT model or its
embeddings to measure the similarity of arguments.
These are described briefly in the following.

Reimers et al. (2019a) use, inter alia, BERT for
argument classification and clustering as part of an
open-domain argument search. This task involves
firstly classification of arguments concerning their
topic, and afterwards clustering the arguments in

terms of their similarity. They achieve the best
results with a fine-tuned BERT model, when incor-
porating topic knowledge into the network.

In a proximate work Reimers and Gurevych
(2019b) introduce SBERT which serves a base for
our work. They train a BERT model in a siamese
architecture to produce embeddings of textual input
for tasks like semantic similarity prediction. The
model is described in detail in Section 3.1.

Dumani et al. (2020) build upon the work of
Reimers et al. (2019a) and propose a framework
for the retrieval and ranking of arguments, which
are both sub-tasks of an argument search engine.

Thakur et al. (2020) present an optimized ver-
sion of SBERT and publish a new argument sim-
ilarity corpus, which we also use for evaluation
in this work. They expand the training data for
the SBERT model through data augmentation, us-
ing the original BERT model for labeling sentence
pairs.

To the best of our knowledge there are cur-
rently no contextualized embeddings developed
especially for the task of measuring the similarity
of arguments.

3 Background

In this section the SBERT (Reimers and Gurevych,
2019b) architecture, the training procedure and
characteristics are explained in detail.

3.1 SBERT

We use SBERT, proposed by Reimers and
Gurevych (2019b) to fine-tune the BERT models
pre-trained with our novel proposed pre-training
tasks.

SBERT is a network architecture that fine-tunes
BERT in a siamese or triplet architecture to cre-
ate embeddings of the input sentences to measure
their similarity. Unlike the original BERT model,
SBERT is a bi-encoder, which means it processes
each input sentence individually, instead of con-
catenating them. The advantage of bi-encoders is
their efficiency. Cross-encoders like BERT gener-
ate an enormous computational overhead for tasks
such as finding the most similar sentence in a large
set of sentences, or clustering these sentences.

By connecting both input sequences, handling
it as one input, BERT is able to calculate cross-
sentence attention. Although this approach per-
forms well on many tasks, it is not always applica-
ble in practice. SBERT is much faster and produces
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Figure 1: SBERT architecture for measuring sentence
similarity.

results that outperform other state-of-the-art embed-
ding methods (Reimers and Gurevych, 2019b).

To fine-tune the model the authors propose dif-
ferent network structures. For regression tasks, e.g.,
measuring sentence similarity, they calculate the
cosine similarity of two embeddings u and v, as
shown in Figure 1, and use a mean squared er-
ror (MSE) loss as objective function. To calculate
the fixed sized sentence embeddings from each in-
put, a pooling operation is applied to the output
of the BERT model. The authors experiment with
three different pooling strategies, finding that tak-
ing the mean of all output vectors works best for
their model.

In the siamese architecture the weights of the
models are tied, meaning that they receive the same
updates. In this way the BERT model is fine-tuned
to create sentence embeddings that map similar
sentences nearby in the vector space.

In the original paper, the model is fine-tuned on
the SNLI (Bowman et al., 2015) and the Multi-
Genre NLI datasets (Williams et al., 2018) to solve
multiple semantic textual similarity tasks, which
leads to improved performance in comparison to
other state-of-the-art embedding methods. How-
ever, evaluating the model on the argument facet
similarity (AFS) (Misra et al., 2016) dataset shows
a significant drop in accuracy. Different than in
our work, the authors do not pursue the measure-
ment of argument similarity in the first place, but
rather use the model for general textual similarity
tasks. The aim of this work is therefore to optimize
BERT’s pre-training process to generate argument
embeddings that lead to better results on this task.

4 argueBERT

4.1 Pre-Training
We propose and evaluate three new tasks, which
should improve the performance of BERT embed-
dings on measuring the similarity of arguments.
The proposed pre-training objectives that are opti-
mized instead of the next sentence prediction are
the following:

1. Similarity prediction: Given a pair of input
sentences s1 and s2, predict whether the two
sentences have the same semantic meaning.
BERT therefore is pre-trained on the Para-
phrase Adversaries from Word Scrambling
(PAWS) (Zhang et al., 2019) and the Quora
Question Pairs (QQP)1 dataset.

2. Argument order prediction: Given an ar-
gumentative dialog consisting of a statement
and an answer to that statement, predict if the
given paragraphs p1 and p2 are in the correct
order. For this task we train BERT on the
Internet Argument Corpus (IAC) 2.0 (Abbott
et al., 2016), which contains argumentative
dialogues from different online forums. This
task is the same as the sentence ordering ob-
jective from ALBERT (Lan et al., 2020) but
with argument data.

3. Argument graph edge validation: Given
two arguments a1 and a2 from an argument
graph, classify if they are adjacent, thus con-
nected through an edge in the graph. For
this task we use several argument graph
corpora, taken from http://corpora.aifdb.

org/ for pre-training.

The pre-training process of argueBERT is the
same as for the original BERT, except that we re-
place the next sentence prediction task. Our novel
proposed pre-training objectives are trained as bi-
nary classification tasks.

To compare the new pre-training tasks, we train
medium sized BERT models with 8 layers and a
hidden embedding size of 512 (Turc et al., 2019).
We train the models for a total of 100, 000 training
steps. To guarantee comparability we also train a
model with the original NSP and MLM objectives
for 100, 000 steps on the BookCorpus (Zhu et al.,
2015). To examine if the pre-training tasks also

1https://www.kaggle.com/c/
quora-question-pairs/data
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perform on a larger scale, we additionally train a
BERTBASE model (12 layers, hidden embedding
size 768) on our best performing pre-training task
for 1, 000, 000 steps. All hyperparameters we used
for pre-training can be found in Table 5 in the Ap-
pendix.

4.2 Fine-Tuning

For fine-tuning argueBERT, we use
SBERT (Reimers and Gurevych, 2019b).
The model fine-tunes the weights of the pre-trained
BERT model in a siamese architecture, such that
the distance between embeddings of similar input
sentences is minimized in the corresponding vector
space. Therefore, ŷ is calculated as the cosine
similarity between two input embeddings u and v
and then the MSE loss

MSE =
1

n

n∑

i=1

(yi − ŷi)2 (1)

is optimized. Here n is the batch size and y the true
label. We fine-tune each model on every evaluation
dataset for a total of five epochs with a batch size of
16 and a learning rate of 2e-5. All hyperparameters
used for fine-tuning can be found in Table 6 in the
Appendix.

4.3 Similar Argument Mining (SAM)

The main idea of proposing argueBERT as an im-
proved version of SBERT on measuring argument
similarity is in particular to use it for identifying
and mining similar arguments in online argumenta-
tion systems. In order to evaluate language models
for this purpose, we propose a new evaluation task
which we call SAM. It is defined as follows.

Task definition. Given a query argument q,
match the argument against all arguments of an
existing set S = {a1, a2, . . . , an} \ {q} to predict,
if S contains one or more paraphrased versions of
q and find the paraphrased sentences in the set.

For the evaluation on SAM, the model is given
a set of arguments of which some are paraphrased
argument pairs and some are unpaired arguments
that are not considered equivalent to any other ar-
gument in the set. The model then encodes all
arguments into vector representations and calcu-
lates the pairwise cosine similarities. If the highest
measured similarity score for an argument exceeds
a pre-defined threshold, the argument is classified

as being a paraphrase. We calculate the accuracy
and the F1 score of the models on this task.

5 Experiments

5.1 Datasets

We use the following datasets for the evaluation of
our embeddings.

• The Microsoft Research Paraphrase Corpus2

(MSRP) (Dolan and Brockett, 2005), which
includes 5, 801 sentence pairs for paraphrase
identification with binary labeling (0: “no
paraphrase”, 1: “paraphrase”), automati-
cally extracted from online news clusters.

• The Argument Facet Similarity Dataset3

(AFS) (Misra et al., 2016), consisting of
6, 000 argument pairs taken from the Inter-
net Argument Corpus on three controversial
topics (death penalty, gay marriage and gun
control), annotated with an argument facet
similarity score from 0 (“different topic”) to
5 (“completely equivalent”).

• The BWS Argument Similarity Dataset4

(BWS) (Thakur et al., 2020), which contains
3, 400 annotated argument pairs on 8 contro-
versial topics from a dataset collected from
different web sources by Stab et al. (2018b).
Labeled via crowd-sourcing with similarity
scores between 0 and 1.

• The UKP Argument Aspect Similarity Cor-
pus5 (UKP) (Reimers et al., 2019a) with a
total of 3, 595 argument pairs, annotated with
four different labels “Different topic/ can’t de-
cide”, “no similarity”, “some similarity” and

“high similarity” on a total of 28 topics, which
have been identified as arguments by the Ar-
gumenText system (Stab et al., 2018a).

As baselines we use (i) a medium sized SBERT,
pre-trained with the standard BERT pre-training
procedure, fine-tuned in a siamese architecture, and
(ii) average word2vec6 (Mikolov et al., 2013) vec-

2https://www.microsoft.com/en-us/
download/details.aspx?id=52398

3https://nlds.soe.ucsc.edu/node/44
4https://tudatalib.ulb.tu-darmstadt.

de/handle/tudatalib/2496
5https://tudatalib.ulb.tu-darmstadt.

de/handle/tudatalib/1998
6https://code.google.com/archive/p/

word2vec/
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MSRP UKP AFS
Model r ρ r ρ r ρ
average word2vec 18.17 17.96 22.29 17.44 11.25 5.22
SBERT 47.12 44.54 32.04 30.89 38.02 35.92
argueBERT sim. pred. (ours) 48.33 46.34 35.33 34.77 37.57 35.83
argueBERT order pred. (ours) 45.08 43.15 28.41 28.11 38.25 36.80
argueBERT edge val. (ours) 40.88 40.03 28.36 26.64 36.89 34.04

Table 1: Pearson’s correlation r and Spearman’s rank correlation ρ× 100 on the MSRP, UKP and AFS corpora.

tors with vector-size 300, pre-trained on part of the
Google News dataset.

To be able to fine-tune the models, the discrete
labels of the AFS and UKP corpus are transformed
into similarity scores between 0 and 1. The labels
of the AFS corpus, which range from 0 to 5, are
normalized by dividing it through the maximum
value of 5. For the UKP corpus, the labels ”dif-
ferent topic/ can’t decide” and ”no similarity” are
assigned the value 0, ”some similarity” is trans-
lated into a similarity score of 0.5 and for all pairs
with label ”high similarity” we assign a similarity
score of 1. The labels for the MSRP corpus remain
unchanged.

We perform two different evaluations. Firstly
on the task of similarity prediction. Therefore we
evaluate the models by calculating the Pearson’s
and Spearman’s rank correlation for the predicted
cosine similarities. Secondly we calculate the ac-
curacy and F1 score on the novel proposed task of
SAM.

For the AFS corpus, which contains arguments
for three different controversial topics, we use the
same cross-topic evaulation strategy as suggested
by Reimers and Gurevych (2019b). The models are
fine-tuned on two of the three topics and evaluated
on the third one, taking the average of all possible
cross-topic scenarios as overall model performance
score.

The UKP corpus, including arguments on 28
different topics, is evaluated with a 4-fold cross-
topic validation as done by Reimers et al. (2019a).
Out of the 28 topics, 21 are chosen for fine-tuning
the model and 7 are used as test set. The evaluation
result is the averaged result from all folds.

The BWS argument similarity dataset incorpo-
rates 8 different controversial topics. For evaluation
we fine-tune the models on a fixed subset (T1−T5),
validate them on another unseen topic (T6) and use
the remaining two topics as test set (T7 − T8), as
suggested by Thakur et al. (2020).

6 Results

First of all, we evaluate how well our models can
predict the similarity of a given argument pair by
calculating the cosine similarity between the two
embeddings. Table 1 shows the Pearson correlation
r and Spearman’s rank correlation ρ on this task
for the MSRP, AFS and UKP datasets.

On the MSRP dataset, the model pre-trained with
a similarity prediction objective performs slightly
better than the baseline that is trained with the next
sentence prediction objective. The argueBERT or-
der prediction model only performs a little worse
on this dataset, than the next sentence prediction
model, while the model trained on edge validation
can not compete with the aforementioned models.

On the UKP dataset the performance increase
by the model that used the similarity prediction
objective for pre-training is even more significant.
It outperforms the traditionally pre-trained SBERT
model by 3 points for Pearson correlation and al-
most 4 points for the Spearman rank correlation.

Surprisingly, the order prediction model is able
to outperform the similarity prediction task on the
AFS corpus. But it has to be noticed that there is
not much difference in the performance of all mod-
els on this dataset. Only the averaged word2vec
vectors perform notably worse than all other evalu-
ated models.

Out of all evaluated datasets, the recently pub-
lished BWS corpus is the only one whose simi-
larity values are quantified on a continuous scale.
Table 2 shows the evaluation results for all models
for three different distance measures. We chose the
cosine similarity as default distance measure for
evaluation. But in the case of the BWS corpus it
is striking that both Manhattan and Euclidean dis-
tance result in a higher Pearson correlation as well
as Spearman rank correlation. The embeddings
of argueBERT pre-trained with a similarity predic-
tion objective achieve the highest correlation for
all distance measures. The model outperforms the
SBERT model by 4 points. The argument order pre-
diction model also performs better than the model
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Cosine Manhattan Euclidean
Model r ρ r ρ r ρ
average word2vec 8.98 3.46 41.67 43.61 41.73 43.54
SBERT 38.55 38.72 42.33 42.02 42.35 42.09
argueBERT sim. pred. (ours) 43.44 43.76 46.84 46.94 46.56 46.70
argueBERT order pred. (ours) 38.97 38.02 44.20 43.39 44.14 43.30
argueBERT edge val. (ours) 33.72 33.22 39.49 38.79 39.74 39.17

Table 2: Pearson’s correlation r and Spearman’s rank correlation ρ ×100 on the BWS Argument Similarity
Dataset (Thakur et al., 2020) for three different distance measures.

Model ρ
average word2vec 43.54
SBERTBASE (Thakur et al., 2020) 58.04
argueBERTBASE sim. pred. (ours) 62.44
BERTBASE (Thakur et al., 2020) 65.06

Table 3: Spearman’s rank correlation ρ ×100 on the
BWS argument similarity dataset.

pre-trained with next sentence prediction, only the
edge validation argueBERT model does not lead to
an improvement and even performs worse than the
word2vec baseline approach for both Manhattan
and Euclidean distance measures.

To see how well the pre-training works for larger
models, we also trained an argueBERTBASE model
on the task of similarity prediction for 1, 000, 000
training steps on the PAWS and QQP datasets. The
evaluation results for the BWS dataset are shown
in Table 3. For comparison we also list the evalua-
tion result of the standard BERTBASE model on
this dataset. Even though argueBERTBASE was
trained on a comparably small dataset, it outper-
forms SBERT on the BWS argument similarity
prediction task and almost reaches the level of the
BERTBASE cross-encoder.

Lastly, Table 4 shows the results on the MSRP
dataset on the task of SAM for both the small and
large pre-trained models. The small argueBERT
model, pre-trained with the similarity prediction
objective, by far achieves the highest accuracy, as
well as the highest F1 value for a threshold of 0.8.
This reflects the evaluation results of the sentence
embeddings on this dataset, showing that the simi-
larity prediction argueBERT model is able to recog-
nize paraphrases in the dataset quite well. The sec-
ond best performing models, which are the argue-
BERT model trained on the task of edge validation
and the baseline, trained on next sentence predic-
tion, are almost more than 16 points behind. This
shows the great potential of incorporating similar-
ity prediction in the pre-training process of BERT.
Looking at the results for the larger models, the

Model Acc. F1

average word2vec 35.49 45.68
SBERT 44.92 52.54
argueBERT sim. pred. (ours) 64.09 69.80
argueBERT order pred. (ours) 38.14 46.81
argueBERT edge val. (ours) 48.10 49.08
SBERTBASE 66.88 71.45
argueBERTBASE sim. pred. (ours) 65.92 70.76

Table 4: Accuracy and F1 score on SAM for the MSRP
corpus for a threshold of 0.8.

argueBERTBASE model does not perform as well
as the SBERT model on this dataset.

The remaining argument similarity datasets were
found to be unsuitable for the task of SAM as they
do not only contain dedicated paraphrased argu-
ment pairs, but rather present all increments of sim-
ilarity. This means that very similar arguments are
not necessarily matched as argument pairs in the
data. Therefore, for future research new datasets
that suit the task of SAM are required.

7 Discussion

Our conducted experiments show that the new pro-
posed pre-training tasks are able to improve the
SBERT embeddings on argument similarity mea-
surement, compared to the next sentence prediction
objective. Nevertheless, our presented approach
has some limitations that should be addressed in
the following.

First of all, the proposed models were pre-trained
and fine-tuned on a single GPU. Due to the lim-
ited resources, a BERT model in medium size was
chosen as basis for all pre-trained models. The
models were trained only for a total of 100, 000
training steps, which is just a small fraction of the
conducted training of the original BERT model.
The achieved results have to be regarded as com-
parative values on how much an adaptation of the
pre-training process can improve the performance.
However, training a larger model for 1, 000, 000
steps on the task of similarity prediction indicates
that the adapted pre-training also works for larger
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models and is able to compete with a pre-trained
cross-encoder.

Another point is that the corpora we used for pre-
training have quite different characteristics. The
IAC (Abbott et al., 2016) for example consists of
posts from different online forums. The used lan-
guage is colloquial and the posts strongly vary in
length and linguistic quality. The same applies to
the QQP corpus. In contrast, the PAWS dataset
consists of paraphrases extracted from Wikipedia
articles, implying a formal language without mis-
spellings. Training models on informal datasets
can be advantageous, depending on the application
of the trained model. In our case the differences of
the used datasets rather constitute a disadvantage,
as it may affect the comparability of the resulting
models.

Additionally to having different characteristics,
the few available datasets on paraphrase identifi-
cation, argument similarity and also the argument
graph corpora are relatively small, compared to
the corpora the original BERT model is trained
on. For the task of argument similarity prediction
only the recently published BWS corpus (Thakur
et al., 2020) includes argument pairs annotated with
continuous scaled similarity scores. It can be said
that there is still a lack of high-quality annotated
argumentation corpora for this task.

8 Conclusion

In our work, we proposed and evaluated different
pre-training tasks to improve the performance of
SBERT embeddings on the task of argument sim-
ilarity measurement. We call the new pre-trained
model variants argueBERT. Evaluation of the mod-
els shows that adapting the pre-training process of
BERT has an impact on the resulting embeddings
and can improve the models’ results. ArgueBERT
trained with a similarity prediction objective led to
a performance improvement up to 5 points Spear-
man’s rank correlation on the evaluated BWS ar-
gument similarity corpus, compared to the model
trained with the classic NSP pre-training task and
also showed the best results on our new proposed
evaluation task SAM on the MSRP corpus.

A larger argueBERTBASE pre-trained with the
similarity prediction task could improve the eval-
uated embeddings compared to SBERT and al-
most reaches the results of the cross-encoding
BERTBASE model.

For future research, the new proposed task of

SAM can be used to evaluate models on the abil-
ity to identify paraphrases from a large collection
of sentences. Fields of application are, for exam-
ple, online argumentation tools, where users can
interchange arguments on certain topics. Newly
added arguments can be compared to existing posts
and duplicate, paraphrased entries can be avoided.
A trained model that is good at measuring argu-
ment similarity is also advantageous for tasks like
argument mining and argument clustering.
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A Appendix

Pre-Training and fine-tuning settings
Table 5 shows the used settings for pre-training all
proposed BERT models in this work.

BERT model BERT medium uncased,
BERT base uncased

learning rate 1e-4, 2e-5
do lower case True
max seq length 128
max predictions per seq 5
masked lm prob 0.15
random seed 12345
dupe factor 10

Table 5: Settings for creating the pre-training data.

Table 6 shows the settings for fine-tuning SBERT
on the evaluated datasets, using the sentence-
transformers library7 published by the UKPLab
on GitHub.

learning rate 2e-5
train batch size 16
num epochs 5
optimizer class transformers.AdamW
weight decay 0.01

Table 6: Settings for fine-tuning.

7https://github.com/UKPLab/
sentence-transformers
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Abstract

In this research, we investigate techniques to
detect hate speech in movies. We introduce a
new dataset collected from the subtitles of six
movies, where each utterance is annotated ei-
ther as hate, offensive or normal. We apply
transfer learning techniques of domain adapta-
tion and fine-tuning on existing social media
datasets, namely from Twitter and Fox News.
We evaluate different representations, i.e., Bag
of Words (BoW), Bi-directional Long short-
term memory (Bi-LSTM), and Bidirectional
Encoder Representations from Transformers
(BERT) on 11k movie subtitles. The BERT
model obtained the best macro-averaged F1-
score of 77%. Hence, we show that trans-
fer learning from the social media domain is
efficacious in classifying hate and offensive
speech in movies through subtitles.

Cautionary Note: The paper contains exam-
ples that many will find offensive or hateful;
however, this cannot be avoided owing to the
nature of the work.

1 Introduction

Nowadays, hate speech is becoming a pressing is-
sue and occurs in multiple domains, mostly in the
major social media platforms or political speeches.
Hate speech is defined as verbal communication
that denigrates a person or a community on some
characteristics such as race, color, ethnicity, gen-
der, sexual orientation, nationality, or religion
(Nockleby et al., 2000; Davidson et al., 2017).
Some examples given by Schmidt and Wiegand
(2017) are:

• Go fucking kill yourself and die already a use-
less ugly pile of shit scumbag.

• The Jew Faggot Behind The Financial Col-
lapse.

∗ Equal contribution

• Hope one of those bitches falls over and
breaks her leg.

Several sensitive comments on social media
platforms have led to crime against minorities
(Williams et al., 2020). Hate speech can be con-
sidered as an umbrella term that different authors
have coined with different names. Xu et al. (2012);
Hosseinmardi et al. (2015); Zhong et al. (2016) re-
ferred it by the term cyberbully-ing, while David-
son et al. (2017) used the term offensive language
to some expressions that can be strongly impolite,
rude or use of vulgar words towards an individual
or group that can even ignite fights or be hurtful.
Use of words like f**k, n*gga, b*tch is common in
social media comments, song lyrics, etc. Although
these terms can be treated as obscene and inappro-
priate, some people also use them in non-hateful
ways in different contexts (Davidson et al., 2017).
This makes it challenging for all hate speech sys-
tems to distinguish between hate speech and of-
fensive content. Davidson et al. (2017) tried to dis-
tinguish between the two classes in their Twitter
dataset.

These days due to globalization and online me-
dia streaming services, we are exposed to different
cultures across the world through movies. Thus,
an analysis of the amount of hate and offensive
content in the media that we consume daily could
be helpful.

Two research questions guided our research:

1. RQ 1. What are the limitations of social me-
dia hate speech detection models to detect
hate speech in movie subtitles?

2. RQ 2. How to build a hate and offensive
speech classification model for movie subti-
tles?

To address the problem of hate speech detection in
movies, we chose three different models. We have
used the BERT (Devlin et al., 2019) model, due
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to the recent success in other NLP-related fields,
a Bi-LSTM (Hochreiter and Schmidhuber, 1997)
model to utilize the sequential nature of movie sub-
titles and a classic Bag of Words (BoW) model as
a baseline system.

The paper is structured as follows: Section 2
gives an overview of the related work in this topic
and Section 3 describes the research methodology
and the annotation work, while in Section 4 we dis-
cuss the employed datasets and the pre-processing
steps. Furthermore, Section 5 describes the imple-
mented models while Section 6 presents the eval-
uation of the models, the qualitative analysis of
the results and the annotation analysis followed by
Section 7, which covers the threats to the validity
of our research. Finally, we end with the conclu-
sion in Section 8 and propose further work direc-
tions in Section 9.

2 Related Work

Some of the existing hate speech detection models
classify comments targeted towards certain com-
monly attacked communities like gay, black, and
Muslim, whereas in actuality, some comments did
not have the intention of targeting a community
(Borkan et al., 2019; Dixon et al., 2018). Mathew
et al. (2021) introduced a benchmark dataset con-
sisting of hate speech generated from two social
media platforms, Twitter and Gab. In the social
media space, a key challenge is to separately iden-
tify hate speech from offensive text. Although
they might appear the same way semantically, they
have subtle differences. Therefore they tried to
solve the bias and interpretability aspect of hate
speech and did a three-class classification (i.e.,
hate, offensive, or normal). They reported the best
macro-averaged F1-score of 68.7% on their BERT-
HateXplain model. It is also one of the models
that we use in our study, as it is one of the ‘off-the-
shelf‘ hate speech detection models that can easily
be employed for the topic at hand.

Lexicon-based detection methods have low pre-
cision because they classify the messages based
on the presence of particular hate speech-related
terms, particularly those insulting, cursing, and
bullying words. Davidson et al. (2017) used
a crowdsourced hate speech lexicon to identify
tweets with the occurrence of hate speech key-
words to filter tweets. They then used crowdsourc-
ing to label these tweets into three classes: hate
speech, offensive language, and neither. In their

dataset, the more generic racist and homophobic
tweets were classified as hate speech, whereas the
ones involving sexist and abusive words were clas-
sified as offensive. It is one of the datasets we have
used in exploring transfer learning and model fine-
tuning in our study.

Due to global events, hate speech also plagues
online news platforms. In the news domain, con-
text knowledge is required to identify hate speech.
Lei and Ruihong (2017) conducted a study on a
dataset prepared from user comments on news arti-
cles from the Fox News platform. It is the second
dataset we have used to explore transfer learning
from the news domain to movie subtitles in our
study.

Several other authors have collected the data
from different online platforms and labeled them
manually. Some of these data sources are: Twit-
ter (Xiang et al., 2012; Xu et al., 2012), Insta-
gram (Hosseinmardi et al., 2015; Zhong et al.,
2016), Yahoo! (Nobata et al., 2016; Djuric et al.,
2015), YouTube (Dinakar et al., 2012) and Whis-
per (Silva et al., 2021) to name a few. Most of
the data sources used in the previous studies are
based on social media, news, and micro-blogging
platforms. However, the notion of the existence
of hate speech in movie dialogues has been over-
looked. Thus in our study, we first explore how the
different existing ML (Machine Learning) models
classify hate and offensive speech in movie subti-
tles and propose a new dataset compiled from six
movie subtitles.

3 Research Methodology

To investigate the problem of detecting hate and
offensive speech in movies, we used different ma-
chine learning models trained on social media con-
tent such as tweets or discussion thread comments
from news articles. Here, the models in our re-
search were developed and evaluated on an in-
domain 80% train and 20% test split data using
the same random state to ensure comparability.

We have developed six different models: two Bi-
LSTM models, two BoW models, and two BERT
models. For each pair, one of them has been
trained on a dataset consisting of Twitter posts and
the other on a dataset consisting of Fox News dis-
cussion threads. The trained models have been
used to classify movie subtitles to evaluate their
performance by domain adaptation from social
media content to movies. In addition, another
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state-of-the-art BERT-based classification model
called HateXplain (Mathew et al., 2021) has been
used to classify the movies out of the box. While it
is also possible to further fine-tune the HateXplain
model, we are restricted in reporting the result of
the ’off-the-shelf’ classification system to new do-
mains, such as movie subtitles.

Furthermore, the movie dataset we have col-
lected (see Section 4) is used to train domain-
specific BoW, Bi-LSTM, and BERT models us-
ing 6-fold cross-validation, where each movie was
selected as a fold and report the averaged re-
sults. Finally, we have identified the best model
trained on social media content based on macro-
averaged F1-score and fine-tuned it with the movie
dataset using 6-fold cross-validation on that partic-
ular model, to investigate fine-tuning and transfer
learning capabilities for hate speech on movie sub-
titles.

3.1 Annotation Guidelines
In our annotation guidelines, we defined hateful
speech as a language used to express hatred to-
wards a targeted individual or group or is intended
to be derogatory, to humiliate, or to insult the
members of the group, based on attributes such
as race, religion, ethnic origin, sexual orientation,
disability, or gender. Although the meaning of
hate speech is based on the context, we provided
the above definition agreeing to the definition pro-
vided by Nockleby et al. (2000); Davidson et al.
(2017). Offensive speech uses profanity, strongly
impolite, rude, or vulgar language expressed with
fighting or hurtful words to insult a targeted indi-
vidual or group (Davidson et al., 2017). We used
the same definition also for offensive speech in the
guidelines. The remaining subtitles were defined
as normal.

3.2 Annotation Task
For the annotation of movie subtitles, we have
used Amazon Mechanical Turk (MTurk) crowd-
sourcing. Before the main annotation task, we
have conducted an annotation pilot study, where
40 subtitles texts were randomly chosen from the
movie subtitle dataset. Each of them has in-
cluded 10 hate speech, 10 offensive, and 20 nor-
mal subtitles that are manually annotated by ex-
perts. In total, 100 MTurk workers were assigned
for the annotation task. We have used the built-
in MTurk qualification requirement (HIT approval
rate higher than 95% and number of HITs ap-

Dataset normal offensive hate # total
Twitter 0.17 0.78 0.05 24472
Fox News 0.72 - 0.28 1513
Movies 0.84 0.13 0.03 10688

Table 1: Class distribution for the different datasets

proved larger than 5000) to recruit workers during
the Pilot task. Each worker was assessed for ac-
curacy and the 13 workers who have completed
the task with the highest annotation accuracy were
chosen for the main study task. The rest of the
workers were compensated for the task they have
completed in the pilot study and blocked from par-
ticipating in the main annotation task. For each
HIT, the workers are paid 40 cents both for the pi-
lot and the main annotation task.

For the main task, the 13 chosen MTurk work-
ers were first assigned to one movie subtitle anno-
tation to further look at the annotator agreement
as will be described in Section 6.3. Two anno-
tators were replaced during the main annotation
task with the next-best workers from the identified
workers in the pilot study. This process was re-
peated after each movie annotation for the remain-
ing five movies. One batch consists of 40 subti-
tles which were displayed in chronological order
to the worker. Each batch has been annotated by
three workers. In Figure 1, you can see the first
four questions of a batch out of the movie Ameri-
can History X 1998.

Figure 1: Annotation template containing a batch of the
movie American History X
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Name normal offensive hate #total
Django Unchained 0.89 0.05 0.07 1747
BlacKkKlansman 0.89 0.06 0.05 1645
American History X 0.83 0.13 0.03 1565
Pulp Fiction 0.82 0.16 0.01 1622
South Park 0.85 0.14 0.01 1046
The Wolf of Wall Street 0.81 0.19 0.001 3063

Table 2: Class distribution on each movie

4 Datasets

The publicly available Fox News corpus1 consists
of 1,528 annotated comments compiled from ten
discussion threads that happened on the Fox News
website in 2016. The corpus does not differenti-
ate between offensive and hateful comments. This
corpus has been introduced by Lei and Ruihong
(2017) and has been annotated by two trained na-
tive English speakers. We have identified 13 dupli-
cates and two empty comments in this corpus and
removed them for accurate training results. The
second publicly available corpus we use consists
of 24,802 tweets2. We identified 204 of them as
duplicates and removed them again to achieve ac-
curate training results. The corpus has been intro-
duced by Davidson et al. (2017) and was labeled
by CrowdFlower workers as hate speech, offen-
sive, and neither. The last class is referred to as
normal in this paper. The distribution of the nor-
mal, offensive, and hate classes can be found in
Table 1.

The novel movie dataset we introduce consists
of six movies. The movies have been chosen based
on keyword tags provided by the IMDB website3.
The tags hate-speech and racism were chosen be-
cause we assumed that they were likely to contain
a lot of hate and offensive speech. The tag friend-
ship was chosen to get contrary movies contain-
ing a lot of normal subtitles, with less hate speech
content. In addition, we excluded movie genres
like documentations, fantasy, or musicals to keep
the movies comparable to each other. Namely we
have chosen the movies BlacKkKlansman (2018)
which was tagged as hate-speech, Django Un-
chained (2012), American History X (1998) and
Pulp Fiction (1994) which were tagged as racism
whereas South Park (1999) as well as The Wolf
of Wall Street (2013) were tagged as friendship in

1https://github.com/sjtuprog/
fox-news-comments

2https://github.com/t-davidson/
hate-speech-and-offensive-language/

3https://www.imdb.com/search/keyword/

December 2020. The detailed distribution of the
normal, offensive, and hate classes, movie-wise,
can be found in Table 2.

4.1 Pre-processing

The goal of the pre-processing step was to make
the text of the Tweets and conversational discus-
sions as comparable as possible to the movie sub-
titles since we assume that this will improve the
transfer learning results. Therefore, we did not use
pre-processing techniques like stop word removal
or lemmatization.

4.2 Data Cleansing

After performing a manual inspection, we applied
certain rules to remove the textual noise from our
datasets. The following was the noise observed
in each dataset, which we removed for the Twitter
and Fox News datasets: (1) repeated punctuation
marks, (2) multiple username tags, (3) emoticon
character encodings, and (4) website links. For the
movie subtitle text dataset: (1) sound expressions,
e.g [PEOPLE CHATTERING], [DOOR OPEN-
ING], (2) name header of the current speaker, e.g.
"DIANA: Hey, what’s up?" which refers to Diana
is about to say something, (3) HTML tags, (4) non-
alpha character subtitle, and (5) non-ASCII char-
acters.

4.3 Subtitle format conversion

The downloaded subtitle files are provided by the
website www.opensubtitles.org4 and are free to
use for scientific purposes. The files are avail-
able in the SRT-format5 that have a time duration
along with a subtitle, which while watching ap-
pears on the screen in a given time frame. We
performed the following operations to create the
movie dataset: (1) Converted the SRT-format to
CSV-format by separating start time, end time, and
the subtitle text, (2) Fragmented subtitles which
were originally single appearances on the screen
and spanned across multiple screen frames were
combined, by identifying sentence-ending punctu-
ation marks, (3) Combined single word subtitles
with the previous subtitle because single word sub-
titles tend to be expressions to what has been said
before.

4https://www.opensubtitles.org/
5https://en.wikipedia.org/wiki/SubRip
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Model Class F1-
Score

Macro
AVG
F1

HateXplain normal 0.93
0.66HateXplain offensive 0.27

HateXplain hate 0.77

Table 3: Prediction results using the HateXplain model
on the movie dataset (domain adaptation)

5 Experimental Setup

The Bi-LSTM models are built using the Keras
and the BoW models are built using the PyTorch li-
brary while both are trained with a 1e-03 learning
rate and categorical cross-entropy loss function.

For the development of BERT-based models,
we rely on the TFBERTForSequenceClassification
algorithm, which is provided by HuggingFace6

and pre-trained on bert-base-uncased. Learning
rate of 3e-06 and sparse categorical cross-entropy
loss function was used for this. All the models
used the Adam optimizer (Kingma and Ba, 2015).
We describe the detailed hyper-parameters for all
the models used for all the experiments in the Ap-
pendix A.1.

6 Results and Annotation Analysis

In this section, we will discuss the different clas-
sification results obtained from the various hate
speech classification models. We will also briefly
present a qualitative exploration of the annotated
movie datasets. The model referred in the tables
as LSTM refers to Bi-LSTM models used.

6.1 Classification results and Discussion

We have introduced a new dataset of movie subti-
tles in the field of hate speech research. A total
of six movies are annotated, which consists of se-
quential subtitles.

First, we experimented on the HateXplain
model (Mathew et al., 2021) by testing the model’s
performance on the movie dataset. We achieved
a macro-averaged F1-score of 66% (see Table 3).
Next, we tried to observe how the different models
(BoW, Bi-LSTM, and BERT) perform using trans-
fer learning and how comparable are those results
to this state-of-the-art model’s results.

We trained and tested the BERT, Bi-LSTM, and
BoW model by applying an 80:20 split on the so-

6https://huggingface.co/transformers

Dataset Model Class F1-
Score

Macro
AVG
F1

Fox News

BoW
normal 0.83

0.63
hate 0.43

BERT
normal 0.86 0.68
hate 0.51

LSTM
normal 0.77

0.62
hate 0.46

Twitter

BoW
normal 0.78

0.66offensive 0.93
hate 0.26

BERT
normal 0.89

0.76offensive 0.95
hate 0.43

LSTM
normal 0.76

0.66offensive 0.91
hate 0.31

Table 4: In-domain results on Twitter and Fox News
with 80:20 split

cial media datasets (see Table 4). When applied to
the Fox News dataset, we observed that BERT per-
formed better than both BoW and Bi-LSTM with a
small margin in terms of macro-averaged F1-score.
Hate is detected close to 50% whereas normal is
detected close to 80% for all three models on F1-
score.

When applied on the Twitter dataset, results are
almost the same for the BoW and Bi-LSTM mod-
els, whereas the BERT model performed close to
10% better by reaching a macro-averaged F1-score
of 76%. All the models have a high F1-score of
above 90% for identifying offensive class. This
goes along with the fact that the offensive class is
the dominant one in the Twitter dataset (Table 1).

Hence, by looking at the macro-averaged F1-
score values, BERT performed best in the task for
training and testing on social media content on
both datasets.

Next, we train on social media data and test on
the six movies (see Table 5) to address RQ 1.

When trained on the Fox News dataset, BoW
and Bi-LSTM performed similarly by poorly de-
tecting hate in the movies. In contrast, BERT iden-
tified the hate class more than twice as well by
reaching an F1-score of 39%.

When trained on the Twitter dataset, BERT per-
formed almost double in terms of macro-averaged
F1-score than the other two models. Even though
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Dataset Model Class F1-
Score

Macro
AVG
F1

Fox News

BoW
normal 0.86

0.51
hate 0.15

BERT
normal 0.89 0.64
hate 0.39

LSTM
normal 0.83

0.51
hate 0.18

Twitter

BoW
normal 0.62

0.37offensive 0.32
hate 0.15

BERT
normal 0.95

0.77offensive 0.74
hate 0.63

LSTM
normal 0.66

0.38offensive 0.34
hate 0.16

Table 5: Prediction results using the models trained on
social media content to classify the six movies (domain
adaptation)

the detection for the offensive class was high on
the Twitter dataset (see Table 4) the models did not
perform as well on the six movies, which could
be due to the domain change. However, BERT
was able to perform better on the hate class, even
though it was trained on a small proportion of hate
content in the Twitter dataset. The other two mod-
els performed very poorly.

To address RQ 2, we train new models from
scratch on the six movies dataset using 6-fold
cross-validation (see Table 6). In this setup, each
fold represents one movie that is exchanged itera-
tively during evaluation.

Compared to the domain adaptation (see Ta-
ble 5), the BoW and Bi-LSTM models performed
better. Bi-LSTM distinguished better than BoW
among hate and offensive while maintaining a
good identification of the normal class resulting
in a better macro-averaged F1-score of 71% as
compared to 64% for the BoW model. BERT
performed best across all three classes resulting
in 10% better results compared to the Bi-LSTM
model on macro-averaged F1-score, however, it
has similar results when compared to the domain
adaptation (see Table 5) results.

Furthermore, the absolute amount of hateful
subtitles in the movies The Wolf of Wall Street (3),
South Park (10), and Pulp Fiction (16) are very

Dataset Model Class F1-
Score

Macro
AVG
F1

Movies

BoW
normal 0.95

0.64offensive 0.59
hate 0.37

BERT
normal 0.97

0.81offensive 0.76
hate 0.68

LSTM
normal 0.95

0.71offensive 0.63
hate 0.56

Table 6: In-domain results using models trained on the
movie dataset using 6-fold cross-validation

minor, hence the cross-validation on these three
movies as test set is very sensible of only predict-
ing a few of them wrong since a few of them will
already result in a high relative amount.

We have also tried to improve our BERT model
trained on social media content (Table 4) by fine-
tuning it via 6-fold cross-validation using the six
movies dataset (see Table 7).

The macro-averaged F1-score increased com-
pared to the domain adaptation (see Table 5) from
64% to 89% for the model trained on the Fox
News dataset. For the Twitter dataset the macro-
averaged F1-score is comparable to the domain
adaptation (see Table 5) and in-domain results (see
Table 6). Compared to the results of the HateX-
plain model (see Table 3) the identification of the
normal utterances are comparable whereas the of-
fensive class was identified by our BERT model
much better, with an increment of 48%, but the
hate class was identified by a decrement of 18%.

The detailed results of all experiments is given
in Appendix A.2.

6.2 Qualitative Analysis

In this section, we investigate the unsuccessfully
classified utterances (see Figure 2) of all six
movies by the BERT model trained on the Twit-
ter dataset and fine-tuned with the six movies via
6-fold cross-validation (see Table 7) to analyze the
model addressing RQ 2.

The majority of unsuccessfully classified utter-
ances (564) are offensive classified as normal and
vice versa resulting in 69%. Hate got classified as
offensive in 5% of all cases and offensive as hate
in 8%. The remaining misclassification is between
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Dataset Model Class F1-
Score

Macro
AVG
F1

Movies

BERT normal 0.97
0.89

(Fox
News)

hate 0.82

BERT
normal 0.97

0.77offensive 0.75
(Twitter) hate 0.59

Table 7: Prediction results using BERT models trained
on the Twitter and Fox News datasets and fine-tuned
them with the movie dataset by applying 6-fold cross-
validation (fine-tuning)

normal and hate resulting in 18%, which we refer
to as the most critical for us to analyze further.

We looked at the individual utterances of the
hate class misclassified as normal (37 utterances).
We observed that most of them were sarcastic
and those did not contain any hate keywords,
whereas some could have been indirect or context-
dependent, for example, the utterance "It’s just so
beautiful. We’re cleansing this country of a back-
wards race of chimpanzees" indirectly and sarcas-
tically depicts hate speech which our model could
not identify. We assume that our model has short-
comings in interpreting those kinds of utterances
correctly.

Furthermore, we analyzed the utterances of the
class normal which were misclassified as hate (60
utterances). We observed that around a third of
them were actual hate but were misclassified by
our annotators as normal, hence those were cor-
rectly classified as hate by our model. We noticed
that a fifth of them contain the keyword "Black
Power", which we refer to as normal whereas the
BERT model classified them as hate.

Figure 2: Label misclassification on the movie dataset
using the BERT model of Table 7 trained on the Twitter
dataset

6.3 Annotation Analysis

Using the MTurk crowdsourcing, a total of 10,688
subtitles (from the six movies) are annotated. For
each of the three workers involved, 81% agreed to
the same class. Out of the total annotations, only
0.7% received disagreement on the classes (where
all the three workers chose a different class for
each subtitle).

To ensure the quality of the classes for the train-
ing, we chose majority voting. In the case of dis-
agreement, we took the offensive class as the final
class of the subtitle. One reason why workers do
disagree might be that they do interpret a scene
differently. We think that providing the video and
audio clips of the subtitle frames might help to dis-
ambiguate such confusions.

Let us consider an example from one of the an-
notation batches that describes a scene where the
shooting of an Afro-American appears to happen.
Subtitle 5 in that batch reads out "Shoot the nig-
ger!", and subtitle 31 states "Just shit. Got totally
out of control.", which was interpreted as normal
by a worker who might not be sensible to the word
shit, as offensive speech by a worker who is, in
fact, sensible to the word shit or as hate speech by
a worker who thinks that the word shit refers to the
Afro-American.

The movie Django Unchained 2012 was tagged
as racism and has been annotated as the most
hateful movie (see Table 2) followed by BlacK-
kKlansman 2018 and American History X 1998
which where tagged as racism or hateful. This in-
dicates that hate speech and racist comments of-
ten go along together. As expected, movies tagged
by friendship like The Wolf of Wall Street 2013
and South Park 1999 were less hateful. Surpris-
ingly the percentage of offensive speech increases
when the percentage of hate decreases making the
movies tagged by friendship most offensive in our
movie dataset.

7 Threats to Validity

1. The pre-processing of the movies or the so-
cial media datasets could have deleted crucial
parts which would have made a hateful tweet
normal, for example. Thus the training on
such datasets could impact the training neg-
atively.

2. Movies are not real, they are more like a very
good simulation. Thus, for this matter, hate
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speech is simulated and arranged. Maybe
documentation movies are better suited since
they tend to cover real-case scenarios.

3. The annotations could be wrong since the
task of identifying hate speech is subjective.

4. Movies might not contain a lot of hate speech,
hence the need to detect them is very minor.

5. As the annotation process was done batch-
wise, annotators might lose crucial contextual
information when the batch change happens,
as it misses the chronological order of the di-
alogue.

6. Only textual data might not provide enough
contextual information for the annotators to
correctly annotate the dialogues as the other
modalities of the movies (audio and video)
are not considered.

8 Conclusion

In this paper, we applied different approaches to
detect hate and offensive speech in a novel pro-
posed movie subtitle dataset. In addition, we pro-
posed a technique to combine fragments of movie
subtitles and made the social media text content
more comparable to movie subtitles (for training
purposes).

For the classification, we used two techniques
of transfer learning, i.e., domain adaptation and
fine-tuning. The former was used to evaluate three
different ML models, namely Bag of Words for
a baseline system, transformer-based systems as
they are becoming the state-of-the-art classifica-
tion approaches for different NLP tasks, and Bi-
LSTM-based models as our movie dataset repre-
sents sequential data for each movie. The latter
was performed only on the BERT model and we
report our best result by cross-validation on the
movie dataset.

All three models were able to perform well for
the classification of the normal class. Whereas
when it comes to the differentiation between of-
fensive and hate classes, BERT achieved a substan-
tially higher F1-score as compared to the other two
models.

The produced artifacts could have practical sig-
nificance in the field of movie recommendations.
We will release the annotated datasets, keeping all
the contextual information (time offsets of the sub-
title, different representations, etc.), the fine-tuned

and newly trained models, as well as the python
source code and pre-processing scripts, to pursue
research on hate speech on movie subtitles.7

9 Further Work

The performance of hate speech detection in
movies can be improved by increasing the exist-
ing movie dataset with movies that contain a lot of
hate speech. Moreover, multi-modal models can
also improve performance by using speech or im-
age. In addition, some kind of hate speech can
only be detected through the combination of differ-
ent modals, like some memes in the hateful meme
challenge by Facebook (Kiela et al., 2020) e.g. a
picture that says look how many people love you
whereas the image shows an empty desert.
Furthermore, we also did encounter the widely
reported sparsity of hate speech content, which
can be mitigated by using techniques such as data
augmentation, or balanced class distribution. We
intentionally did not perform shuffling of all six
movies before splitting into k-folds to retain a re-
alistic scenario where a classifier is executed on a
new movie.

Another interesting aspect that can be looked
at is the identification of the target groups of the
hate speech content in movies and to see the more
prevalent target groups. This work can also be
extended for automated annotation of movies to
investigate the distribution of offensive and hate
speech.
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A Appendix

A.1 Hyperparameter values for experiments
All the models used the Adam optimizer (Kingma
and Ba, 2015). Bi-LSTM and BoW used the cross-
entropy loss function whereas our BERT models
used the sparse categorical and cross-entropy loss
function. Further values for the hyperparameters
for each experiment are shown in Table 8.

A.1.1 Bi-LSTM
For all the models except for the model trained on
the Twitter dataset, the architecture consists of an
embedding layer followed by two Bi-LSTM lay-
ers stacked one after another. Finally, a Dense
layer with a softmax activation function is giving
the output class.

For training with Twitter (both in-domain and
domain adaptation), a single Bi-LSTM layer is
used.

A.1.2 BoW
The BoW model uses two hidden layers consisting
of 100 neurons each.

A.1.3 BERT
BERT uses TFBertForSequenceClassification
model and BertTokenizer as its tokenizer from the
pretrained model bert-base-uncased.

A.2 Additional Performance Metrics for
Experiments

We report precision, recall, F1-score and macro av-
eraged F1-score for every experiment in Table 9.
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Model Train-Dataset Test-Dataset Learning Rate Epochs Batch Size
BoW Fox News Fox News 1e-03 8 32
BoW Twitter Twitter 1e-03 8 32
BoW Fox News Movies 1e-03 8 32
BoW Twitter Movies 1e-03 8 32
BoW Movies Movies 1e-03 8 32
BERT Fox News Fox News 3e-06 17 32
BERT Twitter Twitter 3e-06 4 32
BERT Fox News Movies 3e-06 17 32
BERT Twitter Movies 3e-06 4 32
BERT Movies Movies 3e-06 6 32
BERT Fox News and Movies Movies 3e-06 6 32
BERT Twitter and Movies Movies 3e-06 6 32
Bi-LSTM Fox News Fox News 1e-03 8 32
Bi-LSTM Twitter Twitter 1e-03 8 32
Bi-LSTM Fox News Movies 1e-03 8 32
Bi-LSTM Twitter Movies 1e-03 8 32
Bi-LSTM Movies Movies 1e-03 8 32

Table 8: Detailed setups of all applied experiments
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Model Train-Dataset Test-Dataset Category Precision Recall F1-Score Macro AVG F1
BoW Fox News Fox News normal 0.81 0.84 0.83 0.63
BoW Fox News Fox News hate 0.45 0.41 0.43 0.63
BoW Twitter Twitter normal 0.79 0.78 0.78 0.66
BoW Twitter Twitter offensive 0.90 0.95 0.93 0.66
BoW Twitter Twitter hate 0.43 0.18 0.26 0.66
BoW Fox News Movies normal 0.84 0.87 0.86 0.51
BoW Fox News Movies hate 0.16 0.13 0.15 0.51
BoW Twitter Movies normal 0.96 0.46 0.62 0.37
BoW Twitter Movies offensive 0.20 0.82 0.32 0.37
BoW Twitter Movies hate 0.11 0.24 0.15 0.37
BoW Movies Movies normal 0.93 0.97 0.95 0.64
BoW Movies Movies offensive 0.65 0.56 0.59 0.64
BoW Movies Movies hate 0.56 0.28 0.37 0.64
BERT Fox News Fox News normal 0.84 0.87 0.86 0.68
BERT Fox News Fox News hate 0.57 0.46 0.51 0.68
BERT Twitter Twitter normal 0.88 0.91 0.89 0.76
BERT Twitter Twitter offensive 0.94 0.97 0.95 0.76
BERT Twitter Twitter hate 0.59 0.34 0.43 0.76
BERT Fox News Movies normal 0.88 0.90 0.89 0.64
BERT Fox News Movies hate 0.40 0.37 0.39 0.64
BERT Twitter Movies normal 0.98 0.92 0.95 0.77
BERT Twitter Movies offensive 0.63 0.90 0.74 0.77
BERT Twitter Movies hate 0.63 0.63 0.63 0.77
BERT Movies Movies normal 0.97 0.98 0.97 0.81
BERT Movies Movies offensive 0.80 0.76 0.78 0.81
BERT Movies Movies hate 0.79 0.68 0.68 0.81
BERT Fox News and Movies Movies normal 0.97 0.97 0.97 0.89
BERT Fox News and Movies Movies hate 0.83 0.81 0.82 0.89
BERT Twitter and Movies Movies normal 0.97 0.97 0.97 0.77
BERT Twitter and Movies Movies offensive 0.76 0.76 0.75 0.77
BERT Twitter and Movies Movies hate 0.57 0.73 0.59 0.77
Bi-LSTM Fox News Fox News normal 0.83 0.72 0.77 0.62
Bi-LSTM Fox News Fox News hate 0.39 0.55 0.46 0.62
Bi-LSTM Twitter Twitter normal 0.74 0.78 0.76 0.66
Bi-LSTM Twitter Twitter offensive 0.91 0.91 0.91 0.66
Bi-LSTM Twitter Twitter hate 0.31 0.31 0.31 0.66
Bi-LSTM Fox News Movies normal 0.85 0.81 0.83 0.51
Bi-LSTM Fox News Movies hate 0.17 0.20 0.18 0.51
Bi-LSTM Twitter Movies normal 0.96 0.50 0.66 0.38
Bi-LSTM Twitter Movies offensive 0.22 0.79 0.34 0.38
Bi-LSTM Twitter Movies hate 0.10 0.33 0.16 0.38
Bi-LSTM Movies Movies normal 0.94 0.97 0.95 0.71
Bi-LSTM Movies Movies offensive 0.67 0.60 0.63 0.71
Bi-LSTM Movies Movies hate 0.73 0.49 0.56 0.71
HateXplain - Movies normal 0.88 0.98 0.93 0.66
HateXplain - Movies offensive 0.62 0.17 0.27 0.66
HateXplain - Movies hate 0.89 0.68 0.77 0.66

Table 9: Detailed results of all applied experiments

48



Emotion Recognition under Consideration of the
Emotion Component Process Model

Felix Casel∗, Amelie Heindl∗, and Roman Klinger
Institut für Maschinelle Sprachverarbeitung, University of Stuttgart

Pfaffenwaldring 5b, 70569 Stuttgart, Germany
{firstname.lastname}@ims.uni-stuttgart.de

Abstract

Emotion classification in text is typically per-
formed with neural network models which
learn to associate linguistic units with emo-
tions. While this often leads to good predic-
tive performance, it does only help to a limited
degree to understand how emotions are com-
municated in various domains. The emotion
component process model (CPM) by Scherer
(2005) is an interesting approach to explain
emotion communication. It states that emo-
tions are a coordinated process of various sub-
components, in reaction to an event, namely
the subjective feeling, the cognitive appraisal,
the expression, a physiological bodily reac-
tion, and a motivational action tendency. We
hypothesize that these components are associ-
ated with linguistic realizations: an emotion
can be expressed by describing a physiologi-
cal bodily reaction (“he was trembling”), or
the expression (“she smiled”), etc. We an-
notate existing literature and Twitter emotion
corpora with emotion component classes and
find that emotions on Twitter are predomi-
nantly expressed by event descriptions or sub-
jective reports of the feeling, while in liter-
ature, authors prefer to describe what char-
acters do, and leave the interpretation to the
reader. We further include the CPM in a mul-
titask learning model and find that this sup-
ports the emotion categorization. The anno-
tated corpora are available at https://www.
ims.uni-stuttgart.de/data/emotion.

1 Introduction

The task of emotion classification from written text
is to map textual units, like documents, paragraphs,
or sentences, to a predefined set of emotions. Com-
mon class inventories rely on psychological the-
ories such as those proposed by Ekman (1992)
(anger, disgust, fear, joy, sadness, surprise) or
∗The first two authors contributed equally to this work.

Plutchik (2001). Often, emotion classification is
tackled as an end-to-end learning task, potentially
informed by lexical resources (see the SemEval
Shared Task 1 on Affect in Tweets for an overview
of recent approaches (Mohammad et al., 2018)).

While end-to-end learning and fine-tuning of pre-
trained models for classification have shown great
performance improvements in contrast to purely
feature-based methods, such approaches typically
neglect the existing knowledge about emotions in
psychology (which might help in classification and
to better understand how emotions are communi-
cated). There are only very few approaches that
aim at combining psychological theories (beyond
basic emotion categories) with emotion classifica-
tion models: We are only aware of the work by
Hofmann et al. (2020), who incorporate the cogni-
tive appraisal of events, and Buechel et al. (2020),
who jointly learn affect (valence, arousal) and emo-
tion classes; next to knowledge-base-oriented mod-
elling of events by Balahur et al. (2012) and Cam-
bria et al. (2014).

An interesting and attractive theory for computa-
tional modelling of emotions that has not been used
in natural language processing yet is the emotion
component process model (Scherer, 2005, CPM).
This model states that emotions are a coordinated
process in five subsystems, following an event
that is relevant for the experiencer of the emotion,
namely a motivational action tendency, the mo-
tor expression component, a neurophysiological,
bodily symptom, the subjective feeling, and the cog-
nitive appraisal. The cognitive appraisal has been
explored in a fine-grained manner by Hofmann et al.
(2020), mentioned above. The subjective feeling
component is related to the dimensions of affect.1

1There exists other work that has been motivated by ap-
praisal theories, but that is either rule-based (Shaikh et al.,
2009; Udochukwu and He, 2015) or does not explicitly model
appraisal or component dimensions (Balahur et al., 2012;
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We hypothesize (and subsequently analyze) that
emotions in text are communicated in a variety of
ways, and that these different stylistic means fol-
low the emotion component process model. The
communication of emotions can either be an ex-
plicit mention of the emotion name (“I am angry”),
focus on the motivational aspect (“He wanted to
run away.”), describe the expression (“She smiled.”,
“He shouted.”) or a physiological bodily reaction
(“she was trembling”, “a tear was running down his
face”), the subjective feeling (“I felt so bad.”), or, fi-
nally, describe a cognitive appraisal (“I wasn’t sure
what was happening.”, “I am not responsible.”).

With this paper, we study how emotions are com-
municated (following the component model) in
Tweets (based on the Twitter Emotion Corpus TEC,
by Mohammad (2012)) and literature (based on
the REMAN corpus by Kim and Klinger (2018)).
We post-annotate a subset of 3041 instances with
the use of emotion component-based emotion com-
munication categories, analyze this corpus, and
perform joint modelling/multi-task learning ex-
periments. Our research goals are (1) to under-
stand if emotion components are distributed simi-
larly across emotion categories and domains, and
(2) to evaluate if informing an emotion classifier
about emotion components improves their perfor-
mance (and to evaluate various classification ap-
proaches). We find that emotion component and
emotion classification prediction interact and bene-
fit from each other and that emotions are communi-
cated by means of various components in literature
and social media. The corpus is available at https:
//www.ims.uni-stuttgart.de/data/emotion.

2 Background and Related Work

2.1 Emotion Models
Emotion models can be separated into those that
consider a discrete set of categories or those that
focus on underlying principles like affect. The
model of basic emotions by Ekman (1992) consid-
ers anger, disgust, fear, joy, sadness, and surprise.
According to his work, there are nine character-
istics that a basic emotion fulfills: These are (1)
distinctive universal signals, (2) presence in other
primates, (3) distinctive physiology, (4) distinc-
tive universals in antecedent events, (5) coherence
among emotional response, (6) quick onset, (7)
brief duration, (8) automatic appraisal, and (9) un-
bidden occurrence. His model of the six universal
Rashkin et al., 2018).

emotions constitutes one of the most popular emo-
tion sets in natural language processing. Yet it
might be doubted if this set is sufficient. Plutchik
(2001) proposed a model with eight main emotions,
visualized on a colored wheel. In this visualiza-
tion, opposites and distance of emotion names are
supposed to correspond to their respective relation.

A complementary approach to categorizing emo-
tions in discrete sets is advocated by Russell and
Mehrabian (1977). Their dimensional affect model
corresponds to a 3-dimensional vector space with
dimensions for pleasure-displeasure, the degree
of arousal, and dominance-submissiveness (VAD).
Emotion categories correspond to points in this
vector space. A more expressive alternative to the
VAD model of affect is motivated by the cogni-
tive appraisal process that is part of emotions. The
model of Smith and Ellsworth (1985) introduces
a set of variables that they map to the principle
components of pleasantness, responsibility/control,
certainty, attention, effort, and situational control.
They show that these dimensions are more power-
ful to distinguish emotion categories than VAD.

Appraisals are also part of the emotion compo-
nent process model by Scherer (2005), which is
central to this paper. The five components are cog-
nitive appraisal, neurophysiological bodily symp-
toms, motor expressions, motivational action ten-
dencies, and subjective feelings. Cognitive ap-
praisal is concerned with the evaluation of an event.
The event is assessed regarding its relevance to the
individual, the implications and consequences it
might lead to, the possible ways to cope with it and
control it, and its significance according to personal
values and social norms. The component of neu-
rophysiological symptoms regards automatically
activated reactions and symptoms of the body, like
changes in the heartbeat or breathing pattern. The
motor expression component contains all move-
ments, facial expressions, changes concerning the
speech, and similar patterns. Actions like attention
shifts and movement with respect to the position
of the event are part of the motivational action
tendencies component. Finally, the component of
subjective feelings takes into account how strong,
important, and persisting the felt sensations are.
Scherer (2005) argues that it is possible to infer
the emotion a person is experiencing by analyzing
the set of changes in the five components. Scherer
(2009) also points out that computational models
must not ignore emotion components.
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2.2 Emotion Analysis in Text

The majority of modelling approaches focuses
on the analysis of fundamental emotions (see Al-
swaidan and Menai, 2020; Mohammad et al., 2018;
Bostan and Klinger, 2018) or on the recognition
of valence, arousal, and dominance (Buechel and
Hahn, 2017). Work with a focus on other aspects
of emotions is scarce.

Noteworthy, though this has not been a computa-
tional study, is the motivation of the ISEAR project
(Scherer and Wallbott, 1994), from which a textual
corpus originated, which is frequently used in NLP.
It consists of event descriptions and is therefore
relevant for appraisal theories. Further, participants
in that study have not only been asked to report on
events they experienced, but they also report ad-
ditional aspects, including the existence of bodily
reactions. However, their work does not focus on
the linguistic realization of emotion components,
but on the existence in the described event.

Similarly, Troiano et al. (2019) asked crowd-
workers to report on events that caused an emotion.
This resource has then been postannotated with ap-
praisal dimensions (Hofmann et al., 2020). This is
the only recent work we are aware of that models
appraisal as a component of the CPM to predict
emotion categories, next to the rule-based classifi-
cation approach by Shaikh et al. (2009), who built
on top of the work by Clore and Ortony (2013). An-
other noteworthy related work is SenticNet, which
models event properties including people’s goals,
for sentiment analysis (Cambria et al., 2014).

The only work we are aware of that studies emo-
tion components (though not following the CPM,
and without computational modelling), is the cor-
pus study by Kim and Klinger (2019). They ana-
lyze if emotions in fan fiction are communicated
via facial descriptions, body posture descriptions,
the appearance, look, voice, gestures, subjective
sensations, or spatial relations of characters. This
set of variables is not the same as emotion compo-
nents, however, it is related. They find that some
emotions are preferred to be described with partic-
ular aspects by authors. Their work was motivated
by the linguistic study of van Meel (1995).

In contrast to their work, our study compares two
different domains (Tweets and Literature), and fol-
lows the emotion component process model more
strictly. Further, we show the use of that model
for computational emotion classification through
multi-task learning.

3 Corpus Annotation

3.1 Corpus Selection
To study the relation between emotion components
and emotions, we annotate subsets from two dif-
ferent existing emotion corpora from two different
domains, namely literature and social media.

For literature, we use the REMAN corpus (Kim
and Klinger, 2018), which consists of fiction writ-
ten after the year 1800. It is manually annotated
with text spans related to emotions, as well as their
experiencers, causes, and targets. Emotion cue
spans are annotated with the emotions of anger,
fear, trust, disgust, joy, sadness, surprise, and an-
ticipation, as well as ‘other emotion’. From the
1720 instances, we randomly sample a subset of
1000. Each instance comprises a sentence triple
and may contain any number of annotated spans.
We map the emotions associated to spans to the text
instances as the union of all labels, which leads to
a multi-label classification task. Instances without
emotion annotations are considered ‘neutral’.

For the social media domain, we choose the Twit-
ter Emotion Corpus (TEC) (Mohammad, 2012).
The emotion categories are anger, disgust, fear, joy,
sadness, and surprise. TEC consists of approxi-
mately 21,000 posts from Twitter that have a hash-
tag at the end which states one of the six mentioned
emotions. According to the authors, the validity of
hashtags as classification labels is commensurable
to the inter-annotator agreements of human anno-
tators. We randomly sample 2041 instances with
the emotion hashtags as labels for the creation of
our corpus. Each instance equals one post and has
exactly one emotion label.

3.2 Annotation Procedure and
Inter-Annotator Agreement

We annotate the emotion component dimensions in-
dependently: The existence of a CPM label means
that this component is mentioned somewhere in the
text, independent of its function to communicate
one of the emotions. This is a simplification due
to the fact that it turned out to be difficult to infer
from the limited context of an instance if an emo-
tion category and an emotion component mention
are actually in relation. Further, this procedure also
ensures that there is no information leak introduced
in the annotation process (e.g., that components
are only annotated if they indeed inform the emo-
tion, and that a model could learn from its sheer
presence).
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Component Explanation of Example Example

Cognitive appraisal evaluation of the pleasantness of an event. Thinks that @melbahughes had a great 50th birth-
day party

Neurophysiol. symptoms change in someone’s heartbeat. Loves when a song makes your heart race [...]
Motiv. Action tendencies urge to attack a person or object. sometimes when i think bout you i want to beat the

shit out of your face so everyone can see how ugly
you are inside and out

Motor expressions facial expression. @TheBodyShopUK when I walk in the room and
my 9month old nephew recognises me and his face
lights up with the biggest smile thats 100%

Subjective feelings internal feeling state. Feelin a bit sad tonight

Table 1: Excerpt of the final annotation guidelines including examples from TEC.

Component round 1 round 2

Cognitive appraisal 0.288 0.777
Neurophysiological symptoms 0.459 –
Motiv. Action tendencies 0.444 0.732
Motor expressions 0.643 0.617
Subjective feelings 0.733 0.793

Table 2: Inter-annotator agreement after the different
annotation rounds during the guideline creation process
measured with Cohen’s κ. In the second round, no an-
notator detected the neurophysiological component in
the sample instances.

We refined the annotation guidelines in an iter-
ative process with two annotators. Annotator 1 is
a 23 year-old female undergraduate computer sci-
ence student, Annotator 2 is a 28 year-old male
graduate student of computational linguistics. We
first defined a list of guidelines for each emotion
component, then let each annotator label 40 ran-
domly sampled instances (20 each in two itera-
tions) out of each corpus and measured the inter-
annotator agreement. Based on instances with dis-
agreement, we refined the guidelines. The achieved
inter-annotator agreement scores are displayed in
Table 2. We observe that particularly the concepts
of cognitive appraisal and motivational action ten-
dencies have been clarified. During this process,
for example, the discussion of the instance “He
did so, and to his surprise, found that all the bank
stock had been sold, and transferred” lead to the
addition of a rule stating that the explicit mention
of a feeling has to be annotated with subjective
feeling. A rule for the annotation of tiredness as
neurophysiological symptoms was created due to
the instance “Here he remained the whole night,
feeling very tired and sorrowful.”. Concerning the
annotation of verbal communication as motor ex-
pression, we decided to only annotate instances
with verbal communications that address an emo-
tional reaction or instances with interjections as for

example ‘oh’ or ‘wow’. With this clarification, the
instance “‘Jolly rum thing about that boat,’ said
the spokesman of the party, as the boys continued
their walk. ‘I expect it got adrift somehow,’ said
another. ‘I don’t know,’ said the first.” should not
be annotated, whereas “‘Sounds delightful.’ ‘Oh,
it was actually pretty cool.’” should (this aspect
has particularly appeared in the second annotator
training round, which lead to a slight decrease in
agreement). We make the annotation guidelines
available together with our corpus. Table 1 shows
a short excerpt.

After the refinement process concluded, Annota-
tor 1 annotated the subsample of TEC and Annota-
tor 2 annotated the subsample of REMAN.

3.3 Corpus Statistics

We show corpus statistics in Table 3 to develop an
understanding how emotions are communicated in
the two domains. For both corpora, we observe
that cognitive appraisal is most frequent. In TEC,
the second most dominant component is subjective
feeling, while in REMAN it is the motor expression.
The amount of subjective feeling descriptions is
substantially lower for literature than for social
media – which is in line with the show-don’t-tell
paradigm which is obviously not followed in social
media as it is in literature.

Components are not distributed equally across
emotions. Particularly noteworthy is the co-
occurrence of disgust with neurophysiological
symptoms in social media, but not in literature
where this component dominates the emotion of
fear. We also observe a particularly high co-
occurrence of the subjective feeling component
with fear for social media, which is not the case
for literature. In literature, the motivational action
tendency component co-occurs with anger (and an-
ticipation) more frequently than with all other emo-
tions. This is not the case for the social media do-
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main. On the REMAN corpus, components occur
least frequently when there is no emotion across
all components. For both corpora, neurophysio-
logical symptoms make up the smallest share of
components, even more so in the case of TEC than
REMAN.

In a comparison of social media and literature,
we observe that emotions are distributed more uni-
formly in literature. The relative number of co-
occurrences of CPM components with emotions
varies more for REMAN than for the TEC corpus.

4 Methods

We will now turn to the computational modelling
of emotion components and evaluate their useful-
ness for emotion classification. We evaluate a set
of different feature-based and deep-learning based
classification approaches to join the tasks of emo-
tion classification and component classification.

4.1 Emotion Classifier
As baseline emotion classification models which
are not particularly informed about components,
we use two models: Emo-ME-Base is a maximum
entropy (ME) classifier with TF-IDF-weighted bag-
of-words unigram and bigram features. As prepro-
cessing, we convert all words to lowercase, and
stem them with the PorterStemmer. On TEC, with
its single-label annotation, Emo-ME-Base consists
of one model, while on REMAN with multi-label
annotation, we use 10 binary classifiers.

Our neural baseline Emo-NN-Base uses pre-
trained BERT sentence embeddings2 (Devlin et al.,
2019) as input features. Inspired by Chen and
Wang (2018); Sosa (2017), the network architecture
consists of a bidirectional LSTM layer (Hochreiter
and Schmidhuber, 1997), followed by a convolu-
tional layer with kernel sizes 2, 3, 5, 7, 13, and

2https://tfhub.dev/google/experts/bert/wiki books/sst2/1

25. The outputs of the convolutional layer are max-
pooled over the dimension of the input sequence,
inspired by Collobert et al. (2011). Stacked on top
of the pooling layer is a fully connected layer. Its
outputs are finally fed into an output layer with a
sigmoid activation function (see Figure 1a).3

We use dropout regularization after each layer.
The network uses a weighted cross-entropy loss
function, whereby the loss of false negatives is mul-
tiplied by 4 to increase recall. The model is trained
using an Adam optimizer (Kingma and Ba, 2015).
All network parameters of this model and subse-
quent neural models are determined using a subset
of the training data as development set for the RE-
MAN corpus and using 10-fold cross-validation for
the TEC corpus. Details of the resulting hyperpa-
rameters are listed in the Appendix.

4.2 Component Classifier

The emotion component classifiers predict which of
the five CPM components occur in a text instance.
Our Cpm-ME-Base baseline models (one for each
component) only use bag-of-words features in the
same configuration as Emo-ME-Base.

In the model Cpm-ME-Adv, we add task-
specific features, namely features derived from
manually crafted small dictionaries with words as-
sociated with the different components. Those dic-
tionaries were developed without considering the
corpora and with inspiration from Scherer (2005)
and contain on average 26 items. Further, we add
part-of-speech tags (calculated with spaCy4, Hon-
nibal et al. (2020)) and glove-twitter-100 embed-
dings5 (Pennington et al., 2014). Additionally, only
for the cognitive appraisal component, we run the
appraisal classifier developed by Hofmann et al.
(2020) and use the predictions as features.6 For
each component individually, the best-performing
combination of these features is chosen.

The Cpm-NN-Base is configured analogously
to Emo-NN-Base. The primary reason for using
an equivalent setup is to facilitate a multi-head
architecture as joint model for both tasks in the
next step.

3We selected this architecture based on preliminary ex-
periments on the validation data. We evaluated it against
LSTM-Dense Layer and CNN-LSTM architectures.

4https://spacy.io/usage/linguistic-features#pos-tagging
5https://nlp.stanford.edu/projects/glove/
6http://www.ims.uni-stuttgart.de/data/appraisalemotion
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Emotion Cognitive Phys. Motiv. Action Motor Exp. Subject. Total

T
E

C
Anger 127 (75%) 8 (5%) 30 (18%) 20 (12%) 49 (29%) 169
Disgust 65 (83%) 11 (14%) 6 (8%) 17 (22%) 19 (24%) 78
Joy 606 (71%) 59 (7%) 176 (21%) 95 (11%) 233 (27%) 848
Sadness 323 (87%) 13 (3%) 58 (16%) 53 (14%) 142 (38%) 373
Fear 196 (74%) 9 (3%) 37 (14%) 27 (10%) 130 (49%) 266
Surprise 219 (71%) 2 (1%) 55 (18%) 55 (18%) 83 (27%) 307

Total. 1536 (75%) 102 (5%) 362 (18%) 267 (13%) 656 (32%)

R
E

M
A

N

Anger 66 (67%) 7 (7%) 40 (41%) 61 (62%) 25 (26%) 98
Anticip. 69 (59%) 6 (5%) 50 (43%) 63 (54%) 19 (16%) 117
Disgust 81 (86%) 5 (5%) 21 (22%) 33 (35%) 16 (17%) 94
Fear 96 (67%) 33 (23%) 35 (24%) 70 (49%) 34 (24%) 143
Joy 121 (57%) 11 (5%) 28 (13%) 117 (55%) 66 (31%) 213
Neutral 39 (34%) 0 (0%) 13 (11%) 22 (19%) 3 (3%) 116
Other 64 (57%) 11 (10%) 21 (19%) 53 (47%) 21 (19%) 113
Sadness 94 (69%) 19 (14%) 22 (16%) 66 (49%) 42 (31%) 136
Surprise 103 (74%) 11 (8%) 21 (15%) 83 (60%) 22 (16%) 139
Trust 94 (82%) 2 (2%) 17 (15%) 34 (30%) 27 (23%) 115

Total 610 (61%) 76 (8%) 190 (19%) 440 (44%) 174 (17%)

Table 3: Total/relative counts of CPM components and emotions in our reannoted TEC and REMAN subsam-
ples. Note that the CPM categorization is a multi-label task, with 1000 instances in REMAN and 2041 instances
reannotated in TEC.

4.3 Joint Modelling and Multi-Task Learning
of Emotions and Components

To analyze if emotion classification benefits from
the component prediction (and partially also vice
versa), we set up several model configurations.

In Emo-Cpm-ME-Pred, we predict the emotion
with Cpm-ME-Adv and use these predictions as fea-
tures. Other than that, Emo-Cpm-ME-Pred corre-
sponds to Emo-ME-Base. In Emo-Cpm-ME-Gold,
we replace the predictions by gold component an-
notations to analyze error propagation.

Emo-Cpm-NN-Pred and Emo-Cpm-NN-Gold
are configured analogously and follow the same
architecture as Emo-NN-Base with the following
differences: A binary vector with the CPM anno-
tations is introduced as additional input feature,
feeding into a fully connected layer. Its outputs are
concatenated with the outputs of the penultimate
layer and passed to another fully connected layer,
followed by the output layer.

Emo-Cpm-NN-Pred uses Cpm-NN-Base to ob-
tain component predictions, but the weights of
Cpm-NN-Base are frozen. The basic network archi-
tecture resembles that of the Emo-Cpm-NN-Gold
model, replacing the additional CPM input vector
with the Cpm-NN-Base model (see Figure 1b). Its
outputs are, again, fed into a fully connected layer
which is connected to the output layer.

Next to the models that make use of the output
of the CPM classifiers for prediction, we use two

multi-task learning models which predict emotions
and components based on shared latent variables.
For a multi-head variant (MTL-MH), the basic ar-
chitectures of the individual models for both tasks
remain the same. Outputs of the CNN layer are
fed to two separate, task-specific, fully connected
layers. This model has two output layers, one for
emotion classification and one for CPM component
classification. Both tasks use the weighted cross
entropy loss function to increase recall.

Based on the model proposed by Misra et al.
(2016), we use cross-stitch units in our model
MTL-XS. This model employs two separate par-
allel instances of the Cpm-NN-Base architecture
introduced above, one for the CPM classification
task and one for emotion classification. The model
additionally employs one cross-stitch unit after the
respective CNN layers. This sharing unit learns a
linear combination of the pooled task-specific CNN
activation maps which is then passed to the task-
specific fully connected layers. The cross-stitch
unit learns during training which information to
share across tasks (see Figure 1c).

5 Results

For our experiments, we use our reannotated sub-
sample of TEC and REMAN (not all instances
available in TEC and REMAN). We split the cor-
pora into 90% for training and 10% to test.
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Cpm-ME-Base Cpm-ME-Adv Cpm-NN-Base MTL-XS MTL-MH

Component P R F1 P R F1 P R F1 P R F1 P R F1
R

E
M

A
N

Cognitive appraisal 60 98 75 60 98 75 60 98 75 60 98 75 59 96 73
Neurophysiological symp. 50 20 29 50 40 44 20 20 20 25 20 22 0 0 0
Motiv. action tendencies 36 47 41 46 68 55 42 26 32 29 42 34 25 68 36
Motor expressions 67 56 61 76 65 70 92 53 68 76 60 68 81 60 69
Subjective feelings 38 32 34 45 53 49 58 37 45 48 53 50 35 32 33

Macro avg. 50 51 48 56 65 59 54 47 48 48 55 50 40 51 42
Micro avg. 61 67 63 63 57

T
E

C

Cognitive appraisal 72 99 84 76 98 86 76 88 81 77 90 83 75 91 82
Neurophysiological sympt. 17 17 17 15 33 21 25 17 20 17 17 17 100 17 29
Motiv. action tendencies 42 57 48 50 74 60 46 51 49 48 57 52 45 54 49
Motor expressions 47 52 49 41 61 49 55 58 56 50 48 49 62 32 43
Subjective feelings 63 70 66 63 70 66 74 81 77 61 81 69 57 80 67

Macro avg. 48 59 53 49 67 56 55 59 57 51 59 54 68 55 54
Micro avg. 70 71 73 71 70

Table 4: Performance of the emotion component detection models (multiplied by 100).

5.1 Component Prediction

We start the discussion of the results with the com-
ponent classification, a classification task that has
not been addressed before and for which our data
set is the first that becomes available to the research
community. Table 4 shows the results.

The model performances are acceptable. Macro-
average F1 scores on REMAN range from .42 of
MTL-MH to .59 for Cpm-ME-Adv, and from .53
(Cpm-ME-Base) to .57 (Cpm-NN-Base) on TEC.
There are, however, differences for the components:
On TEC, there are difficulties in predicting neu-
rophysiological symptoms. The addition of task-
specific features in Cpm-ME-Adv shows a clear
improvement across all components.

The neural baseline Cpm-NN-Base outperforms
Cpm-ME-Adv on TEC, and does so without feature
engineering. On REMAN, the feature-based model
is superior which might be due to the engineered
features being more commonly represented in the
literature domain than in social media. This is par-
tially leveraged in the MTL-XS model on REMAN.

The components are not equally difficult to pre-
dict; the relations between the components are com-
parable across models. The lowest performance
scores are observed for neurophysiological symp-
toms. This holds across models and corpora. For
the neurophysiological component on the literature
domain, however, the engineered features in Cpm-
ME-Adv show substantial improvement, yielding
an F1 score of 0.44. Cognitive appraisal shows best
prediction performances, with F1 between .73 and

.86. For TEC, we observe a correlation between
performance and class size for all components.

For REMAN, Cpm-ME-Adv is the best-
performing model. Cpm-ME-Adv’s macro average
F1 of 0.59 is 9pp higher than the second best F1-
score. For TEC, the best results are achieved by
Cpm-NN-Base with a macro F1 of 0.57.

5.2 Emotion Classification

In this section, we discuss the performance of our
emotion classification models across different con-
figurations. One question is how providing com-
ponent information to them helps most. Table 5
shows the results for all experiments.

The comparison of Emo-ME-Base and Emo-NN-
Base reveals that a pure word-based model is not
able to categorize emotions in REMAN, due to
the imbalancedness in this multilabel classifica-
tion setup. This observation is in line with previ-
ous results (Kim and Klinger, 2018). The use of
BERT’s contextualized sentence embeddings leads
to a strong improvement of 43pp (against a 0 F1

for Emo-ME-Base). The performance of the ME
models is comparably limited also on TEC, though
this is less obvious on the micro-averaged F1 due
to the imbalancedness of the resource (.35 macro,
.54 micro F1).

Our main research question is if emotion com-
ponents help emotion classification. In our first
attempt to include this information as features, we
see some improvement. On REMAN, Emo-Cpm-
ME-Pred “boosts” from 0 to 6 F1, on TEC we
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Emo-ME-Base 0 0 0 0 0 0 0 0 0 0 0 0
Emo-Cpm-ME-Gold 18 0 0 25 16 62 0 0 0 0 12 14
Emo-Cpm-ME-Pred 0 0 0 12 15 0 0 0 0 14 4 6
Emo-NN-Base 36 18 29 41 59 46 14 36 71 50 40 43
Emo-Cpm-NN-Gold 56 22 28 37 68 71 15 39 50 60 45 45
Emo-Cpm-NN-Pred 32 0 33 34 71 40 17 52 58 42 38 43
MTL-MH 35 16 24 39 62 49 22 48 67 56 42 42
MTL-XS 38 24 26 47 64 54 37 48 64 55 46 47

T
E

C

Emo-ME-Base 11 0 53 64 43 38 35 54
Emo-Cpm-ME-Gold 11 0 59 66 40 43 36 55
Emo-Cpm-ME-Pred 11 0 59 67 43 43 37 55
Emo-NN-Base 41 44 56 69 51 39 50 57
Emo-Cpm-NN-Gold 52 33 67 72 60 47 55 62
Emo-Cpm-NN-Pred 32 0 59 70 53 44 43 56
MTL-MH 17 57 53 76 53 45 50 58
MTL-XS 34 50 60 73 57 44 53 61

Table 5: F1 (/100) results across models and emotion categories. (empty cells denote that this category is not
available in the respective corpus. The best scores (except the gold setting) are printed bold face.

observe an improvement by 1pp, to .55 F1. The
inclusion of predicted component information as
features in the neural network model shows no im-
provement on REMAN or on TEC.

To answer the question if this limited improve-
ment is only due to a limited performance of the
component classification model, we compare these
results to a setting, in which the predicted values
are replaced by gold labels from the annotation.
This setup does show an improvement with Emo-
Cpm-ME-Gold to .14 F1 on REMAN, which is
obviously still very low; and no improvement on
TEC. However, with our neural model Emo-Cpm-
NN-Gold, we see the potential of gold information
increasing the score for emotion classification to
.45 F1 on REMAN and .62 F1 on TEC.

This is an unrealistic setting – the classifier does
not have access to annotated labels in real world
applications. However, in the (realistic) cross-
stitch multi-task learning setting of MTL-XS, we
observe further improvements: On REMAN, we
achieve .47 F1 (which is even slightly higher than
with gold component labels), which constitutes an
achieved improvement by 4pp to the emotion clas-
sifier which is not informed about components. On
TEC, we achieve .61 F1, which is close to the model
that has access to gold components (.62). This is
an improvement of 4pp as well in comparison to
the model that has no access to components but
follows the same architecture.

Particularly, we observe that models with compo-
nent information perform better across all emotions,

with the exception of surprise on the REMAN cor-
pus and anger on the TEC corpus. We can there-
fore conclude that emotion component information
does contribute to emotion classification; the best-
performing combination is via a cross-stitch model.

A detailed discussion based on example predic-
tions of the various models is available in the Ap-
pendix.

6 Conclusion and Future Work

We presented the first data sets (based on existing
emotion corpora) with emotion component anno-
tation. While Hofmann et al. (2020) has proposed
to use the cognitive appraisal for emotion classi-
fication, they did not succeed to present models
that actually benefit in emotion classification per-
formance. That might be due to the fact that cog-
nitive appraisal classification itself is challenging,
and that they did not compare multiple multi-task
learning approaches.

With this paper we moved to another psychologi-
cal theory, namely the emotion component process
model, and make the first annotations available that
closely follow this theory. Based on this resource,
we have shown that, even with a comparably lim-
ited data set size, emotion components contribute
to emotion classification. We expect that with a
larger corpus the improvement would be more sub-
stantial than it is already now. A manual intro-
spection of the data instances also shows that the
components indeed help. Further, we have seen
that emotions are communicated quite differently

56



in the two domains, which is an explanation why
emotion classification systems (up-to-today) need
to be developed particularly for domains of inter-
est. We propose that future work analyzes further
which information is relevant and should be shared
across these tasks in multi-task learning models.

Further, we propose that larger corpora should be
created across more domains, and also that multi-
task learning is not only performed individually, but
also across corpora. Presumably, the component
information in different domains is not the same,
but might be helpful across them.
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A Ablation Study for Feature Based Maximum Entropy Classification Model of
Emotion Components

Table 6 shows the performance scores if just one additional feature is enabled (while bag-of-words
always remains available). It can be seen, that the most advantageous feature are word embeddings. On
REMAN, Cpm-ME-Adv achieves a macro F1-score of 0.59 and a micro F1-score of 0.67. On TEC, we
have respective values of 0.56 and 0.71, with the high micro score resulting from cognitive appraisal being
the best performing class while also being more than twice as frequent as any other component.

Emo-ME-Base Dictionaries POS-tags Embeddings Appraisal prediction

Component P R F1 P R F1 P R F1 P R F1 P R F1

R
E

M
A

N

Cognitive appraisal 60 98 75 60 98 75 57 73 64 60 88 72 60 98 75
Neurophysiological symptoms 50 20 29 25 20 22 00 00 00 40 40 40 50 20 29
Action tendencies 36 47 41 38 42 40 28 47 35 45 68 54 36 47 41
Motor expressions 67 56 61 68 58 63 61 63 62 76 65 70 67 56 61
Subjective feelings 38 32 34 44 37 40 32 37 34 45 53 49 38 32 34

Macro avg. 50 51 48 47 51 48 36 44 39 53 63 57 50 51 48
Micro avg. 61 62 52 65 61

T
E

C

Cognitive appraisal 72 99 84 72 99 83 74 98 84 76 97 85 72 99 84
Neurophysiological symptoms 17 17 17 11 17 13 00 00 00 12 33 17 17 17 17
Action tendencies 42 57 48 40 51 45 42 63 50 45 66 53 42 57 48
Motor expressions 47 52 49 43 48 45 34 45 39 40 61 48 47 52 49
Subjective feelings 63 70 66 62 68 65 62 65 64 58 65 61 63 70 66

Macro avg. 48 59 53 46 57 50 42 54 47 46 64 53 48 59 53
Micro avg. 70 69 68 69 70

Table 6: Overview over the single feature’s impact in classification with Cpm-ME-Adv. Each column displays
the classification results if only this column’s feature is additionally to bag-of-words features, enabled. In the
last column, the additional feature is only used for the prediction of cognitive appraisal, due to the classification
assumption that the components can appear individually of each other in text.

B Detailed Emotion Results for Emotion Classification

The results table in the main paper did, for space reasons, only show F1 scores. Table 7 present the
complete results for the neural network, including precision and recall values.

Emo-NN-Base Emo-Cpm-NN-Gold Emo-Cpm-NN-Pred MTL-MH MTL-XS

Emotion P R F1 P R F1 P R F1 P R F1 P R F1

R
E

M
A

N

Anger 28 50 36 47 70 56 33 30 32 31 40 35 31 50 38
Anticipation 18 18 18 19 27 22 0 0 0 12 27 16 17 36 24
Disgust 20 56 29 20 44 28 24 56 33 16 56 24 18 44 26
Fear 35 50 41 25 71 37 33 36 34 28 64 39 40 57 47
Joy 47 77 59 74 64 68 70 73 71 65 59 62 57 73 64
Neutral 40 55 46 100 55 71 29 64 40 35 82 49 38 91 54
Other 33 9 14 50 9 15 17 18 17 15 45 22 29 55 37
Sadness 27 53 36 31 53 39 50 53 52 37 67 48 44 53 48
Surprise 65 79 71 41 64 50 53 64 58 55 86 67 47 100 64
Trust 39 69 50 86 46 60 67 31 42 43 77 56 50 62 55

Macro avg. 35 52 40 49 50 45 38 42 38 34 60 42 37 62 46
Micro avg. 43 45 43 42 47

T
E

C

Anger 50 35 41 57 47 52 30 35 32 29 12 17 42 29 34
Disgust 40 50 44 50 25 33 0 0 0 67 50 57 50 50 50
Fear 65 50 56 86 55 67 73 50 59 48 59 53 54 68 60
Joy 60 82 69 68 78 72 67 72 70 79 74 76 66 82 73
Sadness 57 47 51 61 58 60 61 47 53 66 44 53 61 53 57
Surprise 48 32 39 45 50 47 40 50 44 36 62 45 60 35 44

Macro avg. 53 49 50 61 52 55 45 42 43 54 50 50 55 53 53
Micro avg. 57 62 56 58 61

Table 7: Performance of the neural network emotion classifiers. The highest F1 scores are printed bold face.
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C Neural Network Parameters

Table 8 shows the network parameters that were determined during the development process of the neural
models.

Parameter C
pm
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R
E

M
A

N

Bi-LSTM units 24 24 24 24 32 / 24 24
CNN filters 10 10 16 16 12 / 10 16
FC neurons (cpm) 128 — 96 64 128 128
FC neurons (emo) — 128 128 128 128 128
FC neurons (comb.) — — 128 96 — —
Loss weight (emo) — 4.0 6.0 4.0 7.8 7.8
Loss weight (cpm) 1.5 — — — 1.5 1.5
Task weight (emo) — 1.0 1.0 1.0 0.75 0.75
Task weight (cpm) 1.0 — — — 0.5 0.35
Minibatch size 60 50 50 50 25 25

T
E

C

Bi-LSTM units 24 24 24 24 32/24 24
CNN filters 32 32 32 32 24/24 32
FC neurons (cpm) 32 — — 64 128 32
FC neurons (emo) — 128 128 128 128 128
FC neurons (comb.) — — 256 256 — —
Loss weight (emo) — 1.0 1.0 1.0 1.0 1.0
Loss weight (cpm) 1.0 — — — 1.0 1.0
Task weight (emo) — 1.0 1.0 1.0 0.75 0.5
Task weight (cpm) 1.0 — — — 0.5 0.5
Minibatch size 40 80 80 80 80 80

Table 8: Neural network parameters. In cases where multiple values are displayed, the first value refers to the
emotion detection part of the network, while the second value refers to CPM detection.

D Discussion of Instances

We show examples in Table 9 where component information is helpful for emotion classification. Re-
garding the neural classifiers, MTL-XS generally tends to predict fewer false positives when there are no
strong correlations among the potential emotions to the predicted CPM, like in (1). Similarly, in (2) the
model predicts only ‘fear’, which is more likely to occur together with the ‘subjective feeling’ component
than ‘anger’ or ‘disgust’, according to Table 3 in the paper. Additionally, CPM information helps to solve
ambiguities: In (3), the model predicts ‘anticipation’ rather than ‘sadness’, presumably because of the
stronger correlation to the predicted CPM component ‘action tendency’.

In the two TEC examples (4–5), the baseline detects ‘joy’, while MTL-XS correctly detects ‘sadness’.
The cross-stitch model predicts a ‘subjective feeling’ component in both instances and a ‘cognitive
appraisal’ component in one instance. Both components are more strongly correlated with ‘sadness’ than
with ‘joy’ (see Table 3 in main paper).

We also show some examples that exemplify differences in prediction of the ME-based models (6–8).
Generally, the CPM information leads to little improvement in emotion detection on TEC. Nevertheless,
there are some cases in which the correct emotion was predicted by at least one of Emo-Cpm-ME-Gold
and Emo-Cpm-ME-Pred, whereas it was not detected by Emo-ME-Base. In both examples (6–7), the
correct emotions ‘surprise’ and ‘sadness’ have not been found by Emo-ME-Base (predicting ‘joy’ and
‘surprise’ respectively). Emo-Cpm-ME-Gold and Emo-Cpm-ME-Pred both correctly predicted ‘surprise’
for (6) and ‘sadness’ for (7). There are indications of ‘subjective feeling’ in the second and of ‘motor
expression’ and ‘cognitive appraisal’ in both examples, that were also predicted by Cpm-ME-Adv, which
might have helped assigning the correct emotion class. On REMAN, the ME models were able to classify
a small fraction of the instances correctly, which is still an improvement compared to the miserably failing
baseline. An example with improved prediction for REMAN is (8), where the emotion ‘joy’ was correctly
identified by Emo-Cpm-ME-Gold and Emo-Cpm-ME-Pred, while not being detected by Emo-ME-Base.
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(1) As for the hero of this story, ’His One Fault’ was absent-mindedness. He forgot to lock his uncle’s stable door, and the horse was
stolen. In seeking to recover the stolen horse, he unintentionally stole another. (REMAN)
Emotion Emo-NN-Base disgust, other, sadness
CPM, MTL-XS cognitive appraisal
Emotion, MTL-XS neutral
CPM Gold cognitive appraisal, action tendency
Emotion Gold neutral

(2) In that fatal valley, at the foot of that declivity which the cuirassiers had ascended, now inundated by the masses of the English, under
the converging fires of the victorious hostile cavalry, under a frightful density of projectiles, this square fought on. It was commanded by
an obscure officer named Cambronne. At each discharge, the square diminished and replied. (REMAN)
Emotion Emo-NN-Base anger, disgust, fear
CPM, MTL-XS cognitive appraisal, subjective feeling
Emotion, MTL-XS fear
CPM Gold cognitive appraisal
Emotion Gold fear

(3) If sleep came at all, it might be a sleep without waking. But after all that was but one chance in a hundred: the action of the drug
was incalculable, and the addition of a few drops to the regular dose would probably do no more than procure for her the rest she so
desperately needed.... She did not, in truth, consider the question very closely–the physical craving for sleep was her only sustained
sensation. Her mind shrank from the glare of thought as instinctively as eyes contract in a blaze of light–darkness, darkness was what she
must have at any cost. (REMAN)
Emotion Emo-NN-Base sadness, fear
CPM, MTL-XS cognitive appraisal, action tendency
Emotion, MTL-XS fear, anticipation
CPM Gold cognitive appraisal, neurophysiological symptoms, action tendencies
Emotion Gold fear, anticipation

(4) @justinbieber nocticed a girl the first day she got a twitter! :( (TEC)
Emotion Emo-NN-Base joy
CPM, MTL-XS cognitive appraisal, subjective feeling
Emotion, MTL-XS sadness
CPM Gold cognitive appraisal, subjective feeling
Emotion Gold sadness

(5) when the love of your life is half way acrosss the world (TEC)
Emotion Emo-NN-Base joy
CPM, MTL-XS subjective feeling
Emotion, MTL-XS sadness
CPM Gold cognitive appraisal
Emotion Gold sadness

(6) My sister is home! YAY. VISIT (TEC)
CPM Cpm-ME-Adv cognitive appraisal, motor expression
Emotion Emo-ME-Base joy
Emotion Emo-Cpm-ME-Pred surprise
Emotion Emo-Cpm-ME-Gold surprise
CPM Gold cognitive appraisal, motor expression
Emotion Gold surprise

(7) @lauren frost It was?!?! What the heck, man! I always miss it! Haha. - You guys need another reunion!! :) (TEC)
CPM Cpm-ME-Adv cognitive appraisal, motor expression, subjective feeling
Emotion Emo-ME-Base surprise
Emotion Emo-Cpm-ME-Pred sadness
Emotion Emo-Cpm-ME-Gold sadness
CPM Gold cognitive appraisal, motor expression, subjective feeling
Emotion Gold sadness

(8) And if this was a necessary preparation for what, should follow, I would be the very last to complain of it. We went to bed again,
and the forsaken child of some half-animal mother, now perhaps asleep in some filthy lodging for tramps, lay in my Ethelwyn’s bosom.
I loved her the more for it; though, I confess, it would have been very painful to me had she shown it possible for her to treat the baby
otherwise, especially after what we had been talking about that same evening. (REMAN)
CPM Cpm-ME-Adv cognitive appraisal, action tendency, subjective feeling
Emotion Emo-ME-Base /
Emotion Emo-Cpm-ME-Pred joy
Emotion Emo-Cpm-ME-Gold joy
CPM Gold cognitive appraisal, subjective feeling
Emotion Gold disgust, joy, sadness, trust

Table 9: Examples in which components support emotion classification.
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Abstract

In dieser Arbeit werden zwei Ansätze vor-
gestellt, die die Quellenzitate innerhalb ei-
nes Wörterbucheintrags im Frühneuhochdeut-
schen Wörterbuch analysieren und darin die
Vorkommensform identifizieren, d. h. die
Wortform, die dem Lemma dieses Eintrags ent-
spricht und als historische Schreibform in ver-
schiedenen Schreibvarianten vorliegt. Die Eva-
luation zeigt, dass schon auf Basis kleiner Trai-
ningsdaten brauchbare Ergebnisse erzielt wer-
den können.

1 Einleitung

Wörterbücher erschließen Sprachen, deren Dia-
lekte, Sprachstufen und Fachwortschätze über die
strukturierte Präsentation sprachbezogener Infor-
mationen. Die Ausdifferenzierung kann dabei sehr
unterschiedlich sein und zeigt sich schon in den Na-
men der Wörterbücher (Deutsches Rechtswörter-
buch, Wörterbuch der schweizerdeutschen Spra-
che, Wörterbuch der deutschen Pflanzennamen).
Eine besondere Position nehmen die allgemeinen
Wörterbücher ein, die den Gesamtwortschatz einer
Sprache diachron oder synchron erfassen. Wird ei-
ne historische Sprachstufe bearbeitet, kommt den
Werken zudem eine kulturpädagogische Funktion
zu, da sie die diachronen Unterschiede zu der je-
weiligen Standardsprache herausarbeiten müssen,
um entsprechende sprachbezogene Informationen
adäquat zu vermitteln (Reichmann, 1986).

Natürlich wurden während des Digital Turns
neben den historischen Quellen auch die
Wörterbücher digitalisiert, sodass deren Informa-
tionsangebot nun überall abrufbar, durchsuchbar
und vielfältig auswertbar ist. Eine Verknüpfung
der Quellen mit den Wörterbüchern fand jedoch
nicht statt. Die historischen Quellen bieten
daher aktuell nur rudimentäre Möglichkeiten der
Nachnutzbarkeit (Klaffki et al., 2018). So mangelt

es ihnen an jener semantischen Erschließungstiefe,
die über ein passendes Wörterbuch erreicht werden
könnte und maßgeblich zum Verständnis beitragen
würde.

Im nachfolgenden Beitrag stellen wir auf Basis
des Frühneuhochdeutschen Wörterbuches (im Fol-
genden FWB) zwei Ansätze vor, die dies möglich
machen sollen, indem sie durch die Lemmatisie-
rung frühneuhochdeutscher Wörter die Basis einer
Semantisierung schaffen.

Der eine Ansatz wendet ein existierendes Sys-
tem zur Normalisierung historischer Schreibungen
an, der andere nutzt ein künstliches neuronales
Netzwerk.1 Ausgangspunkt ist die Identifikation
der Lemmata und deren Wortbildungen in den
Quellenzitaten des FWBs. Langfristiges Ziel ist
die möglichst umfassende automatische Lemmati-
sierung digitaler frühneuhochdeutscher Texte.

Der Artikel ist wie folgt aufgebaut: Zunächst
stellen wir die Daten des FWBs vor (Kap. 2).
Kap. 3 erklärt, wie unser genereller Ansatz aus-
sieht. In Kap. 4 und 5 beschreiben wir die beiden
Systeme zur Identifikation der Vorkommensform.
Kap. 6 enthält die Resultate, gefolgt von einem
Ausblick in Kap. 7.

2 Das Frühneuhochdeutsche
Wörterbuch (FWB)

Das FWB ist ein semantisches Bedeutungswörter-
buch mit kulturwissenschaftlichem Schwerpunkt,
dessen Ziel es ist, den Gesamtwortschatz des
Frühneuhochdeutschen synchron in seiner Hete-
rogenität zu präsentieren (Reichmann, 1986). Um
dessen Varietätenspektrum bestmöglich zu erfas-
sen, bildet das FWB die drei wichtigsten frühneu-
hochdeutschen Heterogenitätsdimensionen Zeit

1Unser Dank gilt insbesondere Herrn Dr. Matthias Schütze,
der das FWB seit vielen Jahren technisch begleitet und in
diesem Zusammenhang auch das künstliche neuronale Netz
entwickelt hat.
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(1350 bis 1650), Raum (Thüringisch, Elsässisch,
Alemannisch, etc.) und Textsorte (erbauliche, litera-
rische, rechtsgeschichtliche, etc. Texte) möglichst
ungewichtet in seinen Quellen und sprachbezoge-
nen Informationen ab. Pro Lemma, bei polysemen
Lemmata pro Einzelsemantik, bietet das FWB eine
Vielzahl qualitativ hochwertiger, heuristisch kom-
petent überprüfter, semantischer und pragmatischer
Informationen und belegt diese mit Zitaten.

Da das Frühneuhochdeutsche weder eine norma-
tiv geregelte Orthographie noch eine überdachende
Leitvarietät aufweist, belegt das FWB pro Lemma
zudem eine z. T. erhebliche Anzahl von Vorkom-
mensformen (kurz: VKF) pro Lemma. Da diese
seit 2017 manuell ausgezeichnet werden, ergibt
sich ein unschätzbares Potenzial: Aktuell werden
13.178 VKF eindeutig 4.674 Lemmata zugeord-
net. Dieses Verhältnis deutet die Problematiken der
Lemmatisierungsansätze jener VKF an, die nicht
ausgezeichnet sind.

Exemplarisch ist das Lemma abenteuer, das in
den Quellenzitaten u. a. in folgenden VKF belegt
ist: aventevre, auffentür, abenteür, aventúre, aben-
tewr, abentur, ofentúre, obentewer, aubentúr, au-
benteur, usw. (s. Abbildung 8 im Appendix mit ei-
nem Ausschnitt des FWB-Eintrags zu diesem Lem-
ma). Wie kann in allen diesen Vorkommensformen
(insgesamt 36 unterscheidbare) automatisch und
möglichst eindeutig das Lemma erkannt werden?

Die in diesem Beitrag genutzten Daten des FWB
stehen online z. T. frei zur Verfügung oder werden
in den kommenden Jahren freigeschaltet.2

3 Identifikation von Vorkommensformen
durch Lemmatisierung

In diesem Beitrag soll es also noch nicht um die
Lemmatisierung beliebiger Texte des Frühneuhoch-
deutschen gehen, sondern zunächst um eine einfa-
chere Aufgabe: Gegeben ein Lemma wie abenteu-
er, identifiziere die zugehörige Vorkommensform
(VKF) innerhalb der Quellenzitate. (1) zeigt ein
Beispiel für ein Quellenzitat für dieses Lemma
aus einem nordoberdeutschen Text. Das Lemma
ist in standardisierter Form vorgegeben, während
die VKF eine flektierte Wortform sein kann, die
zudem in der historischen Originalschreibung vor-
liegt. Ziel ist es also, in (1) die VKF obentewern zu
identifizieren.

2https://fwb-online.de/ (letzter Zugriff:
5.5.2021)

(1) das die frembden in [. . . ] wirtshewser geen
mit iren obentewern.

Wir fassen die Aufgabe als Lemmatisierungs-
aufgabe auf: Gegeben ein Kandidat für eine VKF,
lässt sich dieser Kandidat auf das vorgegebene
Lemma lemmatisieren? Dabei gehen beide Ansätze
so vor, dass sie sämtliche historischen Worterfor-
men wi innerhalb eines Belegs mit dem vorge-
gebenen Lemma l paaren: < wi, l > und für je-
des Paar überprüfen, ob l das Lemma von wi sein
könnte. Im Beispiel (1) wären das also die Paare
<das, abenteuer>, <die, abenteuer>, <frembden,
abenteuer> etc.

Ein möglicher Ansatz wäre es, für diese Auf-
gabe einen vorhandenen Lemmatisierer zu nutzen.
Das ist allerdings aus verschiedenen Gründen nicht
ohne Weiteres möglich:

Viele der Ziel-Lemmata aus dem FWB haben
keine moderne Entsprechung, z. B. lauten die ers-
ten zehn Lemmata einer Zufallsauswahl sünde,
*quatembergeld, *entspanen, erzeigen, *erbholde,
*abtilgen, abschlagen, *äfern, streuen, abtun3 – für
fünf davon (mit Stern markiert) gibt es keinen Ein-
trag in einem Standardwörterbuch wie dem Duden4.
Damit lassen sich moderne Lemmatisierer nicht oh-
ne Weiteres sinnvoll auf diese Daten anwenden, da
die Zahl der ungesehenen Lemmata ungewöhnlich
hoch ist. Auch lassen sich vorhandene Korpora wie
z. B. das Anselm-Korpus5, das RIDGES-Korpus6

oder das Referenz-Korpus Frühneuhochdeutsch7

nicht als Trainingsdaten verwenden, da diese mo-
derne Lemmata verwenden.

Außerdem basieren viele moderne Lemmatisie-
rer auf Wortart-Information (und integrieren gege-
benenfalls einen entsprechenden Tagger), so z. B.
Liebeck and Conrad (2015); Konrad (2019). Für
unsere Daten liegen aber keine entsprechenden
Wortart-Annotationen vor.

Ein weiteres Problem ist, dass die VKF-
Kandidaten nicht in einer standardisierten Form
vorliegen, sondern stark variieren können. Daher
lässt sich beispielsweise der Ansatz von Wartena

3Die Daten stammen aus dem Mittleren Ostoberdeutsch
(moobd.), vgl. Abschnitt 4.

4https://www.duden.de/
5https://www.linguistics.rub.de/

comphist/projects/anselm/
6https://www.linguistik.hu-berlin.

de/de/institut/professuren/
korpuslinguistik/forschung/
ridges-projekt

7https://www.linguistics.
ruhr-uni-bochum.de/ref/
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(2019) nicht umsetzen, der von markierten Mor-
phemgrenzen innerhalb der Trainingsdaten aus-
geht.

Schließlich liegen in unserem Szenario nur we-
nig Trainingsdaten vor: Im Ansatz mit Norma (s.
Abschnitt 4) stehen jeweils nur 500 Wörter als Trai-
ningsdaten zur Verfügung – eine der Stärken von
Norma ist es, mit solch geringen Datenmengen
bereits gute Ergebnisse zu liefern. Dem künstli-
chen neuronalen Netz (s. Abschnitt 5) stehen mit
ca. 170.000 Wörtern zwar mehr, aber ebenfalls ver-
gleichsweise wenige Trainingsdaten zur Verfügung.
Zum Vergleich: das neuronale Modell von Schmid
(2019) nutzt zwei Millionen Wörter zum Trainie-
ren.

4 Identifikation durch Norma

Im ersten Ansatz verwenden wir ein existierendes
System, das frei verfügbar ist: Norma8 (Bollmann
2012). Norma wurde entwickelt für eine automa-
tische Normalisierung von (historischen) Schreib-
varianten und wird auf Trainingspaaren der Form
<original, normalisiert> trainiert. Norma integriert
drei verschiedene Arten von Lernkomponenten (für
Details, s. Bollmann (2012)):

1. Mapper: Diese Komponente stellt eine Liste
der Paare <original, normalisiert> bereit, die
in den Trainingsdaten gesehen wurden. Map-
per kann also nur bekannte Schreibungen per
Lexikon Lookup normalisieren.

2. RuleBased: Diese Komponente lernt kontext-
sensitive Ersetzungsregeln, die einen Buch-
staben bzw. eine Buchstabensequenz durch
eine andere ersetzen. Die Regeln sind nach
Frequenz ihrer Anwendung geordnet.

3. WLD (weighted Levenshtein distance): Diese
Komponente wendet gewichtete LD an, um
Buchstaben-Ngramme aufeinander abzubil-
den.9

RuleBased und WLD benötigen außerdem ein
Lexikon mit normalisierten Schreibungen, gegen

8https://github.com/comphist/norma (letz-
ter Zugriff: 5.5.2021)

9Norma markiert nur bei der Komponente RuleBased die
Wortgrenzen explizit (mit “#”). Die Wortgrenzen stellen eine
wichtige Information für die Lemmatisierung dar: Am Wor-
tende müssen andere Ersetzungen gelernt werden als in der
Wortmitte. Daher fügen wir “#” für WLD am Wortanfang und
-ende an.

das die generierten Kandidaten abgeglichen wer-
den. Bei der Normalisierung wendet Norma die
drei Komponenten der Reihe nach an. Sobald ei-
ne Komponente eine normalisierte Form generiert,
wird abgebrochen. Norma generiert allerdings nur
Kandidaten, die sich nicht mehr als eine gewisse
Distanz vom Ausgangswort unterscheiden. Gibt es
keinen solchen Kandidaten, bleibt der Output leer.

Norma wurde für die Normalisierung flektierter
Wortformen entwickelt. In einer ersten Evaluati-
on testeten wir daher, ob sich Norma prinzipiell
auch für die Lemmatisierung eignet. Eine Crossva-
lidierung ergab Durchschnittswerte zwischen 56,8-
69,8% Genauigkeit pro Teilkorpus, was Norma
für die (wesentlich leichtere) Aufgabe der VKF-
Identifikation als mögliches Tool erscheinen lässt.
(Details zu dieser Evaluation im Appendix.)

Norma als Tool für die VKF-Identifikation
Für die VKF-Identifikation lemmatisiert Norma
zunächst jeden VKF-Kandidaten aus einem Be-
leg. Anschließend werden die generierten Lemma-
ta mit dem vorgegebenen Lemma abgeglichen und
die VKF wird ausgewählt, deren Lemma mit dem
vorgegebenen übereinstimmt. Gegebenenfalls kann
auch kein oder mehrere Kandidaten zum vorgege-
benen Lemma lemmatisiert werden.

Für diese Anwendung trainieren wir Norma auf
Paaren der Form <historische Wortform, FWB-
Lemma>.10 Entsprechend besteht das Lexikon
zum Abgleich aus Lemmata. Wir nutzen zwei un-
terschiedliche Lexika für den Abgleich:

1. Norma-full: das Lexikon besteht aus einer Lis-
te von rund 78.000 Lemmata des FWB (“full
lexicon”)

2. Norma-small: das Lexikon besteht nur aus
dem vorgegebenen Lemma (“small lexicon”)

Das Szenario Norma-full entspricht dem übli-
chen Vorgehen und könnte beispielsweise bei der
Lemmatisierung von Freitext (ohne vorgegebenes
Lemma) Anwendung finden. Das Szenario Norma-
small ist auf die aktuelle Aufgabenstellung zuge-
schnitten: Da das Ziel-Lemma schon bekannt ist,
kann Normas Hypothesenraum extrem auf genau
diese Form eingeschränkt werden. Das hat folgen-
de Konsequenzen:

Norma-full generiert die Kandidaten sehr viel
unrestriktiver als Norma-small. Daher kommt es

10Sonderzeichen in den Wortformen innerhalb der Bele-
ge wie Satzzeichen (! ? , etc.) oder Anführungszeichen und
Klammern werden gelöscht.
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hier öfters vor, dass Norma-full bei keiner der Input-
Formen die vorgegebene Lemma-Form generiert.
D. h. Norma-full hat eine geringere Abdeckung als
Norma-small.

Im Fall von sehr kurzen Wortformen und Lem-
mata kann Norma-small (zu) viele der Input-
Wortformen auf das vorgegebene Lemma abbilden,
da alle innerhalb der Abbruch-Schwelle liegen. (2)
zeigt ein solches Beispiel. Das vorgegebene Lem-
ma ist öl und der dazugehörige Beleg enthält viele
sehr kurze Wortformen. (3) zeigt die Liste der Wort-
formen aus (2), die Norma-small auf das Lemma
öl abbilden konnte. Die Liste ist nach einem Score
geordnet, den Norma ausgibt. öl (der erste VKF-
Kandidat) ist demnach der “beste” Kandidat, den
Norma generiert (was hier auch die korrekte Form
ist). In der Evaluation (Kap. 6) wird jeweils nur die
erste Form berücksichtigt.

(2) chümpt dann ain gast mit öl vnd wil zemarcht
damit sten vnd gibet es von hant hin, als oft er
ain lagel öls auf tuet, so geit er ain pfunt öls,
als oft er die verchauffet.

(3) öl, als, als, wil, oft, oft, lagel, von, sten, es, er,
er, er, hin, ain, ain, ain, so, die, geit, mit, vnd,
vnd, auf, pfunt, hant, gast, dann, tuet

Wir führen eine sechsfache Crossvalidierung
durch und trainieren Norma auf jeweils 500 Paa-
ren aus drei verschiedenen Sprachräumen (Nordo-
berdeutsch/nobd, Mittleres Ostoberdeutsch/moobd,
Elsässisch/els) und evaluieren auf jeweils 100 Paa-
ren.

5 Identifikation durch ein künstliches
neuronales Netz

Im zweiten Ansatz verwenden wir ein künstliches
neuronales Netz, um den Herausforderungen, die
aus den FWB-Daten erwachsen können, zu begeg-
nen. Neben ihrem geringem Umfang sind die Da-
ten auch unvollständig und sehr spezifisch: derzeit
liegen Trainingsdaten nur für die e-, q-, r- und st-
Strecken vor. In unserer Evaluation zeigte es sich
allerdings, dass hieraus keine größeren Nachteile
entstehen: Das über die r-Strecke trainierte Netz
generalisiert gut und ergibt für die anderen Stre-
cken F-Scores, die mit denen der Trainingsdaten
vergleichbar oder sogar besser sind (vgl. Tabelle 4).
Dies ist von besonderer Bedeutung, da das FWB
aktuell erst zu ca. 75% abgeschlossen ist und das
Netz in Zukunft beliebige Texte lemmatisieren soll.

Abbildung 1: Schematische Darstellung der Topologie
des Netzes

Da über das FWB nur eingeschränkte Trainings-
daten zu Verfügung stehen, wurden einige manuell
erstellte Normalisierungsregeln in das Netz auf-
genommen, um spezielle Fälle, die für einen re-
lativ großen Prozentsatz von Fehlern verantwort-
lich sind, schnell zu entschärfen (Ernst-Gerlach
and Fuhr, 2006; Pilz et al., 2007). Dieses Vorge-
hen erwies sich als erfolgreich, da schon wenige
manuelle Regeln (vgl. Regeln 12–15 in Tabelle 1)
den F-Score des Netzes signifikant anheben. Aktu-
ell handelt es sich nur um Normalisierungsregeln
im Sinne der Lemmazeichengestalt (Reichmann,
1986), in Zukunft sollen auch sprachraumspezifi-
sche Regeln implementiert werden.11

Die Topologie ist basal und empirisch unterstützt.
Das Netz entspricht einem typischen dreischichti-
gen feedforward-Netz mit einfacher verborgener
Schicht, angewendeter Sigmoid-Funktion und zwei
Gewichtsmatrizes (Goodfellow et al., 2018), vgl.
Abb. 1. Das Netz selbst ist in Python programmiert,
orientiert sich in seinem Framework an Rashid
(2017) sowie Steinwendner and Schwaiger (2019)
und lernt gemäß der Aufgabenstellung überwacht
und parametrisch. Die Matrizenmultiplikation wird
mit NumPy12 realisiert.

Die Eingabe- und verdeckte Schicht sind gleich
mächtig, da die Verringerung von verdeckten Neu-

11Ein vergleichbares Vorgehen wurde für des Referenzkor-
pus Althochdeutsch genutzt, für dessen Lemmatisierer über
700 Regeln manuell aufgestellt wurden, die pro Zeit und Raum
gewissen Lautständen mehr oder weniger statistische Bedeut-
samkeit zuweisen und somit die Metadaten eines Textes pro-
duktiv in die Analyse einfließen lassen (Mittmann, 2016). Da
das Frühneuhochdeutsche jedoch wesentlich umfassender und
somit zwangsläufig diverser überliefert ist, gestaltet sich ein
vergleichbarer Ansatz als unlösbar komplexe Aufgabe. In Zu-
kunft sollen entsprechende Regeln daher erlernt werden.

12https://numpy.org/ (letzter Zugriff: 02.06.2021)
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ronen zu erheblichen Schwankungen der Fehler-
quote während des Trainings geführt hat. Die Aus-
gabeschicht besteht nur aus einem Neuron, da
das Netz anhand des Scores nur eine Voraussa-
ge darüber trifft, ob ein Wort als Lemma erkannt
wird oder nicht. Je höher der Score, desto sicherer
wird das betreffende Lemma erkannt. Hierbei wird
analog zu Norma mit Paaren der Form < wi, l >
gearbeitet.

Die Paarung von historischen Wortformen mit
den Lemmata des FWB < wi, l > ergeben die
Daten, die als Bewertungsvektor formalisiert wer-
den. Dieser Vektor bildet die Eingabeschicht, deren
Werte gewichtet und auf der verdeckten Schicht
propagiert werden. Nach einer weiteren Gewich-
tung gibt das Netz auf der Ausgabeschicht einen
Score an, der determiniert, ob lemmatisiert wird
oder nicht. Diese Lemmatisierung wird anschlie-
ßend anhand der bereits ausgezeichneten Strecken
evaluiert und das Netz so trainiert. Diese Aspekte
werden im Folgenden genauer erläutert.

Bewertungsvektoren Da das FWB und die meis-
ten maschinenlesbaren historischen Quellen nicht
getaggt sind, kann nur auf jene Informationen
zurückgegriffen werden, die sich aus dem Vergleich
der VKF mit den Lemmata des FWB ergeben.
Darüber hinaus werden Metadaten zum jeweiligen
Sprachraum berücksichtigt, da diese genutzt wer-
den, um sprachraumspezifische Normalisierungen
in das Netz einfließen zu lassen.

Um z. B. die VKF Refftrager im Quellenzitat (4)
als das Lemma refträger zu identifizieren, werden
insgesamt neun Bewertungsvektoren für sämtliche
Paarungen <secht, refträger>, [. . . ], <Refftrager,
refträger> erstellt. Der Bewertungsvektor für die
VKF Refftrager entspricht der vierten Spalte von
Tabelle 1.

(4) secht recht wie ein Hundsschlager | Oder ein
alter Refftrager

Alle Informationen müssen für das Netz in nu-
merische Werte transformiert werden, damit sie als
Features der Eingabeneuronen dienen können. Die
Features und deren Werte ergeben sich aus Tests-
Trainings. Es wurden stets die Werte gewählt, für
die sich die beste Entwicklung des Fehlerquotien-
ten ergab (vgl. hierzu Abb. 2). Die Anhebung des
F-Scores wurde erst ansatzweise durch die Imple-
mentierung der Regeln 12–15 angegangen.

Die Länge von Lemma und Wortform ergibt
sich als Verhältnis zur maximalen Wortlänge von

Merkmal Erläuterung Wert

1 LLemma Länge Lemma 0,36
2 LOriginal Länge Originalschreibung 0,4
3 Durchsn.L Differenz Längen 0,05
4 Subst. Substantiv 0,5
5 Adj. Adjektiv/Adverb 0
6 Verb Verb 0
7 Unbekannt Unbekannt 0
8 JW Jaro-Winkler-Distanz 0,93
9 phon phonetische Distanz 1

10 JW-norm JW-Distanz mit Normierung 0,984
11 phon-norm ph-Distanz mit Normierung 1
12 JW-fwb-allg JW-Distanz mit FWB-Norm. 0,93
13 JW-kw-qu JW-Distanz kw-qu 0,93
14 JW-ai-ei JW-Distanz ai-ei 0,93
15 JW-ich-ig JW-Distanz auslautendes ich-ig 0,93
16 nrdnieders. Niedersächsisch 0
. . .
39 orfrk. Ostfränkisch 1
. . .
45 balt. Baltisch 0

Tabelle 1: Bewertungsmatrix für die Wortform Refftra-
ger

25 Buchstaben. Die Jaro-Winkler-Distanz wird ent-
sprechend (Winkler, 1990), die phonetische Di-
stanz gemäß der Kölner Phonetik (Postel, 1969)
berechnet. Alle weiteren Distanzen ergeben sich
aus den Normierungen, die Nichtbuchstaben aus
dem Lemma entfernen, Diakritika und Ligaturen
auflösen und die Originalschreibung gemäß der
Richtlinien für die FWB-Lemmazeichengestalt nor-
malisieren (Reichmann, 1986). Insofern folgt das
Netz dem etablierten Ansatz, Vorkommensformen
zu normalisieren, ermöglicht jedoch die Inklusion
von Metadataden und händisch erstellten Regeln,
die sich für vergleichbare Ansätze als hilfreich er-
wiesen haben.

Da für die Zukunft abzusehen ist, dass Infor-
mationen zu den Wortarten zwar hilfreich, aber
nicht nutzbar sein werden, ist geplant, nach den
sprachraumspezifischen Regelsätzen auch spezielle
FLexions- und Deklinationsregeln zu implementie-
ren, die generelle Prinzipien erfassen, jedoch nicht
auf Informationen zur Wortart angewiesen sind.
Der Defaultwert für die Wortarten ist 0, das Fea-
ture für die entsprechende Wortart (unter Sonstige
subsummiert das FWB Artikel, Interjektionen, etc.)
ist 0,5.

Insgesamt deckt das FWB vom Niederpreußi-
schen bis zum Alemannischen 31 Sprachräume ab.
Der Default-Wert der entsprechenden Neuronen ist
wiederum 0. Je nachdem welchem Sprachraum das
jeweilige Wort zugeordnet ist, müssen ggf. meh-
rere Neuronen aktiviert werden, da sowohl über-
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als auch untergeordnete Sprachräume existieren.
Refftrager ist z. B. in einer Nürnberger, d. h. einer
oberfränkischen Quelle belegt (für Städte wird im-
mer der Sprachraum gewählt, in dem sie liegen).
Da sich der oberfränkische Sprachraum aus keinen
untergeordneten zusammensetzt, wird nur dessen
Neuron aktiviert und der Wert 1 eingetragen. Bei
einer rheinfränkischen Quelle müssten hingegen
mehrere Sprachräume berücksichtigt werden, weil
dieser Sprachraum aus dem hessischen und pfälzi-
schen besteht. Für solche Fälle wird der Wert nach
der auf dem Kehrwert der Gebietszahl basieren-
den Formel Feature = 0,3 + 0,5/x für x = Anzahl
aktivierte Sprachräume berechnet.

Lemmatisierung Das Netz identifiziert ein Wort
als Lemma über den Score. Ist dieser größer
als der aktuell noch willkürlich gewählte Wert
von 0,58, wird lemmatisiert. Zentrales Element
der Berechnung des Scores sind neben den Wer-
ten des Bewertungsvektors zwei Gewichtsmatri-
zes, die zwischen Eingabeschicht und verdeckter
(Weights-input-hidden) sowie verdeckter und Aus-
gabeschicht (Weights-hidden-output) positioniert
sind. Die Values der Eingabeschicht werden wie
üblich per Matrixmultiplikation propagiert und auf
der verdeckten Ebene mit einer Sigmoidfunktion
auf das Intervall [0, 1] beschränkt und so der Re-
chenaufwand zu minimiert, ohne Präzision ein-
zubüßen. Derart können auch verdeckte Neuronen
deaktiviert werden und kann das Netz verschiedene
Eingaben korrelieren und nichtlinear arbeiten.

Training Das Training des Netzes erfolgt auf ur-
sprünglich randomisierten Gewichtsmatrizes ent-
sprechend des hot cold learning. Ziel ist eine gleich-
bleibende, möglichst geringe Fehlerquote. Da un-
ser Netz simpel aufgebaut ist, können wir mit einer
sehr geringen Lernrate arbeiten und so das Mini-
mum der Fehlerquote genau bestimmen, was zu
einem robusten Netz führen sollte.

Die Kurve in Abb. 2 beschreibt die Entwick-
lung des Fehlerquotienten beim Training über der
r-Strecke, die in 173.379 Wörtern 11.187 Vorkom-
mensformen von 1.819 Lemmata enthält. Der lo-
kale Anstieg des Fehlerquotieten weist auf eine zu
hohe Lernrate hin, die den statistischen Gradienten-
abstieg in zu großen Schritten über das Minimum
der Fehler-Gewichts-Kurven hinausschießen lässt.
Es ist zu erkennen, dass noch ca. 2000 Fehler exis-
tieren.

Im Folgenden einige beispielhafte Analysen: Im

Abbildung 2: Lernkurve des Netzes

Quellenzitat (5) hat die Vorkommensform abethe-
wer einen Score von 0,79, wird also korrekt lemma-
tisiert. Wir prüfen jedoch auch, ob zwei auf einan-
der folgende Wörter einem getrennt geschriebenen
Lemma entsprechen, damit erhalten wir für die auf-
einander folgenden Wörter aber einer einen Score
von 0,67 und somit einen false positive.

Im Quellenzitat (6) hingegen ermittelt das Netz
für avonture einen Score, der kleiner als 0,58 ist.
Die Vorkommensform wird also nicht erkannt, es
liegt ein false negative vor.

(5) sucht aber einer awßflucht, so sten einer seyn
abethewer

(6) also uns die avonture und ouch daz buch noch
seit

6 Resultate

6.1 Ergebnisse von Norma

Als Baseline verwenden wir ein einfaches System,
das jeweils die vorliegende Wortform als Lemma
vorhersagt. Die Baseline entspricht damit dem An-
teil der Stichworte, die formal mit dem Lemma
übereinstimmen. In den drei Korpora liegt die Ba-
seline zwischen 15,0–18,2% Genauigkeit.

Insgesamt ergeben sich durchschnittliche Genau-
igkeiten von 84,3% mit Norma-small und 60,8%
mit Norma-full. Der Großteil der Fehlerrate von
Norma-full ergibt sich aus den Fällen, bei denen
Norma kein passendes Lemma generiert. Schaut
man sich die Genauigkeit bei den generierten Lem-
mata allein an (d. h. die Precision), so ergibt sich
bei Norma-small 88,6% und bei Norma-full 91,9%.

Von den Korpora ist nobd das schwierigste,
mit Genauigkeiten von 82,5% (Norma-small) und
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– Mapper Rules WLD

# Lemmata
Norma-small 88 417 276 1.019
Norma-full 609 422 256 513

Precision
Norma-small 0 81,3 97,8 89,1
Norma-full 0 80,3 98,0 98,2

Tabelle 2: Verteilung der erzeugten Lemmata über die
Normalisierer sowie die jeweilige Genauigkeit (Durch-
schnitt in Prozent)

52,8% (Norma-full), gegenüber rund 85% bzw.
65% bei den beiden anderen Korpora.

Tabelle 2 zeigt, von welchen Normalisierern
die erzeugten Lemmata in den beiden Szenarien
stammen. “–” sind die Fälle, in denen Norma kei-
nen Kandidaten generiert. Man sieht deutlich, dass
ein Großteil der WLD-Lemmata, die im Szena-
rio Norma-small dank des minimalen Ziellexikons
erzeugt werden, im Szenario Norma-full nicht ge-
neriert werden und zu einer großen Anzahl von
unanalysierten Fällen führen (33,8%) . Gleichzei-
tig zeigt es sich, dass die Precision von WLD bei
Norma-small deutlich abfällt gegenüber Norma-
full (89,1% vs. 98,2%). D. h. von den rund 500
Lemmata, die Norma-small zusätzlich generiert,
sind nur rund 400 korrekt.

In Tabelle 2 fällt zudem auf, dass der Mapper
in beiden Szenarien deutlich abfällt gegenüber den
anderen Normalisierern. Das ist zunächst überra-
schend, da der Mapper nur bei bereits bekannten
Paaren aktiv wird. Die Fehleranalyse unten zeigt,
dass die schlechte Performanz zu großen Teilen auf
Eigenschaften der Evaluationsdaten zurückgeführt
werden kann.

Abb. 3 zeigt die Precision der einzelnen Nor-
malisierer. Rules schneidet hier am besten ab (mit
Werten von 95.6–99.0%). Im Szenario Norma-full
liefert WLD vergleichbar gute Ergebnisse (96.9–
99.3%).

Fehleranalyse Wie schon erwähnt, machen die
fehlenden Lemmatisierungen einen wesentlichen
Teil der Fehlerrate aus: bei Norma-small sind es
31,1%, bei Norma-full sogar 86,3%.

Kritischer sind allerdings die Fälle, in denen Nor-
ma eine VKF identifiziert, diese aber nicht die rich-
tige ist (false positives). Das ist in 195 (Norma-
small) bzw. 97 (Norma-Full) Fällen der Fall. Eine
manuelle Analyse dieser Fälle ergab:

Bei Norma-Full sind nur zwei dieser Fälle

Abbildung 3: Precision der einzelnen Normalisierer

tatsächlich echte (wenn auch nachvollziehbare)
Fehler. Dabei identifizierte Norma als VKF des
Lemmas osterwind einmal westerwint und einmal
oberwind statt oster(wint) im Quellenzitat in (7). In
allen anderen Fällen wurde als VKF entweder ein
(korrekter) Bestandteil eines komplexen Wortes er-
kannt oder umgekehrt, oder es kamen im Quellenzi-
tat mehrere mögliche VKFs vor und Norma wählte
eine andere VKF als in den Testdaten vorgegeben.
Einige Beispiele werden in Tabelle 3 gezeigt.

(7) Oster- und westerwint, den man ober und ni-
der nent, wäen dick und oft und gegen denen
pflegt man nit zu pauen; der oberwind pringt
gern regen und ungewitter.

Von Norma-Small wurden die ersten 100 Fälle
manuell analysiert. Davon waren 75 eigentlich kor-
rekt. Dabei handelte es sich z. T. um die gleichen
Fälle wie bei Norma-Full. Zusätzlich kommt es
hier zu echten Fehlern wie in der unteren Hälfte
von Tabelle 3 illustriert. Z. B. wird für das Lemma
erbe als VKF brief identifiziert. Der Grund dafür
ist, dass der Mapper kein Ziellexikon nutzt und als
erste Komponente die (eigentlich gesuchte) Wort-
form erben auf das Lemma erben lemmatisiert hat,
so dass die weiteren Normalisierer gar nicht mehr
auf diese Wortform angewendet wurden. Rules und
WLD hätten sonst die VKF korrekt identifiziert.
Dasselbe passiert im Fall von straff, das der Mapper
auf strafe statt auf strafen lemmatisiert. Es wäre
hier also zu überlegen, den Output des Mappers
zusätzlich mit dem Ziellexikon abzugleichen.

6.2 Ergebnisse des Netzes

Schon jetzt ergibt das noch unfertige künstliche
neuronale Netz vielversprechende Ergebnisse, s.
Tabelle 4. Auf Basis des aktuellen Trainings erhal-
ten wir einen durchschnittlichen F-Score von 0,931.
Da die einzelnen F-Scores über die analysierten
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Gold-Lemma Gold-VKF System-VKF System

abschlagen ab schlueg Nfl/Nsm
anheben hueb an Nfl/Nsm
straus straussen strauß Nfl/Nsm
entblössen entblotzet entblotzest Nfl/Nsm

erbe erben brief Nsm
strafen straff spricht Nsm

Tabelle 3: False Positives von Norma-full (Nfl) und
Norma-small (Nsm)

r-Strecke e-Str. q-Str. st-Str.

TN 153.687 10.876 71.132 67.953
TP 9.806 646 4.648 4.326
FN 715 52 310 285
FP 800 33 315 436

Precision % 92,5 95,1 93,7 90,08
Recall % 93,2 92,55 93,75 93,12
F-Score 0,928 0,938 0.937 0.923

Tabelle 4: Ergebnisse für das Netz: r-Strecken: Trai-
ningsdaten; Rest: Testdaten. (TN: True Negatives, TP:
True Positives, FN: False Negatives, FP: False Positi-
ves)

Strecken hinweg recht konstant sind, können wir
davon ausgehen, dass das Netz weder über- noch
unterangepasst ist. Um die Treffsicherheit des Netz
zu verbessern, sollen in Zukunft gemischtere Trai-
ningsdaten aus allen manuell getaggten Strecken
erstellt werden. Zudem scheint es sinnvoll, den
Score, über den lemmatisiert wird, nach oben zu
korrigieren, das Netz so kritischer zu gestalten und
false positives auszuschließen. Das damit einherge-
hende vermehrte Auftreten von false negatives ist
zu verkraften, da diese, wenn das Netzwerk weiter
trainiert wird, zurückgehen sollten.

Die folgenden Analysen basieren auf der a- und
b-Strecke.

Hinsichtlich der Wortarten entfällt der Großteil
der Fehler auf flektierte Verben, vgl. Abb. 4. Ein
besonderes Problem stellen Partikelverben da, die
getrennt geschrieben nur dann lemmatisiert wer-
den können, wenn die betreffenden Teilstücke di-
rekt aufeinander folgen. Adjektive/Adverbien und
Sonstige werden durchschnittlich bzw. unterdurch-
schnittlich gut erkannt, fallen aufgrund ihres relativ
geringen Anteils von ca. 12% Adjektive/Adverbien
und nur ca. 1,7% Sonstige weniger ins Gewicht.
Für die Verbesserung des Netzes ist daher zunächst
sowohl die Implementierung von Flexionsregeln
angedacht, die flektierte Formen zur Infinitivform
hin normalisieren, als auch ein Mechanismus zum

Abbildung 4: F-Scores nach Wortarten auf Basis der a-
und b-Strecke

Abbildung 5: F-Scores in Abhängigkeit zur Wortlänge.
Wörter mit mehr als 20 Buchstaben wurden ausgeklam-
mert, da sie nur punktuell auftreten

Erfassen von nicht adjazent geschriebenen Partikel-
verben.

Hinsichtlich der Wortlänge werden VKF mit ei-
ner Länge von 5–12 Buchstaben überdurchschnitt-
lich gut erkannt, vgl. Abb. 5. Dies ist erfreulich, da
sie mit 62,5% (a-Strecke) und 72,2% (b-Strecke)
den Großteil der zu lemmatisierenden VKF ausma-
chen.

Besonders interessant ist, dass Wörter, die nur
aus einem Buchstaben bestehen, gut erkannt wer-
den. Dies ist darauf zurückzuführen, dass es sich
hierbei nur um Buchstabennamen handelt, die ent-
sprechend gut zugeordnet werden können. Analog
sollte dieser Mechanismus auch für besonders lan-
ge Wörter geltend gemacht werden, weswegen die
Kurve nach dem zweiten lokalen Minimum noch-
mals ansteigt. Kurze Wörter werden erst dann pro-
blematisch, wenn sie, wie oben in (2) und (3) für
Norma belegt, auch für das Netz zu false positi-
ves führen. Dies erklärt auch die vergleichsweise

69



Abbildung 6: F-Scores nach Sprachraum

schlechten Scores der Sonstigen, da es sich hierbei
generell um eher kurze Wörter handelt. Hier sollte
die Korrektur des Scores nach oben false positives
ausschließen. Eventuell ist zu überlegen, ob es un-
terschiedliche Limits für den Score geben könnte,
die von der Wortlänge abhängig sind. Schlechter
erkannte längere Wörter fallen aufgrund ihrer ge-
ringen Frequenz weniger ins Gewicht.

Über die Analyse der Sprachräume lassen sich
einzelne herausarbeiten, die unterdurchschnittli-
che Werte aufweisen, wie z. B. das Oberdeut-
sche oder Preußische (s. Abb. 6).13 Dies weist
auf Sprachräume hin, deren VKF erheblich von
der Gestalt des Lemmazeichens im FWB abwei-
chen (Preußisch). Es könnte sich jedoch auch um
Sprachräume handeln, die weniger belegt sind
(Oberdeutsch mit nur durchschnittlich 0,1% al-
ler VKF) und deren Systematiken daher nicht in
genügendem Umfang vom Netz erlernt worden
sind. Eine Lösung für beide Problematiken könn-
ten Regelsets sein, die sprachraumspezifische Nor-
malisierungen durchführen und über die entspre-
chenden Features der Sprachraum-Neuronen ak-
tiviert werden. Solche Regelsets lassen sich mit
Norma generieren und sollten für das Netz pro-
duktiv gemacht werden können. Daneben sollten
die Trainingsdaten so gewählt werden, dass alle
Sprachräume möglichst gleich stark vertreten sind.

7 Ausblick

Wir haben in diesem Beitrag zwei Ansätze beschrie-
ben, die für die Identifikation von Vorkommensfor-
men genutzt werden können. Beide erreichen noch
keine perfekte Abdeckung. Norma erreicht mit ex-

13In Ermangelung von geeigneten Sprachkürzeln gemäß
ISO 639 werden die im FWB verwendeten Sprachkürzel ver-
wendet.

trem wenig Trainingsdaten bereits gute Ergebnisse:
die Präzision liegt z. B. bei Norma-full bei nahezu
100%, bei einer Abdeckung von 66.2%. Das Netz
wurde auf einer größeren Datenmenge trainiert, die
allerdings weniger spezifisch waren. Es erreicht
eine Abdeckung von 86,66% und hinsichtlich der
Sprachräume wesentlich homogenere Ergebnisse.

Die hier umrissene Lemmatisierung stellt eine
notwendige Grundlage für eine geplante Seman-
tisierung frühneuhochdeutsche Texte dar. Ist ein
genügend großer Anteil der entsprechenden Quel-
len lemmatisiert, kann, z. B. über Kollokationsana-
lysen und vektorbasierte Verfahren damit begonnen
werden, die Lesarten der erkannten Lemmata zu
disambiguieren. Eine solche Semantisierung würde
z. B. Wortformen von gnade nicht mehr nur auf den
entsprechenden Artikel verlinken, sondern auf eine
der 20 verschiedene Lesarten, die im FWB notiert
sind und von 1. “unverdiente, unerwartete, retten-
de, helfende Zuwendung des liebenden Gottes zum
Menschen” über 10. “Gabe, die eine höhergestellte
Person aufgrund einer wohlwollenden Gesinnung
an einen in der Hierarchie Niedrigeren verteilt” bis
hin zu 17. “Teil einer Begrüßungs- und Segensfor-
mel” reichen. Allein dies zeigt, welchen Mehrwert
eine zukünftige Semantisierung frühneuhochdeut-
scher Texte haben könnte, der sich u. A. im Er-
kenntnisgewinn während der Lektüre niederschla-
gen würde oder tiefergehende semantische Ana-
lysen wie beispielsweise eine Methaphernanalyse
unterstützen würde.
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Abbildung 7: Genauigkeit (links) und Precision der ein-
zelnen Normalisierer (rechts) in der ersten Evaluation
von Norma

Appendix

Norma als Lemmatisierer Norma wurde für die
Normalisierung flektierter Wortformen entwickelt.
Für die VKF-Identifikation setzen wir Norma ab-
weichend dafür ein, VKF-Kandidaten aus Bele-
gen zu lemmatisieren. In einer ersten Evaluation
untersuchten wir daher zunächst, wie gut Norma
flektierte Originalschreibungen auf standardisier-
te Lemmata abbilden kann. Dazu führten wir ei-
ne sechsfache Crossvalidierung durch und trainier-
ten Norma auf jeweils 500 Paaren aus drei ver-
schiedenen Sprachräumen (Nordoberdeutsch/nobd,
Mittleres Ostoberdeutsch/moobd, Elsässisch/els)
und evaluierten auf jeweils 100 Paaren. Dieselben
Splits wurden in Kap. 6 für die Evaluation der VKF-
Identifikation durch Norma genutzt.

Als Baseline verwendeten wir ein einfaches Sys-
tem, das jeweils die vorliegende Wortform als Lem-
ma vorhersagt.

Abb. 7 zeigt die Ergebnisse. Die Baseline der
Genauigkeit liegt zwischen 15,0–18,2%, die Durch-
schnittswerte (“average”) zwischen 56,8-69,8% pro
Teilkorpus, was Norma für die (wesentlich leichte-
re) Aufgabe der VKF-Identifikation als mögliches
Tool erscheinen lässt. Die Normalisierer Mapper
und Rules erreichen gute Precision-Werte (Mapper:
70,1–84,0%, Rules: 67,3–84,0%). WLD schneidet
am schlechtesten ab (48,3–60,1%), allerdings muss
hier berücksichtigt werden, dass WLD als letzte
Komponente die “schwierigen” Fälle übernimmt
und insgesamt die meisten Wortformen lemmati-
siert (gesamt: 1.800; WLD: 1.013; Mapper: 453;
Rules: 333; ohne Analyse: 1). In allen Fällen sind
die Werte für das Korpus nobd am niedrigsten.
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Abbildung 8: Beispielhafter Bedeutungsansatz 1 des Lemmas abenteuer in der Online-Ausgabe des FWB (http:
//fwb-online.de/go/abenteuer.s.1fn_1619637065, letzter Zugriff: 03.06.2021)
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Abstract

Emotion stimulus extraction is a fine-grained
subtask of emotion analysis that focuses on
identifying the description of the cause behind
an emotion expression from a text passage
(e.g., in the sentence “I am happy that I passed
my exam” the phrase “passed my exam” cor-
responds to the stimulus.). Previous work
mainly focused on Mandarin and English, with
no resources or models for German. We fill
this research gap by developing a corpus of
2006 German news headlines annotated with
emotions and 811 instances with annotations
of stimulus phrases. Given that such corpus
creation efforts are time-consuming and expen-
sive, we additionally work on an approach for
projecting the existing English GoodNewsEv-
eryone (GNE) corpus to a machine-translated
German version. We compare the performance
of a conditional random field (CRF) model
(trained monolingually on German and cross-
lingually via projection) with a multilingual
XLM-RoBERTa (XLM-R) model. Our results
show that training with the German corpus
achieves higher F1 scores than projection. Ex-
periments with XLM-R outperform their re-
spective CRF counterparts.

1 Introduction

Emotions are a complex phenomenon that play a
central role in our experiences and daily communi-
cations. Understanding them cannot be accounted
by any single area of study since they can be rep-
resented and expressed in different ways, e.g., via
facial expressions, voice, language, or gestures. In
natural language processing, most models build
on top of one out of three approaches to study
and understand emotions, namely basic emotions
(Ekman, 1992; Strapparava and Mihalcea, 2007;
Aman and Szpakowicz, 2007), the valence-arousal
model (Russell, 1980; Buechel and Hahn, 2017)
or cognitive appraisal theory (Scherer, 2005; Hof-

mann et al., 2020, 2021). Emotion classification
in text has received abundant attention in natural
language processing research in the past few years.
Hence, many studies have been conducted to in-
vestigate emotions on social media (Stieglitz and
Dang-Xuan, 2013; Brynielsson et al., 2014; Tromp
and Pechenizkiy, 2015), in literary and poetry texts
(Kim and Klinger, 2019; Haider et al., 2020) or for
analysing song lyrics (Mihalcea and Strapparava,
2012; Hijra Ferdinan et al., 2018; Edmonds and
Sedoc, 2021). However, previous work mostly fo-
cused on assigning emotions to sentences or text
passages. These approaches do not allow to iden-
tify which event, object, or person caused the emo-
tion (which we refer to as the stimulus).

Emotion stimulus detection is the subtask of
emotion analysis which aims at extracting the stim-
ulus of an expressed emotion. For instance, in the
following example from FrameNet (Fillmore et al.,
2003) “Holmes is happy having the freedom of the
house when we are out” one could assume that
happiness or joy is the emotion in the text. One
could also highlight that the term “happy” indi-
cates the emotion, “Holmes” is the experiencer and
the phrase “having the freedom of the house when
we are out” (underlined) is the stimulus for the
perceived emotion. Detecting emotion stimuli pro-
vides additional information for a better understand-
ing of the emotion structures (e.g., semantic frames
associated with emotions). More than that, the fact
that stimuli are essential in understanding the emo-
tion evoked in a text is supported by research in
psychology; Appraisal theorists of emotions seem
to agree that emotions include a cognitive evalua-
tive component of an event (Scherer, 2005). There-
fore emotion stimulus detection brings the field of
emotion analysis in NLP closer to the state of the
art in psychology.

To the best of our knowledge, there are mostly
corpora published for Mandarin (Lee et al., 2010b;
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Gui et al., 2014, 2016; Gao et al., 2017) and En-
glish (Ghazi et al., 2015; Mohammad et al., 2014;
Kim and Klinger, 2018; Bostan et al., 2020). We
are not aware of any study that created resources
or models for identifying emotion stimuli in Ger-
man. We fill this gap and contribute the GERSTI

(GERman STImulus) corpus with 2006 German
news headlines. The headlines have been anno-
tated for emotion categories, for the mention of
an experiencer or a cue phrase, and for stimuli
on the token level (on which we focus in this pa-
per). News headlines have been selected as the
domain because they concisely provide concrete
information and are easy to obtain. Additionally,
unlike social media texts, this genre avoids poten-
tial privacy issues (Bostan et al., 2020). Given that
annotating such a corpus is time-consuming, we
propose a heuristic method for projecting an an-
notated dataset from a source language to a target
language. This helps to increase the amount of
training data without manually annotating a huge
dataset. Within this study, the GoodNewsEveryone
corpus (GNE, Bostan et al., 2020) is selected as an
English counterpart.

Our contributions are therefore: (1) the creation,
publication, and linguistic analysis of the GER-
STI dataset to understand the structure of German
stimulus mentions;1 (2), the evaluation of base-
line models using different combinations of feature
sets; and (3) comparison of this in-corpus training
with cross-lingual training via projection and with
a pre-trained cross-lingual language model with
XLM-RoBERTa (Conneau et al., 2020).

2 Related Work

We now introduce previous work on emotion anal-
ysis and for detecting emotion stimuli.

2.1 Emotion Analysis

Emotion analysis is the task of understanding emo-
tions in text, typically based on psychological the-
ories of Ekman (1992), Plutchik (2001), Russell
(1980) or Scherer (2005). Several corpora have
been built for emotion classification such as Alm
and Sproat (2005) with tales, Strapparava and Mi-
halcea (2007) with news headlines, Aman and Sz-
pakowicz (2007) with blog posts, Buechel and
Hahn (2017) with various domains or Li et al.
(2017) with conversations. Some datasets were cre-

1The data is available at https://www.ims.
uni-stuttgart.de/data/emotion.

ated using crowdsourcing, for instance Mohammad
et al. (2014) , Mohammad and Kiritchenko (2015)
or Bostan et al. (2020), that have been annotated
with tweets, or news headlines, respectively. Some
resources mix various annotation paradigms, for
example Troiano et al. (2019) (self-reporting and
crowd-sourcing) or Haider et al. (2020) (experts
and crowdworkers).

Emotion analysis also includes other aspects
such as emotion intensities and emotion roles
(Aman and Szpakowicz, 2007; Mohammad and
Bravo-Marquez, 2017; Bostan et al., 2020) includ-
ing experiencers, targets, and stimuli (Mohammad
et al., 2014; Kim and Klinger, 2018).

2.2 Stimulus Detection

Emotion stimulus detection received substantial at-
tention for Chinese Mandarin (Lee et al., 2010b;
Li and Xu, 2014; Gui et al., 2014, 2016; Cheng
et al., 2017, i.a.). Only few corpora have been cre-
ated for English (Neviarouskaya and Aono, 2013;
Mohammad et al., 2014; Kim and Klinger, 2018;
Bostan et al., 2020). Russo et al. (2011) worked
on a dataset for Italian news texts and Yada et al.
(2017) annotated Japanese sentences from news
articles and question/answer websites.

Lee et al. (2010b,a) developed linguistic rules
to extract emotion stimuli. A follow-up study de-
veloped a machine learning model that combines
different sets of such rules (Chen et al., 2010). Gui
et al. (2014) extended these rules and machine
learning models on their Weibo corpus. Ghazi et al.
(2015) formulated the task as structured learning.

Most methods for stimulus detection have been
evaluated on Mandarin. Gui et al. (2016) propose
a convolution kernel-based learning method and
train a classifier to extract emotion stimulus events
on the clause level. Gui et al. (2017) treat emotion
stimulus extraction as a question answering task.
Li et al. (2018) use a co-attention neural network.
Chen et al. (2018) explore a joint method for emo-
tion classification and emotion stimulus detection
in order to capture mutual benefits across these
two tasks. Similarly, Xia et al. (2019) evaluate a
hierarchical recurrent neural network transformer
model to classify multiple clauses. They show that
solving these subtasks jointly is beneficial for the
model’s performance.

Xia and Ding (2019) redefine the task as emo-
tion/cause pair extraction and intend to detect po-
tential emotions and corresponding causes in text.
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Xu et al. (2019) tackle the emotion/cause pair ex-
traction task by adopting a learning-to-rank method.
Wei et al. (2020) also argue for the use of a ranking
approach. They rank each possible emotion/cause
pair instead of solely ranking stimulus phrases. Fan
et al. (2020) do not subdivide the emotion/cause
pair detection task into two subtasks but propose a
framework to detect emotions and their associated
causes simultaneously.

Oberländer and Klinger (2020) studied whether
sequence labeling or clause classification is appro-
priate for extracting English stimuli. As we assume
that these findings also hold for German, we follow
their finding that token sequence labeling is more
appropriate.

3 Corpus Creation

To tackle German emotion stimulus detection on
the token-level, we select headlines from various
online news portals, remove duplicates and irrele-
vant items, and further subselect relevant instances
with an emotion dictionary. Two annotators then
label the data. We describe this process in detail in
the following.

3.1 Data Collection

We select various German news sources and their
RSS feeds based on listings at a news overview
website2 and add some regional online newspa-
pers.3 The collected corpus consists of headlines
between September 30, 2020 and October 7, 2020
and between October 22 and October 23, 2020 with
9000 headlines, spread across several domains in-
cluding politics, sports, tech and business, science
and travel.

3.2 Data Preprocessing and Filtering

Short headlines, for instance “Verlobung!” or
“Krasser After-Baby-Body” do not contain suffi-
cient information for our annotation, therefore we
omit sentences that have less than 5 words. Further,
we remove generic parts of the headline, like “++
Transferticker ++”, “+++ LIVE +++” or “News-”
and only keep the actual headline texts.

We also remove headlines that start with par-
ticular key words which denote a specific event
which would not contribute to an understanding of

2https://www.deutschland.de/de/topic/
wissen/nachrichten, accessed on April 27, 2021

3The list of RSS feeds is available in the supplemental
material.

No. Linguistics Rules

1. Stimuli can be described by verbal or nominal
phrases

2. Subjunctions like “because of” belong to the se-
quence

3. Conjunctions like “and”, “or” and “but” connect
main clauses. They can therefore belong to a stimu-
lus sequence.

4. Antecedents, if present, are annotated as stimuli
5. If antecedent is not present, an anaphora may be

annotated instead
6. Composites with “-” are considered a single word
7. Stimuli can include one or multiple words
8. Punctuation (e.g. ,.-:;“”!?) should not be labeled as

stimulus

Table 1: Linguistics rules for annotating stimuli.

emotions or stimuli, such as “Interview”, “Kom-
mentare”, “Liveblog”, “Exklusive”, as well as vi-
sual content like “Video”, “TV” or “Pop”. Addi-
tionally, we discard instances which include dates,
like “Lotto am Mittwoch, 30.09.2020” or “Corona-
News am 05.10”.4

After filtering, we select instances that are likely
to be associated with an emotion with the help of
an emotion lexicon (Klinger et al., 2016). For this
purpose, we accept headlines which include at least
one entry from the dictionary.

3.3 Annotation
The annotation of the 2006 headlines which remain
after preprocessing and filtering consists of two
phases. In the first phase, emotion cues, experi-
encers and emotion classes are annotated, while
stimuli are addressed in the second phase only for
those instances which received an emotion label.
Table 8 in the Appendix shows the questions to be
answered during this annotation procedure. Each
headline in the dataset is judged by two annotators.
One of them is female (23 years old) while the other
annotator is male (26 years old). The first annotator
has a background in digital humanities and linguis-
tics, while the second has a background in library
and information management. After each phase,
we combine overlapping stimulus annotations by
choosing the parts annotated by both annotators,
and discuss the cases where the annotations do not
overlap until a consensus is reached.

Guidelines. We created an initial version of
guidelines motivated by Lee et al. (2010b,a); Gui
et al. (2014); Ghazi et al. (2015). Based on two
batches of 25 headlines, and one with 50 headlines,

4Details in Supplementary Material.
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F1

κ tok. span

Iteration Cue Exp. Emo. Stim.

Prelim. 1 .22 .43 .25 — — —
Prelim. 2 .71 .49 .47 — — —
Prelim. 3 .46 .69 .44 — .65 —

Final .56 .57 .51 .68 .72 .56

Table 2: Inter-annotator agreement for the binary tasks
of annotating the existance of cue mentions, experi-
encer mentions, the multi-label annotation of emotion
labels, and the token-level annotation of stimulus spans.
The F1-span value for stimuli is an exact match value
for the whole span.

we refined the guidelines in three iterations. After
each iteration, we calculated inter-annotator agree-
ment scores and discussed the annotator’s results.
It should be noted that we only considered annotat-
ing emotions in the first two iterations. The sample
annotation of emotion stimuli on the token-level
has been performed in the third round, i.e., after
two discussions and guideline refinements. During
these discussions, we improved the formulation of
the annotation task, provided more detailed descrip-
tions for each predefined emotion and clarified the
concept of sequence labeling using the IOB scheme.
Additionally, we formulated several linguistic rules
that help annotating stimuli (see Table 1).

Details. The goal of Phase 1 of the annotation
procedure is to identify headlines with an emotional
connotation. Those which do then receive stimulus
annotations in Phase 2.

We annotated in a spread sheet application. In
Phase 1a both annotators received 2006 headlines.
They were instructed to annotate whether a head-
line expresses an emotion by judging if cue words
or experiencers are mentioned in the text. Fur-
ther, only one, the most dominant, emotion is to
be annotated (happiness, sadness, fear, disgust,
anger, positive surprise, negative surprise, shame,
hope, other and no emotion). In Phase 1b we ag-
gregated emotion annotations and jointly discussed
non-overlapping labels to a consensus annotation.

In Phase 2a, annotators were instructed to label
pretokenized headlines with the IOB alphabet for
stimulus spans – namely those which received an
emotion label in Phase 1 (811 instances). In Phase
2b, we aggregated the stimulus span annotations to
a gold standard by accepting all overlapping tokens
of both annotators in cases where they partially
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Figure 1: κ for all emotion classes.

matched. For the other cases where the stimulus
annotations did not overlap, we discussed the an-
notations to reach an agreement.

Agreement Results. Table 2 presents the inter-
annotator agreement scores for the preliminary an-
notation rounds and for the final corpus. We ob-
serve that the results are moderate across classes.
Figure 1 illustrates the agreement for each emotion
class. The emotions anger, fear, and happiness
show the highest agreement, while surprise, other,
and particularly disgust show lower scores.

For the stimulus annotation, we evaluate the
agreement via token-level Cohen’s κ, via token-
level F1, and via exact span-match F1 (in the first
two cases, B and I labels are considered to be differ-
ent). The token-level result for the final corpus is
substantial with κ =.68, F1 =.72 and moderate for
the exact span match, with F1 =.56 (see Table 2).

4 Corpus Analysis

4.1 Quantitative Analysis

Our corpus consists of 2006 headlines with 20,544
tokens and 6,763 unique terms. From those, 811
instances were labeled with an emotion category
and received stimulus annotations on the token-
level. The shortest headline consists of five words,
while the longest has 20 words. The headlines are
on average short with nine words. The stimulus
spans range from one to eleven tokens and have
four words on average.

Table 3 summarizes the corpus statistics of GER-
STI. For aggregating emotion cue and experiencer
we accept instances for which the mention of these
emotion roles has been annotated by one annotator.
For all emotions, most instances include the men-
tion of an emotion cue (likely biased by our sam-
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Happiness 80 80 77 76 3.72
Sadness 65 65 54 59 4.07
Fear 177 117 138 167 3.83
Disgust 3 3 2 3 4.00
Anger 226 226 195 208 3.86
Pos. Surprise 51 51 45 44 4.11
Neg. Surprise 142 140 125 130 3.96
Shame 9 9 9 8 3.75
Hope 20 19 16 19 4.05
Other 38 37 26 34 3.71
No Emo. 1195 930 109 - -

All 2006 1737 796 748 3.9

Table 3: Corpus statistics. Columns show the amount
of annotated instances for emotion cue, experiencer,
stimulus and the average length of all stimulus spans
within each respective dominant emotion. For aggre-
gating cue and experiencer, cases where one of the an-
notators annotated with a yes have been accepted.

pling procedure). Further, the number of headlines
with mentions of a stimulus and an experiencer is
also high for those instances which are labeled to
be associated with an emotion.

Table 4 presents the most common sources,
sorted by their frequencies, for each aggregated
emotion during Phase 1b. Not surprisingly, Bild-
Zeitung is to be found in the top three for almost all
emotion classes, followed by Stuttgarter-Zeitung
and Welt. In particular, in five out of ten of the
emotions, Bild-Zeitung takes the first place. As
Table 3 demonstrates, disgust is relatively rare, we
therefore list all available sources for this emotion
category. Furthermore, four in five most frequently
annotated emotions are negative (anger, fear, nega-
tive surprise, happiness, sadness).

Note that this analysis does not necessarily re-
flect the actual quality of chosen news sources. The
findings we report here might strongly be biased
by the data collection time span.

4.2 Qualitative Analysis of Stimuli

To obtain a better understanding of stimuli in Ger-
man, we analyse which words together with their
preferred grammatical realizations are likely to in-
dicate a stimulus phrase. For this purpose, we

Emotion News Sources

Happiness Bild, Welt, Stuttgarter Zeitung
Sadness Bild, Spiegel, Stuttgarter Z.
Fear Stuttgarter Z., Bild, Welt
Disgust T-Online, Welt, Spiegel
Anger Bild, Stuttgarter Z., Spiegel
Pos. Surprise Welt, Focus, Bild
Neg. Surprise Bild, Stuttgarter Z., Spiegel
Shame Stuttgarter Z., Bild, Welt
Hope T-Online, Bild, Stuttgarter Z.
Other Bild, Stuttgarter Z., Welt

Table 4: Top three most observed media sources for
each dominant emotion sorted by frequency.

examine the parts of speech5 of terms that are di-
rectly left positioned to stimulus phrases, inside the
stimulus phrases and right after it (see Table 5). We
further compare our findings with Mandarin (Lee
et al., 2010a) and English (Bostan et al., 2020).

Our analysis shows that for GERSTI common
nouns, proper nouns, punctuation, and verbs are
most frequently located directly to the left of stim-
ulus mentions (common nouns ≈26%, punctuation
≈28%, verbs ≈22%, proper nouns ≈0.09%). Of-
ten, these words are emotionally connotated, for in-
stance as in the nouns “Streit”, “Angst”, “Hoffnung”
or “Kritik” or the verbs “warnen”, “kritisieren”,
“bedrohen”, “beklagen” or “kämpfen”.

There are discrepancies between German and
Mandarin stimuli. Lee et al. (2010a,b) state that
prepositions or conjunctions mostly indicate stim-
ulus phrases in Mandarin, while this is not the
case for German due to our predefined annotation
rules (Rule 2 from Table 1). Furthermore, indi-
cator words for Chinese stimulus events do not
cover common nouns or proper nouns. However,
verbs seem to emphasize emotion causes in both
languages.

Compared to GNE, we also notice some differ-
ences: English stimuli do not begin with prepo-
sitions, but prepositions are most likely to be in-
cluded in the stimulus span ((ADP) ≈0.14% in
GNE vs ≈0.03% in GERSTI). Further, by looking
at the part of speech tags that were relevant in in-
dicating the stimuli for GERSTI we see that they
are dominating for GNE as well. However, there
are far more proper nouns than common nouns
and quite fewer verbs that occur right before the
stimulus phrase (common nouns≈11%, punctua-
tion≈21%, verbs≈0.09%, proper nouns≈0.25%).

5We use spaCy, https://spacy.io/usage/
linguistic-features, accessed on April 29, 2021
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GERSTI GNE

POS All Inside Before@1 After@1 All Inside Before@1 After@1

NOUN .28 .33 (1.17×) .26 (0.93×) .00 (0.01×) .16 .17 (1.09×) .11 (0.69×) .17 (1.05×)
ADP .15 .22 (1.48×) .03 (0.19×) .23 (1.54×) .10 .12 (1.12×) .14 (1.37×) .20 (1.95×)
PROPN .14 .09 (0.65×) .09 (0.68×) .01 (0.04×) .30 .26 (0.89×) .25 (0.86×) .25 (0.83×)
PUNCT .13 .02 (0.16×) .28 (2.23×) .49 (3.87×) .09 .07 (0.82×) .21 (2.40×) .08 (0.91×)
VERB .09 .09 (0.91×) .22 (2.32×) .16 (1.68×) .11 .12 (1.06×) .09 (0.80×) .09 (0.85×)
DET .05 .08 (1.47×) .00 (0.09×) .01 (0.16×) .04 .05 (1.03×) .04 (0.81×) .03 (0.63×)
ADJ .05 .07 (1.44×) .00 (0.03×) .01 (0.29×) .05 .05 (1.09×) .02 (0.42×) .03 (0.53×)
ADV .05 .05 (1.04×) .04 (0.87×) .04 (0.93×) .02 .02 (1.07×) .02 (0.80×) .03 (1.47×)
AUX .02 .01 (0.75×) .04 (2.34×) .03 (1.68×) .03 .03 (1.01×) .03 (1.16×) .03 (1.11×)
PRON .01 .01 (0.71×) .02 (1.02×) .00 (0.19×) .03 .03 (1.14×) .01 (0.45×) .02 (0.63×)
NUM .01 .02 (1.49×) .00 (0.00×) .00 (0.00×) .02 .02 (1.15×) .01 (0.27×) .01 (0.34×)
CCONJ .01 .01 (0.97×) .01 (0.55×) .01 (0.77×) .01 .01 (1.21×) .00 (0.64×) .02 (3.82×)

Table 5: Relative frequencies of POS tags of all tokens in GERSTI and GNE datasets (All) vs relative frequencies
of POS tags inside the stimuli spans (Inside), before and after the stimuli spans (Before@1, After@1). For all the
columns that show frequencies of the spans related to the stimuli we show the factor (×) of how much it differs to
the global frequencies in All.

Often, these indicator words of English stimuli do
not as directly evoke an emotion. For instance,
“say”, “make”, “woman”, “people” or “police” are
often observed to be directly left located words
of English stimuli. Nevertheless, similar to GER-
STI, stimuli from GNE corpus are not indicated by
conjunctions, numerals or pronouns.

The positioning of the stimuli is only similar to a
limited degree in German and English: 53% of the
instances in GERSTI end with the stimulus (86%
in English GNE) and 13% begin with the stimulus
(11% in GNE).

5 Experiments

In the following, we explain how we project annota-
tion from an English stimulus corpus to a machine-
translated counterpart. Based on this, we evaluate
how well a linear-chain conditional random field
(Lafferty et al., 2001) performs with the projected
dataset in comparison to the monolingual setup.
We compare that result to the use of the pre-trained
language model XLM-RoBERTa (XLM-R) (Con-
neau et al., 2020).

5.1 Annotation Projection

We use the GNE dataset (Bostan et al., 2020) which
is a large English annotated corpus of news head-
lines. Stimulus sequences in this dataset are com-
paratively longer with eight tokens on average.

We translate the GNE corpus via DeepL6 and
perform the annotation projection as follows: We
first translate the whole source instance ten to the

6https://www.deepl.com/en/translator, ac-
cessed on May 20, 2021

translation tde (from English to German). We fur-
ther translate the stimulus token sequence stimen

to stimde. We assume the stimulus annotation for
tde to correspond to all tokens in stimde, heuristi-
cally corrected to be a consecutive sequence.

5.2 Experimental Setting

5.2.1 Models

CRF. We implement the linear-chain conditional
random field model via the CRF-suite in Scikit-
learn7 and extract different features. What we call
corpus-based features contains the frequency of a
current word in the whole corpus, position label
for first (begin), last (end) and remaining (middle)
words of the headline, if the current word is capital-
ized, or entirely in upper or lowercase, if the token
is a number, a punctuation symbol, or in the list of
50 most frequent words in our corpus.

We further include linguistic features, namely
the part-of-speech tag, the syntactic dependency
between the current token and its head, if it is a
stopword or if it has a named entity label (and
which one it is).

We further add a feature which specifies whether
the token is part of an emotion-word dictionary
(Klinger et al., 2016). Additionally, we combine
the feature vector of the preceding and succeeding
token (we add the prefixes prev and next to each
feature name) with the current token to get infor-
mation about surrounding words. We mark the first
and last token with additional features.

7https://sklearn-crfsuite.readthedocs.
io/en/latest/, accessed on April 30, 2021
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RoBERTa. We use the pre-trained XLM-
RoBERTa base model with the HuggingFace8

library from Wolf et al. (2020). In addition to
the pre-trained transformer, we add a linear layer
which outputs a sequence of IOB tags for each
input sentence. We fine-tune the language model
in five epochs and use a batch size of 16 during
training, a dropout rate of 0.5, and the Adam
optimizer with weight decay (Loshchilov and
Hutter, 2019), with a learning rate of 10−5 and a
maximum gradient norm of 1.0.

Setup. For our experiments, we only use the 811
instances from the GERSTI dataset that received
annotations for emotion stimuli. We split them
into a train and validation subset (80 %/20 %) and
perform experiments in three different settings. In
the in-corpus training, we train with the GERSTI

training data and test on the test corpus. In the
projection setting, we train on the english GNE data
and test on the German GERSTI test data (either
with the CRF via projection or directly with the
XLM-R model). In the aggregation setting, we
use both the English train data and the German
train data for training.

5.2.2 Evaluation Metrics

We evaluate the stimuli prediction as follows (fol-
lowing Ghazi et al. (2015) and Oberländer and
Klinger (2020)): Exact match leads to a true posi-
tive for an exactly correct span prediction. Partial
accepts a predicted stimulus as true positive if at
least one token overlaps with a gold standard span.
A variation is Left/Right, where the left/right bound-
ary needs to perfectly match the gold standard.

5.3 Results

Table 6 reports the results for our experiments. The
top four blocks compare the importance of the fea-
ture set choice for the CRF approach.

In nearly all combinations of model and eval-
uation measure, the in-corpus evaluation leads to
the best performance – adding data from the GNE

corpus only slightly improves for the Partially eval-
uation setting when the CRF is limited to corpus
features. The projection-based approach, where the
model does not have access to the GERSTI training
data consistently shows a lower performance, with
approximately a drop by 50 % in F1 score.

8https://huggingface.co/
xlm-roberta-base, accessed on April 30, 2021

Model F1 in-corp. proj. aggre.

CRF with
corpus
features

Exact .38 .19 .33
Partial .49 .43 .52
Left .42 .22 .38
Right .51 .41 .51

CRF with
linguistic
features

Exact .42 .16 .35
Partial .58 .41 .54
Left .52 .19 .43
Right .57 .40 .53

CRF with
corp.+lingu.
features

Exact .45 .19 .35
Partial .57 .48 .53
Left .53 .24 .41
Right .56 .47 .52

CRF with
all features

Exact .42 .20 .36
Partial .56 .48 .55
Left .50 .25 .43
Right .55 .46 .53

RoBERTa
XLM-R

Exact .47 .25 .45
Partial .75 .61 .70
Left .68 .35 .58
Right .71 .59 .72

Table 6: Results for the CRF models with different fea-
ture sets and the XLM-R model. Highest F1-scores
in each row printed with bold face, highest score in
column/per evaluation measure is underlined, highest
score in each column and per evaluation measure in the
CRF is printed italics.

The linguistic features particularly help the CRF
in the Exact evaluation setting, but all feature set
choices are dominated by the results of the XLM-
RoBERTa model. This deep learning approach
shows the best results across all models, and is
particularly better in the Partial evaluation setting,
with 19pp, 13pp and 15pp improvement.

Both projection and aggregation models indicate
that extracting the beginning of a stimulus span
is challenging. We assume that both models have
learned English stimulus structures and therefore
could not generalize well on the German emotion
stimuli (also see Section 4.2).

5.4 Error Analysis

We now discuss the model’s quality (see Table 7)
based on various error types, namely Early Start,
Late Start, Early Stop, Late Stop, Surrounding
(Early Start & Late stop) and Consecutive error.

Both CRF and XLM-R with projection settings
have largely generated Early Start and Late Stop
errors. These models tend to detect longer stimulus
segments than annotated in the gold data. This
might be a consequence of English stimuli being
longer than in German. Despite the fact that a
CRF does not have an understanding of the length
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Err. Type Example Setup

Early start Hof
Court

in
in

Bayern
Bavaria

:
:

21-Jähriger
21-year-old

[ nach
after

tödlichem
deadly

Autounfall
car-accident

zu
to

Bewährungsstrafe
probation

verurteilt
convicted

]

projection

Court in Bavaria: 21-year-old sentenced to probation after fatal car
accident

Late start Peter
Peter

Madsen
Madsen

in
in

Dänemark
Denmark

:
:

Kim
Kim

Walls
Wall’s

Mörder
murderer

[ scheitert
fails

bei
by

Fluchtversuch
escape-attempt

aus
from

Gefängnis
prison

]

in-corpus

Peter Madsen from Denmark: Kim Wall’s killer fails in escape attempt
from prison

Early stop Noch
Even

mehr
more

Eltern
parents

erzählen
tell

[ von
about

den
the

unheimlichen
scary

Dingen
things

,
,

die
that

ihr
their

Kind
child

mal
once

gesagt
said

hat
has

]

in-corpus

More parents share creepy things their kid once said

Late stop In
In

Paris
Paris

:
:
[ Lauter

Loud
Knall

bang
] schreckt

scares
Menschen

people
auf
on

-
-

Ursache
Cause

schnell
quickly

gefunden
found

aggregation

In Paris: Loud bang startles people - cause quickly found

Surrounding EU-Gipfel
EU-summit

:
:

Streit
Dispute

[ über
about

Linie
line

zur
to

Tükei
Turkey

] -
-

Erdogan
Erdogan

reagiert
reacts

mit
with

Häme
gloat

projection

EU-summit: Dispute over line on Turkey - Erdogan responds with gloat-
ing

Consecutive Niederlage
Defeat

für
for

Autohersteller
car-manufacturer

:
:
[ Betriebsratswahl

work-council-election
bei
by

Daimler
Daimler

ungültig
invalid

]

aggregation

Defeat for car manufacturer: Daimler’s work council election invalid

Table 7: Example headlines for examined error types. Gold annotations correspond to tokens between [ ]. Predicted
stimulus segments are highlighted as follows: red (B tag), blue (I tag). English translations for each sample are
written in italics. All examples stem from the CRF models except the last one.

of span due to the Markov property, it has a bias
weight for transitions between I labels. An example
for such a case is the first instance from Table 7
the projection setting also extracted the token “21-
Jähriger” as the start of the stimulus sequence. This
explains the difference between partial and exact
F1 scores in Table 6.

The Surrounding exemplifies that the models
tend to predict the beginning of a stimulus span di-
rectly after a colon. In contrast, in the in-corpus ex-
periments (particularly with XLM-R), models tend
to generate Late Start and Early Stop errors more
often. For example the second headline from Ta-
ble 7 shows a missing prediction of the verb “scheit-
ert”. Instead, the preposition “bei” is found as the
start of the stimulus phrase. Further, in the subse-

quent example, this model setting does not cover
the phrase “die ihr Kind mal gesagt hat” in the stim-
ulus segment. Both sample headlines demonstrate
that in-corpus models tend to label prepositions as
the start of stimulus sequences.

In the XML-R experiments, we opted against the
use of a Viterbi-decoded output layer (like a CRF
output) – this leads to errors of the Consecutive
type, as shown in the last example: start and end
of the stimulus are correctly found, but tokens in
between have been missed.

6 Conclusion and Future Work

We introduced the first annotated German corpus
for identifying emotion stimuli and provided base-
line model results for various CRF configurations
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and an XLM-R model. We additionally proposed
a data projection method.

Our results show training and testing the model
in the same language outperforms cross-lingual
models. Further, the XLM-R model that uses a
multilingual distributional semantic space outper-
forms the projection. However, based on partial
matches, we see that, when approximate matches
are sufficient projection and multilingual methods
show an acceptable result.

Previous work has shown that the task of stimu-
lus detection can be formulated as token sequence
labeling or as clause classification (Oberländer and
Klinger, 2020). In this paper we limited our anal-
ysis and modeling on the sequence labeling ap-
proach. Thus, we leave to future work the compari-
son with the clause-classification approach. How-
ever, from the results obtained, we find sequence
labeling an adequate formulation in German.

For further future work, we suggest experiment-
ing with the other existing corpora in English to
examine whether the cross-lingual approach would
work well on other domains. Regarding this, one
could also train and improve models not only for
language change but also to extract stimuli across
different domains. Subsequently, another aspect
that should be investigated is the simultaneous
recognition of emotion categories and stimuli.
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A Appendix

Question Annotation Labels

Phase 1: Emotion Annotation

1. Are there terms in the headline which could indicate an emotion? Cue word 0, 1

2. Does the text specify a person or entity experiencing an emotion? Experiencer 0, 1

3. Which emotion is most provoked within the headline? Emotion Emotions

Phase 2: Stimuli

4. Which token sequence describes the trigger event of an emotion? Stimulus BIO

Table 8: Questions for the annotation.
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Abstract

We present the results of an evaluation study in
the context of lexicon-based sentiment analy-
sis resources for German texts. We have set up
a comprehensive compilation of 19 sentiment
lexicon resources and 20 sentiment-annotated
corpora available for German across multiple
domains. In addition to the evaluation of the
sentiment lexicons we also investigate the in-
fluence of the following preprocessing steps
and modifiers: stemming and lemmatization,
part-of-speech-tagging, usage of emoticons,
stop words removal, usage of valence shifters,
intensifiers, and diminishers. We report the
best performing lexicons as well as the influ-
ence of preprocessing steps and other modifi-
cations on average performance across all cor-
pora. We show that larger lexicons with contin-
uous values like SentiWS and SentiMerge per-
form best across the domains. The best per-
forming configuration of lexicon and modifi-
cations considering the f1-value and accuracy
averages across all corpora achieves around
67%. Preprocessing, especially stemming or
lemmatization increases the performance con-
sistently on average around 6% and for certain
lexicons and configurations up to 16.5% while
methods like the usage of valence shifters, in-
tensifiers or diminishers rarely influence over-
all performance. We discuss domain-specific
differences and give recommendations for the
selection of lexicons, preprocessing and modi-
fications.

1 Introduction

Sentiment analysis (also often referred to as opin-
ion mining) is a sub-field of affective computing,
which deals with the detection and analysis of hu-
man sentiment and emotions in various application
areas like game design (Halbhuber et al., 2019),
health (Hartl et al., 2019) and human-computer
interaction (Ortloff et al., 2019). Sentiment anal-
ysis focuses on text as modality and refers to the

task of classifying texts of various lengths con-
cerning polarity (or valence) expressed in the text,
meaning whether the sentiment of a text is rather
positive or negative (Liu, 2015). Application ar-
eas for sentiment analysis in natural language pro-
cessing (NLP) are social media content (Mäntylä
et al., 2018), social sciences (Schmidt et al., 2020b),
health (Moßburger et al., 2020), user-generated
content (Schmidt et al., 2020a) , digital humanities
(Kim and Klinger, 2018a), and human-computer
interaction (Schmidt et al., 2020c) to name just a
few examples.

Methods for performing sentiment analysis can
be divided into two major branches: lexicon-based
(also often referred to as rule-based or dictionary-
based methods; Taboada et al., 2011) and ma-
chine learning (ML)-based approaches. Lexicon-
based sentiment analysis uses lexicons consisting
of words that are pre-annotated concerning their
sentiment expression, which we refer to as senti-
ment bearing words (SBWs). There are multiple
ways to create and acquire such lexicons like crowd-
sourcing, expert annotations or semi-automatic ap-
proaches (cf. Ribeiro et al., 2016). Values of SBWs
can either be binary, e.g. +1 (positive) and -1 (neg-
ative) (Waltinger, 2010; Mohammad and Turney,
2013) or continuous (e.g. between -3 and + 3) (Re-
mus et al., 2010; Vo et al., 2009; Emerson and De-
clerck, 2014) to represent differences in sentiment
expression across words more precisely. A text can
be assigned with an overall polarity by summing up
the values of the positively assigned words and sub-
tracting the values of the negative ones. A negative
end result points towards a negative and a positive
result towards a positive sentiment; a value of 0 is
interpreted as neutral (Taboada et al., 2011).

However, developments in ML in the last decade
and especially in recent years have led to a domi-
nance of ML-based methods for most NLP-tasks.
Current state-of-the-art sentiment analysis regards
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sentiment analysis oftentimes as text sequence clas-
sification task with three classes (neutral, positive,
negative). Current approaches are based on large
transformer-based models like BERT and achieve
accuracies up to 95% in standardized evaluation
settings for English (Nazir et al., 2020; Jindal and
Aron, 2021; Dang et al., 2020; González-Carvajal
and Garrido-Merchán, 2021) and around 80-90%
in German (Wojatzki et al., 2017; Struß et al., 2019;
Chan et al., 2020). ML-based methods are depen-
dant of sentiment-annotated corpora and especially
for English, an increasing number of sentiment-
annotated data-sets that can be used to train algo-
rithms can be found for various domains (Ribeiro
et al., 2016; Balazs and Velásquez, 2016; Singh
et al., 2020). When compared to each other, mod-
ern ML-based methods usually outperform lexicon-
based methods, which more recently only serve
as baseline for performance comparisons (Dhaoui
et al., 2017; Kim and Klinger, 2018b; Khoo and
Johnkhan, 2018; Khan et al., 2017; Kharde et al.,
2016). Nevertheless, many languages and also spe-
cial domains lack large annotated corpora neces-
sary for state-of-the art ML-based sentiment analy-
sis. Since lexicon-based methods are not bound to
quality and quantity of training data, they are still
a common approach for languages (Mukhtar et al.,
2018; Al-Ayyoub et al., 2019) and areas (Aung
and Myo, 2017) with fewer resources. Further-
more, lexicon-based methods are fast to apply and
easy to comprehend which has also led to their
popularity in research areas like digital humanities
(Kim and Klinger, 2018a; Schmidt et al., 2018b)
and especially the sub-field of computational liter-
ary studies (Alm and Sproat, 2005; Reagan et al.,
2016; Schmidt and Burghardt, 2018a,b; Schmidt,
2019; Schmidt et al., 2019b,c, 2021). For the En-
glish language, various research exists evaluating
the performance of sentiment lexicons and modi-
fications on multiple corpora (Khan et al., 2017;
Ribeiro et al., 2016) or evaluating and surveying
lexicons in a context of larger studies including
ML-methods (Tsytsarau and Palpanas, 2012; Med-
hat et al., 2014; Kharde et al., 2016; Singh et al.,
2020). Thus, researchers can build upon recommen-
dations and best practices based on this research
when selecting sentiment lexicons, preprocessing
steps and other modifications. However, to the best
of our knowledge, there are no similar resources
that provide an exhaustive and systematic listing
and evaluation of lexicon-based methods across var-

ious sentiment-annotated corpora for the German
language. In the following paper we want to ad-
dress this gap and systematically evaluate lexicon-
based techniques for sentiment analysis for German
to provide recommendations for the selection of
lexicons, preprocessing steps and further configura-
tions. The contributions of this paper are as follows:
(1) a comprehensive listing of datasets of sentiment
lexicons and sentiment-annotated corpora in Ger-
man, (2) an in-depth evaluation of resources and
methods of lexicon-based sentiment analysis for
German, and (3) a discussion of validated recom-
mendations concerning the selection of sentiment
lexicons, preprocessing steps and other modifica-
tions.

2 Resources

To acquire an exhaustive list of relevant corpora
and lexicons for German sentiment analysis we
searched in various digital libraries and search en-
gines with appropriate search terms. The most im-
portant platforms we investigated are the ACM Dig-
ital Library1, ACL Anthology2, IEEE3, Springer
Verlag4 and, on the other hand, more specific plat-
forms such as the Conference on Natural Language
Processing5 (KONVENS). Other sources we re-
ferred to are the publications related to the regu-
larly held GermEval6 competitions or publications
of the Interest Group on German Sentiment Analy-
sis7 (IGGSA). Please note that we do not include
resources in the context of German-based emotion
analysis. While this research area certainly neigh-
bours sentiment analysis, it is out of scope of this
paper. Before discussing the different preprocess-
ing and modification steps, we present an overview
of corpora as well as lexicons that we have found
for German sentinment analysis.

2.1 Corpora

First, we present all German sentiment annotated
corpora we managed to find and that were publicly
available or accessible per request (see Table 1).
The corpora are of varying quantity and quality.
Major differences concern, among other things, the

1https://dl.acm.org/
2https://www.aclweb.org/anthology/
3https://www.ieee.org/
4https://www.springer.com/de
5https://konvens.org/site/
6https://germeval.github.io/
7https://sites.google.com/site/

iggsahome/
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Abbrevation Corpus name (if reported) Reference #Pos #Neg
LT01-Zehe German Novel Dataset Zehe et al., 2017 75 89
LT02-Schmidt Schmidt et al., 2019a 202 370
LT03-Schmidt Schmidt et al., 2018a 61 139
MI01-Clematide MLSA Clematide et al., 2012 69 110
MI02-Wojatzki GermEval 2017 Wojatzki et al., 2017 1,537 6,887
MI03-Rauh Rauh, 2018 333 475
NA01-Butow GerSEN Bütow et al., 2016 372 485
NA02-Ploch GerOM Ploch, 2015 71 38
NA03-Schabus One Million Posts Corpus Schabus et al., 2017 43 1,606
RE01-Klinger USAGE Klinger and Cimiano, 2014 506 50
RE02-Sänger SCARE Sänger et al., 2016 418,9 k 185,7 k
RE03-Du SentiLitKrit Du and Mellmann, 2019 718 290
RE04-Guhr Guhr et al., 2020 39.6 k 15.4 k
RE05-Prettenhofer Prettenhofer and Stein, 2010 159,3 k 136,8 k
SM01-Cieliebak SB10k Cieliebak et al., 2017 1.717 1.130
SM02-Sidarenka PotTS Sidarenka, 2016 3,349 1,510
SM03-Narr Narr et al., 2012 350 237
SM04-Mozetič Mozetič et al., 2016 16,5 k 11,7 k
SM05-Siegel German Irony Corpus Siegel et al., 2017 49 107
SM06-Momtazi Momtazi, 2012 278 191

Table 1: Listing of all corpora included in the evaluation. Pos and Neg mark the number of respective annotated
text units, acronyms are explained in the text. More information can be found in the appendix (Table 4).

size of the corpora, the granularity of the annotated
polarity, the text domain, and also the quality of
the annotations. The corpora were classified into
five different domains based on the text units they
contained: literary and historical texts, texts from
or related to news articles, product reviews, social
media, and mixed corpora with text units from dif-
ferent domains. For more details about the corpora
please refer to Table 4 in the appendix or the spe-
cific papers of the corpora. The corpora are further
referenced with abbreviations, which are composed
of a domain assignment and the primary author of
the respective publication (see Table 1). We include
three corpora containing literary texts (LT01-LT03),
three with mixed types (MI01-MI03), three con-
taining news articles (NA01-NA03), five reviews
(RE01-RE05) and six social media content (SM01-
SM06). Some of the most well-known corpora
of our list are SB10k (SM01-Cieliebak), PotTS
(SM02-Sidarenka), USAGE (RE01-Klinger), and
the GermEval 2017 corpus (MI02-Wojatzki).

2.2 Lexicons

Table 2 illustrates all lexicons we gathered for this
evaluation study. For more details concerning the
lexicons please refer to the appendix (Table 5).

Please note that some of the lexicons share com-
mon word entries or are based in part on other re-
sources. The lexicons are referenced with abbrevia-
tions, which are composed of a numeration and the
primary author of the respective publication since
many lexicons have no explicit names given by
the authors. The order of numbers has no specific
meaning. There are different versions for some lexi-
cons: 05-Siegel-p and 06-Siegel-m, which focus on
words from the Pressrelations (Scholz et al., 2012)
and MLSA (Clematide et al., 2012) datasets, and
08-Takamura-c and 09-Takamura-d, respectively,
for continuous and dichotomous sentiment values.
Several well-known and often used lexicons are
also included, such as SentiWS (01-Remus), BAWL-
R (03-Võ), GermanPolarityClues (13-Waltinger),
and LIWC-De (14-Wolf). Our general calculation
of sentiment values is as follows: For a text unit,
we count the positive and negative matches and
subtract the sum of positive words by the negative
ones. A positive end result is counted as positive
polarity, a negative as a negative one. Across chap-
ter 3 we detail some further methods to adjust this
calculation.
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Abbrevation Lexicon name (if reported) Reference Tokens
01-Remus SentiWS Remus et al., 2010 34,238
02-Clematide Clematide et al., 2010 9,239
03-Võ BAWL-R Vo et al., 2009 2,902
04-Emerson SentiMerge Emerson and Declerck, 2014 96,420
05-Siegel-p Siegel and Diwisch, 2014 2,917
06-Siegel-m Siegel and Diwisch, 2014 2,917
07-Rill SePL Rill et al., 2012 14,395
08-Takamura-c GermanSentiSpin Takamura et al., 2005 105,560
09-Takamura-d GermanSentiSpin Takamura et al., 2005 88,925
10-Rauh Rauh, 2018 37,080
11-Du SentiLitKrit Du and Mellmann, 2019 3,620
12-Asgari UniSent Asgari et al., 2019 1,384
13-Waltinger GermanPolarityClues Waltinger, 2010 38,901
14-Wolf LIWC-De Wolf et al., 2008 4,894
15-Klinger USAGE Sentiment Lexicon Klinger and Cimiano, 2014 4,743
16-Wilson GermanSubjectivityClues Wilson et al., 2009 9,827
17-Mohammad NRC Emotion Lexicon Mohammad and Turney, 2013 10,617
18-Ruppenhofer Ruppenhofer et al., 2017 9,544
19-Chen Multilingual Sentiment Lexicon Chen and Skiena, 2014 3,973

Table 2: Listing of all lexicons included in our evaluation. Lexicons 1-8 include two versions: dichotomous and
continuous sentiment values. The rest is solely dichotomous. More information can be found in the appendix
(Table 5).

3 Methods

3.1 General Data Cleaning
We perform the following steps to clean the texts
of all corpora before evaluation:

• Removing non-alphabetic characters (num-
bers, special characters, etc.) as well as lead-
ing, trailing and multiple spaces (Haddi et al.,
2013).

• The removal of URL links, Twitter usernames,
and Twitter-specific words such as “RT” (Pak
and Paroubek, 2010).

All of the above steps showed no relevant influ-
ence on SBWs or lexicon-based sentiment analysis
and serve only normalization purposes.

3.2 Preprocessing and other Modifications
In addition to the evaluation of lexicon resources,
we also investigate the influence on performance
by various preprocessing steps and other configu-
rations which are frequently used when preparing
the application of sentiment lexicons. The follow-
ing techniques are evaluated: The assignment and
use of part-of-speech (POS) information, lemma-
tization and stemming, emoticon processing, stop

words removal, lowercasing and the application of
valence-changing words. We will refer to these
techniques in the following as modifiers or modifi-
cations. Most modifiers are either on or off, mean-
ing they are performed or not, except for POS-
tagging, stemming and lemmatization for which
multiple approaches are evaluated as well as on
and off. In order to identify the best combination
of modifiers in the context of the chosen lexicon,
the different methods are cross-evaluated and com-
pared based on classification metrics.

3.2.1 Part-of-Speech-Tagging
In sentiment analysis, POS information can be
used to solve the problem of word ambiguity since
words with the same spelling can have a differ-
ent valence dependent of the POS (Taboada et al.,
2011). Knowledge of the correct POS can support
the resolving of this kind of ambiguity. It is nec-
essary to perform POS-tagging on the text and on
the lexicon (few of our lexicons already do con-
tain POS information). We evaluate and use two
of the most well-known POS-taggers for German:
TreeTagger (Schmid, 2013) which has shown good
performance in evaluation studies (Gleim et al.,
2019; Horsmann et al., 2015) and Stanza (Qi et al.,
2020), a novel POS-tagger for German. Sentiment
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lexicons consist almost exclusively of nouns, ad-
jectives, verbs and adverbs, which are mainly re-
sponsible for the polarity of a text unit (Pak and
Paroubek, 2010). Therefore, all POS information
was normalized to these four categories. When
we apply POS-tagging in our sentiment analysis
pipeline, after finding matching words between
text and lexicon, we also test if the POS matches
or refers to the word with the correct POS before
including it in the calculation.

3.2.2 Stemming or Lemmatization
While some sentiment lexicons contain various in-
flections of words (Remus et al., 2010), the vo-
cabulary of these lexicons mostly consist of base
forms. To enable the mapping of words in texts and
in the lexicon, base form reduction via lemmatiza-
tion or stemming is often applied (Taboada et al.,
2011). Stemming refers to algorithms that attempt
to reduce the word to the base form by truncat-
ing suffixes and affixes based on predefined rules.
Lemmatization, on the other hand, often takes sen-
tence order and surrounding words into account
or works with large dictionaries to reduce a word
to its true base form, the lemma, which is neces-
sary for languages with complex morphology like
German. In this study, we evaluate the usage of
the following two lemmatizers for German: Tree-
Tagger (Schmid, 2013), and Inverse Wiktionary for
Natural Language Processing (IWNLP) (Liebeck
and Conrad, 2015). In terms of stemming, two es-
tablished stemming algorithms are evaluated: Cis-
tem (Weissweiler and Fraser, 2017) and Snowball
Porter (Porter, 1980). Please note that we do not
evaluate the lemmatizers or stemming approaches
for their intended task but only with respect to the
influence on sentiment analysis (the same holds
true for POS-tagging). For a review of base form
reduction in German we recommend Gleim et al.
(2019). We evaluate these methods by applying
stemming/lemmatization to the text and lexicon
before looking for the matches.

3.2.3 Lowercasing
Unlike English, German does not only capitalize
the beginning of sentences and proper names, but
also nouns or nominalizations. Thus, for certain
cases, it is important to differ between cased and
uncased versions of words in German to disam-
biguate sentiment (e.g. “würde” (would, auxiliary
verb) has no sentiment, “Würde” (dignity, noun) is
positive in some lexicons). However, written text

in general and in social media in particular includes
a lot of spelling errors and incorrect capitalization
hindering correct sentiment calculations. There-
fore, we evaluate how lowercasing of the lexicon
and the texts influences performance.

3.2.4 Emoticons
Emoticons are representations of body language in
text, very frequently connected to sentiment expres-
sions (Ptaszynski et al., 2011). Since emoticons are
common on the social web, several papers show the
benefits of including emoticons in the calculation of
the sentiment value of a text unit (Hogenboom et al.,
2015; Gonçalves et al., 2013). To translate emoti-
cons to sentiment values, we used a 232-entry list
of emoticons from the SCARE dataset by Sänger
et al. (2016). Positive or negative emoticons are
treated as additional entries to the lexicon vocabu-
lary (positive as +1, negative as -1).

3.2.5 Stop Words Removal
The removal of stop words, i.e. common words
(like function words) that occur with high fre-
quency in a language, is a common practice in NLP
pipelines, predominantly to improve computation
performance. In this process, the individual words
of a text unit are matched against a list of words
and removed from the text unit if they match any
of the entries. Common stop words in language are
articles, prepositions, conjunctions, and pronouns
and they usually bear no sentiment. While stop
words usually have no influence on calculations via
lexicon-based methods, sentiment lexicons that are
created automatically or semi-automatically can
contain stop words which can skew sentiment cal-
culations, e.g. “dieser, jetzt, ihnen, ihrer, ihm” in
the lexicon 08-Takamura-d. Such entries are not
considered further by removing stop words. Indeed,
in some settings the removal of stop words has been
shown to be beneficial for sentiment analysis (Saif
et al., 2014). We evaluate the application of the
German stop words list provided by the informa-
tion retrieval framework Solr.8. The list is rather
conservative with a length of 231 entries. If we use
the modification stop words list, words of this list
are ignored in the text as well as in the lexicon that
is used.

3.2.6 Valence Shifters
Depending on the surrounding of a SBW, the senti-
ment value of a word can be influenced, for exam-

8https://solr.apache.org/
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ple the word “glücklich” (happy), usually positive,
turns negative with the negation “nicht” (not) right
before. Such words and phrases are referred to as
valence shifters (Mohammad, 2016). It is recom-
mended to include valence shifters into the calcula-
tion process for lexicon-based sentiment analysis
(Pröllochs et al., 2015). The following parame-
ters are important for dealing with valence shifters:
(1) the window size, meaning how close a valence
shifter has to be to a SBW to influence calcula-
tions and (2) the position, meaning if the valence
shifter is left or right of the SBW (Pang et al., 2002;
Kennedy and Inkpen, 2006). For this work, we
used a two-sided window with a fixed length of 4
words, which achieved the best results in a wider
comparison of methods on German-language data-
sets by Pröllochs et al. (2015). If a valence shifter
occurs in the text, the sentiment values of all words
within the context window are reversed. We use a
list of 22 German negations collected by various
lists (Clematide et al., 2010; Ruppenhofer et al.,
2017; Tymann et al., 2019).

3.2.7 Valence Intensifiers and Diminishers

Similar to valence shifters, words can also act as va-
lence intensifiers or diminishers e.g. “sehr” (very)
or “wenig” (little). As with valence shifters, a va-
riety of possible implementation approaches exist
regarding the context window and position of these
words (Taboada et al., 2011; Klenner et al., 2009.
We chose to use the approach of Taboada et al.
(2011): given a context window of 2 words be-
fore the SBW, the sentiment values of all SBWs
within the window are multiplied by the value of
the diminishers or intensifier. We use a list of 78
German intensifiers and diminishers by Clematide
et al. (2010) and Ruppenhofer et al. (2017).

3.2.8 Usage of Lexicon-specific continuous
Sentiment Values

While most lexicons have sentiment values in di-
chotomous (positive, negative) or trichotomous
(positive, negative, neutral) expressions, some lexi-
cons contain sentiment values with continuous val-
ues, for example between +3 and -3. Thus, if a
lexicon offers continuous metrics, we evaluate both
approaches: the usage of these continuous values
in the calculation and the binary representation via
+1 and -1. This is the case for the lexicons 1-8.

4 Results

We evaluate the lexicons and modifiers regarding
sentiment analysis as binary classification tasks
with positive and negative values, ignoring all neu-
tral information. If a calculation produces 0 (neu-
tral) as output, this is counted as false prediction.
In chapter 4.1 we first present the lexicon perfor-
mance without using modifiers to investigate the
general performance of lexicons, corpora and do-
mains. In chapter 4.2 we present modifier-based
results before we take a closer look at the best
lexicon-modifier combinations in chapter 4.3.

Due to the high class imbalances of certain cor-
pora, we primarily report macro f1 measure. When
we report averages across corpora we do not ac-
count for size imbalances of the corpora. Instead
we calculate the mean average of f1 measures over
all corpora.9

4.1 Lexicon Performance without modifiers

First, we present the results of cross-evaluations
when using the sentiment lexicons on the corpora
without any modifiers via a heatmap (see Fig. 1).
Please note that the random and majority baselines
of the corpora fluctuate around 50-70% for most
corpora (see 4 in the appendix). The average f1
measure of all lexicons across all corpora is 45%. A
few lexicons achieve an average f1 measure above
50% across all corpora. The best performing lexi-
cons are, on average, 13-Waltinger with 60%, 10-
Rauh with 57%, 19-Chen with 53%, 01-Remus
with 52% and 04-Emerson with 51%. However,
multiple lexicons do perform way below 50%. Con-
sidering differences on the corpora of various do-
mains, we have identified the following findings:
On average, the lexicons perform best on corpora
from the product review domain with f1 scores
between 46 to 58%. Corpora based on social me-
dia content lead to rather low f1 values between
36-46%. The f1 scores do however vary a lot, for
certain lexicons around 10-20% showing that the
selection of the corpus-lexicon combination is im-
portant. The best result is achieved by lexicons
designed specifically for the task on certain cor-
pora e.g. 15-Klinger on corpus RE01-Klinger with

9We limit the result report to the most important results.
However, we publish a GitHub repository including all results
for all lexicon-modifier combination across all corpora for
multiple performance metrics and further overview data like
heat maps and domain specific result tables. The repository
can be found at https://github.com/JakobFehle/
Lexicon-based-SentA-German
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Figure 1: Heatmap for the cross-evaluation of lexicons and corpora including overall averages with no modifica-
tions. Values are given as f1 measure and rounded. X-axis are the lexicons, y-axis the corpora.

84%. Other good performances are found with 13-
Waltinger and 10-Rauh on NA02-Ploch with 82%
and 79%, respectively.

4.2 Modifications
To evaluate the effects of the respective modifiers,
they are examined in two ways: (1) We regard
the average performance of all lexicons and cor-
pora without modifiers as baseline (f1 measure of
44.8%) and compare it with the average of the iso-
lated use of a single modifier turned on (all other
modifiers off) across all corpora and lexicons. We
refer to the difference of the baseline f1 measure
(44.8%) and the average across all corpora and
lexicons with just this modifier turned on as f1-
raw-delta. A positive value shows an improvement,
a negative value a decrease of performance. (2)
We measure every possible on/off configuration for
all modifiers across all corpora and lexicons once
with the specific examined modifier on and once
off. We then take the multiple differences between
modifier on and off for all of this runs and build an
average. We refer to this value as f1-combination-
delta. Please refer to Table 6 in the appendix for a
detailed overview of the results.

Concerning POS-tagging, stemming and lemma-

tization, the different tools show very low differ-
ences. Therefore, we always refer to the best-
performing tool as representative of the method.
POS-tagging leads to a small decrease of the f1
measure compared to not applying it (f1-raw-delta
= -1.7%) and also on average combined with other
modifiers (f1-combination-delta = -1.5%). Stem-
ming and lemmatization however improves f1 mea-
sures and is the most consistent and strongest im-
provement. F1-raw-delta shows an improvement
by 6.3% for the best stemming-method and 5.6%
for the best lemmatizer. This result stays consis-
tent for f1-combination-delta with 5% and 5.1%
respectively.

Lowercasing shows a smaller positive influence
(f1-raw-delta = 2.8; f1-combination-delta = 0.2).
Including emoticons in the calculation process im-
proves the performance similarly but also consis-
tent in combination with other modifiers (f1-raw-
delta = 2.9; f1-combination-delta = 1.7). The in-
crease of the f1 measure is connected to the cor-
pora of the social media domain. The processing
of emoticons improves the f1 measure actually by
8.8% points when we reduce the results on the so-
cial media corpora. The removal of stop words be-
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fore performing calculation does actually decrease
the average f1 measure by 0.3% when no other
methods are applied. Intertwined with other meth-
ods, this decrease is also marginal (f1-combination-
delta = -0.2). Integrating valence shifters into cal-
culation does actually barely show an influence
on performance according to our evaluations (f1-
raw-delta = 0.0; f1-combination-delta = -0.2). The
same holds true for intensifiers and diminushers
(f1-raw-delta = 0.5; f1-combination-delta = 0.4).

For the modifier of continuous sentiment values,
we limit the calculation of f1-raw-delta to the 8
lexicons containing such values, thus the baseline
is 43.3%. The application of continuous values
improves the f1-score by 3.4%. Indeed an improve-
ment can be found for every lexicon compared to
their dichotomous equivalent.

Please note however that the values given above
are averaged overall results. Several methods do ac-
tually have much higher positive influence depend-
ing on the specific corpus-lexicon combination.
The following sub-chapter will highlight some of
these interaction effects.

4.3 Lexicon Performance with Modifications

In the following chapter, we present the best result
achieved with various modifier combinations for
each lexicon (see Table 3). Next to the highest f1
measure, we also report the average performance
(averaging the result of all method combinations).
For the lexicons 1-8 we differ between the continu-
ous and the dichotomous calculation (the latter in
brackets in Table 3). More information about the
precise combination of methods can be found in
the appendix in Table 7.

Lexicon 04-Emerson achieves both the highest
average performance with an f1 measure of 62.0%
over all method combinations and the best specific
combination with 67.3% in regards to all lexicons
and all method combinations. The modifiers are
lemmatization (IWNLP lemmatizer), lowercasing,
removing stop words, using emoticons as well as
continuous sentiment values; all other modifiers
are turned off. This value is 16.5% higher than the
baseline of 04-Emerson using no modifier showing
that in contrast to the overall results in chapter
4.1, certain modifier combinations can highly boost
performance.

The f1 values for all lexicons range between 52
and 67% for the best methods. Overall, the best per-
forming lexicons with no modifications are mostly

Lexicon Performance
Lexicon Average-f1 Best-Method-f1
04-Emerson 62.0 (55.1) 67.3
01-Remus 60.1 (55.1) 63.6
10-Rauh 58.5 63.6
02-Clematide 56.5 (54.6) 61.9
08-Takamura-c 56.3 (52.3) 60.6
19-Chen 55.8 60.5
13-Waltinger 55.2 63.4
18-Ruppenhofer 53.5 59.2
16-Wilson 52.2 56.0
07-Rill 51.4 (48.7) 56.2
03-Võ 49.3 (45.0) 54.9
09-Takamura-d 48.8 52.7
14-Wolf 48.6 53.9
06-Siegel m 47.7 (45.9) 53.8
17-Mohammad 47.4 51.6
15-Klinger 46.8 53.4
05-Siegel p 46.8 (45.9) 54.3
11-Du 46.7 53.2
12-Asgari 43.9 52.0

Table 3: Lexicon performance in combination with
modifiers. Best method is the value for the best modi-
fier combination for each lexicon. Average is the over-
all average for all modifier combinations of this lexicon.
Values in brackets are results for dichotomous equiva-
lents for lexicons 1-8.

the same as with modifications (see chapter 4.1, 4.3
and Fig. 1) but modifiers increase the performance
by 5-17%. The best combination for each lexi-
con consistently includes emoticons and stemming
or lemmatizing. Four of the best five performing
lexicons work with continuous values. Consid-
ering lowercasing, stop words removal, valence
shifters, intensifier and diminushers, the usage is
rather inconsistent among the best lexicon-modifier
combinations. POS-tags are only part of the best
combination for 10-Rauh (see Table 7 in the ap-
pendix).

5 Discussion

In the following chapter, we summarize the results
and formulate recommendations and best practices
for the usage of German general purpose sentiment
lexicons. We have evaluated, to our knowledge,
all relevant and publicly available corpora and lex-
icons for the German language. The six best per-
forming lexicons without preprocessing and modifi-
cations but also with such methods are: SentiMerge
(04-Emerson) (Emerson and Declerck, 2014), Sen-
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tiWS (01-Remus) (Remus et al., 2010), 10-Rauh
(Rauh, 2018), the Multilinguial Sentiment Lexicon
(19-Chen) (Chen and Skiena, 2014), 02-Clematide
(Clematide et al., 2010) and GermanSentiSpin (08-
Takamura-c) (Takamura et al., 2005). Performance
can vary a lot depending of domain and corpus,
however these lexicons perform, on average, well
on all domains compared to the other evaluated lex-
icons. Therefore, we recommend the usage of these
lexicons. SentiMerge (04-Emerson) achieves the
best result with a specific modifier setting (f1 mea-
sure = 67.3%), thus we especially encourage the
usage of this lexicon. On average, larger lexicons
(that consist of more entries) perform better. In-
deed, 04-Emerson is the second largest resource in
our evaluation, although there are exceptions. Lex-
icons performing rather good but which are small:
e.g. 02-Clematide and 19-Chen. It is striking that
04-Emerson is actually a lexicon derived by fus-
ing multiple other lexicons to increase items size
(Emerson and Declerck, 2014). We recommend
exploring this idea further in future work. Another
pattern that emerges is that on average lexicons
with continuous sentiment values outperform di-
chotomous annotations, which has also been shown
in other studies for English (Taboada et al., 2011).
Based on these result we conclude that continuous
representations of sentiment expressions fit human
language more.

Considering modifications and preprocessing,
we have identified that the application of one sin-
gle modifier rarely helps, and we recommend the
combination of multiple modifications and prepro-
cessing steps. The most consistent and supportive
modifier is the application of stemming or lemmati-
zation of lexicon and text which solves the problem
of complex inflections matching in the sentiment
analysis pipeline. We did not identify a large differ-
ence between these two methods or between spe-
cific tools implementing them. POS-tagging, on
the other hand showed no significant improvement.

Another consistent boost is the integration of
emoticons into the calculation, especially for tasks
in the social media area (Hogenboom et al., 2013;
Pozzi et al., 2013). The removal of stop words and
lowercasing produced inconsistent results. Over-
all, the modifications are not necessary or benefi-
cial based on our results. In contrast to previous
research on German (Pröllochs et al., 2015), we
could not identify an improvement by integrating
valence shifters, intensifiers and diminishers into

our calculation. This result is counter-intuitive; we
assume that the specific selection of a larger win-
dow size and position (see chapter 3.2.6) might be
a reason for this. We plan to investigate this phe-
nomenon in future work in more detail, but cannot
recommend the application of these modifiers the
way we did in this evaluation.

With regard to corpora and domains, we identi-
fied that, as expected, lexicons that are designed
for specific corpora or domains perform best on
these corpora. Overall, the evaluated lexicons per-
form best on product reviews while social media
corpora are more challenging. We encourage to
address these problems in future work in sentiment
analysis.

Summing up, we must note that compared to
English lexicon-based resources which can achieve
f1 measures above 70% (Khan et al., 2017; Ribeiro
et al., 2016) the German resources perform rather
poorly. German resources often lack size and suf-
fer from strong class imbalances resulting in the
sometimes fairly poor results reported here. This
accounts for lexicons as well as for corpora and
influences performance negatively. The rise of ML-
based methods and their better performance com-
pared to lexicon-based methods will certainly hin-
der the further development and improvement of
sentiment lexicons. However, as the popularity of
resources like VADER (Hutto and Gilbert, 2014)
for English language shows, there is still an inter-
est by certain communities for fast and easy-to-use
sentiment lexicons to perform sentiment analysis.
Thus, we not just want to support decision-making
for German resources with the presented evaluation
study, but give impulses for future developments
for German sentiment analysis resources.
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Training a broad-coverage german sentiment classi-
fication model for dialog systems. In Proceedings
of The 12th Language Resources and Evaluation
Conference, pages 1627–1632.

Emma Haddi, Xiaohui Liu, and Yong Shi. 2013. The
role of text pre-processing in sentiment analysis.
Procedia Computer Science, 17:26–32.

David Halbhuber, Jakob Fehle, Alexander Kalus, Kon-
stantin Seitz, Martin Kocur, Thomas Schmidt, and
Christian Wolff. 2019. The mood game - how to use
the player’s affective state in a shoot’em up avoiding
frustration and boredom. In Proceedings of Mensch
Und Computer 2019, MuC’19, page 867–870, New
York, NY, USA. Association for Computing Machin-
ery.

Philipp Hartl, Thomas Fischer, Andreas Hilzenthaler,
Martin Kocur, and Thomas Schmidt. 2019. Au-
diencear - utilising augmented reality and emotion
tracking to address fear of speech. In Proceed-
ings of Mensch Und Computer 2019, MuC’19, page
913–916, New York, NY, USA. Association for
Computing Machinery.

Alexander Hogenboom, Daniella Bal, Flavius Frasin-
car, Malissa Bal, Franciska De Jong, and Uzay Kay-
mak. 2015. Exploiting emoticons in polarity classi-
fication of text. J. Web Eng., 14(1&2):22–40.

Alexander Hogenboom, Daniella Bal, Flavius Frasin-
car, Malissa Bal, Franciska de Jong, and Uzay Kay-
mak. 2013. Exploiting emoticons in sentiment anal-
ysis. In Proceedings of the 28th annual ACM sym-
posium on applied computing, pages 703–710.

Tobias Horsmann, Nicolai Erbs, and Torsten Zesch.
2015. Fast or accurate?-a comparative evaluation of
pos tagging models. In GSCL, pages 22–30.

Clayton Hutto and Eric Gilbert. 2014. Vader: A par-
simonious rule-based model for sentiment analysis
of social media text. In Proceedings of the Interna-
tional AAAI Conference on Web and Social Media,
volume 8.

95



Kanika Jindal and Rajni Aron. 2021. A systematic
study of sentiment analysis for social media data.
Materials Today: Proceedings.

Alistair Kennedy and Diana Inkpen. 2006. Senti-
ment classification of movie reviews using contex-
tual valence shifters. Computational Intelligence,
22(2):110–125.

Farhan Hassan Khan, Usman Qamar, and Saba Bashir.
2017. Lexicon based semantic detection of senti-
ments using expected likelihood estimate smoothed
odds ratio. Artificial Intelligence Review, 48(1):113–
138.

Vishal Kharde, Prof Sonawane, et al. 2016. Senti-
ment analysis of twitter data: a survey of techniques.
arXiv preprint arXiv:1601.06971.

Christopher SG Khoo and Sathik Basha Johnkhan.
2018. Lexicon-based sentiment analysis: Compar-
ative evaluation of six sentiment lexicons. Journal
of Information Science, 44(4):491–511.

Evgeny Kim and Roman Klinger. 2018a. A survey on
sentiment and emotion analysis for computational
literary studies. arXiv preprint arXiv:1808.03137.

Evgeny Kim and Roman Klinger. 2018b. Who feels
what and why? annotation of a literature corpus
with semantic roles of emotions. In Proceedings
of the 27th International Conference on Computa-
tional Linguistics, pages 1345–1359, Santa Fe, New
Mexico, USA. Association for Computational Lin-
guistics.

Manfred Klenner, Angela Fahrni, and Stefanos Pe-
trakis. 2009. Polart: A robust tool for sentiment
analysis. In Proceedings of the 17th Nordic Con-
ference of Computational Linguistics (NODALIDA
2009), pages 235–238.

Roman Klinger and Philipp Cimiano. 2014. The usage
review corpus for fine-grained, multi-lingual opin-
ion analysis. In Proceedings of the Ninth Interna-
tional Conference on Language Resources and Eval-
uation (LREC’14).

Matthias Liebeck and Stefan Conrad. 2015. Iwnlp: In-
verse wiktionary for natural language processing. In
Proceedings of the 53rd Annual Meeting of the Asso-
ciation for Computational Linguistics and the 7th In-
ternational Joint Conference on Natural Language
Processing (Volume 2: Short Papers), pages 414–
418.

Bing Liu. 2015. Sentiment analysis: mining opinions,
sentiments, and emotions.
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äquivalenz und robustheit der deutschen version des
linguistic inquiry and word count. Diagnostica,
54(2):85–98.

Albin Zehe, Martin Becker, Fotis Jannidis, and An-
dreas Hotho. 2017. Towards sentiment analysis on
german literature. In Joint German/Austrian Con-
ference on Artificial Intelligence (Künstliche Intelli-
genz), pages 387–394. Springer.

A Appendix

99



A
bb

re
vi

at
io

n
D

om
ai

n
C

or
pu

s
R

ef
er

en
ce

Po
s

N
eg

To
ta

l
LT

01
-Z

eh
e

L
ite

ra
ry

Te
xt

s
G

er
m

an
N

ov
el

D
at

as
et

(Z
eh

e
et

al
.,

20
17

)
75

89
16

4
LT

02
-S

ch
m

id
t

L
ite

ra
ry

Te
xt

s
(S

ch
m

id
te

ta
l.,

20
19

a)
20

2
37

0
57

2
LT

03
-S

ch
m

id
t

L
ite

ra
ry

Te
xt

s
(S

ch
m

id
te

ta
l.,

20
18

a)
61

13
9

20
0

M
I0

1-
C

le
m

at
id

e
M

ix
ed

D
om

ai
ns

M
L

SA
(C

le
m

at
id

e
et

al
.,

20
12

)
69

11
0

17
9

M
I0

2-
W

oj
at

zk
i

M
ix

ed
D

om
ai

ns
G

er
m

E
va

l2
01

7
(W

oj
at

zk
ie

ta
l.,

20
17

)
1,

53
7

6,
88

7
8,

42
4

M
I0

3-
R

au
h

M
ix

ed
D

om
ai

ns
(R

au
h,

20
18

)
33

3
47

5
80

8
N

A
01

-B
üt

ow
N

ew
s

A
rt

ic
le

s
G

er
SE

N
(B

üt
ow

et
al

.,
20

16
)

37
2

48
5

85
7

N
A

02
-P

lo
ch

N
ew

s
A

rt
ic

le
s

G
er

O
M

(P
lo

ch
,2

01
5)

71
38

10
9

N
A

03
-S

ch
ab

us
N

ew
s

A
rt

ic
le

s
O

ne
M

ill
io

n
Po

st
s

C
or

pu
s

(S
ch

ab
us

et
al

.,
20

17
)

43
1,

60
6

1,
64

9
R

E
01

-K
lin

ge
r

Pr
od

uc
tR

ev
ie

w
s

U
SA

G
E

(K
lin

ge
ra

nd
C

im
ia

no
,2

01
4)

50
6

50
55

6
R

E
02

-S
än

ge
r

Pr
od

uc
tR

ev
ie

w
s

SC
A

R
E

(S
än

ge
re

ta
l.,

20
16

)
41

8,
88

0
18

5,
66

6
60

4,
54

6
R

E
03

-D
u

Pr
od

uc
tR

ev
ie

w
s

Se
nt

iL
itK

ri
t

(D
u

an
d

M
el

lm
an

n,
20

19
)

71
8

29
0

1,
00

8
R

E
04

-G
uh

r
Pr

od
uc

tR
ev

ie
w

s
(G

uh
re

ta
l.,

20
20

)
39

,6
23

15
,4

36
55

,0
59

R
E

05
-P

re
tte

nh
of

er
Pr

od
uc

tR
ev

ie
w

s
(P

re
tte

nh
of

er
an

d
St

ei
n,

20
10

)
15

9,
31

5
13

6,
75

7
29

6,
07

2
SM

01
-C

ie
lie

ba
k

So
ci

al
M

ed
ia

SB
10

k
(C

ie
lie

ba
k

et
al

.,
20

17
)

1,
71

7
1,

13
0

2,
84

7
SM

02
-S

id
ar

en
ka

So
ci

al
M

ed
ia

Po
tT

S
(S

id
ar

en
ka

,2
01

6)
3,

34
9

1,
51

0
4,

85
9

SM
03

-N
ar

r
So

ci
al

M
ed

ia
(N

ar
re

ta
l.,

20
12

)
35

0
23

7
58

7
SM

04
-M

oz
et

ič
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Modifier Baseline f1 f1-delta f1-combination-delta
POS with Treetagger 44.8 43.1 -1.7 -1.5
POS with Stanza 44.8 43.1 -1.8 -1.8
Stemming with Cistem 44.8 51.2 6.3 5.0
Stemming with Snowball 44.8 50.8 6.0 4.7
Lemmatization with Treetagger 44.8 50.4 5.5 5.1
Lemmatization with IWNLP 44.8 50.5 5.6 5.0
Lowercasing 44.8 47.6 2.8 0.2
Emoticons 44.8 47.8 2.9 1.7
Stop Words List 44.8 44.5 -0.3 -0.2
Valence Shifter 44.8 44.9 0.0 -0.2
Valence Intensifier and Diminusher 44.8 45.4 0.5 0.4

Table 6: Results of the modifier evaluation. Baseline is average f1 value without any modification across all corpora
and lexicons. F1 the new value when only the specific modifier is added. F1-delta the difference between f1 and
the baseline. F1-combination-delta is the average of all differences of all configuration with modifier turned on
and off.
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Abstract

We extract definitions from text books and sci-
entific publications on mathematics in both,
German and English, from the sub-domain of
graph theory. Mathematical texts differ from
other domains because sentences which appear
as definitions from a linguistic perspective are
not necessarily definitions in the mathematical
sense. For the English texts we train a neu-
ral network on existing training data (Vanetik
et al., 2020). For the German texts we semi-
automatically generate training data using pat-
terns for the extraction of definitions. We show
that this is a feasible approach for the domain
of mathematical texts which generally makes
extensive use of formalized language patterns.
We measure precision and recall on a random
sample to evaluate our results. The F-Score
is similar for both languages but precision and
recall are closer to each other for the German
data. Further comparisons are made with a
term list automatically extracted from the data.
We conclude that our approach can be used to
extract candidate sentences for further postpro-
cessing.

1 Introduction

In this paper, we combine two domains where def-
initions play a significant role: lexicography and
mathematics. In lexicography, definitions provide
dictionary users with information about a term. In
mathematics, definitions are crucial to ensure a
common understanding of the domain’s concepts.
We extract definitions from texts on graph theory
to use them in a domain-specific dictionary. In
Section 2, we give an overview of related work
on types and forms of definitions and on extrac-
tion methods. In Section 3.1, we describe our data.
Sections 3.2 and 3.3 present our method for the
extraction of definitions from the English and the
German data. Section 4.1 gives a qualitative anal-
ysis of the results and Section 4.2 a quantitative

evaluation. We conclude in Section 5.

2 Background and Related Work

2.1 Definitions in Mathematical Texts

Mathematical texts consist of corollaries, lem-
mas, propositions, theorems, proofs and definitions
(Solow, 1990). Usually, a numbering indicates the
types (e.g. Theorem 2.1) but this is not necessar-
ily the case for definitions. Some authors include
them in the numbering and others simply give them
in the text. Some authors highlight defined terms,
e.g. by means of italics. Kruse and Heid (2020)
analyze mathematical definitions for lexicographic
purposes. They conclude that analytical definitions
(or logical definitions as they are also called) in the
Aristotelian scheme are mostly used. Single-clause
when-definitions appear to define adjectives and
verbs, contrary to usual practice in dictionaries for
general language, as Dziemianko and Lew (2006)
proposed. For definition extraction, however, it
is more relevant to distinguish a definition from a
non-definition rather than paying attention to the
different types of definitions. Nevertheless, some
sentences are definitions from a linguistic perspec-
tive but not from a mathematical perspective in
content. This constitutes a special challenge for
automatic definition extraction.

Different kinds of sentences may be regarded as
definitions in mathematics: The first kind defines
a term which is used in the rest of the text. Often,
one finds similar definitions for the same terms in
different works of a sub-domain. Definition 1 is an
example of such a definition from the sub-domain
of graph theory. It defines the term semiregular as a
property of bipartite graphs. We want to find such
definitions in our extraction experiments. They fol-
low the Aristotelian scheme with a definiendum
(the term defined) and the definiens (the part defin-
ing, cf. e.g. Meyer, 2001, p. 283).
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The second kind of definitions follows the Aris-
totelian scheme on a syntactic level but requires
anaphora resolution to be comprehensible as it
refers to something mentioned earlier or later in
the text. For this kind, the context is indispensable
to understand its meaning. Definition 2 constitutes
such an example. These definitions are not use-
ful for our dictionary project because they do not
contain any relevant semantic information.

The third kind of definitions defines a variable
which also cannot be used for the dictionary. Even
if some variables often refer to the same objects
(e.g. G for graph) they are not considered as ter-
minology in our dictionary project as they rather
resemble named entities. For example, Definition 3
formally defines A(G) but is only relevant in the
context of the particular paragraph, i.e., a proof or
a construction, and not for the conceptual sphere
of the domain.

We thus aim to find definitions following the
scheme of Definition 1. However, the structure of
Definition 1 is ambiguous between definition and
non-definition. As an example consider Definition
4. It appears to be a definition with tree as the
definiendum and the subject as the definiens. This
example is taken from Saha Ray (2013) where it
actually is a theorem which requires a proof as tree
has been defined before (cf. Definition 5). It is
not obvious that a graph meets the criteria from
Definition 5 if it already has the properties from
Definition 4. We do not expect our system to dif-
ferentiate between these two kinds of definitions
because this would require an analysis of the con-
text beyond sentence level.

Which aspects are used in a definition and which
aspects are left to be proven depends on the au-
thor’s preferences for introducing a concept. The
decision seems arbitrary at first sight but depends
on the author’s intended target group of the text
(Rey, 1995; Solow, 1990; van Dormolen and Ar-
cavi, 2000). Some general aspects can be consid-
ered for the decision because a mathematical defi-
nition should meet certain criteria (van Dormolen
and Zaslavsky, 2003): Hierarchy, existence, equiv-
alence and axiomatization are necessary, whereas
minimality, elegance and degeneration are common
but not required.

A hierarchy between the defined terms is inher-
ent to the Aristotelian scheme. Further, a definition
is only meaningful if the term defined does actually
exist. Equivalence refers to the above-mentioned

aspect that different definitions may exist for the
same concept. It has to be shown that they are
actually equivalent. The criterion of axiomatiza-
tion is related to hierarchy: It is possible to define
more and more general hypernyms. In order to stop
this chain at one point axioms are needed, usually
related to set theory.

The following criteria are not mandatory: mini-
mality requires that only necessary properties are
mentioned in a definition without redundancies. El-
egance is hardly an objective property but can be
taken into consideration when deciding which of
several possible definitions is to be taken and which
is left to be proven. “Degenerations are instances
of a concept which are not expected to be included
when defining the concept. They are a logical
consequence from the definition. One might not
want the occurrence of such instances and therefore
change the definition in order to exclude them. De-
scribing an instance as a degeneration is, of course,
highly subjective and there is no objective criterion
for this decision” (van Dormolen and Zaslavsky,
2003). These criteria combined with the individual
preferences and ideas of concepts sum up to the
final definitions which a mathematician writes.

Mathematical definitions are usually unambigu-
ous within a certain sub-domain. Nevertheless,
homonymy may occur between different sub-
domains. For example, the German Körper is trans-
lated into English as solid figure in geometry but as
field in algebra. Another example is the adjective
complete used as an attribute to metric spaces or
graphs. The definitions differ considerably in both
cases, although the same mental concept underlies
both. As we work only with one mathematical
sub-domain we can neglect homonymy.

Examples of definitions

1. We call a bipartite graph semiregular if it has a
proper 2-colouring such that all vertices with
the same colour have the same valency.

2. We call the above procedure branching-
search.

3. Let A(G) be an incidence matrix of a con-
nected graph G with n vertices.

4. A connected graph with n vertices and n− 1
edges is a tree.

5. A tree is a connected acyclic graph.
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6. The floor function bxc, also called the greatest
integer function or integer value, gives the
largest integer less than or equal to x.

7. Similarly, define the points Ac, Bc, Ba, Ca,
Cb so that the points Ac and Bc lie on the
extended segment AB, the points Ba and Ca

lie on the extended segment BC, and the point
Cb lies on the extended segment CA, and we
have AAc = a, BBc = b, BBa = b, CCa =
c and CCb = c.

2.2 Definition extraction
Definition extraction originally started with pattern-
based approaches. The patterns were then com-
bined with a grammar analysis for e.g. apposi-
tion and anaphora resolution or syntactic features.
These methods have been applied to several lan-
guages like English (Klavans and Muresan, 2001),
German (Storrer and Wellinghoff, 2006), Span-
ish (Alarcón et al., 2009) and Dutch (Fahmi and
Bouma, 2006). Examples for such patterns in En-
glish texts are is called, is the term used to describe,
is defined as, is the term for. In German, the fol-
lowing patterns can be indicative for definitions:
bedeuten, begreifen als, bekannt als, benennen,
beschreiben, bestehen aus, bezeichnen als, charak-
terisieren als, definieren als, gebrauchen, heißen,
nennen, sein, spezifizieren als, sprechen von, Ter-
minus einführen, verstehen unter, verwenden als,
vorstellen als1.

Pattern-based approaches have been used in a
wide range of applications. They were among oth-
ers used by Meyer et al. (1999), Meyer (2001), or
Pearson (1998) and are still applied today (Chris-
tensen, 2019). Barbaresi et al. (2018) extract “defin-
itory contexts” for words from a broad range of
domains (e.g. Auseinandersetzungsbilanz or Pel-
letheizung) in the context of lexicography using
patterns such as a X1 is a X2. In line with this
approach, definitions in mathematical texts can be
regarded as knowledge-rich contexts which can
be used in pattern-based approaches for informa-
tion extraction. (Meyer, 2001; Meyer et al., 1999).
Cramer (2011, 183 ff.) analyzes linguistic features
of definitions. Schumann (2014) describes (corpus-
)linguistic analyses for the detection of text pas-
sages containing description (thus not explicitly
definitions) of terminologically relevant concepts.

1Engl. mean, understand as, known as, designate, describe,
consist of, refer to as, characterize as, define as, use, be called,
state, be, specify as, speak of, introduce a term, understand by,
use as, conceive as

Other approaches combine pattern-based extrac-
tion and machine learning (e.g., Westerhout, 2009).
Boella and Di Caro (2013) combine syntactic de-
pendencies with a Support Vector Machine classi-
fier without using patterns. Fišer et al. (2010) com-
bine morphosyntactic patterns, automatic terminol-
ogy recognition and semantic tagging with Word-
Net senses for their work on Slovene Wikipedia
texts.

Today, learning algorithms and neural networks
are frequently used for definition extraction. Borg
et al. (2010) use genetic programming and genetic
algorithms to train their system on grammatical
rules. Navigli and Velardi (2010) introduce Word-
Class Lattices, an approach based on word lat-
tices generalizing over lexico-syntactic definitional
patterns which outperforms traditional extraction
methods. Reiplinger et al. (2012), however, com-
pare two methods, one based on bootstrapping
lexico-syntactic patterns and the other based on
deep analysis, and do not find major differences in
the performances. Espinosa-Anke et al. (2015) use
a weakly supervised bootstrapping approach and
Espinosa-Anke and Schockaert (2018) combine
Convolutional and Recurrent Neural Networks for
definition extraction.

Del Gaudio and Branco (2009) suggest that defi-
nition extraction is language and domain indepen-
dent. But Vanetik et al. (2020) show that this does
not hold for definition extraction from mathemat-
ical texts. They work on a corpus crawled from
Wolfram MathWorld2 and indicate whether a cer-
tain sentence is a definition.3 They conclude “that
mathematical definitions require special treatment,
and that using cross-domain learning for detection
of mathematical definitions is inefficient”.

3 Experiments

3.1 Data preprocessing

Our work is based on two comparable corpora, one
in German, one in English, with texts from the
mathematical sub-domain of graph theory. The
German corpus contains about 700, 000 tokens
with about 30, 000 types and consists of lecture
notes and (parts of) nine text books. Parts of books,
as opposed to the entire book, were used when only
some chapters cover graph theory. The English

2https://mathworld.wolfram.com
3The data of Vanetik et al. (2020) is publicly avail-

able on GitHub https://github.com/uplink007/
FinalProject/tree/master/data/wolfram
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corpus consists of eight text books and 26 scien-
tific papers, totaling about one million tokens with
about 30, 000 types.

Our goal was to create corpora of a similar size.
The exact number of tokens depends on how for-
mulas are counted. We chose material from text
books and literature students at our institution work
with, as students are the target group of our dictio-
nary. The choice of texts was based on a survey we
carried out with the students (Kruse and Giacomini,
2019). Although many students indicated that they
use Wikipedia for their studies we decided against
including it into our corpus because we have less
control on its quality from an academic perspective.
Due to copyright restrictions we cannot make our
corpus publicly available but in can be reproduced
as we used published material.

Our source files are machine-readable PDF doc-
uments, scans and plain texts. As the data is not
homogeneous, we had to use different workflows
to integrate them into the corpus depending on the
source file. We used inftyreader4 and Tesseract
(Smith, 2007) to convert PDF documents into plain
text. The mathematical formulas produced some
obstacles, e.g., Tesseract had difficulties to con-
vert fractions into plain text as it works line by
line. Inftyreader is specialized in processing math-
ematical texts and converts formulas according to
the W3C standard MathML5 but has difficulties
with low quality scans. In the latter cases we used
Tesseract which ignored the formulas. Thus, some
errors remain in the texts due to errors in the opti-
cal character recognition (OCR). Afterwards, we
did some semi-manual post-processing to eliminate
the most common errors but could not cover all of
them. Thus, some errors remain as can be seen in
Examples 8 and 9.

We remove Latex commands for typesetting and
document layout, while commands for mathemati-
cal formulas (e.g. \sum) are kept to preserve parts
of the formulas in the input for the classifier. We
split the data into sentences using the tokenizer de-
scribed by Schmid (2000). Some issues with the
automatic split into sentences remain, e.g., the ex-
clamation mark is used for calculating factorials, or
sentences with the following structure appear: We
can say that G is bipartite (why?) and continue the
following way..., where (why?) should motivate the
reader to realize the truth of the given statement. As

4https://www.inftyreader.org
5https://www.w3.org/TR/MathML3/

it would cost too much effort to go through these
cases manually we leave them unchanged but they
should be kept in mind when discussing quantita-
tive results such as the number of sentences in the
corpus because a different tokenizer might yield
different results.

3.2 Definition Extraction from the English
Corpus

We use the training data compiled by Vanetik et al.
(2020) for the extraction of definitions in the En-
glish corpus. The training data consists of 1, 793
sentences of which 811 are definitions. We count
the sentences with domain-specific definition pat-
terns in the training data using the following pattern
indicators: abbreviate, termed, determine, defini-
tion, refer, name, the term, associate, consist, said
to be, then .* is, denote, known as, given by, is a(n),
define, call, is the. 72.87% of the definition sen-
tences and 28.21% of the non-definition sentences
contain at least one of the patterns. This legiti-
mates our workflow to semi-automatically create
the German training data by extracting sentences
containing definition patterns.

We further analyze the training data and find
definitions in which none of the patterns appears.
They often contain the verbs is/are, has/have not
followed by an article and thus deviate from the
standard pattern. We exclude these verbs in our set
of defining verbs to avoid too many false positives.

As mentioned above, some non-definitions also
contain the patterns. One of these cases is the
verb call which in the non-definitions is frequently
combined with also, as in Definition 6 where it is
followed by a synonym but not an actual defini-
tion. In our lexicographic application, synonyms
are dealt with separately from definitions. Simi-
lar reasons hold for the other definition patterns in
the non-definitions. We give an example for the
indicator define in Definition 7 which constitutes a
typical example of defining a variable, as described
in Section 2 (cf. Definition 3).

After the pre-processing as described in Section
3.1, our corpus contains 56, 978 English sentences
to be classified. We use the SimpleTransformers
implementation6 of BERT (Devlin et al., 2019)7

with one epoch. 11, 936 (20.95%) of the sentences
were classified as definitions and 45, 042 sentences

6https://github.com/ThilinaRajapakse/
simpletransformers

7https://huggingface.co/
bert-base-cased
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(79.05%) as non-definitions.
Again, we count the sentences containing at

least one definition pattern: 51.42% of the sen-
tences classified as definitions contain a pattern but
only 15.98% of those classified as non-definitions.
Like in the training data, more sentences classi-
fied as definitions contain one of the patterns. Yet,
this holds for only half of the sentences unlike the
72.87% in the training data. The amount of sen-
tences classified as non-definitions containing a
pattern is significantly lower which might be also a
consequence of noise in the data.

We measure precision and recall on an exem-
plary random sample.8 We manually collect 100
definitions and 100 non-definitions from our data
set. To that end, we randomly sequence the sen-
tences in the corpus and find definition sentences
with help of patterns. For the non-definitions we
randomly extract 200 sentences from the corpus
and manually annotate if they are definitions. We
take the first 100 of them for the evaluation. Thus,
we have a random sample of 100 definitions and
100 non-definitions.

We measure precision and recall for the labels
these 200 sentences were assigned with by the
BERT classifier. The results for the definition sen-
tences are given in Table 1. If we evaluate, in turn,
the classification of non-definitions we get a pre-
cision of 0.8857 and a recall of 0.62 resulting in
an F-Score of 0.7229. The higher precision of the
non-definitions can probably be explained with the
much higher number of non-definitions in the data
compared to the number of definitions. Likewise,
the high recall for the definitions can be explained
by the fact that we calculate the values on a bal-
anced random sample. We would get more realistic
results if we would select 200 sentences completely
random for this evaluation but in that case we run
the risk of having almost no definitions in the sam-
ple which would not give reliable results.

3.3 Definition Extraction from the German
Corpus

For the German corpus we create our own training
data. To that end, we collect sentences contain-
ing at least one form for the following lemmas:
bestehen, bezeichnen, definieren, heißen, nennen,
sagen, sprechen, verstehen.9 We randomly extract

8We thank the anonymous reviewers for their useful com-
ments on the evaluation and discussion sections.

9Engl. consist, denote, define, call, name, (to) name, say,
speak, understand

a maximum of 100 sentences for each indicator
verb and manually annotate them as definitions or
non-definitions following the criteria detailed in
Section 2. Additionally, we manually search the
corpus for examples of definitions which do not
contain an indicator verb, e.g., because they con-
tain the verb sein (engl. be). Again, we did not
include all sentences containing sein to avoid false
positives. Further, non-definitions without any in-
dicator verbs are added to the data set. In sum, we
collect 799 sentences of which 256 are definitions.

We use the pre-trained model
bert-based-german-cased10 from the
Hugging Face library and one epoch of training.
All results are summarized in Table 1. 90.54% of
the sentences are labeled as non-definitions and
9.46% as definitions. 47.79% of the sentences
labeled as definitions contain at least one of the
patterns whereas this is the case for only 4.75%
of the sentences labeled as non-definitions which
matches the expectation as this percentage is
higher for definitions. For measuring precision,
recall and F-Scores we evaluate again a random
sample of 100 sentences for each category. We
yield a similar F-Score as for the English data. But
precision and recall for German are closer to each
other, i.e., the precision is slightly higher and the
recall slightly lower. This might be explained by
the fact that the percentage of sentences labeled
as definitions is lower in the German data set.
However, this comparison is only valid if we
expect the same percentage of definitions in both
corpora.

4 Discussion

4.1 Qualitative Analysis
Both, the English and German results have lower
values for precision but higher values for recall.
Thus, the definitions are usually found but false
positives need to be filtered. We take a closer look
at the false negatives in our evaluation samples.
The German sample contains nine and the English
sample only 15 false negatives (cf. Examples 8 to
11). Example 8 repeats the distributive law which is
not defined in this sentence. Example 9 states that
two already defined terms describe the same con-
cept. This is another example where definitions and
theorems are not distinguishable. The same holds
for Example 10. Four of the nine false negatives in

10https://huggingface.co/
bert-base-german-cased
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German English

Number...
...of sentences 36, 103 56, 978
...classified as definition 3, 417 (9.46%) 11, 936 (20.95%)
...classified as non-definition 32, 686 (90.54%) 45, 042 (79.05%)

Patterns in sentences...
...classified as definitions 47.79% 51.42%
...classified as non-definitions 4.75% 15.98%

Evaluation of random sample
precision 0.7522 0.7054
recall 0.8500 0.9100
F-Score 0.7981 0.7948

Table 1: Overview of extraction results

the random sample contain the phrase we say that.
We searched for this phrase in the training data
and found that no example containing this phrase
is included. This might be because the data was
extracted from Wolfram MathWorld and not from
scientific publications or textbooks. This might
hint at differences in the “language for definitions”
in different resources.

Examples 12 to 14 are false positives. Exam-
ple 12 contains tokens which could also occur in
definitions (e.g. ist eine Zahl, Engl. is a number).
Example 13 is a similar case (nennt man, Engl. is
called). Example 14 is an example from the En-
glish evaluation sample. It contains the expression
is defined which is also indicative for a definition.
Furthermore, the English sample includes several
false positives beginning with If. In the whole data
set, 2, 719 sentences contain this feature; 66.50%
of them are classified as a definition. This ratio may
be a result from the training data which contains
52 sentences with an initial If which are labeled in
78.85% of the cases as definitions.

Examples

8. Es gilt das Distributivgesetz: a-(b +c ) = ( a-b
) + ( a-c ) für alle a, b, c eK.
The distributive law holds: a-(b +c ) = ( a-b )
+ ( a-c ) for all a, b, c eK.

9. Damit beschreiben die Ausdrücke { Ecken)-
3-panzyklisch und { Ecken)-panzyklisch den
gleichen Sachverhält.
Thus, the expressions { node)-3-pancyclic and
{ node)-pancyclic describe the same state of
affairs.

10. Die einzigen 3-kritischen Graphen sind Kreise
ungerader Länge.

The only 3-critical graphs are circles of odd
length.

11. We say that a graph G is reconstructible if ev-
ery reconstruction of G ’ is isomorphic to G,
in other words, if G can be ‘ reconstructed up
to isomorphism from its vertex-deleted sub-
graphs.

12. Jeder Buchstabe ist eine Zahl zwischen 1 und
n.
Each letter is a number between 1 and n.

13. In diesem speziellen Fall nennt man die
Menge {x,y} auch das ungeordnete Paar von
x und y.
In this particular case, the set {x,y} is also
called the unordered pair of x and y.

14. The matrix Miq is defined dually.

4.2 Quantitative Analysis

For a quantitative analysis we extract 1,000 key-
words and 1,000 multiword terms from our data
for each language using the corpus web tool Sketch
Engine (Kilgarriff et al., 2014) which includes a
function for keyword extraction. One rater eval-
uates in two rounds if these automatically found
“keywords” are terminologically relevant. In the
German list, 0.4705% of the keywords were rele-
vant in this sense, and 0.5350% in the English list.
These values are quite similar. Most of the false
positives are variables and multiword expressions
like following graph.

The chosen terms are manually divided into nine
semantic categories:

• ACTIVITY: events which can be performed in
graph theory, mostly verbs, e.g. connect
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• ALGORITHM: domain-specific algorithms
having a given name, e.g. Dijkstra’s algo-
rithm

• GENERAL: mathematical terminology which
is not particularly attributed to the domain of
graph theory, e.g. disjoint

• MAPPING: mappings in the mathematical
sense, e.g. edge contraction

• PART: elements a graph is composed of, e.g.
edges

• PERSON: mathematicians who worked in
graph theory and related areas, e.g. Dijkstra

• PROBLEM: mathematical problems having a
given name, e.g. Traveling Salesman Problem

• PROPERTY: descriptions of a graph, mostly
adjectives, e.g. regular

• THEOREM: mathematical theorems having a
given name, e.g. Kirchhoff’s matrix tree theo-
rem

• TYPE: names for special kinds of graphs, e.g.
Petersen graph

We expect to find definitions for ACTIVITIES,
GENERAL TERMS, MAPPINGS, PARTS, PROPER-
TIES and TYPES. ALGORITHMS, PERSONS, PROB-
LEMS and THEOREMS are usually not defined in
mathematics. Thus, we analyze the terms in the
sentences considered as definitions.

Table 2 shows the percentage of lemmas in the
sentences classified as definitions. The value is
higher for the English data which can be explained
with the higher amount of definition sentences and
the slightly lower precision indicated by the ran-
dom sample. Thus, the probability to find a word
in this set is generally higher. Figures 1 and 2 show
which lemmas are found grouped by category. This
matches our hypothesis that definitions mostly lack
for the categories PERSON, PROBLEM, THEOREM

and ALGORITHM. The results are much clearer
for the German data which matches the results for
precision and recall (cf. Table 1). We conclude that
the definition extraction worked well for the major-
ity of sentences which is reflected by the values for
recall.

Still, some aspects affect the results, e.g., we did
not exclude variants in our simple search. So, there
is for example a definition for 1-Faktor-Satz but not

for 1-Faktorsatz; and some multiword terms appear
in the lemma list as a compound but are separated
in the definition.

5 Conclusion and future work

Our approach yields higher values for recall but
lower values for precision. We conclude that our
semi-automatic approach can be used for finding
candidates for mathematical definitions but they
require a subsequent manual or automatic post-
processing in order to distinguish definitions from
sentences with a similar syntactic structure and vo-
cabulary. An active learning approach in which
parts of the results are evaluated in order to in-
crease the training data iteratively could improve
the approach.

We get different results for the English and the
German data. We see several reasons for that: The
German training data was semi-automatically gen-
erated using sentences from the sample on which
the trained model was subsequently applied. There-
fore, the same rules for annotating definitions were
used for the generation of training data and for the
evaluation of the results. For our English train-
ing data provided by Vanetik et al. (2020) we only
had few indications of the annotation guidelines.
Furthermore, the German training data contained
only half as many sentences as the English data. In
combination with the fact that the training data and
evaluation data stem from the same corpus, there
might be some over-specification to the data set. It
might be interesting to train a network on this data
and to apply the model on mathematical texts from
different sub-domains.

About 20% of the English sentences are clas-
sified as a definition, but only about 10% of the
German sentences. A reason for this difference
may be the number of sources: The German corpus
comprises of only ten texts while the English cor-
pus contains 34 texts which are shorter. A reason
for the different lengths are the text types as we
used more text books for German and more scien-
tific papers for English. The number of definitions
in a mathematical text also depends on its type. In
general, we would expect scientific papers to con-
tain less definitions when compared to textbooks
because they can pick up prior knowledge of their
readers whereas textbooks are mostly targeted at
learners with less prior domain knowledge. How-
ever, our results do not confirm this hypothesis as
there are more sentences classified as definitions in
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German Data English Data
number of definitions 3,417 11,936
number of lemmas 1,070 933
percentage of lemmas found in definitions 70.63% 90.47%

Table 2: Amount of lemmas in data
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Figure 1: Distribution of German lemmas in definitions over categories
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the English data than in the German. This might be
related to the lower precision for the experiments
on English texts. It would be interesting to inves-
tigate empirically if the percentage of definitions
varies across different mathematical text types.

Furthermore, for our English corpus we had to
rely more on OCR than for the German data. This
may result in more mistakes which cause difficul-
ties for the classifier. Interesting further research
would be to analyze if the English extraction results
differ when the training data is taken from the same
corpus or from a corpus of the same sub-domain or
type of resource. Maybe the results of Vanetik et al.
(2020) can be interpreted in the more general way
that the quality of definition extraction increases
with the similarity between training data and eval-
uation data even for a highly formalized language
like mathematics.

We can conclude that patterns are good indica-
tors for mathematical definitions in German and
English and can be used to generate training data.
Nevertheless, automatic solutions are still needed
for definition extraction in mathematics as some
sentences are definitions from a linguistic perspec-
tive but not intended as such by their author.
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Abstract

Existing datasets and methods that aim at the
identification of time expressions in natural
language text do not pay particular attention
to expressions that are imprecise and that can-
not be easily represented on a timeline. We
call these vague time expressions (VTEs). We
present an analysis of existing time extraction
approaches and steps towards a novel scheme
for the annotation of VTEs, developed using a
corpus of German news articles. To the best
of our knowledge, this work is the first to sug-
gest an extension of the ISO standard TimeML
with the goal of enabling the annotation of
VTEs. In addition, we present a collection
of 339 German VTEs as well as classification
experiments on the news corpus with results
from 60 up to 77 macro-avg. F1 score.

1 Introduction

Time is critical to the meaning of language, for un-
derstanding events, cause-effect relations and narra-
tives, etc. In NLP, temporal expression analysis is a
key issue which has been receiving a lot of attention
in recent years, especially for English news texts
(e. g., UzZaman et al., 2013; Caselli and Vossen,
2017; Strötgen et al., 2018). Existing approaches
mostly focus on time expressions which can be
more or less easily and specifically represented on
a timeline with an accuracy of different granularity
levels. Given an expression like at 6 ’o clock, the
hour can be pinpointed, this Sunday or tomorrow
refer to a specific day. Such time expressions can
be annotated using standardized machine-readable
expressions. This process is typically referred to as
normalization.

Nevertheless, there is a large proportion of time
expressions that are inherently vague – they are
neither exact nor precise and, i. e., they cannot be
readily normalized. Examples for vague time ex-
pressions (VTEs) are in the future or lately. VTEs

are typically not taken into account by existing an-
notation schemes; some simply normalize them
as a reference to the past or future. According to
Tissot et al. (2019), around 13% of time expres-
sions in news articles can be considered vague. In
our German corpus, almost 30% of all time ex-
pressions are VTEs (Section 3). The annotation of
time expressions in TimeML (Saurí et al., 2006),
arguably the most well known scheme, is possible
only if we can fully and precisely interpret the ex-
pression (Mazur and Dale, 2011). As VTEs cannot
be fully and precisely interpreted, we are unable to
represent them using TimeML, which is why an an-
notation scheme needs to be developed that is able
to capture VTEs. Given that a large number of time
expressions tend to be overlooked or oversimpli-
fied, our goal is the annotation and normalization
of VTEs by extending TimeML; we concentrate on
German documents and the German extension for
TimeML. According to our research, no corpora
exist that cover VTEs in a substantial way, neither
for English nor for German.

While VTEs cannot be easily normalized and
expressed on a timeline (Schilder and Habel, 2001),
we argue that, based on our analysis, it is possible
to describe their meaning systematically by their
semantic and syntactic properties, which enables
us to normalize VTEs more precisely than existing
annotation schemes. Our main contributions are:

• We provide an overview of schemes for time
expressions and their ability to express VTEs.

• We present a list of over 300 categorized Ger-
man VTEs.1

• Building upon Tissot et al. (2019) and Mazur
and Dale (2011), we develop a study about

1The full list is available under:
https://live.european-language-grid.eu/catalogue/lcr/7975
(last access: 2021-08-13)
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the possibilities of normalizing and classify-
ing VTEs by expressing the closest or most
precise meaning. To the best of our knowl-
edge, we are the first to present such a study
on VTEs for German. Our methods can be
adapted to other languages.

• We present an annotated sample dataset and
preliminary classification experiments.

2 Background and Related Work

Our approach is primarily based on the catego-
rization of precise time expressions according to
TimeML and LTIMEX (Section 2.1) as well as
on the categorization of VTEs provided by Tissot
et al. (2019) (Section 2.2). Channell (1983) and
Dinu et al. (2017) describe approaches on vague
expressions in domains other than time.

2.1 Categories of Precise Time Expressions

The ISO standard for the annotation of time expres-
sions is TimeML (Pustejovsky et al., 2010). Tem-
poral expressions are marked up using TimeML’s
TIMEX3 tag to capture their meaning. Important at-
tributes of this tag are type and value: Type records
whether the expression is a duration, a point in time
(either a specific date, or a time of the day) or a
set of points in time (Saurí et al., 2006). The type
of an expression determines how the expression
is normalised in the value attribute. Temporal ex-
pressions with a modifier that cannot be expressed
using the value attribute, e. g., “in about 3 days”
are handled by the optional attribute mod, which
was adapted from TIDES (Ferro et al., 2001).

With LTIMEX, Mazur and Dale (2011) at-
tempted to modularise the normalization process
of a temporal expression. This annotation scheme
extends TIDES to capture partial meanings of time
expressions. It differentiates between local and
global meaning. The local meaning is the same
for each occurrence of a word and determining
this meaning requires no contextual information.
For example, “yesterday” has the local meaning
“the day before today” (Mazur and Dale, 2011).
The global meaning, on the other hand, is gained
through the context about the utterance time of the
expression and, based on the local meaning, the
date of what is referred to as “yesterday” can be
concluded.

LTIMEX distinguishes 12 categories of time ex-
pressions. Similar to TimeML, they include points,

durations and sets. Additionally, offsets are func-
tions that normalize a time expression relative to
the document creation time (dct) or a given refer-
ence time (ref). An example for an offset would be
"in 3 days" meaning "3 days after the dct". Another
class is ordinally specified, which are expressions
based on numbers, like “the first|last|every sec-
ond Monday in July”. The categories that indicate
VTEs are modified point and modified duration.
The annotation scheme provides no other methods
for normalising VTEs.

2.2 Categories of Vague Time Expressions

Using the definition of the word vague from Devos
(2003), a time expression is vague, when it is not
clear which date the expression refers to or which
dates limit the referenced time period. Even an
expression like “in 2010” can be used without re-
ferring to the whole year 2010 but to a specific, yet
unknown point or period (Strötgen, 2015). Only
few approaches or schemes deal with VTEs in more
detail (e. g., Devos et al., 1994; Rong et al., 2017),
from which Tissot et al. are the only ones to present
a classification especially for VTEs (Tissot et al.,
2019).2 The six categories are based on an evalua-
tion of clinical corpora. The first category, present
reference, includes temporal references related to
the present, such as “now”, “recently” and “cur-
rently”. Modified precise time expressions, like
“in approximately 10 days”, belong to the category
modified value. Imprecise value refers to expres-
sions built up around an imprecise period of time,
such as “a few days” or “several weeks”. This cat-
egory also contains expressions with an indefinite
period of time, in which the granularity is usually
represented in plural form without numeric values.3

An example would be “years” in “It took years to
finish the job.”. The fourth category, range of val-
ues, describes time spans defined by limits, such
as “every 3 to 4 months”. Partial period covers
time spans that are part of a larger time frame, such
as “mid-January”. The last class, generic expres-
sions, includes a general period or duration, like
“this time” or “at the same time”. Although these
categories are relevant, Tissot et al. do not present
further methods for normalization. We adapt and
extend the classes for our own categorization (Sec-

2Instead of “vague”, Tissot et al. use the term “imprecise”.
3The granularity describes how precise a time expression is.

It can, for example, be one of the values millennium, century,
decade, year, month, day, hour, minute or second (Caselli and
Sprugnoli, 2015).
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tion 4).

3 Dataset

Part of the dataset we used for our primary anno-
tation experiments including the annotations for
VTEs is taken from KRAUTS (Strötgen et al.,
2018). KRAUTS is a German corpus consisting
of 50 articles from the newspaper Die Zeit, anno-
tated using the TimeML guidelines by Minard et al.
(2017). We also incorporate 1037 documents we
call, for the remainder of this work, Short_News
because they consist of short articles from various
news media.4 The Short_News articles consist,
on average, of fewer tokens than the articles in
KRAUTS and only briefly and factually state the
most important facts. One news document can con-
tain several short articles on various topics while
in KRAUTS, one document always covers exactly
one topic. The KRAUTS articles are more detailed
and explain the background of events or an opin-
ion on a subject. The corpus includes comments,
opinion pieces, reports, interviews, reviews, and
excerpts from a book or film but also fictional types
of texts, such as short stories and poems.

To narrow down the size of the dataset for the
scope of this work, we selected 100 articles from
Short_News with about every tenth text being cho-
sen. We filtered near-duplicate articles which left
us with 69 documents with 96 721 tokens in total.5

Table 1 shows key corpus statistics.

Sentences Tokens
Articles per file in total per file in total

KRAUTS 52.2 2 609 1 005.0 50 250
Short_News 22.3 1 536 673.5 46 471
Both 37.2 4 145 839.2 96 721

Table 1: Key data set statistics (after reducing
Short_News to 100 articles).

4 Data Annotation

The category adaptations and resulting TimeML
extensions are described in Sections 4.1 and 4.2,
respectively. Based on a list of German VTE (Sec-
tion 4.3) we developed the attribute meaning which
enables a more precise normalization of VTEs. The

4We thank our project partner Condat AG for providing
the documents (https://condat.de/ (last access: 2021-08-13)).

5Since these documents are copyrighted material, we are
unable to make them available publicly. However, we present
annotated examples in Appendix A.

categories postulated by Tissot et al. (2019) indi-
cate a variation in the level of precision and vague-
ness, which we utilize for our normalization of
VTEs (Section 4.4). While the normalization was
adapted to each of these categories, the categories
themselves do not appear in the annotation. Fur-
thermore, Section 4.5 describes additional vague
time expressions, while Section 4.6 presents statis-
tics about the annotated dataset.

4.1 Inferring a Classification

Tissot et al. (2019) do not describe the category
modified value in much detail, which is why we
interpret it as described in TimeML, where a (pre-
cise) temporal expression is modified by a modi-
fier. Since partial period also includes modified
time expressions, like “mid-January”, we decided
to merge it into the modified value category. As
mentioned, time expressions of the modified value
category are precise time expressions that are made
vague using a modifier, such as “approximately 10
days”. Here, the intended time span can be nar-
rowed down to a few days. The category range
of values contains expressions that give specific
boundaries, like “in 2-3 days”. The exact point in
time or time period is unknown yet somewhere in
between. Expressions in the imprecise value cat-
egory still reveal their granularity. For example,
“in a few days” most likely refers to days after the
utterance time and not weeks or months. Neverthe-
less, Tissot et al. (2019) do not distinguish between
points in time, time periods or sets. We, therefore,
took the categories modified value, imprecise value
and range of values and subdivided them respec-
tively for normalization according to the TimeML
types date, time, duration and set. The categories
that could not be subdivided according to TimeML
types (present reference and generic expression)
were not included in our annotation scheme.

4.2 TimeML Extensions

Our annotation scheme for VTEs builds upon
TimeML and ensures compatibility. We realise
TimeML-compliant normalization of precise time
expressions by keeping the attribute value and by
adding the new attribute meaning to cover the in-
terpretation of VTEs.

4.2.1 Normalising the Attribute “meaning”
The mechanisms for capturing normalizations in
the attribute meaning is based on the type of the
VTE. We used the formalizations for the offset in
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the LTIMEX-scheme of Mazur and Dale (2011) as
a starting point. Similar to Mazur and Dale (2011),
a + or a − in the normalization means that the
expression describes a point in time that lies before
or after a reference point. For example, “+0000-
00-0X” means “in einigen Tagen” (in a few days).
The + indicates that the referenced point in time
is after the dct, while “0000-00-0X” represents the
number of years, month and days that are between
the dct and the described point in time. The “X”
placeholder indicates, in this case, a number of
days between 1 and 9. In contrast to Mazur and
Dale (2011), we included < and > as comparison
operators. A1 < A2 means that an expression A1 is
temporally before an expression A2, and A1 <= A2,
that A1 happens before or at the same time as A2.
One of the placeholders A1 or A2 can be replaced
by dct or ref to refer to the document creation time
(dct) or another reference point (ref). While dct is
important for factual text types (e. g., news articles),
ref is helpful especially for narrative texts where
the utterance time of the text is not necessarily the
time when the document was created. P stands
for period and indicates a normalization of type
duration, Y stands for years and can be replaced
by D (days), M (months), DE (decades) or by a
leading T (time) and h (hours), m (minutes) or s
(seconds) (Saurí et al., 2006). We expand the use
of X in our scheme so that it can be used to indicate
one or more decimal places. Therefore, in addition
to “PXY” (representing at most nine years), it is
now also possible to use “PXXY” (representing at
most 99 years). The largest range probable in a
given context should always be used. We did not
further modify the attribute value of TIMEX3.

The value of the attribute meaning resembles
a function. It can take one of two forms. In the
first form, it contains Z as a symbol for the time
expression, see the examples in the rows for date,
time, duration and set in the range of values cat-
egory in Table 2. The second form is used to
describe a expression that refers to a point that
lies a specific time before or after ref or dct. In
this, a number of units is subtracted from or added
to dct or ref to represent a specific point in time.
The number of units is specified in ISO format:
Y Y Y Y −MM − [WW ]DD − Thh : mm : ss,
where zero represents an empty position and X
represents an unknown position. A digit can be
omitted if it is zero and followed only by zeros. For
the expression “vor Jahrzehnten” (decades ago) in

example (1) we derive the meaning dct− 00XX ,
which indicates that the expressed point in time
must lie a two-digit number of years before the dct.
The hundreds and thousands digits are 0. All units
more specific than the year are left out. Appendix A
contains more examples.

(1) Er ist vor Jahrzehnten ausgewandert.
He is before decades emigrated.
’He emigrated decades ago.’

In TimeML (Saurí et al., 2006), only “Jahrzehnten”
(decades) would be marked as a time expression
while ignoring the preposition “vor”. We, however,
consider prepositions as well as adverbs to be an
inherent part of the time expression because they
can convert one type of time expression into an-
other one. In this example, the preposition converts
a duration into a point in time, so that the value
changes from “PXDE” to “PAST_REF”. The same
applies to reverse cases, when a preposition or an
adverb converts a point in time into a duration.

4.2.2 Additional Adaptations

In addition, we circumvent empty tags by speci-
fying values directly in the appropriate attributes
instead of creating and linking another point in time
with the help of references. For example, instead
of creating two empty tags to represent the begin
and end points of a duration, these times are di-
rectly annotated in the begin and end fields of an
expression of type duration. In the sentence “Die
Expedition beginnt am 4. April 2022 und dauert
ungefähr 10 Tage” (The expedition starts at April 4,
2022 and takes about 10 days) the start point will
be “2022-04-04” and the end will be “2022-04-14”
with the mod-value “approx” (see also row 5 in the
modified value section of Table 2). In addition to
numerical values, the normalization of the label set
for irregular or unclear intervals can also include
the values low, normal, high, increasing or decreas-
ing in the attribute freq. For example, “Ich treibe
selten Sport” (I rarely do sports), yields the value
“low” for the attribute freq.

We foresee the attribute vague to distinguish
VTEs from precise time expressions. It is true
whenever a time expression cannot be normalized
to an exact value, i. e., whenever value contains the
placeholder X or is past_ref or future_ref. It is also
true when a modifier is used. Every example in
table 2 has this attribute set to "true".
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4.3 Vague Time Expressions in German
We collected 338 German VTEs in total. The seed
entries of our inventory were based on an analy-
sis of the KRAUTS corpus (Strötgen et al., 2018)
as well as various brainstorming sessions among
the authors. The list was expanded using syn-
onyms found in the DWDS6 and Duden7 online
search. Similar expressions are summarised using
placeholders. In “Anfang Monat” (begin month),
“Monat” should be replaced by a specific month,
e. g., “Januar” (January). Granularity expressions
like days, weeks, etc. are indicated by a capitalised
“G” (e. g., “in einigen G” (in a few G)). Additionally,
numbers are represented by an x. For example“in x
G” can be replaced by “in 3 Tagen” (in 3 days).

We structure the time expressions into different
categories (see Section 4.1). Not all expressions
were assigned to a category since, as pointed out
in Section 4.5, there are other types of time expres-
sions which are challenging to describe with the
given categories. Our list served as an initial basis
for the development of the normalization approach.
Appendix B shows an excerpt of the full list.8

4.4 Description of the Classes
Table 2 illustrates our classification (Section 4.1)
including the categories modified value, impre-
cise value and range of values and additional sub-
categories according to the four types used in
TimeML. We included two additional types based
on the offset category (Mazur and Dale, 2011).
These are offset-like date and offset-like time which
use a time interval and a reference point to refer to
a date or a time respectively. While offset-like time
can take a time granularity like seconds, minutes
or hours (e. g., “in 5 hours”) an offset-like date can
take any other granularity like days, month or years
(e. g., “in 5 days”). Additional example expressions
and their normalizations are shown in Table 2. Al-
though the offset types are eventually converted
to dates or times when the local representation of
LTIMEX is turned into a global annotation, we
listed them separately to show the semantic differ-
ence between points and offsets. While point ex-
pressions, like “Mitte Januar” (mid January), con-
sist mostly of nouns, offset expressions seem to
always contain a preposition, e. g., “in” (in) in the
expression “in 6 Tagen” (in 6 days) or “vor” (ago)

6https://www.dwds.de (last access: 2021-05-30)
7https://www.duden.de (last access: 2021-05-30)
8https://live.european-language-grid.eu/catalogue/lcr/

7975 (last access: 2021-08-13)

in “vor 6 Tagen” (6 days ago) or an adverb “danach”
(after that) in the expression “10 Tage danach” (10
days after that). At this point, it is important to
mention that it might be insufficient to only look
at prepositions for distinguishing a duration or an
offset-like time expression. The prepostion “in”
can be used in German for indicating a point in
time but sometimes also a duration: “Anna ruft uns
in 10 Tagen an” (Anna will us call in 10 days) ver-
sus “Er schrieb das Buch in 10 Tagen” (He wrote
the book in 10 days). Nevertheless, German tem-
poral prepositions in general can be distinguished
between indicating a point in time or a duration.

This categorization enables us to distinguish dif-
ferent capturing methods, see column three in Ta-
ble 2. While the modified value category contains
enough information, i. e., a more or less specific
number of days, to arrive at a date or time, the
difference to the other two major categories im-
precise value and range of values becomes more
obvious. There, the meaning of an offset expres-
sion is described using the dct or ref, and an ad-
dition or subtraction of a number of granularities
(years, months, weeks, days, hours or minutes).
In contrast, the values of date and time contain
no addition or subtraction. The normalization of
the three different major types differs from one
another. Modified value contains specific values
and a modifier. Imprecise value consists mostly of
additions and subtractions from a reference point
and of undefined values in form of an uppercase
X. Also, there are no imprecise dates or times that
are not described like an offset. Range of values is
characterised by the use of comparison operators.

4.5 Other Vague Time Expressions

There are types of time expressions that are difficult
to classify in the way described above. In contrast
to the examples in Table 2, expressions such as
“bald” (soon) or “kurz danach” (shortly afterwards)
do not inherently indicate a specific granularity.
For example, “früher” (back then) in “früher war
alles besser.” (Everything was better in the good
old days.) does not refer to a duration with a certain
start and end point, but to an unspecified span in
the speaker’s past. It is probably valid to assume
that a period of time is meant that is at least a
decade in the past (depending on the age of the
speaker), so that the granularity can be narrowed
down to "dct - 00XX". The example shows that
for the annotation of VTEs, world knowledge as
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TimeML-Type
Subcategory

Example (English) Example (German) Normalization

VTE category: modified value

date mid-January* Mitte Januar mod="mid" value="xxxx-01"
offset-like date after about 10 days nach ungefähr 10 Tagen mod="approx" value="2021-05-11"
time around 1 p.m. ungefähr 13 Uhr mod="approx" value="2021-05-01-T13"
offset-like time after about 10 hours nach ungefähr 10 Stunden mod="approx" value="2021-05-01-T22"
duration about 10 days* ungefähr 10 Tage mod="approx" value="P10D"
set approximately every 3rd day ungefähr jeden 3. Tag mod="approx" value="P3D" freq="1x"

VTE category: imprecise value

date – – –
offset-like date a few days earlier vor ein paar Tagen value="future_ref" meaning="dct +

0000-00-0X"
time – – –
offset-like time a few hours earlier vor ein paar Stunden value="future_ref" meaning="dct +

0000-00-00-T0X"
duration a few days* ein paar Tage value="PXD"
set every few days alle paar Tage value="PXD" freq="1x"

VTE category: range of values

date between August 13th and 15th zwischen dem 13. und 15.
August

meaning="2021-08-13 ≤ Z ≤ 2021-08-15"

offset-like date 5 to 6 days later 5 bis 6 Tage später value="future_ref" meaning="dct +
0000-00-05 ≤ Z ≤ dct + 0000-00-06"

time between 1 p.m. and 3 p.m. zwischen 13 und 15 Uhr meaning="2021-05-01-T13 ≤ Z ≤
2021-05-01-T15"

offset-like time 5 to 6 hours later 5 bis 6 Stunden später value="future_ref" meaning="dct +
0000-00-00-T05 ≤ Z ≤ dct +
0000-00-00-T06"

duration between 8 and 10 years* zwischen 8 und 10 Jahren meaning="P8Y ≤ Z ≤ P10Y"
set every 3-4 months* alle 3-4 Monate meaning="P3M ≤ Z ≤ P4M" freq="1x"

Table 2: VTE categories (taken from Tissot et al., 2019) with TimeML-type extensions and examples. Where
possible, examples from Tissot et al. (2019) were used and marked with *.
The assumed document creation time (dct) is 2021-05-01-T12:00. Like Mazur and Dale (2011), a lowercase x
represents a value that has to be determined from the context of an expression.

well as additional contextual knowledge are crucial
and that the meaning cannot always be determined
unambiguously and directly from the text.

A VTE can also be used anaphorically9 when
another time expression is provided as context. In
“2003 bin ich 6 geworden. Damals war die Welt
noch in Ordnung.” (I turned 6 in 2003. Back
then, the world was still alright.), “damals” re-
ceives the value 2003. With regard to future tense,
in “Ina wird in zwei Jahren 18. Dann kann sie
ihren Führerschein machen.” (Ina will turn 18 in
two years. Then, she can get her driver’s license.)
“dann” (then) gets the (local) meaning in two years
which would, depending on ref/dct, result in a spe-
cific year. In both cases, the date of the otherwise
vague time expression can be identified as such.

Expressions such as “künftig” (in future) and

9We use this term following Mazur and Dale (2011) who
describe a deictic and anaphoric use of time expressions in
the offset category, where anaphoric offset includes another
time expression as a reference point.

“in letzter Zeit” (lately) refer to a period of time
anchored in the utterance time and facing towards
the future or the past. The example “Ich werde
künftig vorsichtiger sein.” (I’ll be more careful
in the future.) suggests that the proposition “Ich
bin vorsichtiger” (I will be more careful) applies
to the speaker at any point after the utterance time.
The expression is of type duration and receives the
meaning "PXXY" with a beginpoint "dct" and an
endpoint "future_ref". In “Peter hat in letzter Zeit
sehr hart gearbeitet.” (Peter has been working very
hard lately.), “in letzter Zeit” (lately) refers to a
time span from a point in time in the near past to
the utterance time. This period of time can be days,
weeks, or months, depending on the context.

There are some idiomatic expressions or phrases
in German (as well as in English) which contain a
precise time expression but are used for expressing
an undefined short time duration, and should be
therefore regarded as VTEs, like “Hast du eine
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Minute?” (Do you have a minute?) or “Eine
Sekunde!” (Just a second!).

For expressions like “inzwischen” (meanwhile),
in the example “Inzwischen hat es Rücktritts-
forderungen gegen sie [. . . ] gegeben.” (In the
meantime, there have been calls for her resignation
[. . . ].) (Strötgen et al., 2018) we define the follow-
ing framework. There is a given time in the past
from which an implicit time span is drawn up to
the utterance time. We reason that the expression
is of type date because a call for resignation is an
event that takes place at a specific time and/or date
and is within a specified period. In the example,
the starting point of the implicit time span is a po-
lice operation on an unspecified day, but probably
several days prior to the dct. Between the operation
and the statement, there has been at least one call
for resignation. The expression can therefore be
normalised to "dct - 0000-00-XX < Z < dct".

4.6 Dataset Statistics after Annotation

The annotation, performed by one of the authors,
shows that the corpus includes 1 910 time ex-
pressions, of which 568 are VTEs, i. e., about
29.74% of the time expressions can be considered
vague, with 44.15% in KRAUTS and 18.09% in
Short_News. The majority is of types date and
duration. The highest ratio of VTEs to all time ex-
pressions has a book review (from KRAUTS) with
87.5% VTEs. The highest ratio in a Short_News
article is 50%. The largest total number of time
expressions (11.3%) as well as VTEs in one article
can be found in a weather report with 5 300 tokens
and 49 VTEs (Short_News). The largest total num-
ber of time expressions in KRAUTS is 46 and can
be found in a report (2.43% of tokens) and in a
newspaper column (2% of tokens).

Table 3 shows a summary of the annotation re-
sults. The statistics show that texts with a nar-
rative structure, which appear more frequently in
KRAUTS, contain more VTEs than texts limited
to the most important facts, like the articles in
Short_News. A possible reason for the increased
use of VTEs in columns, comments or fictional
texts in KRAUTS is that an exact point in time is
neither relevant nor known, or that VTEs fit bet-
ter into the flow of the text. The fact that there
are more precise time expressions on average in
the Short_News articles than in KRAUTS suggests
that precise time expressions are more suitable to
support the facts in short articles.

Table 4 presents the number of classes for each
label and reveils a class imbalance in the cor-
pus. The most striking imbalance can be ob-
served for the labels vague and anchorType in
Short_News. The labels type of Short_News and
vague of KRAUTS are the ones with the most sim-
ilar distribution of classes.

5 Experiments

For our classification experiments, all tested labels
should have at least a limited number of values.
This excludes labels like value and meaning be-
cause their values are not limited to a fixed set. The
labels we tested are type, anchorType and vague.

We used the classifiers RandomForest, Decision-
Tree, softVoting and ExtraTrees from scikit-learn.10

The softVoting classifier uses the highest probabil-
ity from the sum of the predicted probabilities. It
combines the classifiers DecisionTree, RandomFor-
est and LinearSupportVectorClassifier. Two types
of classification tasks were tested. On the one hand,
we used multiclass algorithms that can predict a
label with multiple classes. For example, type can
be predicted, which contains date, time, duration
and set. On the other hand, there are multitask al-
gorithms that can predict several classes, as well as
several labels, i. e., predictions for type, vague and
anchorType as well as their values can be made at
the same time instead of one after the other.

6 Results and Discussion

The results for the full dataset show scores from
0.6 up to 0.75 for the soft voting classifier and up
to 0.77 for Extra Trees for the binary classification
of vague. Given the size of the corpus and the
amount of classes and labels, we consider these
results decent. RandomForest and DecisionTree,
respectively for multiclass and multitask, achieved
slightly lower scores (with up to 0.02 difference
for KRAUTS and 0.003 for Short_News). There
are no strong deviations between the multiclass
and the multitask algorithms. We utilized a macro-
averaged F1-score metric to weigh our metric to-
wards the smallest class. Due to the label imbal-
ance, this slightly lowers our score but more pre-
cisely represents the results of the experiments.

Table 5 shows the results for each label for the
two best algorithms. The classifiers achieve better
results on Short_News than KRAUTS. ExtraTrees
performs best for two of three labels.

10https://scikit-learn.org (last access: 2021-05-12)
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TE Tokens %TE of
Tokens

VTE
Tokens

%VTE of
Tokens

%VTE of
TE

KRAUTS 854 1.7 7.5 0.75 44.15
Short_News 1 056 2.27 2.8 0.41 18.09
Both 1 910 1.97 5.2 0.59 29.74

Table 3: Overview of the annotation results (TE = time expression) – almost 30% of all TE are vague TE.

Label Class KRAUTS Short_News

type date 506 431
time 13 212
duration 247 234
set 80 29

vague true 375 190
false 471 716

anchor-Type ref 80 70
dct 441 615

Table 4: Distribution of classes and labels in the corpus.

Model Dataset type vague anchor-
Type

soft- Both 0.60 0.75 0.62
voting KRAUTS 0.48 0.73 0.58

Short_News 0.60 0.70 0.58

Extra- Both 0.68 0.77 0.61
Trees KRAUTS 0.47 0.73 0.58

Short_News 0.58 0.72 0.58

Table 5: Macro F1-scores for the two best performing
algorithms.

On KRAUTS, the algorithms achieve low results
on type, mainly because its class set has a low ac-
curacy of 0.22 F1-score for the full dataset because
there are only 80 annotated labels in KRAUTS and
29 in Short_News (Table 4). The same problem ap-
pears for anchorType with the infrequent ref label.
The macro-averaged F1-score clearly demonstrates
this because it weighs each class equally so the
smaller classes with lower scores equally count
to the overall score. In future work, we need to
annotate additional data to achieve reasonable clas-
sification results. The remaining classes with more
samples for type are slightly better with F1-scores
from 0.42 for time up to 0.71 for date.

The results show that classifiers with small train-
ing sets are capable of achieving F1-scores of up
to 0.77. We can assume that more sophisticated ap-
proaches will yield better results. In terms of future
work, we plan to combine such machine learning-
based and rule-based systems, such as Heideltime
(Strötgen and Gertz, 2010), which achieves an F1-
score of 93.8 on German narrative texts (Strötgen

and Gertz, 2015) for precise time expressions. It
remains to be explored if a rule-based system can
provide similar results for VTEs.

7 Conclusion

We concentrate on the annotation of vague time
expressions, borrowing especially from Tissot et al.
(2019), whose categorization we modified and
adapted to classify and normalise VTEs. We de-
scribe methods for the normalization of VTEs and
annotated a data set of German news documents.
Determining the meaning of a VTE proved to be
difficult, because it is context-dependent and may
require empirical knowledge if no temporal granu-
larity (year, day, hour, etc.) is given. Although our
annotation scheme was developed using German
documents, we believe it to be applicable to En-
glish, too, because English VTE work in a similar
way. Finally, we carried out preliminary classifica-
tion experiments.

In terms of future work, we plan to label the
data set with additional annotators to determine
the inter-annotator agreement, to expand the data
set and to improve the classification results. An-
other aspect for expanding our work would be to
include an evaluation of time span representation
of our normalizations. We also plan to explore
additional possibilities of classifying different cate-
gories of VTE automatically, which are, as of now,
only implicitly included. In that regard, it is worth
exploring if a regular expression-based approach,
like HeidelTime (Strötgen and Gertz, 2010), is able
to derive normalised values of VTEs.
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A Annotation examples

The assumed document creation time (dct) is 2021-05-31.

1. Wir haben uns zuletzt bei unserer Abschlussfeier getroffen. <Timex3 type="date" anchorType="dct"
value="past_ref" meaning="dct - 000X &lt; Z &lt; dct" vague="true"> Inzwischen </Timex3> habe
ich mir ein Auto gekauft.11

2. Er ist <Timex3 type="date" anchorType="dct" value="past_ref" meaning="dct - 00XX"
vague="true"> vor Jahrzehnten </Timex3> ausgewandert.

3. Die Kampagne startet <Timex3 type="date" anchorType="dct" value="2021-06" mod="mid"
vague="true"> Mitte Juni</Timex3>.

4. Das Gesetz wird <Timex3 type="date" anchorType="dct" value="2021-08" meaning="2021-08-12
&lt;= Z &lt;= 2021-08-15" vague="true"> zwischen dem 12. und 15. August </Timex3> verab-
schiedet.

5. Die Lebensspanne dieser Schmetterlingsart beträgt <Timex3 type="duration" value="P10D"
mod="approx" vague="true"> circa 10 Tage </Timex3>

6. Der Umbau dauert nur noch <Timex3 type="duration" value="PXD" vague="true" beginPoint="dct"
endPoint="dct + 0000-00-0X"> wenige Tage </Timex3>

7. Die Post kommt hier nur <Timex3 type="set" value="PXD" freq="1x" vague="true"> alle paar Tage
</Timex3>

8. <Timex3 tid="t1" type="date" value="2003" vague="false"> 2003 </Timex3> bin ich 6 geworden.
<Timex3 tid="t2" type="date" anchorType="ref" anchorTimeID="t1" value="2003" vague="false">
Damals </Timex3> war die Welt noch in Ordnung.

9. Es tut mir leid, dass ich dich verletzt habe. Ich werde <Timex3 type="duration" value="future_ref" an-
chorType="dct" meaning="PXXY" beginPoint="dct" endPoint="future_ref" vague="true"> künftig
</Timex3> besser aufpassen.

B List of Vague Time Expressions

Table 6 is an excerpt from the list of over 300 VTEs which can be found in:
https://live.european-language-grid.eu/catalogue/lcr/7975 (last access: 2021-08-13).

Time Expression Type Vague Type Informal Meaning Example

Pi mal Daumen depends on the
context

MV approximately Pi mal Daumen 1,5 Jahre

überschlägig depends MV approximately überschlägig 1,5 Jahre
annähernd depends MV approximately annähernd 1,5 Jahre
ca. depends MV approximately ca. 1,5 Jahre
circa depends MV approximately circa 1,5 Jahre
in etwa depends MV approximately in etwa 1,5 Jahre
praktisch depends MV approximately praktisch 2 Jahre
rund depends MV approximately rund 1,5 Jahre
schätzungsweise depends MV approximately schätzungsweise 1,5 Jahre
so ziemlich depends MV approximately so ziemlich 1,5 Jahre
um depends MV approximately um die 1,5 Jahre; um 1 Uhr

11The meaning of this syntax becomes more apparent when the &lt; macros are expanded: meaning="dct - 000X < Z < dct".
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den einen Tag date GE undefined reference Den einen Tag auf der Bühne,
den anderen vor der Kamera,
dann noch auf den Kabaret-
tbrettern, wo sie Lieder ihres
geliebten [...].

einst date not defined undefined reference Einst war das anders bei uns.
dereinst date not defined past-ref, distant Ich weiß nur mehr: ich küßte es

[das Gesicht] dereinst.
einstmals date not defined undefined reference Einstmals war das anders bei

uns.
vordem date not defined <anaphoric point Das Bild hatte vordem im

Zimmer seiner Großmutter
gehangen.

dann date not defined anaphoric point In einem Jahr steht die Ab-
stimmung über die Abspaltung
Schottlands vom Vereinigten
Königreich an, spätestens dann
muss sich die EU Gedanken
machen, ob ein so wichtiger
Teil Europas wie Schottland aus-
geschlossen werden kann [...].

nunmehr date not defined dct Der Streik dauert nunmehr
schon einen Monat.

sofort date not defined future-ref, approx.
reference point

Ich habe dich sofort erkannt, als
du aus dem Zug stiegst.

umgehend date not defined future-ref, approx.
reference point

einer Behörde, Instanz umge-
hend von etw. Mitteilung
machen

hinterher date not defined future-ref,
anaphoric

Die Bedeutung dieser Worte
wurde ihm erst hinterher klar.

Jahreszeit-monate duration GE date-like Am meisten liebe ich die Herb-
stmonate, wegen der vielen Far-
ben.

warme|kalte Jahreszeit duration GE date-like Die warme Jahreszeit ist in
dieser Region wirklich schön.

in diesen Tagen duration IV anaphoric Er hat in diesen Tagen viel
gelacht.

G-lang duration IV PXG Er musste stundenlang darauf
warten

all diese G duration IV PXG All diese Tage gehören der Ver-
gangenheit an.

innerhalb von G duration IV PXG / ref <Z <ref +
G

Er hat sich innerhalb von
Wochen davon erholt.

den ersten G duration IV ordinal specified In den ersten Tagen wird sie
noch Probleme damit haben.

die nächsten G duration IV DCT/ref + XG Es wird die nächsten Tage weh
tun.

in den nächsten G duration IV duration, ordinal
specified, future-ref,
G

In den nächsten Jahren wird sie
viel lernen.

die damaligen G duration IV duration, past-ref,
distant

Die damaligen Wochen waren
wunderschön.

spätestens in x G offset MV dct <Z <= dct + X G Wir sehen uns spätestens in 3
Stunden wieder.

frühestens in x G offset MV >= number G frühestens in einem Monat
tags drauf offset not defined anaphoric point +1 Er geht nie weg, wenn er tags

drauf arbeitet.
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alsbaldig offset not defined future-ref, relatively
close

Die Ware ist zum alsbaldigen
Verbrauch bestimmt.

später offset not defined future-ref, relatively
distant

Wie soll das erst einmal später
werden?

zeitnah offset not defined future-ref, relatively
close

Es gab zeitnah vor und nach
dem Brief [von Dr. R.]
Gespräche mit Dr. R[. . . ]«, da-
her hielt man eine schriftliche
Antwort nicht für nötig.

alsbald offset not defined future-ref, relatively
close

Narziß wendete sich zu ihm um,
und alsbald fühlte er sich erlöst.

alsobald offset not defined future-ref, relatively
close

veraltet; wie alsbald

schnellstmöglich offset not defined future-ref, very
close

Der Chef drängt auf eine
schnellstmögliche Erledigung
der Arbeit.

gleich offset not defined future-ref, very
close

Ich komme gleich.

alle paar G set IV set, irregular G Die Haut sollte alle paar Tage
gründlicher gereinigt werden,
um Ablagerungen zu entfernen
Beim Haare waschen mit Sham-
poo [...].

gelegentlich set not defined set, irregular, rarely Heute soll es nur gelegentlich
Niederschläge geben.

alltäglich set not defined everyday [...] und Vokabular, son-
dern altersgemäß intuitiv durch
den alltäglich stattfindenden Ge-
brauch der englischen Sprache
im Betreuungskontext.

regelmäßig set not defined set, regularly regelmäßige Mahlzeiten
turnusmäßig set not defined set, regularly eine turnusmäßige Sitzung, Kon-

trolle
zyklisch set not defined set, regularly etw. läuft zyklisch ab, verläuft

zyklisch
periodisch set not defined set, undef Die Beschwerden kehrten peri-

odisch wieder.
zwischendurch set not defined set, undef Der vor längerer Zeit errichtete

und zwischendurch verfallene
Zaun ist jetzt repariert.

unregelmäßig set not defined set, irregularly Er lebt unregelmäßig.
öfters set not defined set, irregularly, of-

ten
man muß das öfters üben, sagen

sporadisch set not defined set, irregularly,
rarely

Wir sehen uns nur ganz spo-
radisch.

vor x Uhr time MV <number o’clock [...] an der in der jeweiligen
Prospektergänzung angegebe-
nen Adresse vor 12 Uhr (irische
Ortszeit) an dem dem betref-
fenden Handelstag vorangegan-
genen [...].

spätestens x Uhr time MV <= number o’clock die Arbeit muss bis spätestens
12 Uhr fertig sein

nach x Uhr time MV >number o’clock Darüber hinaus sind Personen,
die sich nach 20 Uhr auf
dem DESY-Gelände aufhalten,
verpflichtet, sich auf Verlangen
den [...]
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mindestens x Uhr time MV >= number o’clock Die SBB RailCities bieten
täglich bis mindestens 23.00
Uhr

bis maximal x Uhr time MV until <= number
o’clock

25. Juni 2012 Abbauende - ein
verlängerter Abbau bis maximal
12.00 Uhr am Dienstag, den 26.
Juni 2012 kann in Ausnahme-
fällen bis zum [...].

ca. x Uhr time MV approx. number
o’clock

Ab 16:30 Uhr gibt es ein buntes
Animationsprogramm und ab ca.
18:30 Uhr wird ein Filmhit nach
Besucherwünschen gezeigt.

gleich x Uhr time MV approx. number
o’clock (<)

Es ist gleich 12 Uhr.

eben time not defined past-ref, very close Eben hat es fünf Uhr geschla-
gen.

Table 6: Excerpt of the list of VTE. Type values are taken from TimeML, Vague Type borrows from the categories
described by Tissot et al. (2019) (without Partial Period). G means granularity and G + 1 means one granularity
lever higher. For example, if G = month, then G+ 1 = year. X represents a number.
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Abstract

Due to a lack of annotated data, theories of
historical syntax are often based on very small,
manually compiled data sets. To enable the
empirical evaluation of existing hypotheses, the
present study explores the automatic recogni-
tion of phrases in historical German. Using
modern and historical treebanks, training data
for a neural sequence labeling tool and a proba-
bilistic parser is created, and both methods are
compared on a variety of data sets. The evalua-
tion shows that the unlexicalized parser outper-
forms the sequence labeling approach, achiev-
ing F1-scores of 87%–91% on modern German
and between 73% and 85% on different histori-
cal corpora. An error analysis indicates that ac-
curacy decreases especially for longer phrases,
but most of the errors concern incorrect phrase
boundaries, suggesting further potential for im-
provement.

1 Introduction
In recent years, the availability of ever-larger data
sets and increasing computational power have led
to major changes in the way language is analyzed.
Today, NLP tools can automatically enrich large
amounts of text quickly and accurately with linguis-
tic annotations needed for commercial or research
purposes. When it comes to non-standard data like
historical language, though, the availability of mod-
els and annotated corpora is still limited compared
to modern language and hypotheses are often based
on qualitative analyses of very small data sets. For
example, Speyer (2011) investigates object order in
the middle field of Early New High German sen-
tences based on a total of 70 pairs of direct and indi-
rect objects from three centuries. Similarly, Light
(2012) grounds her study of extraposition, i.e. the
movement of elements behind the clause-final verb,
on 115 cases of extraposed subjects in one Early
New High German bible translation, while Sapp

(2014) analyzes 683 extraposed phrases spread over
texts from five centuries. Although data-driven qual-
itative analyses like these provide valuable insights
for linguistic research, they require a lot of manual
effort and cannot achieve the same statistical signif-
icance as studies of modern language.
Recently, there have been several attempts to ad-

dress the lack of annotated historical data and pro-
vide a basis for the empirical evaluation of exist-
ing hypotheses by automatically identifying relevant
syntactic units in historical text (e.g. Chiarcos et al.,
2018; Ortmann, 2020, 2021). The present paper
takes a similar approach and looks explicitly at the
units targeted by the qualitative studies mentioned
above, namely phrases.
In the context of this study, phrases are under-

stood as continuous, non-overlapping constituents
from a sentence’s parse tree. Since the concrete
definition of constituents may vary depending on
the annotation scheme and not all constituents are
equally relevant for linguistic studies like the ones
mentioned above, this paper focuses on four main
phrase types: noun phrases (NP), prepositional
phrases (PP), adjective phrases (AP), and adverb
phrases (ADVP). For each sentence, only the high-
est non-terminal nodes of the given types are consid-
ered, ignoring the internal structure of phrases. This
means that phrases may dominate other phrases
of the same or different types, but the dominated
phrases are not evaluated here. Example (1) shows
an annotated sentence from a 1731 theological text.

(1) [NP Der kraͤftigſte Bewegungs-Grund] nimmt
[NP seinen Urſprung] [PP aus einer zaͤrtlichen
Leydenſchaft meines Gemuͤhts].
The most powerful motive takes its origin from
a tender passion of my heart.

To enable research on phenomena like extraposi-
tion, phrases may not cross topological field bound-
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aries.1 For example, a prepositional phrase in the
middle field is considered separate from an adjacent
modifying relative clause in the post-field, as shown
in example (2) from a chemistry essay (field bound-
aries are indicated by vertical pipes). Also, discon-
tinuous structures as they exist in some German cor-
pora are not allowed here.

(2) Erhebt | [NP es] [NP ſich] [PP mit dem
Waſſerſtoffgas], | [NP welches] | [NP die
Moraͤſte] [PP in Ueberfluß] | ausdunſten?
Does it rise with the hydrogen gas that the
swamps evaporate in abundance?

The goal of this study is to automatically recog-
nize phrases that meet the aforementioned require-
ments in historical German texts. The remainder of
the paper is structured as follows: Section 2 presents
related work on the syntactic analysis of (historical)
German before Section 3 introduces the data sets
used in this study. In Section 4, two different meth-
ods for the automatic recognition of phrases are se-
lected based on the findings of previous studies and
their performance is evaluated in Section 5. The pa-
per concludes with a discussion in Section 6.

2 Related Work

The recognition of phrases as defined in the previ-
ous section is related to chunking as well as (con-
stituency) parsing and can be located somewhere in
between the two tasks regarding its complexity.
Chunking refers to the identification of non-

overlapping, non-recursive phrases from a sen-
tence’s parse tree, ending with the head token (Sang
and Buchholz, 2000). As a consequence, chunks are
often shorter than phrases because post-modifying
elements form separate chunks. For simple cases
without pre- or post-modifying elements, however,
the definitions of chunks and phrases overlap and
methods that are successful at chunking may also
be useful for phrase recognition.
Parsing, on the other hand, aims at a complete

syntactic analysis of the sentence. Hence, the re-
sulting constituency tree includes more information
than just the phrase annotation, e.g. dominance re-
lations, which are not considered in this study. As
a result, phrase annotations can be derived from the
more complex parse output, but the complexity of
the task may also reduce overall accuracy.

1For an overview of the topological field model, see e.g.
Cheung and Penn (2009) or Wöllstein (2018, in German)

While studies on chunking observe F1-scores
>95% for modern German (cf. Müller, 2005; Ort-
mann, 2021), the highest F1-scores for constituency
parsing of German are reported with approx. 90%,
compared to 95% for English (Kitaev et al., 2019).
In general, parsing results heavily depend on the se-
lected treebank and the inclusion of grammatical
functions (Dakota and Kübler, 2017) and discontin-
uous structures (cf. Vilares and Gómez-Rodríguez,
2020). Also, all of these results are obtained for
standard language like newspaper text. For non-
standard data, performance drops must be expected
(Pinto et al., 2016; Jamshid Lou et al., 2019).

For historical German, so far, there have been
experiments on chunking (Petran, 2012; Ortmann,
2021) and topological field parsing (Chiarcos et al.,
2018; Ortmann, 2020). For chunking, the best re-
sults are observed for CRF-based sequence label-
ing with overall F1-scores between 90% and 94%
(Ortmann, 2021). For topological field identifica-
tion, the application of a probabilistic parser yields
overall F1-scores >92% (Ortmann, 2020). In the
present study, both of these approaches will be ex-
plored for the purpose of phrase recognition in his-
torical German.

3 Data

The data sets for the experiments are taken from a
previous chunking study (Ortmann, 2021).2 The
training data consists of two modern and two his-
torical treebanks. The TüBa-D/Z corpus (Telljo-
hann et al., 2017)3 and the Tiger corpus (Brants
et al., 2004)4 contain modern German newspaper
articles, whereas the Mercurius corpus (Demske,
2005)5 and the ReF.UP corpus (Demske, 2019)6
comprise Early New High German texts from the
14th to 17th century. All four data sets are anno-
tated with constituency trees, but before they can
be used to train a parser or extract phrase annota-
tions for sequence labeling, a few modifications are
necessary.

2https://github.com/rubcompling/
nodalida2021

3Release 11.0, http://www.sfs.uni-tuebingen.
de/ascl/ressourcen/corpora/tueba-dz.html

4Version 2.2, https://www.ims.uni-stuttgart.
de/forschung/ressourcen/korpora/tiger

5Mercurius Baumbank (version 1.1),
https://doi.org/10.34644/
laudatio-dev-VyQiCnMB7CArCQ9CjF3O

6ReF.UP is a subcorpus of the Reference Corpus of Early
New High German (Wegera et al., 2021), https://www.
linguistics.rub.de/ref
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Figure 1: Example modification of a sentence from the ReF.UP corpus. At the top, the original constituency tree with
discontinuous annotations according to the Tiger scheme is displayed. The bracket structure to the right represents the
linearized version of the tree without crossing branches and grammatical functions. This format can be used to train
a standard parser. At the bottom, the phrase annotation for the sentence is shown. The phrases have been extracted
from the tree structure to the right and checked with a topological field parser to ensure that phrases do not cross field
boundaries (indicated by dashed lines). The phrase annotations serve as training data for a sequence labeling tool and
are also used for evaluation.

(i) The underlying annotation scheme of the Tiger
corpus and the two historical treebanks allows
for discontinuous annotations, which must be
removed to enable the use of standard chunk-
ing and parsing methods. Here, a combina-
tion of the raising and splitting approaches de-
scribed by Hsu (2010) is applied to the trees
until no crossing branches remain.7

(ii) Since German exhibits a relatively free word
order, grammatical functions like subject and
object play an important role in the syntactic
analysis of sentences, especially for the reduc-
tion of ambiguity (Fraser et al., 2013). For
the purpose of phrase recognition, however,
they are not relevant and, therefore, mostly ex-
cluded from the trees to reduce the size of the
tagset and improve parsing performance (Raf-
ferty and Manning, 2008; Dakota and Kübler,
2017).8

7Basically, discontinuous nodes are split and re-inserted
into the tree based on the linear order of tokens in the sen-
tence. The same holds for punctuation, which is appended to
the same parent node as the next token to the left (or to the right
for sentence-initial punctuation).

8The only exception are GFs that are needed to extract
correct phrases from the trees. For the Tiger scheme, these
are S:RC and S:OC. For TüBa-D/Z, the following GFs are

The modified trees can serve as training input for
a parser, or they can be used to extract phrase an-
notations. Contrary to chunking studies, where the
lowest non-terminal nodes are converted to chunks
(Kübler et al., 2010; Ortmann, 2021), here, the high-
est non-terminal nodes of the relevant types cor-
respond to the desired phrases.9 Before the ex-
tracted phrases can be used for evaluation or to
train a sequence labeling tool, another difference
between the annotation schemes of the treebanks
regarding topological fields must be taken into ac-
count, though.

(iii) While the TüBa-D/Z trees represent a com-
bination of constituency and topological field
annotations, the other three corpora that fol-
low the Tiger scheme do not include topolog-
ical fields. This means that constituents in
the TüBa-D/Z data are already bound to the
corresponding fields as required by the phrase

preserved: KONJ, OS, R-SIMPX, NX:HD within PX, and
NX:APP within NX. Also, one-word children of sentence
nodes that only receive a grammatical function according to
the Tiger scheme are assigned a phrase type NP, PP, AP, AVP,
VP, or SVP based on their POS tag.

9Again, phrases of the four types are added for one-word
constituents from Tiger-scheme trees based on the POS tag of
the word.
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News1 News2 Hist Mix
#Docs 3,075 1,863 28 1,891
#Sents 83,515 40,037 23,747 63,784
#Toks 1,566,250 727,011 569,854 1,296,865

#Phrases 388,531 162,336 152,866 315,202

Table 1: Overview of the four training sets. Only sen-
tences with a gold parse are included, and the number of
phrases refers to phrases of the four relevant types. The
Mix set is a combination of the News2 and Hist sets.

Corpus #Docs #Sents #Toks #Phrases
TüBa-D/Z 364 10,488 196,630 49,329

Tiger 200 4,445 78,018 17,622
Modern 78 547 7,605 2,240

Mercurius 2 818 18,740 4,401
ReF.UP 26 2,173 54,005 15,355

HIPKON 53 342 4,210 1,146
DTA 29 608 18,515 4,068

Table 2: Overview of the test data. The number of
phrases includes NP, PP, AP, and ADVP phrases as de-
scribed in Section 1. Only sentences containing at least
one of the four phrase types are considered.

definition in this study, whereas constituents
in the other data sets may cross field bound-
aries. Therefore, phrases that are extracted
from these data sets or identified by a parser
that is trained on them are corrected with the
help of a topological field parser (Ortmann,
2020).10 Phrases that cross fields are split at
the field boundary and replaced by the domi-
nated sub-phrases to ensure that no phrase is
located in more than one field.11

An example of the different modifications of the
trees and extracted phrases can be found in Figure 1.
The resulting data sets are used to build four distinct
training sets: News1 corresponds to the TüBa-D/Z
data, News2 is based on the Tiger treebank, Hist
contains the historical data, and a joined set Mix
includes all data sets that follow the Tiger annota-
tion scheme. Table 1 gives a summary of the four
training sets.
For evaluation, the test sections of the four tree-

banks12 are processed in the same way as the train-
ing data, and phrases of the four types are extracted

10https://github.com/rubcompling/
latech2020

11Theoretically, it would also be possible to merge the con-
stituency trees with automatically created topological field an-
notations before training a parser on the merged trees. How-
ever, experiments indicate that this creates too many inconsis-
tencies in the training data, e.g. due to errors in the automatic
field annotation, and therefore leads to worse results than split-
ting the extracted phrase output at the field boundaries after-
wards.

12While the Tiger corpus is provided with official training,

Corpus NP PP AP ADVP
TüBa-D/Z 54.30 22.47 6.41 16.82
Tiger 55.28 27.55 6.09 11.07
Modern 61.88 17.72 5.94 14.46
Mercurius 50.44 26.68 5.23 17.66
ReF.UP 56.46 20.48 6.11 16.96
HIPKON 51.83 27.40 2.01 18.76
DTA 51.55 25.76 6.15 16.54

Table 3: Distribution of the four phrase types in the test
data. Numbers are given in percent.

and split at topological field boundaries if necessary.
In addition, the chunking study (Ortmann, 2021)
provides three other test sets, which were annotated
with phrases for the present paper: a corpus of mod-
ern non-newspaper data with texts from different
registers and two historical data sets from the HIP-
KON corpus (Coniglio et al., 2014) and the Ger-
man Text Archive DTA (BBAW, 2021) covering
different genres and time periods. Table 2 gives an
overview of the test data.13
In Table 3, the distribution of the phrase types in

the data sets is displayed. The most frequent phrase
type are NPs with 50% to over 60% in the mod-
ern non-newspaper data, followed by PPs with 18%
to 28%. ADVPs make up for 11% to 19%, while
APs that are not dominated by other phrases are rare
with 6% or less.

4 Methods

So far, the automatic syntactic analysis of historical
German has been focused on the identification of
chunks and topological fields. As described in Sec-
tion 2, the best results for these tasks are reported
for sequence labeling and statistical parsing. In the
following, both approaches are applied to the recog-
nition of phrases.
For sequence labeling, the neural CRF-based se-

quence labeling tool NCRF++ (Yang and Zhang,
2018) is selected. It achieves state-of-the-art perfor-
mance for several tasks, including tagging, chunk-
ing, and named entity recognition in English (Yang
et al., 2018). When POS tags are used as features,
it also proves successful at identifying chunks in
historical German with F1-scores>90% (Ortmann,
2021). The default configuration consists of a three-
layer architecture with a character and a word se-
development, and test sections, for the other three corpora, the
same splits into training (80%), development (10%), and test
set (10%) as in the chunking study (Ortmann, 2021) are used.

13The manually annotated data sets can be found in
this paper’s repository at https://github.com/
rubcompling/konvens2021.
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quence layer plus a CRF-based inference layer. For
the present study, the toolkit is trained on the ex-
tracted phrases from the four training sets, where
phrases are represented as BIO tags. POS tags
are included as additional feature and, during train-
ing, the tool is also provided with the development
sections of the training corpora. For every word,
NCRF++ outputs the single most likely BIO tag,
i.e. B-XP (beginning of phrase), I-XP (inside of
phrase), or O (outside of phrase). For evaluation,
the labels are converted to phrases, and the best re-
sult over five runs with different random seeds is
reported.
For parsing, the unlexicalized Berkeley parser

(Petrov et al., 2006)14 is selected. It achieves a pars-
ing F1-score of 91.8% on the TüBa-D/Z corpus and
72% on the Tiger corpus (Dakota and Kübler, 2017)
and has also been successfully applied to topologi-
cal field parsing of historical German with overall
F1-scores >92% (Ortmann, 2020). In the present
study, it is trained with default settings15 on the four
training sets, where the modified constituency trees
are used as training input. For annotation, the parser
is invoked in interactive mode16 and given a sen-
tence annotated with POS tags, it returns the single
best parse. For evaluation, the constituency trees
are then converted to phrases as described in the
previous section.

5 Evaluation
To evaluate the performance of the selected ap-
proaches on the task of phrase recognition, the out-
put of the trained systems is compared to the gold
standard annotation. However, the evaluation of se-
quence annotations like phrases with standard met-
rics faces the problem of double penalties, meaning
that one unit can count as two errors. For example,
and adjective phrase that is recognized as adverb
phrase would correspond to a false negative AP and,
at the same time, a false positive ADVP. Similarly,
if a system misses the initial preposition of a PP
and instead annotates the rest as an NP, this would
result in a false negative PP and a false positive
NP. There have been different suggestions on how
to deal with this problem. For word tokenization,

14https://github.com/slavpetrov/
berkeleyparser

15java -cp BerkeleyParser-1.7.jar
edu.berkeley.nlp.PCFGLA.GrammarTrainer
-treebank SINGLEFILE -out grammar.gr
-path treebank.txt

16java -jar BerkeleyParser-1.7.jar -gr
grammar.gr -maxLength 1000 -useGoldPOS

Shao et al. (2017) argue that recall should be used as
the only evaluation metric. While precision favors
under-splitting systems, recall values clearly show
the percentage of correctly recognized units that are
relevant for higher-level tasks. However, in the case
of segmentation tasks that include labeling, identi-
fying entities with almost correct boundaries may
also be useful (cf. Ortmann, 2021). For example,
the studies on extraposition mentioned in Section 1
would still benefit greatly from the recognition of
incomplete phrases, if not for a complete automatic
analysis, then at least for an easier and faster com-
pilation of much larger data sets (see also Eckhoff
and Berdičevskis (2016) for a study on using auto-
matic dependency parsing for pre-annotation of his-
torical data to speed up manual annotation). Hence,
precision values should not be disregarded entirely.
Instead, in Ortmann (2021), I proposed a more fine-
grained error analysis that takes into account differ-
ent types of possible errors while at the same time
circumventing the problem of multiply penalizing
errors in a single unit.
In the following, this error analysis is adopted for

the evaluation of phrase recognition and the out-
put of the different methods and models is com-
pared phrase-wise to the gold standard annotation,
grouping phrases into one of seven classes: true
positives (TP), false positives (FP), labeling errors
(LE), boundary errors (BE), labeling-boundary er-
rors (LBE) and false negatives (FN). In addition
to the standard categories, labeling errors refer to
phrases that cover the same token span but are la-
beled with a different phrase type. Boundary er-
rors are phrases of the correct type but with incor-
rect boundaries, and labeling-boundary errors are a
combination of the former two error types. Since
the three error types indicate an existing and not a
missing annotation, they are counted as false posi-
tives for the calculation of F-scores. Only sentences
containing at least one of the four phrase types are
evaluated, and punctuation at phrase boundaries is
ignored.

Sequence labeling As already mentioned, the
neural sequence labeling tool NCRF++ has been ap-
plied successfully to the identification of chunks in
German, reachingF1-scores between 90% and 94%
for different historical data sets (Ortmann, 2021).
As could be expected from previous studies (e.g.,
Petran, 2012), the accuracy for the recognition of
phrases, i.e. longer units, with CRF-based sequence
labeling is considerably lower. Table 4 gives a sum-
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Corpus News1 News2 Hist Mix
TüBa-D/Z 85.18 76.82 n.a. n.a.
Tiger 78.93 79.69 n.a. n.a.
Modern 86.80 83.10 n.a. n.a.
Mercurius 70.25 67.83 9.05 8.93
ReF.UP 70.62 67.91 8.80 9.90
HIPKON 80.13 81.18 8.17 7.99
DTA 72.02 68.89 6.93 7.78

Table 4: Overall F1-scores of the sequence labeling ap-
proach. Models trained on historical data are only ap-
plied to the historical test sets. The table reports the high-
est F1-score over five runs and the best result for each
corpus is highlighted in bold.

mary of the results for each of the four models.
Using gold POS tags as a feature, the two

newspaper-based models still perform relatively
well. Model News1 achieves the best results with
F1-scores between 70.3% and 86.8%. The results
for the second modern model News2 also lie above
67% for all data sets. Contrary to the results for
chunking (Ortmann, 2021), using historical train-
ing data does not improve the results on the his-
torical test sets. Instead, the historical and mixed
models do not reach F1-scores >10% for phrase
recognition, indicating that the tool was not success-
ful at learning to identify the different phrase types
based on the historical corpora. Possible reasons
could be the high syntactic complexity of Early New
High German sentences or too much variation in the
training data, e.g. caused by the non-standardized
spelling in historical German.

Parsing So far, the parsing approach has only
been evaluated for topological field parsing of his-
torical German with overall F1-scores >92% (Ort-
mann, 2020). In Table 5, the results of the Berke-
ley parser for the recognition of phrases are given.
On the modern data sets, the parser achieves F1-
scores of 87.8% to 91.3% with visible differences
between the two modern models. While, unsurpris-

Corpus News1 News2 Hist Mix
TüBa-D/Z 91.30 81.50 n.a. n.a.
Tiger 82.73 87.81 n.a. n.a.
Modern 88.27 84.44 n.a. n.a.
Mercurius 60.32 65.72 81.50 81.06
ReF.UP 56.44 58.86 84.15 84.05
HIPKON 74.44 75.13 85.05 85.12
DTA 73.66 69.44 69.07 70.63

Table 5: Overall F1-scores (in percent) for the four
parser models on each data set. Models trained on his-
torical data are only applied to the historical test sets,
and the highest F1-score for each corpus is highlighted
in bold.

Figure 2: Comparison of the bestF1-scores for sequence
labeling and parsing on the different test sets.

ingly, each of them performs best on the test section
of the corpus it was trained on, the News1 model
also achieves the best results on the Modern data set
and the DTA corpus, while the News2 model per-
forms better on the other historical data sets.
In contrast to the sequence labeling results, here,

including historical training data improves the syn-
tactic analysis of historical language, probably be-
cause the unlexicalized parser is unaffected by the
non-standardized spelling or can better handle the
complex sentence structures. For three of the four
historical data sets, the Hist and Mix models
outperform the modern models by ten percentage
points or more. F1-scores lie between 81.5% and
85.1% for the Mercurius, ReF.UP and HIPKON
data, while the DTA is only analyzed with an F1-
score of 73.7%.
When compared to the sequence labeling tool,

the parsing approach yields better results for the
recognition of phrases. Figure 2 confirms that the
best parser model outperforms the best sequence la-
beling model by up to 13.5 percentage points on
each data set. Only for the modern non-newspaper
data and the DTA, the results of the methods are
similar. For the modern data, this could be due to
the fact that the data set contains many non-complex
phrases that are similar to chunks, e.g. simple noun
phrases. 54% of the phrases in this data set con-
sist of only one token, compared to 35%–50% in
the other data sets, which makes it easier for the se-
quence labeling approach to identify them.
However, parser accuracy also declines for larger

units (cf. Bastings and Sima’an, 2014). While the
Berkeley parser reaches overall parsingF1-scores of
92% and 86% for the modern data and 78%–79%
for the historical data (cf. Table 6), F1-scores heav-
ily decline for larger constituents as well as phrases
(see Figure 3). For constituents with more than
five words, the average F1-score of the four mod-
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News1 News2 Hist Mix
TüBa-D/Z 91.96 n.a. n.a. n.a.
Tiger n.a. 86.42 n.a. n.a.
Mercurius n.a. 52.27 77.68 77.44
ReF.UP n.a. 45.15 78.97 79.13

Table 6: Overall labeled F1-score for the four trained
parser models on the test data, excluding virtual root
nodes. Training and test trees are modified as described
in Section 3, and models are only evaluated on test data
that follows the same syntactic annotation scheme as the
training data.

els is only about 70%. For phrases, the reduction is
even larger with F1-scores below 40% for phrases
of twenty or more words. This observation may,
in part, explain the lower results for the DTA be-
cause, proportionally, this data set contains about
twice as many phrases of twelve or more words than
the other corpora due to many dedications and very
long phrases with coordinations and dominated sen-
tences, e.g. in legal texts. A parser that performs
better on larger constituents thus might be better
equipped to analyze this data set.
Table 7 reports the parser results broken down

by phrase types. Here, each category is evaluated
separately and one unit may thus appear in two cate-
gories, e.g. as a false negative PP and a false positive
NP as exemplified above. For most data sets, the
highest F1-scores are reached for adverb and noun
phrases. While the former are usually very short
and therefore easier to identify, noun phrases and
prepositional phrases often contain pre- and/or post-
nominal modifiers including longer constituents like
relative clauses that lead to errors in the parser out-
put. Adjective phrases are the least frequent phrase
type and, although they tend to be short, also show
the least accurate results for more than half of the
data sets. Often they get mixed up with neighbor-
ing adverbs because a lexicalized model would be
necessary to distinguish between pre-modifying ad-
verbs as in example (3) and a separate adverb phrase
in (4).

(3) Sie war [AP sehr/ADV glücklich/ADJD].
She was very happy.

(4) Sie war [ADVP gestern/ADV] [AP glück-
lich/ADJD].
Yesterday, she was happy.

Finally, Table 8 shows the distribution of error
types for the best parser models. For all test sets,
boundary errors are by far the most frequent er-
ror types with a proportion of 52% to 66%. The

Corpus NP PP AP ADVP
TüBa-D/Z 89.03 83.26 86.99 91.40
Tiger 86.60 79.28 75.80 82.35
Modern 87.35 76.37 80.60 79.94
Mercurius 77.96 70.47 62.61 82.59
ReF.UP 82.72 75.21 63.31 81.77
HIPKON 80.49 77.62 60.00 84.49
DTA 66.53 64.98 67.98 72.06

Table 7: Overall F1-scores for each phrase type (in per-
cent) for the best performing parser model on each data
set.

Corpus FP LE BE LBE FN
TüBa-D/Z 22.47 0.96 62.85 0.75 12.97
Tiger 20.15 1.08 59.22 1.15 18.41
Modern 19.12 1.99 64.34 0.40 14.14
Mercurius 26.84 1.23 51.94 1.49 18.50
ReF.UP 22.74 1.53 53.20 1.23 21.30
HIPKON 20.00 3.03 66.36 1.21 9.39
DTA 17.73 1.01 60.91 2.47 17.88

Table 8: Proportion of the five error types: false posi-
tives (FP), labeling errors (LE), boundary errors (BE),
labeling-boundary errors (LBE), and false negatives (FN).
Numbers are given in percent for the best parser model
on each data set.

remaining errors are mostly traditional false posi-
tives and false negatives, while labeling and labeling-
boundary errors are rare. Considering that the iden-
tification of phrases with almost correct boundaries
may still satisfy the requirements of certain tasks as
discussed above, this can thus be assumed for more
than half of the errors. Furthermore, the results
suggest great potential for improvement because the
high percentage of boundary errors means that the
parser already identified these phrases, and correct-
ing boundaries could potentially lead to significant
increases in precision.

6 Discussion

The present study has explored the automatic recog-
nition of phrases in historical German. Two tools
that proved successful in previous studies on chunk-
ing and topological field parsing were selected and
trained on modern and historical treebanks. The
evaluation has shown that the Berkeley parser out-
performs the neural CRF-based sequence labeling
tool NCRF++ on all data sets, reaching overall F1-
scores of 87.8% to 91.3% on modern German and
73.7%–85.1% on different historical corpora. Pars-
ing results are most accurate for simple phrases
while scores decline with increasing phrase length.
Since the majority of errors turn out to be boundary
errors, the results leave room for further improve-
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Figure 3: Average F1-score of the four parser models for the recognition of constituents and phrases of sizes 1–25.
The number of constituents includes all constituents of the given sizes in the test sections of the four training corpora.
The number of phrases refers to phrases of the four types in the seven test sets.

ment of annotation precision.
Interestingly, the inclusion of historical training

data improves the results of the parser, whereas the
sequence labeling tool did not benefit from it. One
possible explanation could be too much variation in
the data due to the non-standardized spelling in his-
torical German, which does not affect the unlexical-
ized parser. Future studies could experiment with
spelling normalization, which was observed to im-
prove the annotation results of modern NLP tools
for parsing Middle English (Schneider et al., 2015)
or tagging historical German (Bollmann, 2013) and
Dutch (Tjong Kim Sang et al., 2017).
The normalized data could then also be used

to explore lexicalized parsing, e.g. with the neu-
ral Berkeley parser (Kitaev and Klein, 2018). Al-
though parsers do not necessarily need lexical in-
formation for good performance (Coavoux et al.,
2019), studies on modern English show that the
application of neural parsing methods in combina-
tion with pre-trained word embeddings can further
improve the results (cf. e.g. Vilares and Gómez-
Rodríguez, 2020). For morphologically more com-
plex languages like German, this should be even
more relevant (Fraser et al., 2013) and could also
help in cases where lexical information is necessary
to decide about the correct phrase boundaries.
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Abstract

With the increasing importance of social me-
dia in everyone’s life, the risk of its misuse
by criminals is also increasing. In particular
children are at risk of becoming victims of on-
line related crime, especially sexual abuse. For
example, sexual predators use online groom-
ing to gain the trust of children and young
adults. In this paper, a two-step approach using
a CNN to identify sexual predators in social
networks is proposed. For the identification
of a sexual predator profile an F0.5 score of
0.79 and an F2 score of 0.98 were obtained.
The score was lower for the identification of
specific line which initialized the grooming pro-
cess (F2 = 0.61).

1 Introduction

The importance of social networks in today’s so-
ciety is constantly growing. More and more chil-
dren and young people are turning to digital forms
of communication. Studies from Germany show
that 71% of children between the ages of 6 and
13 actively use the Internet, and the trend is rising
(Feierabend et al., 2020b). The situation is similar
for young people between the ages of 12 and 19
(Feierabend et al., 2020a). In one study, 97% of
the teenagers surveyed said they used the Internet
every day or at least several times a week (Feier-
abend et al., 2020a). Those developments provide
new opportunities for sex predators to gain access
to minors, for example, through online grooming.

The Austrian Federal Criminal Police Office
(Bundeskriminalamt, 2015) defines online groom-
ing as the targeting of children and young people on
the Internet with the aim of establishing sexual rela-
tionships. It is a special form of sexual harassment
that can lead to physical and sexual abuse. The
contact is initiated via the Internet, for example via
social media or online video games.

In child online grooming an adult predator uses
means of online communication in order to gain
access to and trust from a minor in order use the
minor for sexual purposes (Wachs et al., 2012).

In many countries, cyber grooming is legally
considered a criminal offense. In the U.S., for
example, 18 U.S. Code § 2422 criminalizes on-
line grooming. In 2011, the European Parlia-
ment passed Directive 2011/92/EU, which obliges
member states to enact corresponding legal reg-
ulations, including on criminal prosecution. In
Germany the criminal law aspect was regulated in
§ 176/IV StGB.

In an effort to contain such sexual offenses
software to identify potential predators is devised
(Inches and Crestani, 2012). That kind of Soft-
ware is supposed to be a preventive measure whose
forensic/criminalistic benefit lies in assisting the
day-to-day police work and even possibly prevent-
ing sexual offenses from happening. The goal is
to reduce the expenditure of time needed to iden-
tify a potential sexual predator on social media.
(Villatoro-Tello et al., 2012; Peersman et al., 2012)

In addition, to support law enforcement, the de-
tection of chats with criminal content and the mark-
ing of relevant text lines is necessary. Therefore,
this work will primarily focus on these two tasks.
The first task is to detect suspicious chats and dis-
tinguish them from inconspicuous chats in order
to identify the most likely sex offender within the
suspicious chat. Subsequently, the offending lines
can then be identified.

One contribution of this paper is classification
approaches that enable both automatic detection
of conversations and chats involving potential sex-
ual predators, and conversation threads that exhibit
distinct offender behavior. This is based on a two-
stage approach that includes a CNN as a mecha-
nism for selecting useful lexical features and an
MLP as a classifier. It is shown that the use of the
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CNN can significantly improve the results.
The development and evaluation of the presented

approaches were based on the dataset provided
as part of the International Sexual Predator Iden-
tification Competition at PAN-2012 (Inches and
Crestani, 2012). In contrast to this competition, a
main focus of this work is the detection of chats
with potential sex offenders. Therefore, this dataset
had to be annotated with additional annotations
based on the tagged chat participants. In the ab-
sence of a suitable ground truth for developing a
solution to detect the relevant lines within a chat, a
gold standard was developed as an additional con-
tribution to be made available for research purposes
in collaboration with the owner of the data.

This paper is organized as follows: At first we
present some related work in Section 2, followed by
an overview of the data and methods used for this
paper in Section 3 and 4. In Section 5 we discuss
our results and finally conclude with Section 6.

2 Related Work

Sexual predator identification in social networks as
a generic text classification problem is often solved
by the use of machine learning. There are numer-
able publications related to grooming on social net-
works. Often, however, not the chat/conversation
itself, but only the messages or the authors are clas-
sified (Villatoro-Tello et al., 2012; Pendar, 2007;
Morris and Hirst, 2012; Mcghee et al., 2011; Eriks-
son and Karlgren, 2012).

Assuming that police investigators manually re-
view all the results, the classification of conversa-
tions can reduce the amount of chats an investigator
hast to read and, thus, reduces the time spent on the
investigation. They would only have to reprocess
a fraction of all the conversations, namely those
that most likely contain a sexual predator. In previ-
ous works, if a chat classification was carried out,
it represented only an intermediate step or a pre-
filtering in order to identify the predator (author)
(Villatoro-Tello et al., 2012; Cardei and Rebedea,
2017).

In 2012 the Sexual Predator Identification com-
petition, that was part of PAN 1, dealt with the iden-
tification of sexual predators in social networks.
The best results were achieved by exercising a
so-called Two-Step-Classification (Villatoro-Tello
et al., 2012; Morris and Hirst, 2012; Peersman et al.,

1A series of scientific events and shared tasks on digital
text forensics and stylometry. https://pan.webis.de/

2012; Cardei and Rebedea, 2017). At first the Sus-
picious Conversation Identification (SCI) is used
to sift out conversations featuring potential preda-
tors and, afterwards, the Victim from Predator Dis-
closure (VFP) is applied to classify the conversa-
tionalists (Villatoro-Tello et al., 2012). The win-
ning paper by Villatoro-Tello et al. (Villatoro-Tello
et al., 2012) tested both support vector machines
(SVM) and neural networks (NN), each with a bi-
nary and tf-idf weighted Bag of Words (BoW) (with
117015 elements) as input. The SVM with a tf-idf
weighting as SCI was able to achieve slightly better
results on the validation data, with an F0.5 mea-
sure of 0.9516, than a neural network (Villatoro-
Tello et al., 2012). A later approach, also using an
SVM, this time with a sequential minimum opti-
mization, achieved an F0.5 measure of 0.938, using
a BoW with 1000 words as well as behavioral and
interactive-behavioral features (Cardei and Rebe-
dea, 2017).

This work differs from previous work in this area
in particular in that it focuses primarily on chat and
relevant line classification rather than author classi-
fication. To accomplish this, a multilayer percep-
tron (MLP) is used to classify the conversations, as
this form of neural network has performed well in
text classification in the past (Villatoro-Tello et al.,
2012).

Generally, the examined features can be divided
into lexical and behavioural features. Some ap-
proaches exclusively used lexical features (Pen-
dar, 2007; Mcghee et al., 2011; Villatoro-Tello
et al., 2012), most in form of a bag-of-words model
(Villatoro-Tello et al., 2012; Morris and Hirst, 2012;
Cardei and Rebedea, 2017) and sometimes ex-
tended through the tf-idf weight (Pendar, 2007;
Villatoro-Tello et al., 2012; Morris and Hirst, 2012).
For the purpose of extracting lexical features we
utilized a convolutional neural network (CNN). Un-
til now, in most cases, the terms and conditions of
lexical features had to be initialized by the author,
for example, in the form of dictionaries. Typically,
these dictionaries contain terms that are unique for
sexual predators. By using a convolutional layer
to extract the lexical features, the network itself
should learn which n-grams and phrases are rel-
evant to distinguish between sexual predator and
non-predator chats. In this way, not only terms
from the vocabulary of sex offenders are learned,
but also frequently used phrases of their chat part-
ners and chats of non-offenders.
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In order to improve the classification additional
behavioral features were used (Morris and Hirst,
2012; Eriksson and Karlgren, 2012; Cardei and
Rebedea, 2017), which ranged from the response
time in conversations (Morris and Hirst, 2012) to
the number of asked questions within a single mes-
sage (Cardei and Rebedea, 2017). Results showed
that lexical features are very important for iden-
tifying relevant conversations, while behavioral
features have less of an impact (Cardei and Rebe-
dea, 2017). In addition to the lexical features we
surveyed different combinations of behavioral fea-
tures, some of which are newly developed and oth-
ers of which have been applied in previous works,
including sentiment analysis (Liu et al., 2017).

In order to identify the suspicious lines in con-
versations, those that show a distinctive predator
behavior, dictionaries were used primarily (Mcghee
et al., 2011; Peersman et al., 2012). Another ap-
proach looked at the so-called predatoriness score,
which is calculated from the summed weights of
the uni and bi-grams contained in the message, de-
termined by a linear SVM (Morris and Hirst, 2012).
The best outcome for suspicious line detection so
far was achieved through first classifying the au-
thors and then, if they were flagged as a predator,
returning all their lines, which resulted in an F0.5
measure of 0.4762 (Popescu and Grozea, 2012).
Another approach involved the use of a pre-trained
classifier to sort the messages (Mcghee et al., 2011).
In order to identify the distinctive lines in conver-
sations we labeled each message to generate a gold
standard and trained a CNN, besides testing a new
“line-feature”. To the best of our knowledge, no
publicly available ground truth currently exists for
the training data for this specific task. Therefore,
providing a gold standard generated by two inde-
pendent annotators is one of the new contributions
of this paper. In order to drive research in this area,
it will be made available in cooperation with the
data’s owner.

3 Data

The data used in this paper was provided by the
2012 Sexual Predator Identification competition
(PAN) and together the data sets consist of 222,055
conversations. Within these conversations a sex-
ual predator can communicate with a potential vic-
tim or non-predators can converse with each other.
The former could resemble a suspicious message,
which indicates a predator behavior, in composi-

number of conversations
overall w/o pred. with pred.

before 155,128 151,391 3,737
after 20,788 19,145 1,643

number of authors
overall w/o pred. with pred.

before 218,702 218,448 254
after 35,023 34,794 229

Table 1: Test data before and after preprocessing

tion or content. However, predators can also write
about mundane topics. Therefore, the number of
conversations with suspicious messages is limited
to less than 4% in this data set to ensure a realistic
scenario. (Inches and Crestani, 2012)

Preprocessing was used so as to counterbalance
the dataset (Table 1).

3.1 Preprocessing of the Data
The reduction and normalization of the data set
were required to further analyze the data. There-
fore, all conversations who met at least one of the
following conditions were removed from the data
set:

• more than four participants (authors), because
predators do not take part in such conversa-
tions

• only one participant (author) (Villatoro-Tello
et al., 2012), since one-sided conversations
seldom represent suspicious behavior

• each participant sent less than five messages
(Villatoro-Tello et al., 2012), assuming that
relevant predator behavior is better detectable
after “getting acquainted”

• blank conversations, since no text can be ana-
lyzed

Additionally, all messages that contained im-
ages made from characters were removed as well
(Villatoro-Tello et al., 2012) since they only create
static and do not provide usable information. These
messages include those which are longer than five
rows and those whose ratio between symbols and
letters is greater than 45%.

Normalizations were made in regard to spelling
out abbreviations and the consistent uncapitaliza-
tion of all letters (Eriksson and Karlgren, 2012).
Emoticons were extracted through SoMaJo (Proisl
and Uhrig, 2016) and Emot (Shah and Rohilla,
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2018) and afterwards each existing emoticon was
assigned an ID in the form of $[1-9]{3}-[a-z]{3},
which improved the detection as well as the differ-
entiation of the individual emoticons. In addition,
some preprocessing steps required a normalization
of XML special characters.

3.2 Preprocessing of the CNN-input
The CNN-input requires the depiction of texts and
words in a machine-readable format. Therefore,
all words were lemmatized at first. Afterwards, a
dictionary was compiled wherein every word got
a corresponding ID and unknown words were as-
signed the ID null. Conversations or messages were
portrayed as a list of one-hot vectors with minor
density for each occurring word and brought to the
same length by means of padding.

3.3 Preprocessing for the line identification
The data provided by the International Sexual
Predator Identification competition at PAN-2012
did not include a ground truth for the identification
of messages/lines. So, in order to test our super-
vised learning approach we had to generate our
own ground truth by labeling the data manually.
Therefore, the training data set was divided into
multiple parts and assigned one of the following la-
bels, which are inspired by Peersmann et al. (Peers-
man et al., 2012) and McGhee et al. (Eriksson and
Karlgren, 2012):

0 - irrelevant

1 - sexual theme:

· (erogenous) body parts
· sexual acts
· sexual oriented adjectives, nouns or terms

of endearment
· inquiries regarding clothing, especially un-

derwear (“[. . . ]what are you wearing”,
“what kind of panties do you have on?”)

2 - paraphrasing sexual topics with non-sexual
terms:

· characteristic words: “teach”, “play”,
“learn”

3 - meeting in person:

· requests to meet in person, video-chat or
call

· characteristic words: “meet”, “call”

4 - requests for (personal) information:

· pictures, videos, phone number, webcam,
address, ...

· characteristic words: “webcam”, “cell”,
“pic”, “address”

5 - inquiries about parents, friends, etc. or police:

· securing privacy, so that nobody finds out
about the chat or planned actions

· (e.g., “you just cant tell anyone ok”, “[. . . ]
make sure you delete this stuff”, “who is
home with you now”)

6 - age references:

· child-oriented vocabulary and pet names
(e.g., “cutie pie”, “princess”)

· statements about age or age differences (e.g.,
“you know im older”)

· aware of the culpability (e.g., “your to
young ill get in trouble lol”) (Peersman
et al., 2012)

This labeling process was repeated, so that each
section was evaluated by two different persons and
thus the unrelated assessments resulted in a Co-
hen’s Kappa of 0.78742. In some cases, when the
labels didn’t concur, a third person had to reevalu-
ate the messages.

4 Methods

The “Suspicious Conversation Identification”, here-
after referred to as SCI, is the main focus of this pa-
per. The SCI separates conversations depending on
the participation of sexual predators. Since the data
provided by the International Sexual Predator Iden-
tification competition at PAN-2012 is labeled on an
author basis the following ground truth is applied to
the SCI: Every conversation that contains a sexual
predator is denoted as a predator-conversation. The
“Victim from Predator Disclosure”(VFP) was tested
as an addition. It takes the conversations, returned
by the SCI, as input and is supposed to distinguish
between sexual predators and other authors (e.g.
potential victims). Therefore, author-conversation-
pairs were created in order to behold each author
in every one of his conversations. The VFP was
trained on all the conversations that contained at
least one predator. Finally, the amount of authors
across all conversations that classified as a sexual
predator constitutes the end result.
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4.1 Classifier

The SCI/VFP classifier is made of two fundamental
components, the feature extractor and the actual
classifier (Figure 1).

The feature extractor is composed of a CNN
which is trained to extract relevant n-grams for the
following classification using temporal max pool-
ing. The CNN input consists of texts in the form of
one-hot vectors (Input 1). In order to display the
similarity between words with regard to their con-
text an embedding layer was integrated ahead of
the convolutional layers. In this experimental setup
always 40 of the 1-, 3-, 5- and 7-grams were ex-
tracted through an one-dimensional convolutional
layer. Other lexical/behavioral features were used
as an addition to this feature (cf. Subsection 4.2)
(Input 2).

The actual classifier is an MLP that consists of
two fully connected dense layers. The first dense
layer had a size of 20 units, the second had only
one unit and served as an output layer. At last the
result was scaled to a value between 0 and 1 by a
sigmoid function. As a manner of regularization
a dropout layer was employed between the layers
with a threshold of 0.5.
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Figure 1: Classifier architecture.

4.2 Feature

The SCI as well as the VFP are based on lexical
(LF) and behavioral or conversation based features
(BF). The SCI relies on the first feature set (Ta-
ble 2), which contains conversation-dependent at-
tributes. The second feature set (Table 2) provides
the foundation for the VFP. The latter contains
similar features to the SCI, which were adjusted
to be author-dependent rather than conversation-
dependent.

The aforementioned features are based on the
corresponding papers (cf. Table 2 ) and were im-
plemented as follows:

Time of conversation start (TC): The time at
which the conversation starts was represented as a
figure that was rounded to the nearest whole hour.
Every hour is represented two-dimensionally by an
x- and y-coordinate in the unit circle so as to obtain
a sound result during the change of days.

Duration of a conversation (DoC): For each con-
versation the duration of a conversation (in minutes)
resulted from the difference between the time of
the first and last messages.

Number of asked questions (NQ): The number
of asked questions was made up of the percentage
amount of messages per conversation (feature set
1) or else the amount of messages per author for
each conversation (feature set 2) that contained
questions. The amount of questions per author for
every conversation was determined as well.

Number of messages (NoM): The total number
of messages was defined as the amount of sent mes-
sages per conversation (feature set 1). In order to
identify how dominant an author is in a conversa-
tion the percentage amount of messages per author
for each conversation was determined (feature set
2).

Number of used emoticons (NoE): For each au-
thor the number of used emoticons was counted
per conversation utilizing the emoticon-IDs. On
the one hand the average number of emoticons per
message was calculated for each author, on the
other hand the amount of emoticons used by an
author compared to the total amount of emoticons
in the conversation was determined.

Response time (RT): The response time resulted
from the difference between the point in time (in
minutes) at which a message was sent and the mo-
ment the following message arrived in the conver-
sation. For each conversation the mean response
time was determined by calculating the sum over
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feature set 1

time of conversation start
duration of conversation
# of asked questions (Morris and Hirst, 2012; Cardei and Rebedea, 2017)
# of messages (Morris and Hirst, 2012)
sentiment analysis (Liu et al., 2017)

feature set 2

# of asked questions (Morris and Hirst, 2012; Cardei and Rebedea, 2017)
# of messages (Morris and Hirst, 2012)
# of used emoticons (Morris and Hirst, 2012)
response time (Morris and Hirst, 2012; Cardei and Rebedea, 2017)
conversational initiation (Morris and Hirst, 2012; Cardei and Rebedea, 2017)
# of words per author (Morris and Hirst, 2012)
sentiment analysis (Liu et al., 2017)

Table 2: Used feature sets (behavioural)

all response times for all authors.

Conversational initiation (CI): The conversa-
tional initiation describes which author begins a
conversation by sending the first message. Those
authors got the value 1 assigned to this feature,
other authors got the value 0.

Number of words per author (WA): The word
count was defined by the average number of words
used in a message by an author. In order to identify
the level of participation in a conversation the word
count for an author in a conversation was divided by
the total word count for that specific conversation.

Sentiment analysis (SA): The sentimemt anal-
ysis feature was tested through four different ap-
proaches. The first attempt dealt with the Sen-
tistrength tool (Thelwall et al., 2010a), a program
that returns values between -1 (not negative) and -5
(very negative) or values between 1 (not positive)
and 5 (very positive) in order to score the various
sentiments. This entire analysis was based on a dic-
tionary which also took misspelling and negations
(e.g. “not nice”) into consideration. In addition, a
list of boost-words was integrated, whose words,
like “very” or “extremely”, could amplify the level
of positivity/negativity of the sentiment (Thelwall
et al., 2010b). The second attempt utilized a similar
program, TextBlob, which was based on a dictio-
nary as well. However, the returned score only
regards the adjectives that were used and lies be-
tween -1 and 1 (Sohangir et al., 2018). The last two
attempts did not apply premade tools and trained
classifiers instead, by using a data set of 6.3 mil-
lion tweets (Malafosse, 2019). Both were imple-
mented according to two existing works. On the
one hand, the classifier decided whether the senti-
ment was negative, neutral or positive, but not it’s

intensity (third approach) (Malafosse, 2019). On
the other hand, the classifier was trained in Ten-
sorflow (fourth approach) and returned four values
(negative, neutral, positive, mixed) for each text
input, which add up to 1 as shown by (Liu et al.,
2017).

In this paper, the performance of all features
(combined) was tested at first. Then, each feature
was surveyed on its own. The features that ob-
tained the best results on the training data were
occasionally combined and analyzed again. The
final results on the test data arise from those fea-
tures and feature combinations that achieved the
best performances on the training data.

4.3 Line identification
The analysis of lines that show a distinctive preda-
tor behavior was conducted under three different
rudiments:

1. Usage of the pre-trained CNN from the VFP:

• the CNN already learned distinctive
word patterns in order to identify a sexual
predator.

• single messages from the test data were
forwarded as input for the prediction.

2. Usage of a new CNN:

• a new CNN, whose training was based on
the generated ground truth, was created.

• this classifier used a similar architecture
to the SCI and VFP, but the second con-
catenate layer as well as the input were
omitted.

3. Usage of the new CNN in combination with
the line feature:
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• in addition to the, through the CNN ex-
tracted, n-grmas a new feature (line fea-
ture) was tested.

• the line feature is based on the assump-
tion that relevant messages are often
found in the middle of a conversation.
It refers to the message number in rela-
tion to the total number of messages in a
respective conversation.

• the architecture of the classifier is the
same as for the SCI/VFP.

5 Results and Discussion

For the purpose of detecting that epoch, which
delivers the best results without overfitting, the
overfitting-behavior was analyzed for each epoch
for the SCI classifier.

5.1 Sentiment analysis

The sentiment analysis ensued in different man-
ners (cf. Subsection 4.2). Our initial assumption,
that conversations with a sexual predator should
obtain positive sentiment scores more often than
conversations without a predator, was confirmed
through the sentiment analysis on a conversational
basis. As can be seen in Figure 2, conversations
with a sexual predator were to 65.97% positive and
conversations without a predator only to 37.66%.
Negative sentiment scores were more common for
non-predator conversations with 41.62%.

Therefore, our next assumption was that a sexual
predator would reach a sentiment score that was
distinctly more positive than that of a non-predator
(Liu et al., 2017), which couldn’t be confirmed
through the approach with Tensorflow. Accord-
ing to that the conversational partners of a sexual
predator acquired positive scores in 505 conversa-
tions, the predators themselves only in 409 conver-
sations. Thus the sentiment scores for predator/non-
predator don’t allow for a meaningful differentia-
tion.

So far all the tested approaches were nearly in-
distinguishable. Therefore SentiStrength was used
to attain the following results, because of it’s easy
handling and velocity.

5.2 SCI classification

Already, the lexical features, which were extracted
through the CNN, yielded sound results on the val-
idation data, which could be improved by joining
the behavioral features. The combination of lexical
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Figure 2: Sentiment values for predaror and non-
predator conversations (third approach) (Malafosse,
2019).

features and sentiment scores (Table 3) resulted in
an F0.5 of 0.9935. All the results so far are based
on a stratified 5-fold cross-validation.

Because of these findings a model that trained on
lexical features and sentiment scores was reviewed
on the test data. With a precision of 0.9982 and
a recall of 0.9349 the following F-measures repre-
sent the best outcome for a classification of sexual
predator chats to date: F0.5 of 0.9723 and F2 of
0.9469.

By reference to this procedure the number of
apparently relevant conversations was reduced to
1567, which corresponds to roughly 1% of all the
conversations that would have had to be screened
manually. Thereby, only 30 conversations were
classified as false-positives and 106 conversations
were classified as false-negatives. Unfortunately by
doing so 18 predators could not be identified. How-
ever, it is possible that the false negative classified
conversations are attributable to the method, which
was used to create the ground truth (cf. Subsec-
tion 4.1), where conversations with a sexual preda-
tor, that didn’t show suspicious behavior, were la-
beled as relevant.

5.3 VFP classification

The data returned by the SCI created the foundation
for the VFP, consisting of altogether 1537 preda-
tor conversations and 1567 non-predator conversa-
tions.

Similar to the SCI the lexical features constituted
a great prerequisite for further analyses based on
the training data results. In combination with one

143



Features Precision Recall F0.5

VT2012 - - 0.9516
CR2017 0.9380 0.9380 0.9380

LF 0.9600 0.9322 0.9541
LF + BF 0.9826 0.9874 0.9835
LF + SA 0.9935 0.9891 0.9926
LF + TC 0.9881 0.9891 0.9882
LF + DoC 0.9881 0.9907 0.9886
LF + CQ 0.9891 0.9814 0.9875
LF + NoM 0.9934 0.9820 0.9910

Table 3: Results for the SCI classification on the training
data compared to baseline results from (Villatoro-Tello
et al., 2012) (VT2012) and (Cardei and Rebedea, 2017)
(CR2017)

other behavioral feature significant improvements
could be reached compared to the union of all fea-
tures (Table 4). All results on the training data are
based on a stratified 5-fold cross-validation.

The four most expressive behavioral features
were then reviewed on the test data, either in combi-
nations or alone with the lexical features (Table 5).
Thereby, the conjunction of lexical features and
all four of the aforementioned behavioral features
achieved the best result with an F0.5 measure of
0.9169 and an F2 measure of 0.8916. 1466 author-
conversation-pairs were returned as relevant, 109
of them were false positives and 179 couldn’t be
detected (false negatives). In order to identify sex-
ual predators they have to be detected as such in
at least one of their conversations. Therefore the
end result is determined over all conversations to
obtain the exact amount of authors, classified as
predators (Table 6). Here the combination of lex-
ical features and the four aforementioned behav-
ioral features achieved the best result as well, with
an F0.5 measure of 0.7889 and an F2 measure of
0.9221. The number of classified sexual predators
was 213, an additional 70 were false positives and
solely 5 predators could not be identified at all.

The obvious difference between the two F-
measures is caused by the varying weight and the
relatively low precision. Due to the imbalance
of authors in the data set the 70 authors, who
were incorrectly classified as predators, are a pretty
small number compared to the overall 34,794 non-
predators. Whereas, compared to the low total
number of only 229 sexual predators, the 70 false
positives carry a considerable weight, thus causing
a low precision.

The usage of the two F-measures is justified
through their computation which goes along with

different assertions. F0.5-measure: In order to op-
timize the expenditure of time that investigators
need to find a potential sexual predator, it is better
to only have the “right” suspects rather than return-
ing every possible one (Inches and Crestani, 2012).
F2-measure: Since the investigators have to double-
check the results given by the classifier anyways,
it is better to have classified innocent authors as
potential suspects (false positives) rather, than to
miss out on an actual sexual predator. Therefore,
it is important to increase the weight of the recall
over the precision.

Features Precision Recall F0.5

LF 0.8689 0.8720 0.8693
LF + NoE 0.9279 0.9256 0.9273
LF + RT 0.9302 0.9147 0.9269
LF + CI 0.9297 0.9070 0.9249
LF + NoM 0.9290 0.9114 0,.252

Table 4: Best results for the VFP classification on the
training data.

Features Precision Recall F0.5 F2

LF + NoE 0.9042 0.8665 0.8964 0.8738
LF + CI 0.9201 0.8841 0,9127 0.8911
LF + RT 0.9162 0.8613 0.9047 0.8717
LF + NoM 0.9218 0.8750 0.9121 0.8840
all 0.9256 0.8835 0.9169 0.8916

Table 5: Results for the VFP classification on the test
data

Features Precision Recall F0.5 F2

VT2012 0.9804 0.7874 0.9346 0.8197
CR2017 1.0000 0.8180 0.9570 0.8489

LF + NoE 0.7241 0.9633 0.7620 0.9036
LF + CI 0.7276 0.9679 0.7656 0.9079
LF + RT 0.7376 0.9541 0.7727 0.9012
LF + NoM 0.7413 0.9725 0.7783 0.9154
all 0.7527 0.9771 0.7889 0.9221

Table 6: Final results for author classification over con-
versations compared to baseline results from (Villatoro-
Tello et al., 2012) (VT2012) and (Cardei and Rebedea,
2017) (CR2017).

5.4 Identifying suspicious messages

The results for the line identification (Table 7) were
determined by the given ground truth.

The third approach, a CNN that trained on the
self-created ground truth, combined with the line
feature (LiF), resulted in the best F3 measure of
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Features Precision Recall F3

PG2012 0.0915 0.8938 0.4762

CNN (VFP) 0.2472 0.7247 0.6074
CNN (GT) 0.4590 0.6971 0.6628
CNN + LiF (GT) 0.4653 0.7046 0.6702

Table 7: Final results for the line classification on the
test data, comparing the CNN used for the VFP with
the CNN trained on the self-created ground truth (GT)
and with the baseline results from (Popescu and Grozea,
2012) (PG2012).

0.6702, with a precision of 0.4653 and a recall of
0.7046. The same CNN without the line feature
(second approach) obtained a similar result with
an F3 measure of 0.6628. Those similarities imply
that the assumption, that relevant messages occur
more often in some paragraphs than in others, is
true, however, no significant improvements could
be reached.

The pre-trained CNN from the VFP (first ap-
proach) reached an F3 measure of 0.6074. Because
of its low precision with only 0.2472 and the greater
weighting of the recall the latter has a larger impact
on this F-measure.

The results of all three approaches show a greater
recall, compared to the precision, which could
be explained by the high count of messages that
were returned as relevant, regardless of whether
they were correctly classified or not. Nevertheless,
the approaches that were based on the self-created
ground truth (cf. Subsection 4.3) achieved a more
balanced relation between precision and recall.

Due to the different approaches used to solve this
task the results are difficult to compare. Notwith-
standing the above, all three of the aforementioned
approaches surpassed the existing results of the
Sexual Predator Identification competition at PAN
2012.

6 Conclusion

Both the results of the sexual predator conversa-
tion identification and the identification of relevant
messages have shown that a CNN can be of great
use in extracting lexical features in the form of
N-grams. With its help, the results known to us
could be exceeded in both areas. The result of the
SCI showed that a sentiment analysis in connection
with the lexical feature is very well suited to the
identification of sexual predator conversations and
achieved an F0.5 measure of 0.9723. Further tests
with feature combinations have not yet been con-

tinued. The tests of the VFP showed, however, that
the most successful features combined led to an im-
provement in the end result. Accordingly, a further
step would be to combine features of the SCI and
see whether this can lead to a further improvement.
Especially with the knowledge that other features,
such as the number of messages written by each au-
thor, showed similarly good results on the training
data as the sentiment analysis.

A possible exploratory approach with regard to
the VFP could be transfer learning based on the
neural network trained for the SCI. The learned
features of the SCI are used further and adapted
and interpreted for the identification of a sexual
predator.

When identifying the relevant messages, a newly
tested line feature in conjunction with the lexical
features was able to achieve the best results. The
CNN that was used for the extraction of lexical
features was trained on a self-created ground truth.
When annotating the lines, it was particularly no-
ticeable that some messages can be rated as relevant
in one context and as irrelevant in another. Only
the message “playing” in a sexual context would
be a clear word for “paraphrase of sexual topics
with non-sexual vocabulary” and thus relevant, but
not to be considered relevant in connection with a
hobby (sports). At the moment, each message was
rated individually without knowing what was pre-
viously written. Another sequence-based network,
such as an RNN, could possibly differentiate these
messages better.

References
Bundeskriminalamt. 2015. Schutz vor (cyber-

)grooming. Last accessed: August 14th, 2021.

Claudia Cardei and Traian Rebedea. 2017. Detecting
sexual predators in chats using behavioral features
and imbalanced learning. Natural Language Engi-
neering, 23(4):589—-616.

Gunnar Eriksson and Jussi Karlgren. 2012. Features
for Modelling Characteristics of Conversations—
Notebook for PAN at CLEF 2012. In CLEF 2012
Evaluation Labs and Workshop – Working Notes Pa-
pers, 17-20 September, Rome, Italy. CEUR-WS.org.

Sabine Feierabend, Thomas Rathgeb, Hediye Khered-
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Abstract

This paper investigates the use of first per-
son plural pronouns as a rhetorical device
in political speeches. We present an anno-
tation schema for disambiguating pronoun
references and use our schema to create an
annotated corpus of debates from the Ger-
man Bundestag. We then use our corpus to
learn to automatically resolve pronoun refer-
ents in parliamentary debates. We explore
the use of data augmentation with weak su-
pervision to further expand our corpus and
report preliminary results.

1 Introduction

Personal pronouns are an important rhetorical
device in political speeches that allow politicians
to shape their message to appeal to specific audi-
ences. Multiple functions of pronouns have been
described, such as creating a feeling of unity with
the audience (1.1), sharing responsibility (1.2)
or criticising others (1.3) (Beard, 2000; Bramley,
2001; Håkansson, 2012).

Example 1.1. Members of Congress, we must
work together to help control those costs (Bush
2004)

Example 1.2. We have increased our budget at a
responsible 4 percent (Bush 2001)

Example 1.3. the more we get involved with
other people, the more complicated our relation-
ships get (B. Clinton 2002) 1

Tyrkkö (2016) calls personal pronouns “one of
the primary linguistic features used by political
speakers to manage their audiences’ perceptions
of in-groups and out-groups”. This makes them
especially important for populist rhetoric where
the speaker evokes a dichotomous view of society,

1Two of the examples taken from Håkansson (2012).

us-versus-them (see, e.g., Mudde (2004); Mudde
and Kaltwasser (2017)).

While the practice of othering might seem to
be the most prominent feature of personal pro-
nouns in political discourse, another important
aspect also needs to be considered, namely their
referential ambiguity (Tyrkkö, 2016; Wales, 1996).
As stated by Allen (2007, pp.12),

“Shifting identity through pronoun
choice and using pronouns with am-
biguous referents enables politicians
to appeal to diverse audiences which
helps broaden their ability to persuade
the audience to their point of view. It
is a scattergun effect —shoot broadly
enough and you’ll hit something”.

While prior research on the interface between
corpus linguistics, pragmatics, discourse stud-
ies and political science has presented empiri-
cal findings based on word frequencies (Vuković,
2012; Tyrkkö, 2016; Alavidze, 2017), only few stud-
ies have tried to systematically investigate this
topic in more detail, i.e., by trying to measure the
agreement between human annotators for disam-
biguating the referents of personal pronouns in
political speeches, or by presenting large-scale
studies of the use of personal pronouns beyond
word frequencies.

This paper takes first steps in that direction by
means of an annotation study in which we classify
instancse of the first person plural pronoun wir
‘we’ in German parliamentary debates, using a
classification scheme with 9 different classes. We
report inter-annotator agreement for this highly
subjective task and analyse our disagreements.
We then present a preliminary analysis of our
data where we look into differences in the use
of we/us in political speeches, depending on (i)
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the speaker, (ii) the topic, and (iii) the speaker’s
party affiliation.

In the second part of the paper, we undertake
first experiments towards automatically predict-
ing the referents of first person pronouns in par-
liamentary debates. For that, we make use of
transfer learning, in combination with data aug-
mentation based on weak supervision (Ratner
et al., 2016, 2020). We show that our transfer learn-
ing approach brings substantial improvements
over a majority baseline while pretraining the
model on the larger, noisy data and fine-tuning
it on our manual annotations yields only small
improvements over training on the manual anno-
tations only.

2 Related Work

First person plural pronouns from a linguistic
perspective The reference of German wir, just
like that of English we, is quite variable. Following
the typology of Cysouw (2002), German wir as a
first person plural (1PL) form has multiple dis-
tinct uses: (i) minimal inclusive, consist-
ing of speaker and hearer (2.1); (ii) augmented
inclusive, adding third parties beyond the
minimal inclusive (2.2); (iii) exclusive, con-
sisting of the speaker and third parties, but ex-
cluding the hearer (2.3).

Example 2.1. Sollen wir morgen telefonieren?
‘Shall we talk on the phone tomorrow?’

Example 2.2. Kim kommt um 12 an. Sollen wir
dann Mittag essen gehen?
‘Kim will arrive at 11. Shall we go to lunch then?’
[all three of us]

Example 2.3. Wir gehen ins Kino. Was habt ihr
vor?
‘We’re going to the movies. What are your plans?’

In addition, special subtypes of uses may be
recognized. For English, Quirk et al. (1985) dis-
cuss a set of special (sub)uses that also occur with
German wir. For instance, a single author may
nevertheless use 1PL pronouns to avoid appear-
ing ‘egotistical’. Doctors (among others) may use
the 1PL pronoun in a a hearer-oriented way (e.g.
How are we feeling today?). Of greatest relevance
to our data are Quirk et al. (1985)’s generic uses
and their class of rhetorical uses where the pro-
noun refers to a collective such as ‘the party’, ‘the
nation’.

While linguistic analyses of pronouns often
simply view them as words with determinate ref-

erence to a deictically, anaphorically or cataphor-
ically available entity, pragmatic and discourse-
oriented studies of pronouns like ours focus on
their conceptual emptiness and the fact that their
referents must be inferred in context, with the
possibility of (un)intentionally ambiguous uses,
since individuals have multiple social, discursive
and interactional roles.

Corpus studies of 1PL reference Very close in
spirit to our work but operating on conversational
interactions and with categories appropriate to
that domain, Scheibman (2014) presents a study
on the reference of we in relation to predicate pat-
terns and pragmatic functions. The study coded
instances of we from the Santa Barbara Corpus
of Spoken American English for several features,
among them (i) the inclusive vs exclusive distinc-
tion, (ii) type of referent (e.g. family member, cou-
ple, classmates, human beings, etc.), (iii) tense of
predicate, (iv) modals present. The authors’ find-
ings suggest that different referential uses of first
personal pronouns may be distinguishable based
on contextual cues such as tense and modality.

Pronouns in political discourse Tyrkkö (2016)
presents a diachronic study of the use of per-
sonal pronouns in political speeches over two
centuries, showing shifts from a self-centric style
(marked by frequent use of I) towards the more
inclusive use of 1PL forms in the 1920s, which the
author ties to the emergence of broadcast media.
The study does not disambiguate 1PL forms but
counts all of them as inclusive.

Íñigo-Mora (2004) studies the use of we in 5
Question Time Sessions of the British parliament,
where MPs ask questions of government minis-
ters. She distinguishes what she calls exclusive,
inclusive, generic and parliamentary uses of we
and examines their distribution across different
combinations of interactants (opposition MP to
member of government; member of government
to opposition MP; member of government and
supportive MP (in either direction)).2 The fre-
quency distribution is interpreted along two di-
mensions: (i) power and distance and (ii) identity,
community and persuasion. Among the findings

2There is no generally agreed-upon terminology used to
distinguish uses of we, either in general or in the political or
parliamentary context. For Inigo-Mora the generic we refers
to "a kind of patriotic "we" that embraces all British people".
In the terminology of Quirk et al. (1985) this would be called
a collective use. In our annotation scheme, the uses at issue
would be labeled "COUNTRY".
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is that exclusive uses of we constitue the most
common type overall, accounting for 53.4% of all
tokens. Exclusive we is at its most dominant in
interactions from government supporting MPs
to opposition MPs (76.1%) while it is hardly ever
used in questions from opposition MPs to a mem-
ber of government, which is taken to reflect the
power dynamics. Inclusive uses of we were found
to be much rarer overall, making up 14.5% of all
tokens. None of these are uttered by opposition
members speaking to members of government,
while three quarters are produced between gov-
ernment supporting MPs and members of gov-
ernment, expressing shared identity. Opposition
MPs mostly use generic and parliamentary we,
thus affiliating themselves with the parliament as
a distinct branch of government and the country
at large, likely because that is where persuasion is
most likely to succeed. It is unclear to what extent
these results carry over to the plenary setting.

Non-parliamentary political discourse Stud-
ies of 1PL pronouns have also targeted other types
of interactions. Bull and Fetzer (2006) analyze the
use of you and we in tv interviews with British
politicians that were broadcast during the 1997
and 2001 British general elections and just before
the war with Iraq in 2003. The focus of the study
was on question-response sequences in which
politicians make use of pronominal shifts as a
means of equivocation to effect shifts of account-
ability and responsibility. Proctor and Su (2011)
examine the use of we by four (vice-)presidential
candidates in debates and interviews around the
time of the 2008 US election. The study focuses
on which groups are the referents of we and which
entities are picked out by possessive NPs of the
form our N, considering the results in light of the
candidates’ political stature and targeted office
as well as the differences between debate and in-
terview settings.

Politeness Finally, we note that quite a lot of
research on pronoun use exists in the area of po-
liteness, though this typically targets pronouns of
address. For instance, in a seminal study, Brown
and Gilman (1960) discussed the differences in
use between informal and formal second per-
son pronouns (such as German du and Sie) as
forms of address in terms of their association with
the dimensions of power and solidarity between
speakers. The authors argue that, while for a long

Party #Tokens #Annot #Spk per 1000
AfD 8,993 142 8 15.8
CDU/CSU 10,674 335 5 31.4
FDP 7,358 166 7 22.6
GRÜNE 7,457 136 5 18.2
LINKE 9,310 130 6 14.0
SPD 7,438 245 4 32.9
fraktionslos 797 9 1 11.3
Total 52,027 1,163 36 22.3

Table 1: Some statistics for the annotated testset
(#Spk: no. of speakers per party; per 1000: no. of
1PL pronouns per 1000 tokens).

time the form chosen was mainly determined by
power differentials, over time the choice came to
depend more on the factor of solidarity.

3 Annotation Study

3.1 Data

The data we use in our study are parliamen-
tary debates from the German Bundestag, cov-
ering a time period from Oct 24, 2017 to May
19, 2021.3 The corpus includes over 330,000 sen-
tences (>16,5 mio tokens), with political speeches
by 777 different speakers.

From the XML files, we extracted the individual
speeches and randomly selected a subset for man-
ual annotation where we tried to collect roughly
the same number of speeches/tokens for each
party (see table 1). This resulted in a testset with
36 speeches by different speakers (52,027 tokens)
where we manually disambiguated all instances
of first person plural pronouns (wir, uns, unser,
unsere, unseren, unseres, unsre) by classifying
them into nine predefined classes. We describe
our annotation schema below (§3.2).

3.2 Annotation schema

Table 2 and Table 10 in the appendix give an
overview over our classification schema. We as-
sume that references of we/us in parliamentary
debates can be assigned to a small number of dif-
ferent categories, such as “we, the PARLIAMENT”
or “our COUNTRY”, or “our political PARTY”. The
schema has been designed in a bottom-up, data-
driven fashion, using speeches from the Euro-
pean parliament and the German Bundestag for
schema development. We test our classification
schema in an annotation experiment and investi-
gate a) how well human annotators agree when

3The data is available in XML format from https://
www.bundestag.de/services/opendata.
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Class Description Example
BOARD Members of a board/ Wir haben heute im

commission/committee Untersuchungsausschuss erfahren
COUNTRY references to Germany/ Wir sind Weltmeister

all Germans Unser Grundgesetz
GENERIC generic uses that can be replaced Daran werden wir uns

by one (de: man) noch in 100 Jahren erinnern
GOVERN members of the government Wir haben die Arbeitslosigkeit bekämpft.
PARL members of the parliament Wir Abgeordnete...

Lassen Sie uns diesen Antrag heute beschließen
PARTY members of one specific party Wir Liberale haben schon früher...
PEOPLE groups of people defined by social Wie wir Älteren uns verhalten...

variables (age, profession, religion Wir Steuerzahler, Wir Christen,
and other shared characteristics ...) Wir Pendler, ...

SPECPERS groups of individuals or Wir beide haben darüber diskutiert
members of more than one group Wir, die deutsche und die israelische Regierung

UNION geo-political groups on a Wir in der EU...
supranational level (EU, NATO) Unsere Europäische Union...

Table 2: Overview of the annotation scheme for 1PL references in parliamentary debates.

disambiguating 1PL pronouns in political speech;
b) whether it is possible to automatically predict
the intended reference of personal pronouns in
parliamentary debates.

We expect that, as noted in section 2, a large
part of vagueness and ambiguity in political
speech is intended and will result in low IAA be-
tween some of the classes in our classification
schema. However, we also expect that some
classes (such as PARTY) are less ambiguous which
should be reflected in a higher agreement be-
tween the annotators.

3.3 Annotation

The annotators, two computational linguists,4

were presented with the speech texts where all
instances of 1PL pronouns were highlighted. The
task then consisted in assigning a label to each
pronoun.5 The annotators were only allowed to
assign exactly one label per instance.

Inter-Annotator Agreement (IAA) We report
Krippendorff’s α and percentage agreement for
two annotators on the 1,163 annotated instances.
Inter-rater agreement was quite high with 0.82 α.
Table 3, however, shows substantial differences
in agreement between the individual classes. We
obtained very high agreement for COUNTRY and
PARTY (> 90% F1) and slightly lower but still rea-
sonably high agreement for GOVERNMENT, PAR-
LAMENT and UNION (between 78−87% F1). For
GENERIC, PEOPLE and SPECIFIC_PERSONS, agree-
ment was substantially lower (58−66% F1). Those

4The data was annotated by the first two authors of the
paper.

5We used INCEpTION (Klie et al., 2018) as annotaton tool.

Class F1 Support
BOARD 0.0 1
COUNTRY 92.0 411
GENERIC 65.2 67
GOVERN 87.2 167
PARL 86.6 299
PARTY 90.6 103
PEOPLE 66.7 13
SPECPER 58.8 20
UNION 78.2 82
Total 86.1 1,163

Table 3: IAA (F1) and support (number of annotated
instances in the gold standard) for individual classes.

classes are also less frequent in the data. The re-
maining class, BOARD, was too rare in our testset
to report meaningful results (1 instance only).6

We kept this class despite its low frequency in the
Bundestag corpus, as we found it to be more fre-
quent in speeches from the European Parliament.

After the annotation was completed, the two
annotators discussed and resolved all disagree-
ments to create a ground truth dataset that we
used as evaluation data in our experiments (§6).

4 Data Analysis

We now present a preliminary analysis on our
manually annotated dataset where we focus on
differences in the use of 1PL pronouns across
politicians and parties.

Table 1 shows that the governmental parties
produce the most 1PL instances per 1000 words,
which makes sense given that their members can
choose between the greatest number of collective

6The confusion matrix for the annotations can be found
in the appendix, Table 11.

150



Party BOARD COUNTRY GENERIC GOVERN PARL PARTY PEOPLE SPECP UNION
AfD 0.0 (0) 6.0 (54) 0.6 (5) 0.0 (0) 5.1 (46) 3.4 (31) 0.4 (4) 0.2 (2) 0.0 (0)
CDU/CSU 0.0 (0) 11.4 (122) 2.1 (22) 9.6 (102) 5.0 (53) 0.5 (5) 0.3 (3) 0.4 (4) 2.2 (24)
FDP 0.0 (0) 5.7 (42) 1.6 (12) 0.0 (0) 6.1 (45) 5.2 (38) 0.0 (0) 0.5 (4) 3.4 (25)
GRÜNE 0.0 (0) 5.9 (44) 1.7 (13) 0.1 (1) 7.8 (58) 1.2 (9) 0.5 (4) 0.7 (5) 0.3 (2)
LINKE 0.1 (1) 7.1 (66) 0.9 (8) 0.0 (0) 3.7 (34) 1.7 (16) 0.2 (2) 0.0 (0) 0.3 (3)
SPD 0.0 (0) 10.6 (79) 0.9 (7) 8.6 (64) 8.1 (60) 0.5 (4) 0.0 (0) 0.4 (3) 3.8 (28)
frakt.los 0.0 (0) 5.0 (4) 0.0 (0) 0.0 (0) 3.8 (3) 0.0 (0) 0.0 (0) 2.5 (2) 0.0 (0)
Total 1 411 67 167 299 103 13 20 82

Table 4: Distribution of classes in the annotated testset (frequency per 1000 tokens and raw counts in brackets).

Figure 1: Principal Components Analysis (PCA): left figure shows the loadings for our class variables along the
first two components (PC1, PC2), right figure also plots the speakers for PC1 and PC2.

identities.

Table 4 shows the distribution of the different
classes across parties. As expected, only mem-
bers of the CDU/CSU and SPD, the two parties
involved in the government at the time of data
collection, used we to refer to the government.
Notably government MPs invoke their GOVERN
identity substantially more than their PARTY iden-
tity. By contrast, members of the opposition par-
ties refer more often to their own party, often to
criticise the government and to distinguish their
own policies from those of the government. This
is particularly true for the FDP and the AfD, and to
a lesser extent also for the LINKE and the GRÜNE.

All parties make frequent references to the par-
liament (PARL). The two parties in government,
however, use many more references to COUNTRY

than the opposition parties. This observation is in
contrast to the findings of Íñigo-Mora (2004) (see
Section 2) who found more pronoun references
to the country from members of the opposition.
We would like to stress that our data is not yet

large enough to produce representative results.
In addition, we would also expect an impact of
interaction type on the use of pronouns. Íñigo-
Mora (2004) investigated Question Time sessions
in the British parliament while we focus on ple-
nary speeches, which are longer, less interactive
and always have a mixed audience of supporters
and opponents, whereas Question Time (super-
ficially) addresses only one or the other. These
differences might be reflected in different com-
municative strategies and stylistic choices.

Another reason for the higher ratio of COUNTRY

references in speeches by members of the govern-
mental parties may be that their ranks include
key office holders such as the minister of foreign
affairs, whose topics tend to skew (inter)national.
To investigate this, more data is needed so that
we can control for the effects of office holders.

Figure 1 (left) shows the loadings for our class
variables along the first two dimensions of a Prin-
cipal Components Analysis (PCA), based on the
normalised frequency counts for the different
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class variables for individual speakers. The first
dimension (X axis) reflects 1PL pronoun refer-
ences to the government on the right-hand side
and to specific parties or the parliament as a
whole on the left-hand side. This opposition sep-
arates politicians from the governmental parties
from the ones from the opposition parties along
the first dimension (Figure 1, right).

Figure 1 (right) also seems to show topical ef-
fects as Lambsdorff, a member of the FDP and
the EU parliament, is positioned closest to the
vector showing the loadings of the UNION vari-
able. This might explain why he, as the only non-
governmental politician, is also positioned at the
right end of the first dimension. The politicians
that are positioned left-most on the first dimen-
sion are Weidel (AfD), Willkomm (FDP), Komning
(AfD) and Cotar (AfD). For the members of AfD, a
nationalist and right-wing party deeply opposed
to the European Union, it seems plausible that
they are positioned not only at the opposite end
of GOVERN but also of UNION. Further analysis is
needed to investigate this.

Figure 1 (left) also shows that while the two
classes PARTY and PARL are highly correlated
and in opposition to GOVERNMENT, the more
generic classes COUNTRY, GENERIC and PEOPLE

also seem to cluster together. This again seems
like a promising start for a more detailed analysis.
Once more data has been annotated, it will be
interesting to include the topic of the speeches in
the analysis. This can be easily done, either based
on the agenda of the debates or by using topic
models. At the moment, however, our data is still
too sparse for a more fine-grained analysis.

5 Training Data Augmentation

We now investigate whether and how well we are
able to resolve ambiguities in 1PL pronoun ref-
erences in parliamentary debates automatically,
using our small annotated dataset to train a su-
pervised ML system.

As our manually annotated dataset is too small
to expect high accuracies for automatic predic-
tion, we resort to data augmentation with weak
supervision. Our approach proceeds as follows.

We first extract text segments from parliamen-
tary debates from the German Bundestag (19th
legislative term) and remove the debates in the
test set from our unlabelled training corpus. Each
segment consists of a paragraph with multiple

Class #Pattern #Hits err/N
BOARD 1 7 0/7
COUNTRY 5 8,795 2/25
GENERIC 4 307 8/25
GOVERN 5 14,851 2/25
PARLIAMENT 4 3,339 2/25
PARTY 11 8,265 4/25
PEOPLE 1 230 19/25
SPECPER 4 106 3/25
UNION 4 540 3/25
TOTAL 40 36,433 43/203

Table 5: Distribution of distinct patterns per class
used for training data creation and number of hits for
each pattern. Last column shows no. of errors in N
randomly sampled pattern instances.

sentences, as annotated in the xml files. Please
note that we do not assign labels to segments but
to instances of 1PL pronouns in the segments. We
then apply a set of predefined patterns to iden-
tify instances of 1PL pronouns for each class in
our annotation scheme. With the help of these
patterns, we assign labels to the unlabelled train-
ing corpus and can now use this data to train a
supervised ML system for pronoun disambigua-
tion. Below we explain the different steps in more
detail.

Patterns For pattern extraction, we make use of
the spaCy DependencyMatcher which provides
a flexible and efficient framework for defining
search patterns over dependency trees.7

We combine the spacy DependencyMatcher
with the Snorkel framework (Ratner et al., 2016,
2020), a programmatic approach to data augmen-
tation without manual labelling effort. Instead,
Snorkel provides an API that allows users to write
labelling functions that target specific labels in
the annotation scheme. Those functions can con-
sist of simple string matches but can also include
more sophisticated features by including the pre-
dictions of pretrained classifiers or information
from external knowledge bases. While these la-
belling functions are expected to have low cover-
age and might also introduce a certain amount of
noise, Snorkel addresses this problem by learning
an unsupervised generative model over the out-
put of the labelling functions, based on the (dis-
)agreements between the predicted labels. This
approach is similar in spirit to previous work on

7See https://spacy.io/api/
dependencymatcher. To generate the trees, we
use the German de_core_news_sm model also provided
by spaCy.
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quality estimation for annotations obtained from
crowdsourcing (Hovy et al., 2013). The output of
Snorkel is a set of probabilistic labels that can be
used as input to any supervised ML classifier.

Table 5 shows the number of patterns used for
each class and the number of hits, i.e., instances
extracted by each pattern from the unlabelled
training data. Please note that the number of
patterns is not very informative on its own, as
patterns can make use of regular expressions,
lemma lists and syntactic patterns over depen-
dency trees, thus allowing us to extract a larger
variety of diverse training examples than could
be obtained based on simple string matches.

As an example, consider the following patterns
used to extract labelled data for the PARTY class.
Our first pattern looks for instances of wir, uns
(we, us) directly followed by a party name. This
pattern can extract instances like Wir Grüne or
uns Liberale. Another pattern looks for instances
of wir as the subject of communication verbs like
kritisieren, hinterfragen (criticize, question) etc.,
as those are usually statements refering to spe-
cific parties from the opposition. A third example
relies on future forms of werden (will) in com-
bination with verbs of action, such as schaffen,
durchführen, investieren (accomplish, execute, in-
vest) to detect instances from the GOVERNMENT

class. This pattern would extract matches like
wir werden Arbeitsplätze schaffen ‘we will create
jobs’ or Mindestens 2 Mrd. EUR werden wir in den
sozialen Wohnungsbau investieren ‘We will invest
at least EUR 2 billion in social housing construc-
tion’.

The result of our pattern-based approach is
a silver standard corpus with more than 36,000
labelled instances. To get an impression of the
quality of the patterns, we randomly extracted
25 instances per class and manually inspected
them (last two columns in Table 5). While most
patterns seem to produce only a small amount
of noise, some categories were more problematic.
We found it particularly difficult to produce reli-
able patterns for PEOPLE and GENERIC which is
reflected in the low coverage and precision for the
two classes (see §6, Table 9).

6 Experiments

We now explore the potential of our automati-
cally created training set for disambiguating ref-
erences of personal pronouns in political debates.

wform class support DL
wir PARL (185/600) 9
unser COUNTRY (24/26) 2
Wir COUNTRY (65/240) 9
unserem COUNTRY (28/32) 4
uns COUNTRY (56/163) 8
unsere COUNTRY (25/42) 6
unserer COUNTRY (19/31) 7
unseren COUNTRY (7/11) 4
Uns PARL (1/2) 2
Unser COUNTRY (4/5) 2
Unsere COUNTRY (3/4) 2
unseres COUNTRY (6/6) 1
unsre COUNTRY (1/1) 1
Unsre COUNTRY (2/2) 1
Total (426/1163) Acc=36.6%

Table 6: Majority baseline, support and no. of distinct
labels (DL) per pronoun word form in the test set.

For that, we report results for three baselines and
then present transfer learning experiments where
we use our automatically created dataset for pre-
training and then fine-tune the model on the
manually created dataset.

B1: Majority Baseline Our first baseline assigns
each pronoun word form its most frequent label
(Table 6). This results in an accuracy of 36.6%.
The last column shows the number of distinct
labels (DL) per pronoun word form in the test set.
The three most frequent word forms can occur
with nearly any class (Wir, wir: 9 DL, uns: 8 DL),
thus showing the difficulty of this task.

B2: Rule-based Baseline Our second baseline
is a rule-based system that simply applies our
pre-defined patterns to the testset and labels
all matches with the respective labels. We use
Snorkel’s generative model (see §5) for resolving
ties between conflicting rules and report preci-
sion, recall and F1 for the rule-based approach.
Table 8 (B2) shows that while we obtain a reason-
able precision for some patterns (COUNTRY: 92%,
PARL: 91%, PARTY: 72%), recall is a huge problem.
For the two most difficult patterns, GENERIC and
PEOPLE, we obtain not even one correct match.

B3: Feature-based Classification Our third
baseline makes use of a conventional feature-
based approach to text classification. For that, we
consider the following features: (1) tf-idf ngram
features (unigrams, bigrams, trigrams) for the left
and right context of each 1PL pronoun, (2) the
word form of the pronoun, and (3) named enti-
ties in the left and right context of the pronoun.
We explored different settings for these features

153



setting value
left/right context size 20 tokens
bow unigrams yes
bow bigrams yes
bow trigrams no
tfidf yes
lemmatisation yes
stopwords no
feature selection yes (χ2)
num features 300
NER in left/right context no

Table 7: Feature settings used for B3 (feature-based
classification, Table 7).

in a 5-fold cross-validation setup and observed
best results for the feature values show in Table 7.
We tested different classifiers (linear SVM, Ridge
regression, SGD, decision trees, AdaBoost, Ran-
dom Forests) and found that linear SVM gave us
best results on our data (49.3% acc.).8 Table 8 (B3)
shows results for the linear SVM classifier. Results
for other models and settings were in the range
of 35-47% acc.

Transfer Learning Model Our model uses
a simple transformer architecture, based on
the sentence pair classifier implementation
of Simpletransformers9 and the pretrained
bert-base-german-dbmdz-cased
model.10 For details on parameter settings,
please refer to Table 12 in the appendix. The
motivation behind modelling personal pronoun
disambiguation as sentence pair classification
is that we want to make the model aware of the
pronoun’s left and right context. For that, we split
each instance into two sequences where the first
sequence encodes the left context of the pronoun
in question and the second sequence includes
the pronoun and its right context (see figure 2
below). Please note that our instances encode
paragraphs, not sentences, and that S1 and S2
can thus include more than one sentences. In
cases where the 1PL pronoun is positioned at the
beginning of the paragraph, S1 will be empty.

8The models have been implemented with scikit-
learn: https://scikit-learn.org/stable/
supervised_learning.html.

9https://simpletransformers.ai.
10The pretrained models are available from https://

github.com/dbmdz/berts.

Members of Congress , we must work ...
S1 S2

Figure 2: Setup for transfer learning using sentence
pair classification; S1 encodes the left context of the
1PL pronoun, S2 the pronoun and its right context.

Results for 5-fold cross-validation We now re-
port cross-validation results on our small, man-
ually annotated dataset (Table 9). As we do not
have enough data to create a representative val-
idation set for model selection, we report pre-
liminary results for all models (T1, T2, T3) after
25 epochs of training. This procedure has to be
taken with a grain of salt and will be addressed,
once we have more annotated data.

The results show that even a small number of
annotated instances yields substantial improve-
ments over the majority baseline (Table 6) and
accuracy increases from 36.6% to over 50%. The
results, however, are only slightly higher than the
ones for the SVM (Table 8, B2). Table 9, (T2)
shows results for merging the hand-annotated
data with the noisy labels. In order not to out-
weigh the manual annotations, we downsampled
the additional training data to at most 300 new
instances per class. This setting results in only
minor improvements (from 50.2 to 50.9% acc.).
In our third setting, we use the noisy labels for an
additional pretraining step before fine-tuning the
model on the hand-annotated data. This yields
another small improvement and increases accu-
racy to 51.8%.

Discussion The somewhat disappointing re-
sults for our data augmentation strategy might
have several reasons. First, it is conceivable that
we need to put more effort into creating a) more
precise and b) more diverse rules, and c) to im-
prove coverage. Results on a held-out dataset,
created by the same rule-based approach, show
that our model is perfectly able to learn the anno-
tations in the weakly supervised data, achieving
an accuracy of 97.6% on the held-out data. This
shows that despite our efforts to minimise lexical
cues and rely more on syntactic patterns, our aug-
mented training data is highly biased and does
not enable the model to learn good generalisa-
tions for each class.

While improving coverage for the rule-based
approach might ameliorate the problem, it is also
possible that the pattern-based approach is more
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B2 B3
Class #Gold #Hits TP Prec Rec F1 Prec Rec F1
BOARD 1 0 0 0 0 0 0 0 0
COUNTRY 411 37 34 92 8 15 53 72 61
GENERIC 67 0 0 0 0 0 35 10 16
GOVERNMENT 167 53 23 45 15 22 41 35 38
PARLIAMENT 299 11 10 91 3 7 47 56 51
PARTY 103 17 13 76 13 22 49 30 37
PEOPLE 13 2 0 0 0 0 0 0 0
SPEC_PERSON 20 1 1 0 6 11 0 0 0
UNION 82 2 1 50 1 3 45 16 23
Total 1,163 123 83 Acc = 7.0% Acc = 49.3%

Table 8: Results for rule-based baseline (B2) and for the feature-based classification baseline (B3) (precision,
recall and f1 for individual classes and acc. for all instances).

T1 T2 T3
Class #Gold Prec Rec F1 Prec Rec F1 Prec Rec F1
BOARD 1 0 0 0 0 0 0 0 0 0
COUNTRY 411 58 65 62 65 63 64 56 66 60
GENERIC 67 29 13 18 20 16 18 50 7 13
GOVERNMENT 167 40 36 38 40 47 43 40 4 7
PARLIAMENT 299 50 64 56 56 54 55 45 78 57
PARTY 103 56 36 44 52 54 53 43 32 36
PEOPLE 13 0 0 0 9 23 13 0 0 0
SPEC_PERSON 20 17 10 12 6 1 8 0 0 0
UNION 82 28 17 21 36 24 29 60 9 16
Total 1,163 Acc = 50.2% Acc = 50.9% Acc = 51.8%

Table 9: Results for 5-fold cross-validation for 3 transfer learning settings. T1: training on testset only; T2:
training on testset + augmented data; T3: pretraining on augmented data and fine-tuning on testset (precision,
recall and f1 for individual classes and acc. for all instances).

suitable for less ambiguous classification tasks,
such as spam detection or offensive language de-
tection, where we only have a small number of
classes that are more clearly divided and where it
is easier to create patterns with a high precision
and coverage.

7 Conclusions

In the paper, we investigated what kinds of col-
lectives 1PL pronouns refer to in parliamentary
debates. To this end, we developed an anno-
tation scheme that assigned references to one
of nine categories and explored how well hu-
man annotators agree when assigning those cate-
gories. Our annotation study showed a substan-
tial agreement of > 0.8α between two human
raters. We then presented a preliminary analysis
of the use of 1PL pronouns as a rhetorical de-
vice and pointed to some crucial differences be-
tween the parties as well as between members
of the government and opposition parties. We
subsequently explored how well we are able to
automatically resolve ambiguous 1PL pronouns
in parliamentary debates, using transfer learning

and data augmentation. While our preliminary
results are promising, there is room for improv-
ment before we can apply our work to large-scale
analysis of pronoun references in political text.

In future work, we plan to improve the accu-
racy of 1PL pronoun resolution by creating more
training data, but also by improving the model
itself. Possible ways to do so include providing
the model with more information on the speaker,
such as the speaker’s name, party affiliation or
whether or not the speaker is part of the govern-
ment. Other improvements might come from
jointly modelling 1PL pronouns in context, in-
stead of looking at them one at a time.
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Category Description Examples

COUNTRY

Refers to the country as a
geo-political unit or to all
citizens of this country.

TEST: can be replaced by
• "we Germans"
• "our country"
• "the German X"

Wir haben 2 Weltkriege verloren.
Wir sind Exportweltmeister.

Wir sind Papst.
Wir als nationale Schicksalsgemeinschaft.

Wir dürfen uns nicht vom Rest der Welt abschotten.
Unser Grundgesetz / unsere Demokratie

.

PEOPLE

Refers to a (possibly large) group
of people that are not defined
by their nationality but by shared
social variables or characteristics
such as age, gender, class, religion,
profession, ...
Also used for references to society
that are not limited to Germany as
a geo-political unit.

wie wir Christen uns verhalten
Wir als arbeitende Bevölkerung

Wir Älteren, Wir Rentner
Wir Steuerzahler, Wir Pendler

PARTY

Refers to members of a
specific party (including
coalitions of like-minded
parties, e.g., on the
supranational level)

Unser Antrag geht einen entscheidenden Schritt...
Wir werden diese Regierung weiter kritisieren.
Wir Liberale haben schon vor Jahren gesagt, ...

PARL

Refers to all members of the
parliament (also references
to both, government and
opposition)

Wir Abgeordnete sind vom Volk gewählt.
In diesem Haus debattieren wir heute...

Lassen Sie uns diesen Antrag heute beschließen.

GOVERN
Refers to all members of
the government

Wir haben entscheidende Schritte getan,
um die Digitalisierung zu fördern.
Wir haben Familien entlastet und

die Arbeitslosigkeit bekämpft

UNION

Refers to geo-political
groups on a supranational
level, e.g., the EU, the NATO,
etc.

Wir in der EU müssen zusammen einen Weg
finden, wie wir unsere Sicherheitspolitik gestalten.

SPEC_PERS
(GROUPS)

Refers to groups of specific
individuals or members of
more than one group

Sie haben die PKK und die YPG in einen Topf
geworfen, wir sind aber nicht deckungsgleich.

Frau Merkel und ich, wir haben darüber
lange diskutiert.

Wir, die deutsche und die israelische Regierung

GENERIC

Generic uses of we/us that can be
replaced by one/you (German: man/es
gibt) or unser/e can be replaced by diese.
We assume a generic reading if we/us
refers to the whole world/universe.

Das brauchen wir überall in der Welt
→ das braucht man überall...

In den letzten Jahren haben wir viel
über den Wandel der Gesellschaft gehört

→ hat man viel gehört über...
Woran wir uns noch in 100 Jahren erinnern werden

→ Woran man sich noch in...
die schwierigen Probleme unserer Zeit

→ dieser Zeit
In einer Welt, in der wir über 222 gewaltsam

ausgetragene Konflikte haben
→ in der es ... gibt

BOARD

Refers to members of a
board / commission / committee
/political organisation on the
subnational level (subgroups of
the parliament/government)

Wir haben im Untersuchungsausschuss
viel diskutiert...

Im Coronakabinett haben wir beschlossen...
Im Agrarausschuss haben wir ...

Table 10: Overview of the annotation scheme for 1PL references in parliamentary debates.
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A2
A1

BOARD COUNTRY GENERIC GOVREN PARL PARTY PEOPLE SPECPER UNION

BOARD 0 0 0 0 0 0 0 0 0
COUNTRY 0 385 8 4 14 3 1 3 12
GENERIC 0 4 46 1 13 0 2 0 1
GOVERN 0 7 1 146 8 7 0 1 4
PARL 1 8 14 2 248 0 2 4 4
PARTY 0 1 0 2 5 96 0 0 1
PEOPLE 0 1 2 0 2 0 11 0 0
SPECPER 0 0 0 0 0 0 1 10 0
UNION 0 1 2 4 0 1 0 2 61

Table 11: Confusion matrix for the manual resolution of referents of ambiguous pronouns in parliamentary
debates (A1: Annotator 1, A2: Annotator 2).

Name Value
attention_probs_dropout_prob 0.1
hidden_act gelu
hidden_dropout_prob 0.1
hidden_size 768
layer_norm_eps 1e-12
max_position_embeddings 512
num_attention_heads 12
num_hidden_layers 12
transformers_version 4.6.1
type_vocab_size 2
vocab_size 31102

Table 12: Parameters/settings used in our experiments.
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Abstract

Preprocessing is essential for creating more ef-
fective features and reducing noise in classifi-
cation, especially in user-generated data (e.g.
Twitter). How each individual preprocessing
decision changes an individual classifier’s be-
havior is not universal. We perform a series
of ablation experiments in which we examine
how classifiers behave based on individual pre-
processing steps when detecting offensive lan-
guage in German. While preprocessing deci-
sions for traditional classifier approaches are
not as varied, we note that pre-trained BERT
models are far more sensitive to each decision
and do not behave identically to each other.
We find that the cause of much variation be-
tween classifiers has to do with the interactions
specific preprocessing steps have on the over-
all vocabulary distributions, and, in the case
of BERT models, how this interacts with the
WordPiece tokenization.

1 Introduction

The task of abusive language detection has be-
come increasingly popular for a variety of lan-
guages (Zampieri et al., 2019; Basile et al., 2019;
Al-Khalifa et al., 2020). German specifically has
had two shared tasks on the topic, one in 2018
(Wiegand et al., 2018) and a second in 2019 (Struß
et al., 2019).

Not only is offensive language detection some-
what subjective in nature, particularly in the need
for contextual requirements, but is often examined
through user generated mediums, creating another
layer of complexity to successfully identify possi-
ble abusive language. Often, in order to create more
useful features out of the text for the classifier, we
must first treat the text to reduce the noise. While
for standard feature generation via count vectors
the impact is far more obvious (e.g. reduction of
feature space), even when we feed a dense vector

representations to a classifier (e.g. a sentence em-
bedding), that embedding still represents the textual
representation, simply in an alternative way. Thus,
it too is influenced by individual alterations to the
text. With languages that show large variation in di-
alect preferences and orthographic representations,
this has been shown to be particularly important
(Husain, 2020).

Twitter has proven to be a typical source for not
only research on offensive language, but also neces-
sitating additional preprocessing approaches given
its different style of communication and lexicon.
In this work we look to perform a set of ablation
experiments in which we evaluate how different
preprocessing techniques impact classifier behav-
ior over three different approaches to classification
when detecting offensive language in German Twit-
ter. We seek to answer the following questions:

1. How do different preprocessing techniques
influence performance across different classi-
fiers?

2. Can we identify features within different pre-
proccesing techniques that can help explain
specific classifier behaviors?

2 Related Work

2.1 Data

Ross et al. (2016) introduced a Twitter corpus of
offensive language detection, examining the 2015
refugee crisis. They predominantly focused on
user’s perceptions of hate speech and the reliability
of annotations. They found that agreement among
annotators was relatively low and that also the opin-
ions of users asked in a survey diverge greatly
and thus stress the necessity of specific guidelines.
However, even with such guidelines, annotators can
still show large differences (Nobata et al., 2016).
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Task 2 of the GermEval 2018 shared task (Wie-
gand et al., 2018) focused on detecting offensive
and non-offensive Tweets and was further exam-
ined in GermEval 2019 (Struß et al., 2019).

A different approach was taken by Zufall et al.
(2019) who instead label offensive Tweets based on
whether they may be punishable by law or not. This
decision is based on two criteria: the type of target
and the type of offense. A Tweet may be punishable
if it is targeted at either a living individual or a
specific group of people, and if it expresses either
a wrong factual claim, abusive insults, or abusive
criticism.

2.2 Classifiers
Abusive language detection in German has shown a
great deal of variation across classifiers and feature
thresholds (Steimel et al., 2019). In the 2018 shared
tasks, SVMs were a popular choice (Wiegand et al.,
2018), achieving effective results. Popular features
include pre-trained word embeddings, mostly ei-
ther fastText (Bojanowski et al., 2017) or word2vec
(Mikolov et al., 2013), and lexical features based
on polarity lexicons or lexicons on offensive lan-
guage and effective results were achieved with only
a few hundred features (De Smedt and Jaki, 2018).
Other classifiers included standard Decision Trees
or Boosted Classifiers, but tended to yield slightly
worse performance (Scheffler et al., 2018).

The most effective approaches tended to use en-
semble classifiers: CNNs with logit averaging (von
Grünigen et al., 2018), a combination of RNNs and
CNNs (Stammbach et al., 2018), or combination of
Random Forest classifiers (Montani and Schüller,
2018).

With the introduction of BERT (Devlin et al.,
2019), the 2019 shared task saw a different trend,
with many participants submitting fine-tuned mod-
els (Struß et al., 2019). Paraschiv and Cercel (2019)
pre-trained a BERT model on German Twitter data,
obtaining the best reported macro F-score of 76.95.
Other approaches included fine-tuning an ensem-
ble of BERT models trained on different German
textual sources (Risch et al., 2019).

SVMs continued to be a popular choice however,
with some systems achieving results almost equal
to BERT-based approaches by using word embed-
dings pre-trained on German Tweets and lexical
features (Schmid et al., 2019).

2.3 Preprocessing
Angiani et al. (2016) experimented with the pre-

processing methods of replacement of emoticons
with a text representation, replacing negation con-
tractions such as don’t with do not, detection of
spelling errors, stemming, and removal of stop-
words for general sentiment analysis on Twitter
data. Using a Naive Bayes classifier to classify
whether the sentiment was positive, neutral or neg-
ative, most techniques yielded slight improvements
over the baseline with little preprocessing.

While Risch et al. (2019) had a minimalistic ap-
proach to preprocessing and only normalized user
names, Paraschiv and Cercel (2019), whose contri-
bution performed best in the GermEval 2019 shared
task, made use of a wide range of preprocessing
methods when fine-tuning BERT. They replaced
emojis with spelled-out representations; removed
the #-character at the beginning of hashtags and
split hashtags into words; transformed usernames,
weblinks, newline markers, numbers, dates and
timestamps to standard tokens; and manually cor-
rected spelling errors. They however do not explic-
itly state how much this contributed to achieving a
higher performance.

Schmid et al. (2019) lowercased and lemmatized
words, while also removing the #-character of the
hashtag and stop words when creating features for
their SVM. Sentiment scores were also obtained
for emojis through the sentiment ranking for emo-
jis by Kralj Novak et al. (2015) and added to the
sentiment scores obtained trough SentiWS (Remus
et al., 2010) for all words in the sentence. Both
scores were treated as separate features and ranged
range from -1 to 1. Scheffler et al. (2018) also
lemmatized and removed stop words, but did not
explicitly state their treatment of hashtags and cap-
italization for their experiments involving SVMs,
decision tree, and boosted classifiers. Moreover,
they did not include emojis when modeling a senti-
ment score as one of their features.

3 Methodology

3.1 Data

For all experiments, we use the the dataset from the
GermEval 2019 Task 2 (Struß et al., 2019). Tweets
were sampled from a range of political spectrums
and labeled as either OFFENSE or OTHER for
the binary classification task (see Table 1 for data
splits).
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OFFENSE OTHER Total
Train 1287 2709 3996
Test 970 2061 3031

Table 1: Train and Test Data Splits

3.2 Preprocessing

Base Methods Lemmatization is a relatively
common preprocessing step applied in the shared
task of Wiegand et al. (2018), examples include
Scheffler et al. (2018) and Schmid et al. (2019),
on which we base our experimental setup for our
SVM and AdaBoost classifiers. Consequently, we
lemmatize all words1 for our AdaBoost and SVM
experiments. A second base step, carried out in
all experiments, including those when fine-tuning
BERT for classification, is replacing user names
with the token USER.

Emojis We try the approaches in the contribu-
tions to the GermEval 2019 shared task by both
Paraschiv and Cercel (2019), who replaced emojis
with textual representations, and Risch et al. (2019),
who did not adress emojis in preprocessing, respec-
tively. Additionally, we calculate for the non-neural
classifiers an emoji sentiment score, also through
the ranking of Kralj Novak et al. (2015), together
with sentiment scores for words, through SentiWS
(Remus et al., 2010). Unlike Paraschiv and Cercel
(2019) however, who use English descriptions of
emojis, we translate the descriptions into German.2

Hashtags We remove the #-character at the be-
ginning of each hashtag. Additionally, we try split-
ting camel-cased hashtags as done by Paraschiv
and Cercel (2019).

Capitalization We perform three strategies: re-
taining the original capitalization, lowercasing the
entire text, and truecasing. Truecasing is “the pro-
cess of restoring case information to raw text” (Lita
et al., 2003). For German, this is beneficial since it
keeps orthographic characteristics (e.g. all nouns
are capitalized) but removes situational one (e.g.
words capitalized only because they begin a sen-
tence). Additionally, Risch et al. (2019) point out
that in their experiments, for words written in Caps
Lock, each letter is frequently recognized as a sepa-
rate token. Additionally, truecasing has been shown
to be useful for NLP on noisy data (Lita et al.,

1We use spaCy.
2Translations are done using Google Translate.

2003).
Truecasing the test and training data is per-

formed by using the truecasing scripts from the
Moses system (Koehn et al., 2007), which are nor-
mally used for statistical machine translation. We
create a truecasing model by training on a large,
cleaned, preprocessed German Wikipedia Text Cor-
pus.3 We use the SoMaJo tokenizer for German
social media data (Proisl and Uhrig, 2016) to tok-
enize the Twitter data.

3.3 Classifiers

All hyperparameter optimization is performed us-
ing a 5-fold cross validation and results for all
experiments are reported using macro-averaged F
scores since the dataset is imbalanced and we wish
to give equal weight to both the minority and ma-
jority classes.

SVM The features for the SVM (Boser et al.,
1992) are similar to the ones used in the second
system of Schmid et al. (2019), where pre-trained
fastText vectors (Bojanowski et al., 2017) were
used to create Tweet level vector representations.
We initially experimented with a set of fastText vec-
tors pre-trained on a smaller set of Twitter data as
well as with different dimensions, but results were
poor relative to other pre-trained fastText embed-
dings. We ultimately settled on on the default 300
dimensional fastText German embeddings (Grave
et al., 2018), trained on the German CommonCrawl
and Wikpedia, as they yielded the most stable per-
formance.

We also add a binary feature which signals if
a Tweet contains one or more German slurs from
the slur dictionary of Hyperhero,4 similar to that
of Scheffler et al. (2018) and Schmid et al. (2019),
although we do not manually create a lexicon of
offensive terms as performed by the latter. The
vectors plus the binary feature and the sentiment
scores are concatenated and fed to the SVM.

We use a linear kernel and in order to reduce
attributes with greater numerical ranges from dom-
inating, we perform feature scaling (Hsu et al.,
2008), and only hyperparameterize for the regu-
larization parameter C.5

3https://github.com/
t-systems-on-site-services-gmbh/
german-wikipedia-text-corpus

4http://www.hyperhero.com/de/insults.
htm

5We only optimize C for 0.1, 1. 10 and 100

161



Iterators 10 50 100 500
Learning Rate 0.0001 0.001 0.01 0.1 1

Table 2: Values for the grid search for hyperparameter
tuning for the AdaBoost experiments

Epochs 2
Batch Size 32
Maximum Length 150
Learning Rate 2e-5
Optimizer Adam
Loss Function Cross-Entropy Loss

Table 3: Hyperparameters for fine-tuning BERT

AdaBoost Additionally, we experiment with Ad-
aBoost (Freund and Schapire, 1996) as it was used
by Scheffler et al. (2018). AdaBoost is a boosting
technique that will combine multiple weak clas-
sifiers (in our cases tree stumps) by giving more
weight to incorrectly classified training instances,
importantly without large weight reduction to the
correctly classified instances. We also hyperparam-
eterize using grid search following values taken
from Brownlee (2020).

BERT We use both the bert-base-german-cased6

and the dbmdz/bert-base-german-cased7, referring
to them as DeepAI and dbmdz respectively here-
after. The DeepAI model was pre-trained on a
German Wikipedia dump, the OpenLegal dump, a
large data collection involving German court deci-
sions, and 3.6 GB of news articles. This data was
cleaned and segmented into sentences by the spaCy
library. The dbmdz model was pre-trained on a
collection of Wikipedia, the EU Bookshop corpus,
Open Subtitles, CommonCrawl, ParaCrawl, and
NewsCrawl. Both models make use of a Word-
Piece vocabulary which was created through the
WordPiece tokenizer (Wu et al., 2016). As neither
are pre-trained on any particular social media text,
we assume that they are not well equipped to handle
more common social media orthographic standards,
such as hashtags and emojis. Following Risch et al.
(2019) we fine-tune for two epochs using a batch
size of 32 (see Table 3 for all hyperparameters).

4 Results

First we must note that we ran some BERT models
with different initial seeds and noted instabilities

6https://deepset.ai/german-bert
7https://github.com/dbmdz/berts

in performance. Given this, results should not be
viewed as entirely explained by the different pre-
processing choices, rather and indication of the
volatility of the models in interaction with prepro-
cessing. We are more interested in highlighting the
interaction and variation across BERT models and
preprocessing than determining an optimal solu-
tion. For this reason, we only report scores using
the default seed in order to allow a better analy-
sis (see Section 5) in terms of linking observed
differences to specific preprocessing choices, and
interaction with both the WordPiece tokenization
and the vocabulary distribution.

We first begin by establishing baselines for each
classifier, in which minimal preprocessing is per-
formed. For BERT, we only replaced user names
with a USER token (baseline BERT in Table 4).
For the SVM and AdaBoost we perform the former,
but since we experiment with two different ways
of treating emojis (replacement vs. inclusion in
sentiment scores) and want to compare the results
against an experiment where emojis are not taken
into account at all, we additionally remove emo-
jis in our baseline here and lemmatize all words
(baseline SVM/AdaBoost in Table 4).

In Table 4 we present F-scores for our ablation
experiments. We can see that AdaBoost tends to
exhibit a degradation in performance in respect
to performing only base preprocessing operations
when any additional preprocessing techniques are
applied. The only exception tends to be in experi-
ments that have a combination of splitting hashtags
and truecasing. This may simply be due a reduc-
tion of overall features, but it is not inherently clear
what is causing the degradation.

The SVM tends to outperform AdaBoost overall,
which is in line with Scheffler et al. (2018) though
only in a couple of instances, shows any notice-
able improvements. Lowercasing, as performed
in Schmid et al. (2019), leads here to the biggest
drop in performance. Surprisingly, the classifica-
tion overall does not profit from the information of-
fered by emojis, as both the experiment with emoji
replacement as well as the experiment with only ba-
sic preprocessing and without emoji removal do not
perform above the baseline. This also holds true
for emoji replacement in combination with split-
ting hashtags since the performance here is slightly
worse than for only splitting hashtags. Interestingly,
we see that only truecasing the data yields the best
performing model, and that, similar to AdaBoost, a
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Experiment AdaBoost SVM DeepAI dbmdz
emojis removed (baseline SVM/AdaBoost) 66.74 66.81 72.74 69.04

only basic methods (baseline BERT) 66.90 66.78 71.31 71.93
replacing emojis 66.39 66.23 71.34 72.60
splitting hashtags 66.20 66.90 68.62 74.49
only truecasing 66.09 67.64 73.25 69.13

replacing emojis + splitting hashtags + lowercasing 64.62 64.33 70.04 73.32
splitting hashtags + truecasing 67.65 66.74 73.62 71.85

replacing emojis + splitting hashtags 66.62 66.78 73.10 70.88
replacing emojis + splitting hashtags + truecasing 67.31 67.23 72.68 71.33

Table 4: F1-macro Scores for All Classifiers

combination of truecasing with emoji replacement
and splitting hashtags led to improvments over the
baseline as well, although here, splitting hashtags
and truecasing without emoji replacement led to a
slight decrease.

One striking difference is the performance of
DeepAI vs dbmdz and their behaviors not only in
respect to the preprocessing techniques, but also
to each other. Firstly, we see that the baselines
are slightly different and all applied preprocess-
ing techniques benefit dbmdz, even if minimally,
compared to DeepAI, where we some techniques
result in worse performance relative to the baseline.
Additionally, we can see that in some cases, the
models actually have opposite behaviors. For ex-
ample, simply splitting hashtags resulted in the best
performance for dbmdz, yet was the worst perfor-
mance for DeepAI. A counter example is only true-
casing which yielded minimal performance gains
for dbmdz but produced the second best results for
DeepAI.

5 Analysis

While results for AdaBoost and the SVM do show
some variation, the DeepAI and dbmdz exhibit
much more noticeable changes. For this reason,
we choose to examine only these two model in
terms of how the minority and majority classes are
behaving in order to try and glean insight into the
underlying causes. Table 5 shows the precision
and recall of classes for the these models. We can
clearly see a great deal of volatility on the minor-
ity (OFFENSE) class, particularly on recall. This
could again be because of a general instability but
it may also suggest that, querying Tweets deemed
offensive is far more sensitive to the preprocess-
ing methods than labeling them correctly when the
models are being fine-tuned. We perform a more

in-depth analysis into possible reasons behind the
variations between all classifiers and present the
findings below.

5.1 Emojis

Without emoji replacement, the WordPiece tok-
enization used by the BERT models splits the uni-
code representations into single letters or chunks
of two or three numbers. It can be assumed that
these models cannot effectively make use of such
representations. Replacing emojis with text on the
other hand presents a way to retain the meaning of
the emoji in the text, which seems to have helped
DeepAI in particular in finding offensive tweets as
all experiments with emoji replacement constantly
outperform its baseline with respect to recall for
the OFFENSE class.

One example is the case of the middle finger
emoji, for which emoji replacement helps detect
offensive Tweets. It occurs in 37 Tweets, 35 of
which have the gold label OFFENSE. The DeepAI
model trained on truecased data with emoji replace-
ment managed to correctly label 13 of these with-
out wrongly classifying posts that were labeled
as OTHER. Table 6 shows how many of these 13
instances were detected DeepAI when different pre-
processing methods were applied. This suggests
that replacing emojis improves detecting offensive
Tweets when the middle finger emoji is present. In
the experiment with emoji replacement + hashtag
splitting + lowercasing however, one of the two
non-offensive Tweets was wrongly classified as
offensive.

Replacing emojis also present some pitfalls. One
such case for the DeepAI BERT classifier is related
to the winking face emoji, which is not inherently
associated with offensive behavior. However, the
models trained on data where emojis were replaced
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DeepAI dbmdz
OFFENSE OTHER OFFENSE OTHER

Experiment Prec. Rec. Prec. Rec. Prec. Rec. Prec. Rec.
emojis removed (baseline SVM/AdaBoost) 66.27 57.94 81.31 83.65 84.09 38.14 76.84 96.60
only basic methods (baseline BERT) 78.62 44.74 78.38 94.27 80.15 45.36 78.65 94.71
replacing emojis 58.51 66.60 83.19 77.78 73.36 50.82 79.78 91.31
splitting hashtags 75.78 40.31 76.98 93.93 72.27 56.70 81.50 89.76
only truecasing 69.49 55.88 80.99 88.45 82.31 38.87 76.95 96.07
replacing emojis + splitting hashtags + lowercasing 67.67 48.56 78.63 89.08 73.73 52.37 80.27 91.22
splitting hashtags + truecasing 77.24 50.72 80.03 92.96 77.49 46.49 78.81 93.64
replacing emojis + splitting hashtags 67.55 57.53 81.32 87.00 75.91 45.15 78.32 93.26
replacing emojis + splitting hashtags + truecasing 62.36 63.71 82.75 81.90 77.23 45.46 78.50 93.69

Table 5: Class Results for BERT DeepAI and dbmdz

Preprocessing # of Tweets
emoji + splitting hashtags + lowercasing 10

truecasing 5
splitting hashtags + truecasing 3

baseline 2

Table 6: Number of Tweets classified as offensive by
DeepAI BERT, out of the 13 Tweets with the middle
finger emoji that were classified correctly in the exper-
iment involving emoji replacement, hashtag splitting
and truecasing

had a surprisingly high tendency to misclassify
non-offensive Tweets containing this emoji with
9 (hashtag splitting + truecasing) and 15 (hash-
tag splitting + lowercasing) instances respectively
wrongly considered to be offensive language. This
suggests that they may have learned to associate
the emoji in an unintended manner, especially as,
in most cases, the emoji occurs in contexts with-
out other elements that may potentially cause the
classification as offensive.

Emoji replacing also helps the SVM classifier in
detecting offensive Tweets that contain the middle
finger emoji as in both the experiment with emoji
replacement only and emoji replacement in com-
bination with hashtag splitting and truecasing, 29
out of the 35 offensive Tweets with this emoji were
classified as offensive. This in contrast to the ex-
periment with only hashtag splitting and the exper-
iment with neither emoji replacement nor hashtag
splitting, in which 12 of these instances were not
classified correctly. This may however be traced
back to the fact that the middle finger emoji is
not in the ranking of Kralj Novak et al. (2015).
Their ranking of most frequent emojis was deter-
mined from Tweets collected between 2013 and
2015, while the middle finger emoji was only intro-
duced in 2014. Given this, it is not surprising that
the emoji was not in the top 750 most frequently
used. This demonstrates a limitation of even newer

external social media lexicons, as the medium of
communication is rapidly evolving and even emojis
can be time sensitive with the introduction of new
ones, the discontinuation of older ones, or simply a
decrease in usage.

Another interesting observation from the SVM
experiments that included emoji replacement is the
classification of Tweets containing the pig face
emoji. While 14 Tweets contain the pig face
emoji, only three have the gold label of OFFENSE.
However, the SVM strongly prefers classifying
Tweets with this emoji as offensive, as it does so
in 11 cases. The classifier trained and tested on
data where only hashtags were split but no emo-
jis were replaced recognized the majority of the
non-offensive instances correctly.

In the experiments with emoji replacement, this
emoji was replaced with the word Schweinegesicht
(“pig face”), which is included in Hyperhero’s dic-
tionary of German slurs. This results in Tweets
with this specific replacement being marked as con-
taining slurs, even if they are not labeled as OF-
FENSIVE. On the other hand, the sentiment score
of the pig face emoji according to the ranking of
Kralj Novak et al. (2015) was 0.375 and thus rel-
atively neutral, which gives credence to the idea
that emoji replacement was decisive for the wrong
classifications.

Moreover, in the training data the word Schwein
(“pig”) occurs quite often in offensive Tweets.
Given the use of character-level embeddings via
fastText, there may be similarity between com-
pound words that contain one or more subwords
that may deemed offensive on their own, but not
necessarily within the compound itself. Thus, it
may be that the representations of Schweinegesicht
and Schwein in the training data are inherently sim-
ilar enough in vector space and are thus influencing
their wrongly classified instances here.
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Basic S-HT
Misclassified by Adaboost 95 80

Of which correct in Baseline 75 61
Misclassified by SVM 45 46

Of which correct in Baseline 4 5

Table 7: Tweets containing emoijs misclassified as of-
fensive in two experiments with the AdaBoost classifier
and the SVM classifier with Only Basic Methods (Ba-
sic) and Splitting Hashtags (S-HT)

For the AdaBoost classifier, similar patterns con-
cerning the pig face emoji and the middle finger
emoji are observed. Moreover, it seems that using
sentiment scores for emojis in the AdaBoost exper-
iments led to a general increase in the amount of
Tweets with emojis being misclassified as offen-
sive. Table 7 compared the misclassified examples
that contain emojis in experiments, where emojis
were turned to sentiment scores without hashtag
splitting and with emoji scores and hashtag split-
ting, for both SVM and AdaBoost. It also shows
how many of these wrongly classified instances
were classified correctly in the respective baseline
experiment. The numbers suggest that while the
problem occurs also for the SVM classifier, it is not
as pronounced and the differences between the two
experiments under observation and the baseline are
much less drastic.

5.2 Hashtags

For DeepAI, splitting hashtags and truecasing pro-
duced the best model. However, upon closer in-
spection, the impact of splitting hashtags does not
seem to be as pronounced, albeit still positive. In
the test set, only 147 Tweets require splitting of
camel-cased hashtags, of which only 66 instances
resulted in a different classification upon splitting
(43 correctly classified, 23 incorrectly).

Instead, hashtag splitting results in a more natu-
ral tokenization by the WordPiece tokenizer used
by each BERT model given its source data. For ex-
ample, #HambacherForst (name of a German forest
that was supposed to be cleared) is split correctly by
DeepAI into ##Ham ##bacher Forst whereas when
hashtag splitting is not performed, the tokenization
is ##Ham ##bacher ##For ##st. The method of
hashtag splitting however can produce errors. The
abbreviation of the German party AfD for exam-
ple is recognized as camel-cased and split into Af
and D as separate tokens. Additionally, hashtag
splitting is not always successful when one word

in the hashtag is not written with a capital letter,
such as #VerhöhnungderMaueropfer (“mockery of
the victims of the Berlin Wall”), which is split into
Verhöhnungder, the German word for mockery plus
the article (der), and Maueropfer.

Splitting hashtags leads in both cases to a lower
number of subword tokens in terms of both the
overall number of tokens produced as well as the
number of individual token types present after a
WordPiece tokenization is applied (see section 5.4
for more discussion on vocabulary distributions).
This suggests that the WordPiece tokenizer for both
models struggles in splitting hashtags into repre-
sentative subwords, if hashtag splitting is not per-
formed. This decrease in subword tokens is slightly
higher for the dbmdz model, suggesting that with-
out hashtag splitting, the the dbmdz WordPiece to-
kenizer creates more unwanted splits and thus, that
the necessity for hashtag splitting may be greater
for dbmdz than for the DeepAI.

Similarly, in the SVM experiments, hashtag split-
ting only had marginal effect. In most of the ex-
amples, the decision on whether the Tweet can be
considered offensive or not was the same, regard-
less of where the hashtag was split hashtags, as no
clear pattern emerged when examining Tweets that
were classified differently.

5.3 Capitalization

No obvious positive effects could be observed
when only changing the capitalization of the data
before lemmatizing it in the experiments with Ad-
aBoost, but a slightly positive effect is noted for
the SVM. Indeed, a comparsion between the exper-
iment involving base preprocessing and truecasing,
shows that there are 27 offensive examples where
truecasing changed the capitalization, and which
were detected in the former but not in the latter
setting. However, none of the truecased words in
these examples seemed to be obviously decisive for
the correct classification. Truecasing also seemed
to have had a positive effect on the performance of
DeepAI as seen in example (1):

(1) *seufz und bennent die WLAN SSID mal
wieder in “FICKT LEISER!üm*”

*sight and rename the WLAN SSID once
again to “FUCK QUIETER!*”

In experiments, where the original casing of the
data remained untouched, the tag OTHER was used,
whereas DeepAI trained on truecased text with
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emojis replaced and camel-cased hashtags split cor-
rectly labeled it as offensive.

The tokenizer of the baseline model tokenized
it FI ##C ##K ##T L##E ##IS ##ER, thus treating
almost each capital letter as a different subword
unit. The crucial part that renders the sentence of-
fensive was tokenized wrongly here, and the logical
consequence is that it remained undetected. The
truecased sentence on the other hand was split into
f ##ickt lei ##ser. Even though, this tokenization is
not completely in line with the intuitively correct
one (fick##t leise##r), it seemingly made it easier
for the model to recognize the offensive language.

The fact that even the tokenization for the true-
cased text does not seem to be ideal is underlined
by the fact that, for example, the setting using only
truecased text without replacing emojis or splitting
camel-cased hashtags did not manage to classify
this sentence as offensive, a decision which can-
not be explained by the absence of the other two
preprocessing steps.

However, the truecasing approach sometimes
struggles with sentences that were entirely written
in Caps Lock, where it simply did not change any-
thing, as well as with English words since it was
trained entirely on German data.

While lowercasing helped in the case of example
(1) since it was also lowercased and the Tweet was
labeled correctly, this is not always the case and
at times, lowercasing is not helpful. In example
(2), Einzelheiten was turned to einzelheiten and
Veranstaltung to veranstaltung. A consequence
of lowercasing was that the DeepAI struggled to
recognize the nouns. Lowercased einzelheiten was
then split into einzel ##heiten and veranstaltung
resulted in veranst ##altung. For the truecased data,
where the original capitalization was retained, the
tokenizer recognized both nouns correctly.

(2) @dr0pr0w @kinzig9 Gibt es irgendwo
mehr Einzelheiten yu der Veranstaltung?

@dr0pr0w @kinzig9 are there more details
anywhere about the event?

Truecasing seemingly had a higher impact on the
performance for DeepAI than dbmdz. A reason for
this may lie in the way the respective WordPieces
tokenizers for each model splits up words into sub-
word units. In cases where non-capitalized words
are written with sentence initialized capitalization,
DeepAI splits these words up in an unnatural man-
ner. The interrogative pronoun Wozu (“for what”)

at the beginning of a sentence is split into Wo and
zu, the adverb Gestern (“yesterday”) is split into
Gest and ern and the verb Geht is split into Geh
and t. When they are converted into their original,
lowercased form, DeepAI does not split the words,
while dbmdz, on the other hand, manages to recog-
nize them correctly as one word without needing
extra truecasing.

5.4 Vocabulary Distributions

We perform a high-level analysis on both the
fastText and WordPiece coverage of the training
data. For fastText, coverage ranges between 88.01-
90.26% in terms of overall token coverage in
the training data, with token types ranging from
69.72-71.40%, with the exception being the prepro-
cessing setting of replacing emojis+splitting hash-
tags+lowercasing (which also had the lowest over-
all token coverage) yielding a type coverage of only
59.23%.

For DeepAI, a similar trend is seen with its Word-
Piece coverage. This specific setting shows over
3,000 fewer subtoken types after tokenization even
though it produces overall more subtokens. These
distributions may also explain the emojis+splitting
hashtags+lowercasing results seen in Table 4, as
this setting yields the worst performance for Ad-
aBoost, the SVM, and DeepAI. It is also clear that
while the other preprocessing distributions may
yield similar coverage, the individual token distri-
butions are not the same. These effects are evident
in Table 5 in the high volatility of reported recall
metrics for the OFFENSE class.

Similary however, the WordPiece tokenization
by dbmdz yields a far lower number of token types
in the emojis+splitting hashtags+lowercasing set-
ting, and produces over 16000 more tokens, but
does not show the same degradation in perfor-
mance. Interestingly, dbmdz contains anywhere
between 700-1000 more found token types in the
training than its DeepAI counterpart for each pre-
processing setting, and an average of 2-3% more
overall total token coverage (≈ 97% to 94% re-
spectively). This just further emphasizes that the
distributional coverage is not easily disentangled
from the individual impact the combined feature
sets (or even a single feature) have on classification,
since the subtoken representations and distributions
are not identical.

166



6 Conclusion

We have performed an in-depth analysis on the ef-
fects that preprocessing has on the performance
of different classifiers on the detection of abusive
language in German Tweets. While the fact that
fine-tuned BERT models outperform more tradi-
tional machine learning approaches is not surpris-
ing, they however appear to be extremely sensitive
to preprocessing decisions and different models
behave somewhat unexpectedly, particularly when
contrasted to each other. Standard preprocessing
techniques, such as hashtag splitting, yield two very
different behaviors from the the models, which, on
the surface, is not intuitive.

Our analysis shows that the underlying word rep-
resentations created by the various preprocessing
techniques interact with the vocabulary coverage
of fastText and the WordPiece tokenizer and plays
a crucial role. Each individual preprocessing step
is altering these distributions within the data which
then derives slightly different sentence representa-
tions when generating sentence level embedding
representations, the effects of which are not always
clearly understood on the surface level. This is
highlighted when some preprocessing steps, which
would seem intuitively helpful, ultimately yield a
degradation in performance.

Future areas of research include examining
model stability with respect to preprocessing, and
how preprocessing interacts with models that have
been pre-trained on Twitter data with an updated
WordPiece tokenizer. A deeper look at then identi-
fying specific (sub)tokens that carry more decision
making power through techniques, such as saliency
(Li et al., 2016), would be of valuable insight.
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Akademie der Wissenschaften.

168



Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V.
Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus
Macherey, Jeff Klingner, Apurva Shah, Melvin John-
son, Xiaobing Liu, Łukasz Kaiser, Stephan Gouws,
Yoshikiyo Kato, Taku Kudo, Hideto Kazawa, Keith
Stevens, George Kurian, Nishant Patil, Wei Wang,
Cliff Young, Jason Smith, Jason Riesa, Alex Rud-
nick, Oriol Vinyals, Greg Corrado, Macduff Hughes,
and Jeffrey Dean. 2016. Google’s neural machine
translation system: Bridging the gap between human
and machine translation.

Marcos Zampieri, Shervin Malmasi, Preslav Nakov,
Sara Rosenthal, Noura Farra, and Ritesh Kumar.
2019. SemEval-2019 task 6: Identifying and cate-
gorizing offensive language in social media (Offens-
Eval). In Proceedings of the 13th International
Workshop on Semantic Evaluation.

Frederike Zufall, Tobias Horsmann, and Torsten Zesch.
2019. From legal to technical concept: Towards an
automated classification of German political Twit-
ter postings as criminal offenses. In Proceedings of
the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 1337–1347,
Minneapolis, Minnesota.

169



Neural End-to-end Coreference Resolution
for German in Different Domains
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Abstract

We apply neural coreference resolution to
German, surpassing the previous state-of-the-
art performance by a wide margin of 10–
30 points F1 across three established datasets
for German. This is achieved by a neural
end-to-end approach, training contextual word-
embeddings jointly with mention and entity
similarity scores. We explore the impact of var-
ious parameters such as language models, pre-
training and computational limits with respect
to German data. In an effort to support datasets
representing the domains of both news and lit-
erature, we make use of two distinct model
architectures: a mention linking-based and an
incremental entity-based approach that should
scale to very long documents such as literary
works. Our code and ready-to-use models are
publicly available.

1 Introduction

Coreference resolution is the task of resolving text
spans in documents that refer to the same entities.
These are grouped into mention-clusters with each
cluster representing one entity. Figure 1 shows
coreference annotations on a literary text with dif-
ferent entities being denoted by both subscripts
and colors. Tasks such as question answering (Mor-
ton, 1999) or text summarization (Steinberger et al.,
2007) can rely on coreference resolution as part of
the language processing pipeline. Bamman et al.
(2014) demonstrated that coreference resolution
is also applicable to literary analysis. The task
has recently seen large improvements as systems
moved from rule-based (e.g. Roesiger and Kuhn,
2016; Lee et al., 2011) to neural approaches (e.g.
Lee et al., 2017; Joshi et al., 2019). This advance-
ment from a CoNLL-F1-score of 57.8, achieved by
a rule-based system in the original CoNLL-2012
shared task (Pradhan et al., 2012), to 67.2 in the

∗denotes equal contribution

[Alice]1	was	not	a	bit	hurt,	and	[she]1	jumped	up	on	to

[her]1	 feet	 in	a	moment:	 [she]1	 looked	up,	but	 it	was
all	 dark	 overhead;	 before	 [her]1	 was	 [another	 long
passage]2,	and	 [the	White	Rabbit]3	was	still	 in	sight,
hurrying	down	[ it]2.

Figure 1: Coreference gold annotations for “Alice’s Ad-
ventures in Wonderland” (annotations from Bamman
et al., 2020)

first end-to-end neural system (Lee et al., 2017) has
shown that neural systems are key to state-of-the-
art performance.

Coreference resolution on German using neural
networks has received little attention. There has, to
our knowledge, no work been reported on German
news datasets using neural networks yet. This work
is also the first to use cross-task learning to improve
performance on German literary datasets.

We apply and adapt exiting approaches to coref-
erence on German, making our code and models
publicaly available.1 There are two approaches to
neural coreference resolution that we consider: A
mention-linking-based and an entity-linking-based
approach. Both have an initial mention proposal
step, finding text spans that are likely to represent
mentions. In mention-linking approaches, out of
the cross-products of mentions, those mentions
with the highest likelihood are considered. Each
such mention is connected to its highest-scoring
antecedent with transitively connected mentions
forming entities.

The entity-representation-based approach also
involves the initial mention proposal step. How-
ever, rather then creating links on a per-mention
basis, initial mentions are considered to be entity
representations, with each subsequent mention be-

1https://github.com/uhh-lt/
neural-coref/tree/konvens
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ing compared to existing entity representations and
assigned to those that match them best. This way
memory usage and computational effort can be re-
duced, as it is proportional to the number of entities,
rather than the square of the number of mentions.

2 Related Work

Relevant prior work can be put into two distinct cat-
egories: (a) Neural, state-of-the-art coreference res-
olution developed primarily on English (b) Coref-
erence resolution applied to German.

Most neural coreference resolution models per-
form a ranking of antecedents based on the pair-
wise scores of mention candidates (Wiseman et al.,
2015; Clark and Manning, 2016a; Lee et al., 2017),
at this only relying on local decisions that may not
be globally optimal to form coherent entities (Lee
et al., 2018). This general architecture has been
improved on in multiple ways.

To address the issue of global optimization,
Clark and Manning (2016b) and Wiseman et al.
(2016) create entity representations during the rank-
ing step. Lee et al. (2018); Kantor and Globerson
(2019) iteratively refine mention representations
with associated antecedent information, perform-
ing what they refer to as higher-order inference.

While the end-to-end coreference model of Lee
et al. (2017) uses a bidirectional LSTM (Hochreiter
and Schmidhuber, 1997) to produce span represen-
tations, Lee et al. (2018) see a 3.2 F1 score increase
on the English CoNLL-2012 shared task by addi-
tionally using ELMo (Peters et al., 2018) embed-
dings. Lee et al. (2018) also modify the model to
perform coarse-to-fine antecedent pruning enabling
an efficient computation and potentially allowing
the processing of longer documents. Joshi et al.
(2019) and Kantor and Globerson (2019) improve
upon this by using BERT (Devlin et al., 2019) em-
beddings instead of the LSTM-based representa-
tions and gain another 3.3 F1 points.

Recently, Joshi et al. (2020) presented a model
optimized for span representations named Span-
BERT and saw another 2.5 point increase in F1
score, which has been reproduced by Xu and Choi
(2020). Wu et al. (2020) have taken a different ap-
proach to coreference resolution; they outperform
previous state of the art by 3.5 F1 points in part
due to the ability to recover missed mentions by
framing the task as a question-answering problem.

Toshniwal et al. (2020); Xia et al. (2020) both
introduce incremental approaches to coreference

resolution. Instead of comparing mention pairs like
Lee et al. (2017), they compare mentions with en-
tity representations, with the entity representations
being produced from a linear combination of their
mentions. Both approaches work by iteratively pro-
cessing all mentions and scoring each mention with
regard to a set of entities; as a result, an evaluation
of the full cross-product of mentions is not neces-
sary. The two approaches differ slightly in how
they handle the introduction of new entities.

For coreference resolution on German texts, pub-
lished work predates the age of neural networks
in natural language processing. The CorZu sys-
tem (Klenner and Tuggener, 2011; Tuggener and
Klenner, 2014) is a rule-based incremental entity-
mention model that has been extended with Markov
Logic Networks for the antecedent selection.

Roesiger and Kuhn (2016) adapted the English
system of Björkelund and Kuhn (2014) to German.
A directed tree where each node represents a men-
tion is used to model the coreferences in a doc-
ument. For determining antecedents, both local
and non-local handcrafted features are employed.
They created the current state-of-the-art approach
for German news datasets, evaluating their system
on the SemEval-2010 shared task and on version
10 of the TüBa-D/Z dataset.

The domain of literature has, for both German
and English, received increased attention in recent
years with regard to coreference resolution. Roe-
siger et al. (2018) considered the domain specific
challenges and phenomena of literature. Bamman
et al. (2020) released an English dataset and Krug
et al. (2018) released a German dataset (see Sec-
tion 3.2 for details). While Krug (2020) performed
coreference resolution on German literary data,
Toshniwal et al. (2020) used the English dataset.
Krug (2020) compare various approaches to coref-
erence resolution on German historic novels using
the DROC dataset (Krug et al., 2018). Their best-
performing system in a gold-mention scenario uses
a rule-based Stanford Sieve approach (Lee et al.,
2011), iteratively applying rules starting from the
most precise rule, going to less precise rules. When
mention spans are generated by the model, the end-
to-end neural network, based on the approach by
Lee et al. (2017), performs about on par with the
rule-based systems in conjunction with preprocess-
ing pipelines.

Evaluation of coreference data presents a chal-
lenge, different proposed metrics emphasise differ-
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ent aspects of a model’s performance. An average
of the three metrics MUC, B3, and CEAFφ4 has
been used in the CoNLL-2012 task (Pradhan et al.,
2012). As these metrics are widely used we fo-
cus on them for reporting our results, including an
average of the three, the CoNLL-F1 score.

3 German Coreference Datasets

3.1 News

The standard corpus for coreference resolution in
German is TüBa-D/Z (Telljohann et al., 2017; Nau-
mann and Möller, 2006), a manually annotated col-
lection of newspaper articles released in multiple
versions that incrementally add more documents.
It was also used as the data source for the German
part of the SemEval-2010 shared task on corefer-
ence resolution (Recasens et al., 2010).

To be comparable with previous work, we chose
to use SemEval-2010 and TüBa-D/Z release 10.0
instead of the marginally larger 11.0 for most of
our experiments. As there is no official split for the
TüBa-D/Z, we use the same splits as previous work
(Roesiger and Kuhn, 2016).2

While TüBa-D/Z does not contain singletons (on
average 3.65 mentions per entity, 10.89 entities per
article), these mentions are annotated in SemEval-
2010 (on average 1.34 mentions per entity, 73.07
entities per article). Across the dataset, 84.6% of all
entities and 64.1% of all mentions are singletons.

Compared to the standard English coreference
corpus, OntoNotes (Weischedel et al., 2013), used
in the CoNLL-2012 shared task on coreference res-
olution (Pradhan et al., 2012), TüBa-D/Z neither
contains different genres of texts nor additional
metadata such as speaker information. Regarding
statistics such as average mentions per entity, men-
tions/sentence length and tokens/sentences/entities
per document, German TüBa-D/Z 10.0 and English
OntoNotes 5.0 are remarkably similar.

3.2 Literature

The DROC dataset (Krug et al., 2018) contains 90
coreference annotated literary documents where
each document comprises one chapter with an av-
erage length of 4369.49 tokens. We use the splits
established by Krug (2020), i.e. 58 training, 14 de-
velopment and 18 test documents. There is a total
of 51 797 mentions in 5365 clusters, 2409 of these
are singleton clusters. As a result, while 45% of

2for corpus statistics, see Table 9 in the appendix

Mention-F1 MUC-F1 B3-F1 CEAFφ4-F1 CoNLL-F1

97.05 93.67 84.69 69.25 82.54

Table 1: Inter-annotator F1 scores for DROC as calcu-
lated using the scorer by Pradhan et al. (2012) based on
the individual annotator’s data by Krug et al. (2018).

clusters are singleton clusters, only 4.7% of men-
tions are singletons. Our calculations for the perfor-
mance of human annotators on the subset of DROC
are listed in Table 1, providing an upper bound for
our performance expectations. In contrast to other
datasets (e.g. Bamman et al., 2020), only mention
heads are annotated, rather than whole nominal
phrases. This means that in the sentence, “and [the
driver] was none other than [that cursed English-
man]” (from the dataset by Bamman et al. (2020)
“The Scarlet Pimpernel”), only the spans “English-
man” and “driver” would be annotated as corefer-
ring instead. Thus, only spans up to a short length
need to be considered in the mention proposal step.
DROC also differentiates itself from other datasets
in that it only annotates references to characters.

More generally, literary data, when compared to
news texts, comes with the added challenge of doc-
ument length. Longer documents tend to come with
more mentions, DROC, for example, contains an
average of 575.52 mentions per document whereas
SemEval only has an average of 97.79. In general,
increased document length lead to longer process-
ing time, larger computational effort and higher
memory requirements.

4 Model

In this section, we describe our German corefer-
ence resolution models in detail. We build on the
widely adapted neural end-to-end architecture de-
veloped by Lee et al. (2017, 2018), improved by
Joshi et al. (2019) and re-implemented in PyTorch
(Paszke et al., 2019) by Xu and Choi (2020). Al-
though the CorefQA system (Wu et al., 2020) is
currently the top-performing system for English,
we chose to not build upon it because it is more
complex and requires vastly more computational
resources than our chosen approach.

The general idea of our models is to first de-
tect mentions and then to link them. Each docu-
ment is processed individually during both training
and inference; Figure 2 visualizes a single docu-
ment being processed by both model variants. First,
contextual ELECTRA (Clark et al., 2020) embed-
dings are obtained for each token and all possible
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Figure 2: Conceptual visualization of our two end-to-end model variants processing an example document. Both
models are based on the same mention proposal step. While the incremental model operates on an ever-growing
set of entities, the coarse-to-fine model performs one comparison on the cross product of all mentions. Dark green
color indicates a good match between mention and its assignment candidate, whereas black squares indicate that,
due to filtering, no scoring was performed. All values are manually chosen for illustration purposes.

mention spans up to a configurable length are enu-
merated. Mention embeddings are created, con-
taining start and end token embeddings and the
attention-weighted average of all span tokens. In
contrast to the English models, our models con-
tain neither genre nor speaker embeddings as the
German datasets do not supply this information.

A naı̈ve approach of comparing each mention
candidate with every other to find links between
them raises computational issues, quickly becom-
ing infeasible to compute as it requires O(M2)
comparisons for M = max mention length · |D|
mention candidates, for a document D where |D|
is the document length in word-piece tokens. To
reduce computational effort over a naı̈ve approach
to find the best antecedent for each mention, we
employ two established strategies: A coarse-to-fine
and an incremental approach, with the incremen-
tal approach being able to handle documents of
arbitrary length with limited memory.

4.1 Coarse-to-fine

Our model is based on the implementation by Xu
and Choi (2020). For each mention span, the model
learns a distribution over its antecedents based on
how likely both individual spans are to be valid
mentions and how likely they to refer to the same
entity. Two pruning steps are used to make this
mention linking computationally feasible.

To reduce the number of mentions, all mention
embeddings are scored individually with a feed-
forward neural network (FFNN). For each docu-

mentD only the top n = min(4096, 0.4·|D|) men-
tions are kept after pruning. Instead of performing a
pairwise comparison of allN mentions, only a frac-
tion is used. Thus, removing obvious non-mentions
and limiting the complexity toO(n2 � N2), a step
that we refer to as mention filtering.

In the coarse antecedent pruning step, the pair-
wise similarity scores of the remaining mention em-
beddings are summed with the individual mention
scores. A subsequent fine-grained ranking is per-
formed with the top a = 64 antecedents per men-
tion; to this effect, pairwise mention-antecedent
embeddings consisting of mention, antecedent and
similarity embedding are created. These embed-
dings are scored with a FFNN and combined with
scores from the coarse step resulting in scores for
the top antecedents per mention. We do not use
so-called higher-order inference as this effectively
doubles the computational cost of the fine-grained
antecedent scoring without improving the quality
according to Xu and Choi (2020).

During training, the model learns to optimize
the marginal log-likelihood of possibly correct an-
tecedents for each mention, i.e. for each antecedent
the score should be 1 if mention and antecedent
belong to the same gold entity, 0 otherwise.

During inference, an undirected graph of men-
tions is created by connecting each mention with
its highest-scoring antecedent. In this graph, each
connected component of mentions forms an entity.
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4.2 Incremental

The general approach of the incremental model fol-
lows Xia et al. (2020) and Toshniwal et al. (2020).
Mention filtering is performed as in the course-
to-fine model. We process the document itera-
tively, splitting the document into multiple win-
dows for transformer language model inference.
Unlike Toshniwal et al. (2020) but following Xia
et al. (2020) we reuse all model weights, including
both the transformer weights and all task-specific
layers.

In a step we call entity assignment, every men-
tion candidate chooses its entity in an iterative fash-
ion. In our standard setup, this is modeled as a clas-
sification task with a dynamic number of classes
and the initial set of classes, each class representing
an entity C0 = {∅}. If, for any mention embed-
ding m being processed, ∅ is selected as the class,
the mention is added as a new class. Entity rep-
resentations are tracked with R(En) being set to
m when the n-th entity is added. As a result, after
the first mention is processed the set of classes is
always extended: C1 = {∅, E0}. Subsequently,
new mentions Ex are added iteratively. Whenever
any existing Ex is selected as the best fitting entity,
its representation is updated using an update gate:
R(Ex) := (1− α)m+ αR(Ex).

Training is done by means of cross entropy loss
across all existing entities and the new entity class,
with the gold class for each entity being its most
recently assigned mention gold class. As a result,
early in training many entity representations likely
contain mentions that, from a gold label perspec-
tive, should not belong together. Toshniwal et al.
(2020) use teacher forcing to address this issue
and thereby reach earlier convergence; we test this
approach in our setup, assigning each mention to
its gold class for further computations, rather than
relying on predicted classes.

The only way mention candidates can be dis-
carded (either because they are not a mention or
because they are singleton mentions) is by means
of creating a new entity and never assigning any ad-
ditional mentions to it, in postprocessing any such
singleton entity would be removed, yielding the
final output entities. To support detection of single-
ton mentions, we follow Xia et al. (2020) in adding
an additional class representing the discarding of
any given entity. In this “discard” scenario, single-
ton mentions are not removed in postprocessing
since non-mentions are modeled explicitly.

Language Model CoNLL-F1

BERT-Base, multilingual uncased 74.50
BERT-Base, multilingual cased 74.60
GBERT base, cased 75.35
GELECTRA base, cased 77.01
GNG ELECTRA base, uncased 77.86

GBERT large, cased 79.05
GELECTRA large, cased 79.24

Table 2: TüBa-D/Z 10 development score of coarse-to-
fine models with different language models (using 512
as segment size)

5 Experiments: News Domain

We perform preliminary experiments to select the
best pre-trained German language model, its best
context size and to optimize other hyperparameters.
For the main experiments on the news datasets
TüBa-D/Z 10 and SemEval-2010, we train and
evaluate our coarse-to-fine model as it is easily
capable of processing the typically rather short doc-
uments. We use the training, development and test
splits as described in Section 3.1. The SemEval
dataset contains singletons, but our coarse-to-fine
model predicts only clusters of at least two entities.
Following Roesiger and Kuhn (2016), we ignore
singletons when scoring our systems’ predictions.

5.1 Pre-trained Language Models

We evaluated multiple pre-trained language models
for our coreference resolution model. As a baseline,
we include the multilingual BERT-Base model (in
both the cased and uncased variants) by Devlin et al.
(2019). Chan et al. (2020) recently published Ger-
man BERT and ELECTRA (cased, both base and
large) denoted as GBERT / GELECTRA in Table 2.
In addition, we included another ELECTRA model
(uncased, base) by German-NLP-Group denoted as
GNG ELECTRA3.

We find that all of the recent German lan-
guage models perform better than the multilingual
BERT. For the base models, ELECTRA outper-
forms BERT by a substantial margin. Using large
models, ELECTRA performs marginally better.
Based on the results shown in Table 2, we selected
GNG ELECTRA as the base and GELECTRA as
the large model for our remaining experiments.

3Model description at
https://huggingface.co/german-nlp-group/
electra-base-german-uncased
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Segment Length F1 (base) F1 (large)

128 75.69 76.28
256 76.56 77.29
384 77.01 78.51
512 77.50 79.27

Table 3: TüBa-D/Z 10 development score of coarse-to-
fine models GNG ELECTRA (base) and GELECTRA
(large) with different segment lengths.

5.2 ELECTRA Context Size

Following Joshi et al. (2019), we split documents
into non-overlapping ELECTRA contexts, evaluat-
ing different splits for contexts as shown in Table 3.
While Joshi et al. (2019) show that for English
BERT-base/large a segment length of 128/384 is
optimal, this does not hold true for our German
models and dataset where larger segment lengths
perform better. Our results are in line with the
intuition that larger context sizes provide more con-
textual information for any given mention. Thus,
we use a segment length of 512 in our models.

5.3 Hyperparameters

In general, parameters affecting computational lim-
its have a large impact, all other parameters that
we tested had only limited effect. Parameters con-
trolling the pruning (top span ratio, max top spans
and max top antecedents) have a strong negative
effect when set too low, resulting in too aggressive
pruning. Higher values increase evaluation scores
with quickly diminishing returns; yet strongly in-
crease computation time and memory.

To reduce GPU memory usage and computation
time, we reduced the size of all feed-forward neu-
ral networks from 3000 used in previous work to
2048 without seeing distinct score changes on the
TüBa-D/Z 10 development set. We also increased
the size to 4096, resulting in more memory usage
and slower computation, but negligible changes in
evaluation performance.

6 Experiments: Literature Domain

For the literary dataset (DROC), we explore the
use of both model variants. We initialize the incre-
mental model with weights from the coarse-to-fine
variant.

CoNLL-F1
News-Pretrain

3 7

Singletons
3 61.66± 0.52 59.93± 0.33
7 65.58 ± 0.46 64.26 ± 0.51

Table 4: The effect of using pre-training on the DROC
coarse-to-fine model on data with and without single-
tons. All results were averaged over 5 runs and the
standard deviation is given.

6.1 Coarse-to-fine Model

Given the relatively small size of the DROC dataset,
we explore the impact of pretrained weights from
the news tasks. We expected that while the dif-
ferent approaches to mention annotation (heads or
entire noun phrases) would somewhat limit appli-
cability of existing weights they would still lead to
an improvement.

Table 4 shows the development set results for the
DROC dataset, with the same set of initial weights
that was pretrained on TüBa-D/Z 10 being used for
all of our runs. Standard deviation for the ConLL-
F1 scores are given, based on five runs with dif-
ferent random initializations. All layer weights,
including task specific ones as well as language
model ones were reused. The experiment was re-
peated for a variant of the DROC dataset with all
singleton mentions removed.

Using Welch’s t-test we can infer that the per-
trained version does, on average, perform better
for the no singleton variant (p < 0.005). As a
result we will use the news-pretrained model vari-
ant in all our further experiments. This finding is
also supported by the recent publication by (Xia
and Durme, 2021) which establishes that, espe-
cially for short datasets, using pretrained weights
is beneficial. We are unsure if further significant
improvements could be gained by pre-training on
additional datasets, for example GerDraCor (Pagel
and Reiter, 2020), given that TüBa-D/Z is already
a large dataset.

Table 5 shows how two configuration parameters
affect the coarse-to-fine model’s performance. The
two options enable different features, where “seg-
ment info” describes how many BERT segments lie
between the current and candidate mention while
“token info” describes the token distance from the
candidate mention to the document start. Further,
“token info” encodes the length of the candidate
mention span. This experiment was performed as
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Distance Features

Segment Token Coarse-To-Fine Incremental

7 7 61.11± 0.57 65.79
3 7 62.31 ± 0.27 64.20
7 3 61.70± 0.22 62.57
3 3 59.93± 0.33 65.42

Table 5: Performance of the coarse-to-fine and incre-
mental models with respect to two configuration param-
eters relevant to recency bias.

CoNLL-F1
Teacher Forcing

3 7

Discard
3 63.92 65.42
7 58.52 57.27

Table 6: DROC incremental model configurations

we saw a recency bias in terms of connecting men-
tions in our early result explorations (see Section
7), an effect that could be caused by these distance
based features. On average, the variant without to-
ken distance representation performs significantly
better than the the one with both features enabled
(p < 0.001). We attribute this to a greater mention
recency bias that is encouraged by the additional
features.

6.2 Incremental Model
The memory usage of the coarse-to-fine approach,
while not prohibitive for the DROC dataset, will
prevent its application to full length literary docu-
ments.

Table 5 illustrates the impact of the same config-
uration parameters that were used for the coarse-to-
fine model. The impact of the parameters appears
to be lessened in the incremental case.

Unsurprisingly, due to the possibility of handling
singleton mentions, Table 6 clearly shows that the
discard functionality is critical to model perfor-
mance. Teacher forcing appears to have a negative
impact on performance; this does come as a sur-
prise but while convergence early in training was
faster the final results were slightly worse.

6.3 Impact of Document Length
We seek to analyze how well incremental models
fare as document length increases. To this end,
we split DROC at the nearest sentence boundary
into sub documents that are no longer than 512,

0 1,000 2,000 3,000 4,000
50

60

70

80

Average Document Length

C
oN

L
L

F1
-S

co
re

Coarse-to-fine
Incremental

Figure 3: The performance of incremental systems
compared to coarse-to-fine model as document lengths
increases.

CoNLL-F1

System TüBa SE’10

German coarse-to-fine base 77.21 72.54
German coarse-to-fine large 78.79 74.46
IMS HotCoref 48.54 48.61

+ gold mentions 65.76 63.61
CorZu 45.82

+ gold mentions 58.11

Table 7: Results of our coarse-to-fine models and pre-
vious systems on the test set of TüBa-D/Z 10 and
SemEval-2010 (without singletons). IMS HotCoref
and CorZu scores as reported by Roesiger and Kuhn
(2016). Full metrics in Table 10 in the appendix.

1024 and 2048 tokens. Previous work (Krug, 2020;
Joshi et al., 2019) has established that, with longer
documents, the performance of coreference sys-
tems drops. This can be interpreted as the inherent
difficulty of the coreference task growing with doc-
ument length. Figure 3 shows that for longer docu-
ments the gap in performance between the model
variants increases slightly.

7 Results & Error Analysis

Our neural coarse-to-fine models outperform the
previous state of the art by a large margin on both
SemEval-2010 (+25.85 F1) and TüBa-D/Z (+30.25
F1) as shown in Table 7. In fact, even if the other
systems are allowed to use gold mentions, our mod-
els still outperform them by more than 10 F1 points.
Using ELECTRA large for contextual embeddings
yields a small improvement over the base model
(+1.58 F1 / +1.92 F1). Figure 4 shows an example
of our systems prediction on an unseen document.

We manually analyze the predictions of our
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[Bahn-Chef]1	 legt	Statistik	 vor.	Bisher	 keine	Erklärung
für	 [das	Unglück	von	 [Eschede]3]2	 [Frankfurt]4	 (
taz	)	-	Der	Eindruck,	daß	sich	die	Unfälle	bei	[der	Bahn]5
häuften,	sei	nur	durch	die	"	Berichterstattung	der	Medien	"
provoziert,	 erklärte	 [der	 Vorstandsvorsitzende	 [der
Deutschen	Bahn	AG]5,	Johannes	Ludewig	(	CDU]1	 ),
gestern	 in	 [Frankfurt]4.	 Zum	 bevorstehenden	 ersten
Jahrestag	 [der	 ICE-Katastrophe	 von	 [Eschede]3]2	 (
3.	 Juni	 )	 verwies	 [Ludewig]1	 auf	 [die	 -	 bahneigene	 -
Statistik]6.	[...]

Figure 4: Excerpt from a TüBa-D/Z 10 test set docu-
ment (in total 438 tokens), where the shown output of
our coarse-to-fine large model is identical to the human
annotation (document score: 89.08 CoNLL-F1)

System Model F1 Score

Krug (2020)
(with singletons)

Sieve 51.53
CR 51.34
E2E-NN 53.17

Ours
(with singletons)

Incremental 64.72
C2F 61.66

Ours (no singletons) C2F 65.50

Table 8: Final results for the DROC dataset on the test
set, with and without singleton mentions included.

coarse-to-fine model and find that it generally pro-
duces accurate coreference links both locally and
document-wide. While entity assignment of men-
tions, identified in both prediction and gold data, is
typically correct, missed and added mentions are
more frequent errors. We assume that one reason
is a contradicting training signal, i.e. while some
mentions are annotated as such in the gold data,
others are not because they are singletons or were
missed in the annotation process.

Our incremental model on data including single-
tons outperforms the existing state of the art for
DROC by 11.6 F1 points (see Table 8). Said re-
sults were achieved in a setup comparable to ours,
with no gold information such as speakers or en-
tity spans being used, except in the case of their
end-to-end neural network (E2E-NN), where direct
speech and speaker information were used.

We manually evaluate our model on entire lit-
erary texts. While we find local coreference rela-
tionships to be surprisingly accurate, when taking a

4Text from: https://www.projekt-gutenberg.
org/bechstei/maerchen/chap053.html

Es	war	 einmal	 ein	 gar	 allerliebstes,	 niedliches	Ding	 von
einen	 [Mädchen]1,	 [das]1	 hatte	 eine	 [Mutter]2
und	eine	[Großmutter]2,	die	waren	gar	gut	und	hatten
das	 kleine	 [Ding]1	 so	 lieb.	 Die	 [Großmutter]2
absonderlich,	[die]2	wußte	gar	nicht,	wie	gut	sie	'	s	mit

dem	[Enkelchen]1	meinen	sollte	[...]

(a) Model with token distance feature

Es	war	 einmal	 ein	 gar	 allerliebstes,	 niedliches	Ding	 von
einen	 [Mädchen]1,	 [das]1	 hatte	 eine	 [Mutter]2
und	eine	[Großmutter]3,	die	waren	gar	gut	und	hatten
das	 kleine	 Ding	 so	 lieb.	 Die	 [Großmutter]3
absonderlich,	[die]3	wußte	gar	nicht,	wie	gut	sie	'	s	mit

dem	[Enkelchen]1	meinen	sollte,	[...]

(b) Model without token distance feature

Figure 5: We observe a recency bias that appears to, in
this case, be fixed by not including an explicit token dis-
tance feature. The term “Großmutter” (grandmother) is
linked to the term “Mutter” (mother).4

more global view, some of our model’s weaknesses
are exposed. When searching the token “Holmes”
in the German translation of “The Hound of the
Baskervilles” 5 which should always refer to the
same character we find the 212 tokens to occur
in 31 different clusters with 4 mentions being as-
signed to no cluster. Our observation is that this
often occurs after a long section of text without
explicit mentions of the name, in fact the average
distance from one mention of Holmes to the pre-
vious is 320.6 tokens whereas it is 655.3 for those
cases where a new class is erroneously introduced.
We suspect, that this could be attributed to the name
taking less prominence in the entity representation
after a while.

Figure 5a illustrates a recency bias in our model,
“grandmother” and “mother” were erroneously com-
bined into one entity, presumably because the dis-
tance between the “mother” and “grandmother”
mentions were very small. On a larger scale this
effect can be observable as long sequences of the
same cluster forming, an effect that is especially
prominent in our incremental models. This ob-
servation motivated our experiments with remov-
ing distance features (see Table 5), resulting in
an improved model and, in this case (as seen in
Figure 5b), an improved result. However, this par-
ticular model no longer detects “thing” (Ding) as a

5https://www.projekt-gutenberg.org/
doyle/basker-1/

177



valid mention which could both be a side effect of
removing the distance features or an effect of the
random initialization and training.

8 Conclusion

We apply recent developments in neural architec-
tures for coreference resolution on German data
and achieve a substantial improvement over the
previous state of the art on all three established Ger-
man datasets. We conducted experiments with two
variants: a coarse-to-fine model suitable for rather
short documents, and an incremental model that
should scale to long documents. In our analysis we
found that while the task of coreference resolution
itself becomes more difficult as document sizes
increase, the incremental approach scales worse
than the course-to-fine approach in terms of accu-
racy. While we found local decisions to be accurate,
shortcomings of the incremental model in global
consistency and recency bias were explored.

In future work, we would especially like to ad-
dress remaining challenges for the processing of
long-form literary documents. In spite of the large
improvements we achieved, there is still a con-
siderable headroom for coreference resolution, as
reflected by a large performance gap between the
human baseline of 82.54 F1 and our best model
with 64.7 F1 on the DROC dataset. On a more
theoretic note, another extension worth pursuing
in the future especially for the literary domain is
the notion of subjective coreference. As an exam-
ple, in the fairy tale “Little Red Riding Hood” (see
Figure 5), the girl temporarily perceives a highly
plot-relevant coreference between the grandmother
and the big bad wolf, which is not reflected in ob-
jectivized models.
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A Appendix

dataset articles sentences tokens

SemEval-2010 1,235 26,098 455,046
- training 900 19,233 331,614
- develop. 199 4,129 73,145
- test 136 2,736 50,287

TüBa-D/Z 10.0 3,644 95,595 1,787,801
- training 2190 65,416 1,258,514
- develop. 727 15,593 276,635
- test 727 14,586 252,652

TüBa-D/Z 11.0 3,816 104,787 1,959,474

OntoNotes 5.0 3,493 94,269 1,631,995

DROC 90 18,161 393,164
- training 58 11,368 249,817
- develop. 14 3,570 72,258
- test 18 3,223 70,999

Table 9: Overview of the dataset releases referred to in
this work.
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MUC B3 CEAFφ4 CoNLL LEA

R P F1 R P F1 R P F1 F1 R P F1

TüBa-D/Z 10.0

German c2f base 81.92 79.90 80.90 77.41 73.52 75.41 75.16 75.50 75.33 77.21 74.98 70.82 72.84
German c2f large 82.85 81.61 82.23 78.41 75.73 77.05 76.75 77.44 77.09 78.79 73.25 73.25 74.67
IMS HotCoref 48.54

+ gold mentions 65.76

SemEval-2010

German c2f base 76.64 76.08 76.36 71.18 69.12 70.14 71.83 70.45 71.13 72.54 67.88 65.7 66.77
German c2f large 79.07 76.51 77.77 73.88 70.48 72.14 74.79 72.21 73.47 74.46 70.69 67.18 68.89
IMS HotCoref 48.61

+ gold mentions 63.61
CorZu 45.82

+ gold mentions 58.11

Table 10: Recall, precision and F1 score on the test set of TüBa-D/Z 10 and SemEval-2010 (without singletons).
Our coarse-to-fine (c2f) models use either ELECTRA base or large. IMS HotCoref and CorZu system scores as
reported by Roesiger and Kuhn (2016).
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Abstract

Although sentiment is conceptualized as a con-
tinuous variable, most text-based sentiment
analyses categorize texts into discrete senti-
ment categories. Compared to discrete catego-
rizations, continuous sentiment estimates pro-
vide much more detailed information which
can be used for more fine-grained analyses by
researchers and practitioners alike. Yet, exist-
ing approaches that estimate continuous senti-
ments either require detailed knowledge about
context and compositionality effects or require
granular training labels, that are created in re-
source intensive annotation processes. Thus,
existing approaches are too costly to be ap-
plied for each potentially interesting applica-
tion. To overcome this problem, this work in-
troduces CBMM (standing for classifier-based
beta mixed modeling procedure). CBMM ag-
gregates the predicted probabilities of an en-
semble of binary classifiers via a beta mixed
model and thereby generates continuous, real-
valued output based on mere binary training in-
put. CBMM is evaluated on the Stanford Senti-
ment Treebank (SST) (Socher et al., 2013), the
V-reg data set (Mohammad et al., 2018), and
data from the 2008 American National Elec-
tion Studies (ANES) (The American National
Election Studies, 2015). The results show that
CBMM produces continuous sentiment esti-
mates that are acceptably close to the truth and
not far from what could be obtained if highly
fine-grained training data were available.

1 Introduction

In natural language processing and computer sci-
ence, the term sentiment typically refers to a loosely
defined, broad umbrella concept: Feeling, emotion,
judgement, evaluation, and opinion all fall under
the term sentiment or are used synonymously with
it (Pang and Lee, 2008; Liu, 2015). Interestingly,
the broad notion of sentiment is very well cap-
tured by the psychological concept of an attitude

(Liu, 2015). In psychology, scholars agree that an
attitude is a summary evaluation of an entity (Ba-
naji and Heiphetz, 2010; Albarracin et al., 2019).
An attitude is the aggregated evaluative response
resulting from a multitude of different (and po-
tentially conflicting) information bases relating to
the attitude entity (Fabringar et al., 2019). When
putting the definition of an attitude as an evaluative
summary into mathematical terms, an attitude is a
unidimensional, continuous variable ranging from
highly negative to highly positive (Cacioppo et al.,
1997). This notion that attitudes are continuous is
also mirrored in the sentiment analysis literature in
which sentiments are devised to vary in their levels
of intensity (Liu, 2015).

Despite this conceptualization, in an overwhelm-
ing majority of studies textual sentiment expres-
sions are measured as instances of discrete classes.
Sentiment analysis often implies a binary or multi-
class classification task in which texts are assigned
into two or three classes, thereby distinguishing
positive from negative sentiments and sometimes a
third neutral category (e.g. Pang et al., 2002; Tur-
ney, 2002; Maas et al., 2011). Other studies pursue
ordinal sentiment classification (e.g. Pang and Lee,
2005; Thelwall et al., 2010; Socher et al., 2013;
Kim, 2014; Zhang et al., 2015; Cheang et al., 2020).
Here, texts fall into one out of several discrete and
ordered categories.

If researchers would generate continuous—
rather than discrete—sentiment estimates, this
would not only align the theoretical conceptual-
ization of sentiment with the way it is measured
but also would provide much more detailed infor-
mation that in turn can be used by researchers and
practitioners for more fine-grained analyses and
more fine-tuned responses.

For example, in the plot on the right hand side
in Figure 1, the distribution of the binarized senti-
ment values of the tweets in the V-reg data set (Mo-
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hammad et al., 2018) is shown. If researchers and
practitioners would operate only on this discrete
sentiment categorization, the shape of the under-
lying continuous sentiment distribution would be
unknown. In fact, all distributions shown on the
left hand side in Figure 1 produce the plot on the
right hand side in Figure 1 if the sentiment values
are binarized in such way that tweets with a sen-
timent value of ≥ 0.5 are assigned to the positive
class and otherwise are assigned to the negative
class. Imagine that a team of researchers would be
interested in the sentiments expressed toward a pol-
icy issue and they would only know the binarized
sentiment values on the right hand side in Figure
1. The researchers would not be able to conclude
whether the expressions toward the policy issue are
polarized into a supporting and an opposing side,
whether a large share of sentiment expressions is
positioned in the neutral middle, or whether the
sentiments are evenly spread out. Knowing the
continuous sentiment values, however, would al-
low them to differentiate between these scenarios.

As will be elaborated in Section 2, existing ap-
proaches that estimate continuous sentiment values
for texts rely on (1) the availability of a compre-
hensive, context-matching sentiment lexicon and
the researcher’s knowledge regarding how to accu-
rately model compositionality effects, or (2) highly
costly processes to create fine-grained training data.

Sentiment analysis thus would benefit from a
technique that generates continuous sentiment pre-
dictions for texts and is less demanding concerning
the required information or resources. To meet
this need, this work explores in how far the here
proposed classifier-based beta mixed modeling ap-
proach (CBMM) can produce valid continuous
(i.e. real-valued) sentiment estimates on the basis of
mere binary training data. The method comprises
three steps. First, for each training set document a
binary class label indicating whether the document
is closer to the negative or the positive extreme of
the sentiment variable has to be created or acquired.
Second, an ensemble of J classifiers is trained on
the binary class labels to produce for each ofN test
set documents J predicted probabilities to belong
to the positive class. Third, a beta mixed model
with N document random intercepts and J classi-
fier random intercepts is estimated on the predicted
probabilities. The N document random intercepts
are the documents’ continuous sentiment estimates.

In the following section, existing approaches
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Figure 1: Continuous and Discrete Sentiment Distribu-
tions. Right plot: Binarized sentiment values of the
tweets in the V-reg data set (Mohammad et al., 2018).
Left plots: Histograms and kernel density estimates for
three continuous distributions of sentiments that pro-
duce the plot on the right hand side if the continuous
sentiment values are binarized such that tweets with
values of ≥ 0.5 are assigned to the positive class and
otherwise are assigned to the negative class. The uni-
modal distribution at the top is the true distribution of
sentiment values but the other two distributions would
generate the same binary separation of tweets into pos-
itive and negative.

that generate continuous sentiments are reviewed
(Section 2). Then, CBMM is introduced in detail
(Section 3) before it is evaluated on the basis of
the Stanford Sentiment Treebank (SST) (Socher
et al., 2013), the V-reg data set (Mohammad et al.,
2018), and data from the 2008 American National
Election Studies (ANES) (The American National
Election Studies, 2015) (Section 4). A concluding
discussion follows in Section 5.

2 Related Work

This work is concerned with the estimation of con-
tinuous values for texts in applications in which
the underlying, unidimensional, continuous vari-
able (e.g. sentiment) is well defined and the re-
searcher seeks to position the texts along exactly
this variable. Hence, this work does not consider
unsupervised approaches (e.g. Slapin and Proksch,
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2008) and only considers methods in which infor-
mation on the definition of the underlying variable
explicitly enters the estimation of the texts’ val-
ues. Among these methods, one can distinguish
two major approaches: lexicon-based procedures
and regression models that operate on fine-grained
training data.1

2.1 Lexicon-Based Approaches

An ideal sentiment lexicon covers all features in
the corpus of an application and precisely assigns
each feature to the sentiment value the feature has
in the thematic context of the application (Grim-
mer and Stewart, 2013; Gatti et al., 2016). A major
difficulty of lexicon-based approaches, however,
is that even such an ideal sentiment lexicon will
not guarantee highly accurate sentiment estimates.
The reason is that sentiment builds up through com-
plex compositional effects (Socher et al., 2013).
These compositional effects either can be mod-
eled via human-created rules or can be learned
by supervised machine learning algorithms. Ap-
proaches that try to model compositionality via
human-created rules range from simple formulas
(e.g. Paltoglou et al., 2013; Gatti et al., 2016) to
elaborate procedures (e.g. Moilanen and Pulman,
2007; Thet et al., 2010). Human-coded composi-
tionality rules, however, tend to be outperformed
by supervised machine learning algorithms (com-
pare e.g. Gatti et al., 2016, Table 12 and Socher
et al., 2013, Table 1). In the latter case, sentiment
lexicons serve the purpose of creating the feature
inputs to regression approaches—which are dis-
cussed next.

2.2 Regression Approaches

The second major set of approaches that gener-
ate real-valued sentiment estimates makes use of
highly granular training data (e.g. as in the SST
data set where each text is assigned to one out
of 25 distinct values (Socher et al., 2013)). In
these approaches, the fine-grained annotations are
treated as if they were continuous and a regression
model is applied.2 Typically, the mean squared er-

1Techniques for estimating continuous document positions
on an a priori defined unidimensional latent variable also have
been developed in political science. These methods either are
at their core lexicon-based approaches (Watanabe, 2021) or
require continuous values for the training documents (Laver
et al., 2003)—and thus have the same shortcomings as either
lexicon-based or regression approaches.

2Note that here, in correspondence with machine learn-
ing terminology, regression refers to statistical models and

ror (MSE) between the true granular labels and the
real-valued predictions from the regression model
is minimized. Regression approaches have shown
to be able to generate continuous sentiment predic-
tions that are quite close to the true fine-grained
labels (Mohammad et al., 2018; Wang et al., 2018).
Yet, the prerequisite for implementing such an ap-
proach is that fine-grained labels for the training
data are available. Generating such granular an-
notations, however, is difficult and costly: Catego-
rizing a training text into few ordinal categories is
arguably a more easy task than assigning a text into
one out of a large number of ordered values or even
rating a text on a real-valued scale. As the number
of distinct values increases, the number of inter-
and intra-rater disagreements is likely to increase
(Krippendorff, 2004). Hence, to produce reliable
text annotations, it is advantageous to have each
document rated several times by independent raters.
The independent ratings then can be aggregated by
taking the median or the mean of the ratings to
obtain the final value (see e.g. Kiritchenko and Mo-
hammad, 2017). The larger the number of raters
for a document, the more reliable the final value as-
signed to the document. For this reason, generating
reliable fine-grained labels for training documents
via rating scale annotations requires a resource in-
tensive annotation process.

The best-worst scaling (BWS) method in which
coders have to identify the most positive and the
most negative document among tuples of doc-
uments (typically 4-tuples), alleviates the prob-
lems of inter- and intra-rater inconsistencies (Kir-
itchenko and Mohammad, 2017). Yet, in order for
the rankings among document tuples to generate
valid real-valued ratings via the counting procedure
implemented in BWS, it is essential that each doc-
ument occurs in many different tuples such that
each document is compared to many different other
documents. This implies that a substantive number
of unique tuples have to be annotated—which, in
turn, demands respective human coding resources.

An alternative to the labeling of texts by human
coders is the usage of already available information
(e.g. if product reviews additionally come with nu-
merical star ratings). The problem here, however,
is that such information—if available at all—often
comes in the form of discrete variables with only
few distinct values (e.g. 5-star rating systems).

algorithms that model a real-valued response variable—which
typically is assumed to follow a normal distribution.
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To conclude, it is difficult and resource intensive
to create or acquire fine-grained training data that
is so detailed that it can be treated as if it were
continuous. Not each team of researchers or prac-
titioners will have the resources to create detailed
training annotations and thus regression models
cannot be applied to each substantive application
of interest. Hence, the question that this work ad-
dresses is: Can one generate continuous sentiments
with fewer costs in a setting where inter- and intra-
rater inconsistencies are likely to be small? For
example based on a simple binary coding of the
training data?

3 Procedure

In the following, the three steps of the proposed
CBMM procedure—(1) generating binary class
labels, (2) training and applying an ensemble of
classifiers, as well as (3) estimating a beta mixed
model—are explicated. CBMM assumes that the
documents to be analyzed are positioned on a latent,
unidimensional, continuous sentiment variable.
The aim is to estimate the test set documents’ real-
valued sentiment positions. The test set documents
are indexed as i ∈ {1 . . . N} and their sentiment
positions are denoted as θ = [θ1 . . . θi . . . θN ]

>.

3.1 Generating Binary Class Labels

The CBMM procedure starts by generating binary
class labels for the training set documents, e.g. via
human coding. The coders classify the training
documents into two classes such that the binary
class label of each training set document indicates
whether the document is closer to the negative (0)
or the positive (1) extreme of the sentiment variable.
Alternatively to human coding, binarized external
information (such as star ratings associated with
texts) can be used as class label indicators.

3.2 Training and Applying an Ensemble of
Classifiers

In the second step, an ensemble of classification
algorithms, indexed as j ∈ {1 . . . J}, is trained on
the binary training data. The classifiers in the en-
semble may differ regarding the type of algorithm,
hyperparameter settings, or merely the seed values
initializing the optimization process. After training,
each classifier produces predictions for the N doc-
uments in the test set and each classifier’s predicted
probabilities for the test set documents to belong to
the positive class are extracted. Thus, for each doc-

ument i, a predicted probability to belong to class
1 is obtained from each classifier j, such that there
are J predicted probabilities for each document:
ŷi = [ŷi1 . . . ŷij . . . ŷiJ ]; whereby ŷij is classifier
j’s predicted probability for document i to belong
to class 1.

3.3 Estimating a Beta Mixed Model

In step three, the aim is to infer the unobserved doc-
uments’ continuous values on the latent sentiment
variable from the observed predicted probabilities
that have been generated by the set of classifiers.
The approach taken here is similar to item response
theory (IRT) in which unobserved subjects’ values
on a latent variable of interest (e.g. intelligence) are
inferred from the observed subjects’ responses to a
set of question items (Hambleton et al., 1991). Cen-
tral to IRT is the assumption that a subject’s value
on the latent variable of interest affects the subject’s
responses to the set of question items (Hambleton
et al., 1991). For example, a subject’s level of
intelligence is postulated to influence his/her an-
swers in an intelligence test. In correspondence
with this assumption, the consistent mathematical
element across all types of IRT models is that the
observed subjects’ responses are regressed on the
unobserved subjects’ latent levels of ability.

Here, there are documents rather than subjects
and classifiers rather than question items. Yet, the
aim is the same: to infer unobserved latent posi-
tions from what is observed. As in IRT, the idea
here is that a document’s value on the latent senti-
ment variable affects the predicted probabilities the
document obtains from the classifiers. For exam-
ple, a document with a highly positive sentiment is
assumed to get rather high predicted probabilities
from the classifiers. Consequently, the predicted
probabilities are regressed on the documents’ latent
sentiment positions.

In doing so, it has to be accounted for that the
predicted probabilities are grouped in a crossed
non-nested design: In step 2, for each of theN doc-
uments, J predicted probabilities (one from each
classifier) are produced such that there are N × J
predicted probabilities. These predicted probabili-
ties cannot be assumed to be independent. The J
predicted probabilities for one document are likely
to be correlated because they are repeated measure-
ments on the same document. Additionally, the N
predicted probabilities produced by one classifier
also are generated by a common source. They come
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from the same classifier that might systematically
differ from the others, e.g. produce systematically
lower predicted probabilities.

Moreover, the data generating process is such
that the documents are drawn from a larger popula-
tion of documents. The population distribution of
the probability to belong to class 1 might inform
the probabilities obtained by individual documents.
Similarly, the classifiers are sampled from a popu-
lation of classifiers with a population distribution
in the generated predicted probabilities that may
inform an individual classifier’s predicted probabil-
ities. To account for this data generating process, a
mixed model with N document random intercepts
and J classifier random intercepts seems the ade-
quate model of choice. (On mixed models see for
example Fahrmeir et al. (2013, chapter 7)).

As the predicted probabilities, ŷij , are in the unit
interval [0,1], it is assumed that the ŷij are beta
distributed. Following the parameterization of the
beta density employed by Ferrari and Cribari-Neto
(2004) the beta mixed model is:

ŷij ∼ B(µij , φ) (1)

g(µij) = β0 + θi + γj (2)

θi ∼ N(0, τ2θ ) (3)

γj ∼ N(0, τ2γ ) (4)

In the model described here, ŷij (the probability
for document i to belong to class 1 as predicted by
classifier j) is assumed to be drawn from a beta dis-
tribution with conditional mean µij . µij assumes
values in the range (0,1) and φ > 0 is a precision
parameter (Cribari-Neto and Zeileis, 2010). µij is
determined by the fixed global population intercept
β0, the document-specific deviation θi from this
population intercept, and the classifier-specific de-
viation γj from the population intercept. As the
documents are assumed to be sampled from a larger
population, the document-specific θi are modeled
to be drawn from a shared distribution (see equa-
tion 3).3 The same is true for the classifier-specific
γj . To ensure that the results from the linear pre-
dictor in equation 2 are kept between 0 and 1, the
logit link is chosen as the link function g(·).4

Note that in the beta distribution V ar(ŷij) =
µij(1 − µij)/(1 + φ) (Cribari-Neto and Zeileis,

3Note that the usually employed assumption is that the
random effects are independent and identically distributed
according to a normal distribution (Fahrmeir et al., 2013).

4Thus, equation 2 is log(µij/(1− µij)) = β0 + θi + γj .

2010). This means that the variance of ŷij not only
depends on precision parameter φ but also depends
on µij , which implies that the model naturally ex-
hibits heteroscedasticity (Cribari-Neto and Zeileis,
2010). In the given data structure, documents that
express very positive (or very negative) sentiments
are likely to be easy cases for the classifiers and it
is likely that all classifiers will predict very high
(or very low) values. Documents that express less
extreme sentiments, in contrast, are likely to be
more difficult cases and the classifiers are likely to
differ more in their predicted probabilities. This is,
predicted probabilities are likely to exhibit a higher
variance for documents positioned in the middle of
the sentiment value range. To additionally account
for this effect, the beta mixed model described in
equations 1 to 4 can be extended with a dispersion
formula describing the precision parameter φ as a
function of document-specific fixed effects:5

h(φi) = δi (5)

To keep φi > 0, h(·) here is the log link (Brooks
et al., 2017).6 In the following, CBMM is imple-
mented with and without the dispersion formula in
equation 5. The variant of CBMM that includes
equation 5 is denoted CBMMd.

With or without a dispersion formula, the θi de-
scribe the document-specific deviations from the
fixed population mean β0. Hence, the θi —in linear
relation to β0—position the documents on the real
line and thus are taken as the CBMM and CBMMd
estimates for the continuous sentiment values.

4 Applications

4.1 Data
The effectiveness of CBMM in generating continu-
ous sentiments using binary training data is evalu-
ated on the basis of four data sets:

The Stanford Sentiment Treebank (SST) (Socher
et al., 2013) contains sentiment labels for 11,855
sentences [train: 9,645; test: 2,210] taken from
movie reviews. Each of the sentences was assigned
one out of 25 sentiment score values ranging from
highly negative (0) to highly positive (1) by three
independent human annotators.

5Note that the document-specific δi are fixed effects that
are not modeled to be sampled from a shared population distri-
bution. The reason is that current software implementations of
mixed models that use maximum likelihood estimation only
allow for inserting fixed effects but no random effects in the
dispersion model formula (Brooks et al., 2017).

6Thus, equation 5 here is log(φi) = δi.
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The V-reg data set from the SemEval-2018 Task
1 on “Affect in Tweets” (Mohammad et al., 2018)
contains 2,567 tweets [train: 1,630; test: 937] that
are likely to be rich in emotion. The tweets’ real-
valued valence scores are in the range (0,1) and
were generated via BWS, whereby each 4-tuple
was ranked by four independent coders.

Furthermore, two data sets from the 2008 Ameri-
can National Election Studies (ANES) (The Amer-
ican National Election Studies, 2015) are used.
The feeling thermometer question, in which par-
ticipants have to rate on an integer scale ranging
from 0 to 100 in how far they feel favorable and
warm vs. unfavorable and cold toward parties, is
posed regularly in ANES surveys. In the 2008
pre-election survey, participants were additionally
asked in open-ended questions to specify what they
specifically like and dislike about the Democratic
and the Republican Party.7 Here, the aim is to
generate continuous estimates of the sentiments
expressed in the answers based on the binarized
feeling thermometer scores. For the Democrats
there are 1,646 answers [train: 1,097; test: 549].
This data set is named ANES-D. For the Repub-
licans there are 1,523 answers [train: 1,015; test:
508] that make up data set ANES-R. For compari-
son with the other applications, the true scores from
ANES are rescaled by min-max normalization from
range [0,100] to [0,1].

To create binary training labels for the CBMM
procedure, in all training data sets the fine-grained
sentiment values are dichotomized such that the
class label for a document is 1 if its score is ≥
0.5 and is 0 otherwise. CBMM’s continuous sen-
timent estimates for the test set documents then
are compared to the original fine-grained values.
Note that these four data sets are selected for eval-
uation precisely because they provide fine-grained
sentiment scores against which the CBMM esti-
mates can be compared to. In each of the four
data sets, the detailed training annotations are the
result of resourceful coding processes or—in the
case of ANES—lucky coincidences. For exam-
ple, around 50,000 annotations were made for the
V-reg data set that comprises 2,567 tweets (Moham-
mad et al., 2018). Such resources or coincidences,
however, are unlikely to be available for each po-
tentially interesting research question. Thus, whilst

7The survey contains one question asking what the partici-
pant likes and a separate question asking what the participant
dislikes about a party. For each respondent, the answers to
these two questions are concatenated into a single answer.

these data sets are selected because they come with
fine-grained labels that can be used for evaluating
CBMM, the settings in which CBMM will be espe-
cially valuable are those in which external informa-
tion that may serve as a granular training input is
unavailable and the available amounts of resources
are not sufficient for a granular coding of texts.

4.2 Generating Continuous Sentiment
Estimates via CBMM

Step 2 of the CBMM procedure consists in train-
ing an ensemble of classifiers on the binary train-
ing data to then obtain predicted probabilities for
the test set documents. Here, for all four applica-
tions, a set of 10 pretrained language representa-
tion models with the RoBERTa architecture (Liu
et al., 2019) are fine-tuned to the binary classifi-
cation task. The 10 models within one ensemble
merely differ regarding their seed value that ini-
tializes the optimization process and governs batch
allocation.8 As the seed values are randomly gen-
erated, this neatly fits with the assumption encoded
in the specified mixed models that classifiers are
randomly sampled from a larger population of clas-
sifiers. As a Transformer-based model for transfer
learning, RoBERTa is likely to yield relatively high
prediction performances in text-based supervised
learning tasks also if—as is the case for the selected
applications—training data sets are small.

In step 3 of CBMM, two different beta mixed
models as presented in equations 1 to 5—one
model with and the other without a dispersion
formula—are estimated. In each mixed model, the
estimate for θi is taken as the sentiment value pre-
dicted for document i.

Steps 1 and 3 of the CBMM procedure are
conducted in R (R Core Team, 2020). The beta
mixed models are estimated with the R package
glmmTMB (Brooks et al., 2017). In step 2, fine-
tuning is conducted in Python 3 (Van Rossum
and Drake, 2009) making use of PyTorch (Paszke
et al., 2019). Pretrained RoBERTa models are ac-
cessed via the open-source library provided by Hug-
gingFace’s Transformers (Wolf et al., 2020). The
source code to replicate the findings is available at
https://doi.org/10.6084/m9.figshare.14381825.v1.

8The 10 models applied for one application also have the
same hyperparameter settings. In all four applications, a grid
search across sets of different values for the batch size, the
learning rate and the number of epochs is conducted via a 5-
fold cross-validation. The hyperparameter setting that exhibits
the lowest mean loss across the validation folds and does not
suffer from too strong overfitting is selected.
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4.3 Evaluation

4.3.1 Comparisons to Other Methods
The sentiment estimates from CBMM and CBMMd
are compared to the following methods.

Mean of Predicted Probabilities [Pred-Prob-
Mean]. For each document, this procedure simply
takes the mean of the predicted probabilities across
the ensemble of classifiers: θ̂i = 1

J

∑J
j=1 ŷij .

Lexicon-Based Approaches. Two lexicons are
made use of. First, the SST provides for each tex-
tual feature in the SST corpus a fine-grained hu-
man annotated sentiment value that indicates the
feature’s sentiment in the context of movie reviews.
Hence, the SST constitutes an all-encompassing
and perfectly tailored lexicon for the SST applica-
tion and is employed as a lexicon here. Second,
the SentiWords lexicon (Gatti et al., 2016), that
is based on SentiWordNet (Esuli and Sebastiani,
2006) and contains prior polarity sentiment values
for around 155,287 English lemmas, is used. For
the SST and the SentiWords lexicons, the sentiment
value estimates are generated by computing the
arithmetic mean of a document’s matched features’
values. The procedures here are named SST-Mean
and SentiWords-Mean.

Regression approaches, that make use of the
true fine-grained sentiment values rather than the
binary training data, are also applied. Note that
the evaluation results for the regression-based pro-
cedures signify the levels of performance that can
be achieved if one is in the ideal situation and pos-
sesses fine-grained training annotations. Hence, the
regression approaches constitute a reference point
against which the other approaches’ performances
can be related to.

Here, in all four applications, J = 10 RoBERTa
regression models are trained on the training set
and then make real-valued predictions for the doc-
uments in the test set such that there are J =
10 predictions for each test set document: ẑi =
[ẑi1 . . . ẑij . . . ẑiJ ]; whereby ẑij is the real-valued
prediction of regression model j for document i.
To have a fair comparison to CBMM, the same
procedures for aggregating the predicted values are
explored. Thus, there are three different aggrega-
tion methods. First, the mean of the 10 models’
predictions is taken such that the sentiment esti-
mate is: θ̂i = 1

J

∑J
j=1 ẑij [Regr-Mean]. Second

and third, a mixed model with and without a dis-
persion formula is estimated on the basis of the ẑij .
The estimates for the θi are extracted as the contin-

uous sentiment predictions. Yet, to account for the
data generating process of the ẑij , a linear mixed
model (LMM)—instead of a beta mixed model—is
estimated:

ẑij ∼ N(µij , σ
2) (6)

µij = β0 + θi + γj (7)

θi ∼ N(0, τ2θ ) (8)

γj ∼ N(0, τ2γ ) (9)

This approach is named Regr-LMM. The LMM
with a dispersion formula, Regr-LMMd, addition-
ally has: h(σ2i ) = δi; with h(·) being the log link.

4.3.2 Evaluation Metrics
The generated continuous sentiment estimates are
evaluated by comparing them to the original granu-
lar sentiment labels. Three evaluation metrics are
used: the mean absolute error (MAE), the Pearson
correlation coefficient r, and Spearman’s rank cor-
relation coefficient ρ. The evaluation metrics are
selected such that there is a measure of the average
absolute distance (MAE) as well as a measure of
the linear correlation (r) between the original true
sentiment values and the estimated values. Note
that Spearman’s ρ assesses the correlation between
the ranks of the true and the ranks of the estimated
values and thus evaluates in how far the order of
documents from negative to positive sentiment as
produced by the evaluated approaches reflects the
order of documents according to the true scores.

4.4 Results
Table 1 presents the evaluation results across all
applied data sets. Figure 2 visualizes distributions
of the true and estimated sentiment values for the
SST data. Across the four employed data sets (each
with a different shape of the to be approximated
distribution of the true sentiment values) the perfor-
mance levels vary for all approaches. Yet, the main
result remains consistent: the continuous sentiment
estimates generated by CBMM correlate similarly
with the truth and get only slightly less closer to
the truth as the predictions generated by regression
approaches that operate on fine-grained training
data. At times, CBMM estimates even slightly out-
perform regression predictions. Hence, researchers
that seek to get continuous sentiment estimates but
do not have the resources to produce highly de-
tailed training annotations can apply CBMM on
binary training labels and thereby obtain estimated
continuous sentiments whose performance is likely
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SST
MAE r ρ

SST-Mean 0.190 0.554 0.574
SentiWords-Mean 0.201 0.428 0.429
Regr-Mean 0.099 0.892 0.876
Regr-LMM 0.099 0.892 0.876
Regr-LMMd 0.099 0.892 0.876
Pred-Prob-Mean 0.216 0.859 0.856
CBMM 0.161 0.874 0.856
CBMMd 0.137 0.877 0.856

V-reg
MAE r ρ

0.171 0.437 0.487
0.177 0.429 0.475
0.090 0.871 0.869
0.090 0.871 0.869
0.090 0.872 0.870
0.198 0.804 0.844
0.164 0.819 0.842
0.133 0.835 0.844

ANES-D
MAE r ρ

0.242 −0.013 −0.033
0.254 −0.067 −0.079
0.195 −0.655 −0.653
0.195 −0.655 −0.653
0.195 −0.655 −0.653
0.202 −0.646 −0.649
0.191 −0.667 −0.648
0.200 −0.668 −0.649

ANES-R
MAE r ρ

0.252 −0.059 0.058
0.289 −0.009 0.005
0.191 −0.618 0.627
0.191 −0.618 0.627
0.192 −0.618 0.627
0.218 −0.624 0.613
0.207 −0.621 0.613
0.205 −0.620 0.612

Table 1: Evaluation Results. For the SST, V-reg, ANES-D, and ANES-R test data sets, the mean absolute error
(MAE), the Pearson correlation coefficient r, and Spearman’s rank correlation coefficient ρ between the true and
the estimated sentiment values are presented. The shading of the cells is a linear function of the approaches’ level
of performance. The darker the shading, the higher the performance. For computing the MAE, the predicted
sentiment values are rescaled via min-max normalization to the range of the true sentiment values.
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Figure 2: True and Estimated Sentiment Values for the SST Data. First column: Histograms of the true sentiment
scores. Remaining columns, top row: Estimates from Regr-Mean, CBMMd, Pred-Prob-Mean, and SST-Mean
plotted against the true sentiment values. Remaining columns, bottom row: Histograms of the estimates from
Regr-Mean, CBMMd, Pred-Prob-Mean, and SST-Mean.

to be only slightly lower compared to predictions
from regression models. Beside this main finding,
the following aspects are revealed:

Lexicon-based approaches do not perform very
well. The predicted sentiments are centered in the
middle of the sentiment value range and changes in
a document’s sentiment are not strongly reflected
in changes in the sentiment values predicted by the
lexicons. (As an example see the most right column
of Figure 2.) Consequently, the lexicon generated
sentiment estimates exhibit relatively low levels of
correlation with the true sentiment values. Espe-
cially the case of the SST lexicon for the SST data
shows that it is not sufficient to have a lexicon that
has a coverage of 100% and is perfectly tailored
to the context it is applied to. In order to get valid
sentiment estimates, one requires an aggregation

procedure that accounts for the complex building
up of sentiment in texts.

Regression Approaches. The continuous sen-
timent predictions generated by regression ap-
proaches tend to have the smallest distances to and
the highest correlations with the true sentiment
scores. Hence, the results demonstrate that if one
has detailed training annotations available that can
be treated as if they were continuous, regression
approaches constitute an effective way to bring sen-
timent estimates as close as possible to the true
sentiment values.

Across applications, the estimates obtained from
Regr-Mean, Regr-LMM, and Regr-LMMd are
highly similar. The reason is that the variance
for the document-specific intercepts, τ2θ , is high
relative to the error variance σ2, and the classifier-
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specific variance τ2γ .9 Thus, the LMM estimator
is close to a fully unpooled solution in which a
separate model for each document is estimated
(Fahrmeir et al., 2013, p. 355-356). The sentiment
predictions from Regr-LMM are therefore highly
correlated with Regr-Mean that computes a sepa-
rate mean for each document. Furthermore, adding
a dispersion formula does not strongly affect the
predictions from Regr-LMM.

Pred-Prob-Mean leads to acceptable results. Yet,
the estimates from Pred-Prob-Mean still strongly
mirror the binary coding structure (see the fourth
column of Figure 2). Moreover, MAE tends to
decrease and r tends to increase further if the pre-
dicted probabilities are aggregated via beta mixed
models in CBMM.

CBMM produces continuous sentiment estimates
that exhibit performance levels that are relatively
close to those of the regression-based procedures.
When considering the MAE and r, CBMMd tends
to slightly outperform CBMM. As the predicted
probabilities across all four data sets are character-
ized by a high degree of heteroskedasticity10 addi-
tionally accounting for heteroskedasticity via the
dispersion formula thus tends to further improve
the estimates.

Interestingly, across the three approaches
based on predicted probabilities (Pred-Prob-Mean,
CBMM, CBMMd) Spearman’s ρ nearly remains
unchanged. This implies that the predicted order
of documents on the latent sentiment variable is
largely determined by the predicted probabilities
from the ensemble of classifiers. Thus, whilst Pred-
Prob-Mean, CBMM and CBMMd operate on the
same order of documents,11 it is the aggregation of
the predicted probabilities by a beta mixed model—
and the accounting for heteroskedasticity—that en-
ables CBMM and CBMMd to alter the distances
between the documents’ positions on the sentiment
variable such that the distribution of true sentiment
values can be approximated more closely. (Com-
pare the histograms of the values predicted by CB-

9Yet, across all evaluated data sets, a Restricted Likelihood-
Ratio-Test (based on the approximation presented by Scheipl
et al. (2008) as implemented in the RLRsim R-package) testing
the null hypothesis that τ2γ = 0, reveals that this null hypothesis
can be rejected at a significance level of 0.01.

10To assess heteroskedasticity, Breusch-Pagan Tests
(Breusch and Pagan, 1979) are conducted. For all applications
and tested linear models, the Breusch-Pagan Test suggests that
the null hypothesis of homoskedasticity can be rejected at a
significance level of 0.01.

11Spearman’s ρ between the estimates from Pred-Prob-
Mean and CBMMd equals 0.999 across all applications.

MMd and Pred-Prob-Mean in Figure 2.)

5 Conclusion

This work introduced CBMM—a classifier-based
beta mixed modeling technique that generates con-
tinuous estimates for texts by estimating a beta
mixed model based on predicted probabilities from
a set of classifiers. CBMM’s central contribution
is that it produces continuous output based on bi-
nary training input, thereby dispensing the require-
ment of regression approaches to have (possibly
prohibitively costly to create) fine-grained training
data. Evaluation results demonstrate that CBMM’s
continuous estimates perform well and are not far
from regression predictions.

CBMM here is applied in the context of senti-
ment analysis. Yet, it can be applied to any context
in which the aim is to have continuous predictions
but the resources only allow for creating binary
training annotations.
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2008. Size and power of tests for a zero random
effect variance or polynomial regression in additive
and linear mixed models. Computational Statistics
& Data Analysis, 52(7):3283–3299.

Jonathan B. Slapin and Sven-Oliver Proksch. 2008. A
scaling model for estimating time-series party posi-
tions from texts. American Journal of Political Sci-
ence, 52(3):705–722.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models
for semantic compositionality over a sentiment tree-
bank. In Proceedings of the 2013 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 1631–1642, Seattle, Washington,
USA. Association for Computational Linguistics.

The American National Election Studies. 2015.
ANES 2008 Time Series Study. Inter-University
Consortium for Political and Social Research,
Ann Arbor, MI. https://electionstudies.org/data-
center/2008-time-series-study/.

Mike Thelwall, Kevan Buckley, Georgios Paltoglou,
Di Cai, and Arvid Kappas. 2010. Sentiment strength
detection in short informal text. Journal of the Amer-
ican Society for Information Science and Technol-
ogy, 61(12):2544–2558.

Tun Thura Thet, Jin-Cheon Na, and Christopher S.G.
Khoo. 2010. Aspect-based sentiment analysis of
movie reviews on discussion boards. Journal of In-
formation Science, 36(6):823–848.

Peter D. Turney. 2002. Thumbs up or thumbs down?
Semantic orientation applied to unsupervised classi-
fication of reviews. In Proceedings of the 40th An-
nual Meeting on Association for Computational Lin-
guistics, pages 417–424, Philadelphia, Pennsylvania,
USA. Association for Computational Linguistics.

Guido Van Rossum and Fred L. Drake. 2009. Python 3
Reference Manual. CreateSpace, Scotts Valley, CA.

Jin Wang, Bo Peng, and Xuejie Zhang. 2018. Using
a stacked residual LSTM model for sentiment inten-
sity prediction. Neurocomputing, 322:93–101.

Kohei Watanabe. 2021. Latent Semantic Scaling: A
semisupervised text analysis technique for new do-
mains and languages. Communication Methods and
Measures, 15(2):81–102.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Fun-
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Abstract
Online user comments in public forums are of-
ten associated with low quality, hate speech or
even excessive demands for moderation. To
better exploit their constructive and deliber-
ate potential, we present forumBERT. forum-
BERT is built on top of the BERT architec-
ture and uses a shared weight and late fusion
technique to better determine the quality and
relevance of a comment on a forum article.
Our model integrates article context with com-
ments for the online/offline comment modera-
tion task. This is done using a two step proce-
dure: self-supervised BERT language model
fine tuning for topic adaptation followed by in-
tegration into the forumBERT architecture for
online/offline classification. We present evalu-
ation results on various classification tasks of
the public One Million Post dataset, as well as
on the online/offline comment moderation task
on 998,158 labelled comments from NDR.de,
a popular German broadcaster’s website. fo-
rumBERT significantly outperforms baseline
models on the NDR dataset and also outper-
forms all existing advanced baseline models
on the OMP dataset. Additionally we conduct
two studies on the influence of topic adaptation
on the general comment moderation task.

1 Introduction

Online user comments, such as those on journalis-
tic content or product features are often associated
with low quality, hate speech or even excessive
demands for moderation. Automating this moder-
ation or aspects of it can be considered to be of
high practical interest. One of the key challenges
of forum comment moderation is the specificity of
category of classification. Forum comments have
to be moderated for hate-speech, discrimination,
spam among many other generally discussed clas-
sification tasks. Additionally comments on forum
articles must also be moderated for relevance and
contribution to the discourse.

Previous work by Schabus et al. (2017) and Sch-
abus and Skowron (2018) introduces the idea of
applied classification, wherein comments are anno-
tated across multiple forum specific categories and
classification models are created for each category.
In this paper we focus on the more general ”com-
ment moderation task” on news forum comments.
In this task, comments can be classified into one of
two categories, either online or offline, where an
online classification represents a comment that is
accepted by the forum moderators and an offline
classification represents comments that have been
taken down by the forum moderators.

In recent years, the Natural Language Process-
ing community has experienced a substantial shift
towards using pre-trained models. Their usage on
large corpora has proved to be beneficial in learn-
ing general language representations and has shown
improvement in text classification and many other
NLP tasks, which has also helped avoid training
large language models from scratch. However, the
lack of portability of NLP models to new condi-
tions is a central issue in NLP. For many target
applications like comment moderation on niche
public forums, labelled data might be lacking and
there might not be enough unlabelled data to train a
general language model. These conditions press us
to visit domain adaptation to improve the language
model.

Therefore, in this paper we present forumBERT,
a modification to the BERT architecture which uses
two weight shared BERT models and a late fusion
technique to better determine a comment’s quality
and relevance on a forum article. We also extend
the work by Rietzler et al. (2020) and investigate
the influence of a domain adapted BERT language
model on the downstream comment moderation ac-
curacy as a function of labelled downstream train-
ing examples. In particular, the contributions of
our paper are:
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• We present the forumBERT architecture to
determine a comment’s quality and relevance
on a forum post.

• We introduce the NDR dataset which is used
for the comment moderation task.

• We show that forumBERT outperforms base-
line models on the comment moderation task.
forumBERT achieves state of the art results on
seven classification tasks on the One Million
Posts Dataset.

• We analyse the influence of topic adaptation
on the forumBERT architecture by varying the
number of labelled datapoints in the comment
moderation task.

• We also analyse the influence of the number
of training steps of the BERT language model
and the results on the downstream comment
moderation classification task.

This paper has been structured in the following
way: Section 2 introduces the BERT architecture
and mentions existing comment moderation archi-
tectures and some relevant BERT model adapta-
tions. Section 3 describes the NDR dataset and the
NDR topic datasets. Section 4 introduces forum-
BERT and the training procedure followed. Section
5 evaluates forumBERT and BERT on the NDR
dataset and the OMP dataset. Section 6 contains
our topic adaptation experiments on the effective-
ness of topic adaptation and the influence of topic
adaptation as a function of labelled training exam-
ples.

2 Related Work

Pre-trained models using large corpora have domi-
nated the task of text classification. This began with
pre-trained word embeddings such as Word2Vec
(Mikolov et al., 2013) and GloVe (Pennington et al.,
2014) and now in the current paradigm, pre-trained
models like ELMo (Peters et al., 2018), BERT (De-
vlin et al., 2019), GPT/GPT2 (Radford et al., 2019),
XLNet (Yang et al., 2019), have achieved state of
the art results in a wide spectrum of NLP taks in-
cluding text classification.

BERT (Devlin et al., 2019) is an amalgama-
tion of several key findings in NLP research such
as contextualized word representations, sub word
tokenization (Wu et al., 2016) and transformers
(Vaswani et al., 2017). The main innovations are
the unique learning methods adopted by BERT. The

BERT language model is trained to optimize on two
tasks, i.e Masked Language Modelling (MLM) and
Next Sentence Prediction.
Masked language modeling is a fill-in-the-blank
task, where a model uses the context words sur-
rounding a [MASK] token to try to predict what
the [MASK] word should be. Next Sentence Pre-
diction is a classification task, in which the BERT
model receives a pair of sentences as input and
learns to predict if the second sentence in the pair is
the subsequent sentence in the original document.

2.1 Comment Moderation Architectures and
BERT Adaptations

Pavlopoulos et al. (2017a) introduced an RNN
based method for the comment moderation task
on a Greek news sports portal. This method was
improved by Pavlopoulos et al. (2017b) to include
dataset specific user-embeddings, generated by ac-
counting for the number of accepted and rejected
comments of every user on the sports portal. Risch
and Krestel (2018) have proposed a semi-automatic
approach to comment moderation using a comment,
user and article information to create a high recall
logistic regression model.

Large pre-trained BERT language models have
been incorporated into many task specific archi-
tectures. Sentence-BERT (Reimers and Gurevych,
2019) is one such modification of the BERT net-
work using Siamese and Triplet networks that is
able to derive semantically meaningful sentence
embeddings where semantically similar sentences
are closer in the vector space. SentiBERT (Yin
et al., 2020) is a BERT variant that effectively
captures compositional sentiment semantics by in-
corporating BERT’s contextualized representation
with binary constituency parse tree to capture se-
mantic composition.

However, in the current paradigm, pre-trained
language models are generalized and their porta-
bility to new conditions still remains an issue. To
this end, work by Rietzler et al. (2020) and Xu
et al. (2019) shows that in the aspect target sen-
timent task, the performance of models that are
pre-trained on a general language corpus can be
improved by fine tuning the language model on
a domain specific corpus. We build on this and
in Section 6 show that even in the comment mod-
eration task on niche forums, the performance of
models that are pre-trained on a German general
language corpus can be improved by finetuning the
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language model on each specific forum topic.

3 Datasets

To verify the topic adaptation capabilities in Ger-
man news forum datasets, we procured the NDR
dataset1 which consists of almost one million la-
belled user comments and their adjoining articles
from the NDR news website. This dataset can be
obtained directly from NDR for academic and re-
search use. To evaluate the performance of our
forumBERT architecture on an already existing
dataset, we use the One Million Posts Dataset (Sch-
abus et al., 2017).

3.1 NDR Dataset

The NDR dataset consists of a collection of
998,158 labelled comments on 65,261 articles on
the NDR website. All comments were collected be-
tween five and a half year span from 2014-05-09 to
2019-12-12. The dataset consists of the following
attributes for every comment:

• Headline: The title of the article

• URL: A URL to the article on the NDR web-
site

• Comment: The comment text

• Date: The date of posting the comment

• Label: A binary offline/online label, which
represents the final status of the comment on
the website. Offline labelled comments are
considered non-desirable content on the fo-
rum.

On average the length of a comment on the NDR
dataset is 59.15 words. The quartile comment
lengths are shown in Table 1 and the distribution
of comment lengths is plotted in Figure 1.

quartile comment length

0.25 22
0.50 43
0.75 79
1.00 1308

Table 1: comment length at every quartile in the NDR
dataset

1https://www.ndr.de/index.html

Figure 1: Distribution of comment length on the NDR
dataset (clipped to a maximum comment length of 250
words.)

3.1.1 Topic Segmentation
News datasets are very general in nature where
discussions range from politics, sports to technol-
ogy and scientific news. Therefore, we used the
URL attribute to segment the entire dataset into
different topics for topic adaptation. Specifically,
by splicing the URL attribute, topic information
was obtained for each comment. For example, in
”http://relaunch.ndr.de/sport/handball/bundesliga/”
the url contains the topic of the article, which in
this case is sport. This is used to segment the entire
dataset into topics. The number of comments per
topic are shown in Table 2.

Topic online offline offline %

Nachrichten (News) 613061 215656 26.02%
Sport 73151 12258 14.35%
Kultur (Culture) 21231 5485 20.53%
Fernsehen (TV) 12218 2998 19.70%
Info 20020 5491 21.52%
Radio 1986 295 12.93%
Rest 11177 2996 21.11%

Table 2: number of online and offline examples in all
topic forums

We applied topic adaptation (Rietzler et al.,
2020) to two topics, ”sport” and ”kultur” (Culture),
as both had among the most labelled training data-
points, as shown in Table 2). ”Nachrichten” (News)
is too general to be considered a forum topic and
thus was omitted.

3.2 One Million Posts (OMP)
The One Million Posts dataset (OMP Schabus et al.
(2017)) contains a selection of user comments
posted to the Austrian Newspaper website ”Der
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Standard”. The comments have been selected from
a 12 month time span between 2015-06-01 and
2016-05-31. There are 11,773 freely labelled posts
on nine categories (not all labelled comments are la-
belled in every category) and 1,000,000 unlabelled
posts in the data set. The amount of labelled data
for each of the nine categories has been mentioned
in Table 3

Category Does Apply Does Not Apply Percentage

Sentiment Negative 1691 1908 47%
Sentiment Neutral 1865 1734 52%
Sentiment Positive 43 3556 1%
Off-Topic 580 3019 16%
Inappropriate 303 3296 8%
Discriminating 282 3317 8%
Possibly Feedback 1301 4737 22%
Personal Stories 1625 7711 17%
Arguments Used 1022 2577 28%

Table 3: number of labelled examples in each category
in the OMP dataset (Schabus et al., 2017)

4 Methodology

This section presents forumBERT, which is an ex-
tension of BERT for contextual classification tasks
like general comment moderation task. We use
a German language pre-trained BERT language
model as a basis and approach this task using a
three-step procedure. In the first step we finetune
the pre-trained weights of the language model in
a self-supervised way on a topic-specific corpus.
In the second step we incorporate this finetuned
language model into the forumBERT architecture.
The final step is the supervised training of forum-
BERT for the online/offline classification end-task.
A schema for this process is depicted in Figure 2

In the following subsections, we discuss how we
finetune the BERT language model and then the
forumBERT architecture.

4.1 BERT: Language Model Finetuning and
Topic Adaptation

To create our forumBERT model, our first step
deals with finetuning a pretrained BERT language
model using a topic specfic corpora. As described
in Section 3.1.1 we split the NDR dataset into mul-
tiple topics. We adopt post-training of BERT (Xu
et al., 2019) on a topic dataset which is algorith-
mically the same as pretraining the model. The
Masked Language Modelling task is used to learn
topic knowledge and remove any biases learnt from
the pretraining datasets. Next Sentence Prediction
helps BERT learn contextualized embeddings that

bert-base-german-cased

Finetuned German BERT

Finetune on
forum topic

forumBERT

Trained forumBERT

Integrate finetuned BERT
model into forumBERT

Train forumBERT on
comment moderation task

Figure 2: Schema diagram for the construction of fo-
rumBERT.

are beyond word level. This is important since, at
a high level we wish to generate similar embed-
dings for comments that are in the same context as
it’s adjoining article’s context. Finetuning the lan-
guage model helps mitigate the problem of having
less labelled data, which is the case in many on-
line forums. This finetuned language model is then
incorporated into the forumBERT architecture.

Other than using the topic adapted BERT lan-
guage model to create the forumBERT model,
we also investigate the limitations of language
model finetuning for the comment moderation task
through two tasks described in Section 6.

4.2 forumBERT: A Weight Shared BERT
Model

forumBERT is an extension of BERT for topic-
knowledge learning and forum-comment classifi-
cation. The model must be able to compare the
article and the comment on the article to determine
its quality and relevance on the forum. Inappropri-
ate and discriminatory comments must be removed
from the forum irrespective of the corresponding
articles, but the model must also remove comments
that are off-topic/irrelevant and digress too far from
the topic of the article. To achieve this we use the
forumBERT architecture.

We adapt the finetuned BERTBASE model for fo-
rum comment classification by using two finetuned
BERTBASE models, one which takes in as input the
headline of the article and another which takes the
comment on the corresponding article as input. To
mitigate the problem of a parameter explosion be-
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 BERT BERT

xititle  xicomment

|

offline/online

concatenated representation

title comment

shared weights

gradient

Figure 3: forumBERT architecture

cause of using 2 BERT models and to add implicit
regularization we share the weight between the two
BERT models (shown in Figure 3).

We follow Devlin et al. (2019) and consider the
final hidden state corresponding to the [CLS] input
token for both the BERT models. The pair of arti-
cle and comment representations thus obtained are
both of dimensions 768 × 1. The pair of embed-
dings are concatenated at the output of the BERT
model (late fusion). Late fusion is preferred rather
than concatenating the input tokens and passing
them through the network, to allow the network
to fully separate out the differences between the
article and the comment. The dimensions of the
concatenated vector is 1536 × 1. The fused vec-
tor is then passed through 2 fully connected lay-
ers with weights Wt ∈ R2n×n and Wt′ ∈ Rn×k

respectively, where n is the dimension of the com-
ment/headline embedding (n = 768) and k is the
number of labels (k = 2). A softmax function is
applied to the final k length vector.

out = softmax(Wt′(Wt(x))) (1)

Here, x represents the fused representation vector.
We optimize the cross-entropy loss.

4.3 Implementation Details
As a base for all our experiments we use the
BERTBASE model which consists of 12 layers
(transformer blocks), 12 attention heads 768 hid-
den dimensions per token amounting to a total
of 110 million parameters. The parameters of
this model are initialized using bert-base-german-
cased2, which has been pretrained on the German

2https://huggingface.co/
bert-base-german-cased

Wikipedia Dump (6 GB), the German OpenLegal-
Data dump (2.4 GB) and German news articles (3.6
GB) and released by deepset.ai3. For the BERT lan-
guage model finetuning we use 32 bit floating point
computations using the Adam optimizer (Kingma
and Ba, 2015). The batchsize is set to 8 while the
learning rate is set to 3 · 10−5. The maximum in-
put sequence length is set to 512 tokens, which
amounts to about 11 sentences per sequence on
average. For all experiments except Experiment
6.1 we use a forumBERT model in which we inte-
grate a topic adapted BERT language model which
is trained for 13 epochs on the entire topic with a
learning rate of 3 · 10−5.

For the down-stream online/offline classification
task we use 32 bit floating point computations and
the Adam optimizer. The models are trained for 7
epochs, with a learning rate of 2 · 10−6 for the two
epochs and 6.31 · 10−7 for the remaining 5 epochs.
The validation accuracy converges after about 3
epochs.

For all experiments and results on the NDR
dataset, we split the topic dataset in a 9:1 ratio. The
larger portion of the dataset is used for language
modelling and for training on downstream tasks
and the smaller portion is used only for testing on
downstream tasks.

5 Results

5.1 Comment Moderation Task on NDR
Dataset

Meas. BOW D2V BERT BERT fBERT
com. tit.+com. com. tit.+com. tit./com.

Prec. 0.65 0.60 0.73 0.71 0.698
Rec. 0.27 0.15 0.38 0.42 0.431
F1. 0.38 0.24 0.50 0.527 0.533
Acc. 0.786 0.767 0.810 0.814 0.819

Table 4: Results of the comment moderation task on
the entire NDR dataset (without any topic segmenta-
tion). Precision, Recall, F1-score are all computed on
the minority class (offline).

For the comment moderation task, we compare
the performance of forumBERT with following
baseline models trained on the NDR sport and ku-
lur topic datasets: 1) Logistic regression on count
vectorizer (BOW model); 2) logistic regression on
doc2vec4 representation (D2V model); 3) 3 layer
DNN (dense neural network) (3DNN model) built

3https://deepset.ai/german-bert
4The doc2vec document embedding (Le and Mikolov,
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Sports Topic
No. Training Ex. 1024 8192 All Topic Data

Model Prec. Rec. F1 Prec Rec F1 Prec Rec. F1 Wins

log-reg (count) 0.222 0.639 0.329 0.586 0.212 0.311 0.591 0.212 0.311 2
log-reg (D2V) 0.203 0.618 0.305 0.220 0.649 0.328 0.428 0.046 0.083 0
3DNN (D2V) 0.131 0.496 0.207 0.141 0.460 0.216 0.290 0.241 0.263 0

BERT (comment) 0.267 0.633 0.375 0.318 0.692 0.435 0.584 0.369 0.452 0
BERT (title + comment) 0.283 0.650 0.394 0.337 0.689 0.452 0.571 0.406 0.475 0

forumBERT (title/comment) 0.295 0.697 0.414 0.328 0.741 0.457 0.483 0.547 0.513 7

Kultur Topic
No. Training Ex. 1024 8192 All Topic Data

Model Prec. Rec. F1 Prec Rec F1 Prec Rec. F1 Wins

log-reg (count) 0.264 0.617 0.370 0.331 0.678 0.445 0.513 0.327 0.339 0
log-reg (D2V) 0.210 0.637 0.316 0.253 0.636 0.362 0.578 0.056 0.102 0
3DNN (D2V) 0.193 0.636 0.296 0.202 0.607 0.302 0.292 0.476 0.362 1

BERT (comment) 0.319 0.751 0.447 0.318 0.803 0.455 0.552 0.417 0.475 2
BERT (title + comment) 0.358 0.652 0.462 0.439 0.638 0.520 0.650 0.363 0.465 2

forumBERT (title/comment) 0.367 0.643 0.467 0.398 0.643 0.468 0.706 0.375 0.490 4

Table 5: Comment moderation task results on the NDR sport topic dataset and the culture topic dataset. The results
have been computed for three quantities of uniformly sampled training examples with the first two being 1024 and
8192. The final quantity is all training comments from that particular topic. Precision, recall and F1-score are
computed on the minority class (offline).

on doc2vec representations; 4) two BERT models.
For all models other than forumBERT and a BERT
model, contextualized input of the form ”TITLE
[title] COMMENT [comment]”, is provided as in-
put. To test the importance of providing context,
we also train a BERT model using only comment
text as input.

We report performance measures on Table 5. fo-
rumBERT significantly outperforms all other mod-
els and has the highest F1 scores in both the sports
and kultur topic datasets, even in few shot condi-
tions (1024/8192 training examples). From this
table, it can be seen that our approach significantly
outperforms the standard BERT model, improving
the F1 scores from 0.475 to 0.513 (8% increase) in
the sports topic and an improvement from 0.465 to
0.490 (a 5.3% increase) in the kultur dataset. Also
if we compare forumBERT to a standard BERT
model with only comment input the F1 scores in-
crease from 0.452 to 0.513 (a 13.4% performance
gain) on the sport topic and an improvement from
0.475 to 0.490 (a 3.15% gain).

Table 4 represents the effectiveness of the design
architecture of the forumBERT model. The fo-
rumBERT model considered here uses a pretrained

2014) was first trained on the NDR dataset, prior to training
any models for the comment moderation task.

BERT language model without performing topic
adaptation. We see that forumBERT outperforms
all other methods, giving the best recall value, F1
score and the best accuracy on the entire dataset.

5.2 Classification on the OMP Dataset

We also compare the performance of: 1) forum-
BERT; 2) BERT with contextualized input 3) BERT
without contextualized input; 4) the baselines re-
ported in Schabus et al. (2017); 5) advanced base-
line for doc2vec (Le and Mikolov, 2014) (D2V)
vector representation and a support vector machine
(Cortes and Vapnik, 1995) with Radial Basis Func-
tion (RBF) kernel for classification as reported in
Schabus and Skowron (2018). To compare with the
published results, all results have been computed
using stratified 10-fold cross validation. The fo-
rumBERT model considered here uses a pretrained
BERT language model without topic adaptation.
The results for each category are reported in Table
6.

From Table 6, it can be seen that for categories
that do not require additional context from the ar-
ticle (i.e Sentiment Negative and Discriminating)
”BERT with only input comment text” performs
among the best. Providing contextualized input in
the form of article title and comment dilutes the
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information input to the model leading to worse
predictions.

For categories that require contextualized in-
put (i.e offtopic, inappropriate, Possibly Feedback
and Personal Stories) it can be seen that ”BERT
with contextualized inputs” gives best results and
slightly outperforms forumBERT in almost all cate-
gories to establish the state of the art results. Upon
further investigation, we found that 10 articles ac-
count for a majority of the annotated comments in
OMP. More precisely, 10 articles are the source of
72.1% of all ”OffTopic” and ”Inappropriate” an-
notated comments, 58.3% of all ”Personal Stories”
annotated comments and 45.1% of all ”Possibly
Feedback” comments. Without diversity in the ar-
ticle input to the forumBERT model, it tends to
perform slightly worse than BERT. This was not
the case with the NDR dataset, where there was
enough diversity in the articles (65,261 articles) to
promote better classification.

Nonetheless forumBERT exceeds all baseline
and advanced baseline results and still offers com-
petitive results on the OMP dataset.

Figure 4: Absolute accuracy percentage improvements
on the downstream offline/online classification task as a
function of the number of training sentences the BERT
language model was fine-tuned on. The � andF sym-
bols represent the average over 6 runs of finetuning
and classification on the ”Sport” and ”Kultur” topics
of the NDR dataset (Section 3.1) respectively. The ’x’
and the ’+’ represent individual runs. The filled-in por-
tions represent the standard deviation over these 6 runs
(µ± σ). The absolute accuracy improvements are mea-
sured from 85.94% for the ”Sport” topic and 81.64%
for the ”Kultur” topic.

Categ. Meas. BOW D2V LSTM BERT BERT fBERT
com. top.+com. com. com. tit.+com. tit./com.

Neg.
Prec. 0.552 0.621 0.534 0.664 0.663 0.711
Rec. 0.510 0.483 0.719 0.642 0.709 0.646
F1 0.530 0.544 0.613 0.654 0.685 0.677

Offtop.
Prec. 0.275 0.252 0.274 0.513 0.537 0.565
Rec. 0.237 0.453 0.263 0.253 0.337 0.272
F1 0.255 0.324 0.268 0.339 0.415 0.368

Inappr
Prec. 0.162 0.143 0.196 0.360 0.411 0.346
Rec. 0.111 0.412 0.108 0.188 0.147 0.178
F1 0.132 0.212 0.140 0.247 0.217 0.235

Disc
Prec. 0.184 0.154 0.113 0.368 0.325 0.304
Rec. 0.102 0.283 0.141 0.112 0.052 0.112
F1 0.132 0.200 0.126 0.171 0.089 0.163

Feed.
Prec. 0.655 0.531 0.630 0.741 0.798 0.792
Rec. 0.580 0.735 0.628 0.698 0.765 0.762
F1 0.616 0.617 0.630 0.719 0.781 0.771

Pers.
Prec. 0.698 0.589 0.638 0.836 0.834 0.832
Rec. 0.592 0.850 0.665 0.828 0.854 0.841
F1 0.640 0.696 0.651 0.832 0.844 0.836

Arg.
Prec. 0.610 0.545 0.568 0.716 0.742 0.733
Rec. 0.512 0.763 0.645 0.733 0.754 0.769
F1 0.526 0.636 0.604 0.725 0.748 0.750

Table 6: Classification results for multiple categories
on the OMP dataset (Schabus et al., 2017). Precision,
Recall and F1-score have been computed for the minor-
ity class for each category.

6 Experiments

We aim to answer the following research questions
through our experiments:

Q1. How does the number of training iterations
in the BERT language model finetuning stage
influence the general comment moderation
endtask performance on German topic forum
datasets?

Q2. What is the influence of topic adaptation on
the comment moderation endtask as a function
of labelled endtask training examples?

6.1 Topic Adaptation

To answer Q1, we first split the topic datasets into a
9:1 ratio. The larger portion is used for BERT lan-
guage model finetuning (topic adaptation) and the
remaining is used for online/offline classification
after every epoch of the language model finetuning.
The results are shown in Figure 4.
Figure 4 and Table 2 empirically show that BERT is
capable of learning topic specific forum comment
knowledge even with less than 100,000 unlabelled
training examples. We trained the BERT language
model for 15 epochs individually on the sport and
culture topic.
We also infer that topic based BERT language
model finetuning improves the general downstream
offline/online task. We see that the performance
improves immediately in the case of the more spe-
cific sports topic, whereas for the more general
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Figure 5: Average online/offline classification F1 score
(for the minority ”offline” class) computed on the
sports topic using a pretrained forumBERT model (us-
ing bert-base-german-cased) and a sports topic adapted
forumBERT model as a function of the number of
downstream classification examples. The x-axis is rep-
resented on a log10 scale. The � and F symbols rep-
resent the average over 3 runs of online/offline classifi-
cation on the sport topic of the NDR dataset (Section
3.1). The ’x’ and ’+’ markers represent the individual
runs. The filled-in portions represent the standard devi-
ation over the 3 runs (µ± σ)

culture topic, initially downstream classification
performs worse (till 100,000 training sentences),
but starts to see a steady gain in performance as it is
trained after training on 150,000 sentences. Due to
high variance in results, we average the results of 6
runs on each topic dataset and measure and plot the
standard deviation to measure the improvements in
performance.

6.2 Effectiveness of Topic Adaptation

To test the effectiveness of topic adaptation and
answer Q2, we modelled the following experiment.
We trained a pretrained forumBERT model and
a sports topic-adapted forumBERT model on the
comment moderation endtask using varying num-
ber of labelled endtask examples. Due to high
variance in few shot results we average the results
over 3 runs and measure and plot the standard de-
viation to generate reliable insights. The results of
our experiment are shown in Figure 5.

From Figure 5 we see that the pretrained fo-
rumBERT model slightly outperforms the topic-
adapted forumBERT model in very few shot learn-
ing situations (< 300 training examples). However,
it can be seen that in the range of 315-1000 labelled
training examples, the topic-adapted forumBERT
model performs as well as the pretrained forum-
BERT model. Beyond this (> 1000 labelled train-

ing examples), the performance of topic adapted
forumBERT clearly exceeds the pretrained forum-
BERT without topic adaptation. We also observe
that the performance of both models starts converg-
ing beyond 10000 training examples.

From this experiment, we conclude that the ef-
fectiveness of topic adaptation reduces as the num-
ber of labelled training examples increase in the
downstream task since labelled training examples
consist of both task information and topic informa-
tion, they provide much richer information to the
model. As our experiment shows, with more than
10000 labelled training examples the advantage of
using a topic adapted model diminishes.

7 Conclusion

In this paper, we introduced forumBERT, a simple
architecture designed to determine comment’s rele-
vance in a discourse using 2 weight shared BERT
models and a late fusion technique on BERT com-
ment and article representations. Also, to mitigate
the problem of portability of large NLP language
models to niche language domains (in our case
small news forums), we adopted a topic adaptation
technique to learn better BERT representations.

We empirically showed that forumBERT out-
performs all other baseline models on the NDR
dataset. Our adaptation significantly outperforms
the standard BERT model, improving the F1 scores
from 0.475 to 0.513 (an 8% relative increase) on
the sports topic dataset and an F1 score improve-
ment from 0.465 to 0.490 (a 5.3% relative increase)
on the culture topic dataset. The model also out-
performs all existing advanced baseline results on
the OMP dataset. Further analysis also shows the
importance of topic adaptation as a function of la-
belled training examples. We would like to extend
the application of forumBERT to other NLP tasks
applications involving context dependent classifi-
cation. Our implementation uses PyTorch (Paszke
et al., 2019) and is publicly available.5

Acknowledgments. This work was partly funded by Ham-
burg’s ahoi.digital program in the Forum 4.0 project. We
would also like to thank German broadcaster Norddeutscher
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5See https://github.com/ayushyadav99/
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Abstract

When evaluating the performance of auto-
matic speech recognition models, usually
word error rate within a certain dataset is used.
Special care must be taken in understanding
the dataset in order to report realistic perfor-
mance numbers. We argue that many perfor-
mance numbers reported probably underesti-
mate the expected error rate. We conduct ex-
periments controlling for selection bias, gen-
der as well as overlap (between training and
test data) in content, voices, and recording
conditions. We find that content overlap has
the biggest impact, but other factors like gen-
der also play a role.

1 Introduction

Automatic Speech Recognition (ASR) has made
striking progress in recent years with the deploy-
ment of increasingly large deep neural networks
(Zhang et al., 2017; Sperber et al., 2018; Chang
et al., 2019; Zhang et al., 2020). Now when you
see a shiny new model with an error rate reported
to be below 10%, are you likely to get the same er-
ror rate on your data? Many reported results prob-
ably underestimate the word error rate (WER) to
be expected when a model is applied outside of
its exact training conditions (Likhomanenko et al.,
2020)

For example, in many datasets, there is a large
imbalance between male and female voices (usu-
ally not enough female data). When evaluating
only within such a dataset and not controlling for
gender, the model can optimize overall WER by
performing worse for females (Tatman, 2017). If
the model is eventually applied in a setting where
males and females are equally likely to use the sys-
tem, WER will be much higher.

Other issues that might lead to underestimating
error rate are overlaps between the train and test

sets regarding content, voices or recording condi-
tions. Another issue to be considered is selection
bias when the training process can select samples
for training and testing.

A really robust model should generalize be-
yond these factors, but we find that current mod-
els trained on the available datasets do not. We
argue that this is partly due to the focus on report-
ing improvements in a within-dataset setting. It
just sounds better to report a 4.3% WER on the
standard dataset instead of a more realistic num-
ber (which we show can be several times higher).
However, as most real-world applications are un-
likely to directly reflect the properties of a specific
dataset, most users would be better off with more
robust models and a realistic estimate.

Most of the end-to-end speech recognition sys-
tems for English use the Librispeech (Panayotov
et al., 2015) corpus, which has pre-defined data
splits trying to avoid the issues discussed above.1

For German data, standard splits are not fully es-
tablished leading to large differences in WER be-
tween datasets, e.g. Agarwal and Zesch (2019) re-
port WER in the range between 15 and 79.

We argue that this is also a challenge for other
languages, where standard data splits are not de-
fined, including Arabic (Menacer et al., 2017),
Kazak (Mamyrbayev et al., 2019), Bengali (Islam
et al., 2019), and Russian (Adams et al., 2019).

We thus perform experiments investigating the
relative impact of dataset properties in order to
give practical advice on how to train the models.
This might also have consequences for the way
speech datasets are collected. For data-rich lan-
guages like English, these issues can somewhat be
offset by using more training data, so that a model
might still be able to generalize well across differ-
ent conditions. We thus perform our experiments

1However, note that over time fixed data splits lead to
overfitting the methods on the dataset.
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on German, which –at least when it comes to the
amount of publicly available, transcribed speech
data– has to be counted as an under-resourced lan-
guage. We perform our experiments using the end-
to-end speech recognition toolkit Mozilla Deep-
Speech.2 Our results probably generalize to other
neural architecture similar to DeepSpeech.

We make our experimental setup publicly avail-
able (URL removed for review).

2 Dataset Properties

As we argue that dataset properties play such a big
role, we will first have a look at the available train-
ing data collections. While for English or Chinese
quite large datasets are publicly available, all Ger-
man datasets are of limited size (see Table 1).

However, only focusing on the overall size is
misleading anyway as e.g. even one million hours
of one person reading the same sentence over and
over again would not result in a usable model. We
thus also look at other properties. A dataset like
M-AILABS with very few voices is unlikely to
generalize well to new voices. On the other hand,
a dataset like Mozilla Common Voice (MCV) with
thousands of voices easily reaches the largest over-
all size in our set, but as most voices repeat the
same sentences, the dataset does not capture the
same breadth of lexical material. As a conse-
quence, the size of unique content in the MCV
dataset is rather small, but not as small as the
TUDA-De dataset where each sample is recorded
by 5 different microphones bringing the unique
size down to 7 hours (from 184 hours in total).

We thus argue that the question Can I train a
robust model with [XYZ] hours of data? cannot be
answered without estimating the relative influence
that each of these factors is going to have on the
training process.

2.1 Voice Gender

As we are not aware that the gender balance of
the available German datasets has been analyzed
in detail before, we provide the statistics in Ta-
ble 2. We found that across almost all the datasets,
except M-Ailabs, the number of male voices is
predominantly high. For example, in TUDA-De,
male to female ratio is 3:1 and in MCV it is 9:1.
This means that male voices form the majority of
the corpora. Thus such corpora might not be able
to generalise well in realistic settings. Projects

2https://github.com/mozilla/DeepSpeech

Figure 1: Visualization of data split issue

Figure 2: Distribution of sample length

collecting speech samples from volunteers should
try to recruit more women and in general a more
diverse set of dialects etc. When designing a
speech corpus, keeping diversity (not only regard-
ing gender) in mind would be beneficial.

2.2 Data Splits

Having a dataset with multiple voices, varied
recording conditions, and little content redun-
dancy does not automatically guarantee a robust
model. Care has to be taken to separate cases be-
tween train, validation and test. Figure 1 visual-
izes the issue in a general way. A fixed data split
(left) should separate dimensions are as much as
possible, e.g. not have the same voices or the same
content in train and test (right).

Of course, the severity of the issue depends on
the usage scenario. If all one wants to do is rec-
ognizing spoken digits from 0 to 10, there is no
harm with having samples of all digits in train and
in the test, as in the application scenario those dig-
its are all to care about. However, if the goal is
a robust, domain-independent model, we need to
control for overlap in sentences between train and
test in order to obtain a realistic error rate estimate.

2.3 Selection Bias

An issue indirectly related to dataset properties
is that frameworks often perform some kind of
preprocessing and might filter out some samples
in the process. For example, in Figure 2 we
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Number of [h]

Dataset Domain Mics Voices Total Unique

TUDA-De (v2) Wikipedia, Europarl, Commands 5 179 184 7

Mozilla Common Voice (MCV) v3 Wikipedia many 4850 321 24

M-AILABS Audiobooks (LibriVox, Project Gutenberg),
Speeches, Interviews ? ~5 233 233

Table 1: German datasets used in this study

TUDA-De MCV M-AILABS

Gender # [h] # [h] # [h]

Male 129 123 1555 215 1 40
Female 50 61 173 33 4 147
Unknown - - 3122 73 ? 46

male:female 3:1 2:1 9:1 7:1 1:4 1:4

Table 2: Dataset analysis regarding gender of voices

show the length distribution of samples in each
dataset. Without looking at other dataset proper-
ties it might look useful to get rid of very short or
very long samples and to only train (and test!) a
model using samples close to the peak of the distri-
bution. However, this might introduce a selection
bias, where we reduce WER by simply discarding
all the hard cases. This leads to excellent within-
dataset results, but poor cross-dataset results.

3 Experiments & Results

For our experiments, we used the latest released
version of Mozilla DeepSpeech (v0.6.0).3 We
choose the best hyperparameters4 as described
in (Agarwal and Zesch, 2019). The models are
trained and tested on a compute server having 56
Intel(R) Xeon(R) Gold 5120 CPUs @ 2.20GHz,
3 Nvidia Quadro RTX 6000 with 24GB of RAM
each. The typical training time on a single dataset
under this setup was in the range of 2 hours. We
ran our experiments for approximately 200 hours,
which is equivalent to about 50 kg of CO2.

5

3.1 Baseline: All data, random split

As a baseline, we simply take all data and ran-
domly split the data into train/dev/test, i.e. we do
not take any of the dataset properties discussed
above into account. This is the setup that is most
likely used whenever not discussed differently in

3https://github.com/mozilla/DeepSpeech/releases/tag/v0.6.0
4Batch Size - 24, Dropout - 0.25, Learning Rate - 0.0001
5https://www.rensmart.com/Calculators/KWH-to-CO2

Train Test WER

TUDA-De

TUDA-De (v2) 14.9
MCV (v3) 79.3
M-AILABS 79.7

MCV

MCV (v3) 26.8
TUDA-De (v2) 54.6
M-AILABS 43.7

M-AILABS

M-AILABS 17.5
TUDA-De (v2) 84.9
MCV (v3) 68.3

Table 3: Cross-domain results

Dataset [h] Baseline No content

TUDA-De 184 14.9 66.9
MCV 321 26.8 43.9
M-AILABS 233 17.5 17.1

Table 4: WER without content overlap

a paper. Table 3 gives an overview of the WER
obtained in that way (rows in italics). Given the
limited amount of training data, the results are in
the expected range and generally similar to previ-
ously reported results (Agarwal and Zesch, 2019).
However, as noted above, those numbers are prob-
ably underestimating the true error rate.

We thus also conduct cross-domain experi-
ments, as testing on a dataset different from train-
ing is a natural way of checking the model ro-
bustness without any overlap at all. If the WER
reported on the dataset itself is a realistic mea-
sure of performance, we should see cross-domain
results that are similar. However Table 3 shows
that WER always dramatically rises – mostly to
the point that the model is not being useful any-
more. MCV seems to generalize somewhat better
than TUDA-De or M-AILABS, which indicates
that many voices are more important for model ro-
bustness than more unique training samples.

In the remainder of this section, we explore
which other factors are influencing results the
most.
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Number of Voices WER

Dataset Total Size [h] Train Dev, Test (each) No Content No Voice No Content & Voice

TUDA-De 184 145 15 66.9 37.2 74.1
M-AILABS 186 3 1 17.8 72.1 75.2

Table 5: Results with No Voice and No Sentence Overlap

3.2 Content overlap

Table 4 compares the baseline results with the
setup when there is no content overlap (i.e. exact
same utterance) between the data splits. Note that
we use the same amount of data in both conditions,
only the splits are different.

M-AILABS is not affected, as there is no con-
tent overlap to begin with.6 This nicely shows that
the results obtained for a specific dataset are repli-
cable in general. The other datasets are heavily
effected showing that content overlap is the main
reason for underestimating the true error rate. As
the MCV dataset has many voices and micro-
phones, the 43.9 WER is probably already a robust
estimate (cf. cross-domain results in Table 3).

3.3 Voice overlap

Table 5 first shows the results without content
overlap (these are the same numbers as in Ta-
ble 4) and then the results without voice overlap.
The WER on M-AILABS, that only has very few
voices, goes up to over 70% well into the unus-
able range. Results for TUDA-De go down, but
only as we are not controlling for content overlap
anymore. This is another piece of evidence that
content is actually more important than voices, as
it has a relatively larger impact. If we control for
both (last column), all models perform approxi-
mately on the same abysmal level.

3.4 Recording conditions

TUDA-De is the only dataset where we can easily
control recording conditions in the form of micro-
phones used.7 We can use 88h for this experiment
and use 3 mics for training and 1 for dev and test
each. Without content overlap, we obtain a WER
of 73.8, while without mic overlap it is 53.1. Con-
tent overlap is thus the much more important fac-
tor. Consequently removing content and mic over-
lap only slightly increases WER to 77.4.

6The small difference is due to the independent random-
ization when re-running an experiment.

7Actually ‘recording conditions’ is a much wider variable,
but not present as meta-data in most datasets.

3.5 Gender
As we have shown, the influence of content over-
lap is rather strong and likely to overshadow any
gender effect to be found in the data. We thus iso-
late the gender variable by creating a sub-corpus
where there is not content overlap between train
and test and where the test set for male and fe-
male voices contains the same sentences. We find
that training on male yields 63.5 WER for males
and 87.4 for females showing the expected gender
gap. If we train only on female voices, we get 55.2
WER for females and 88.3 for males.

4 Summary

Our study shows that the robustness of end-to-
end speech recognition models heavily depends on
dataset splits. Content overlap is the main reason
for underestimating the true error rate. Especially
in datasets that are collected in a crowd-sourced
fashion, where many voices read the same sen-
tences, or when multiple microphones are used,
extra care has to be taken to avoid information
leakage from train to test. However, other fac-
tors like gender balance or recording conditions
are also contributing to the effect.
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Abstract

In this paper, we investigate the effect of layer
freezing on the effectiveness of model trans-
fer in the area of automatic speech recogni-
tion. We experiment with Mozilla’s Deep-
Speech architecture on German and Swiss Ger-
man speech datasets and compare the results of
either training from scratch vs. transferring a
pre-trained model. We compare different layer
freezing schemes and find that even freezing
only one layer already significantly improves
results.

1 Introduction

The field of automatic speech recognition (ASR) is
dominated by research specific to the English lan-
guage. There exist plenty available text-to-speech
models pre-trained on (and optimized for) English
data. When it comes to a low-resource language
like Swiss German, or even standard German, only
a very limited number of small-scale models is
available. In this paper, we train Mozilla’s imple-
mentation1 of Baidu’s DeepSpeech ASR architec-
ture (Hannun et al., 2014) on these two languages.
We use transfer learning to leverage the availability
of a pre-trained English version of DeepSpeech and
observe the difference made by freezing different
numbers of layers during training.

2 Transfer Learning and Layer Freezing

Deep neural networks can excel at many different
tasks, but they often require very large amounts of
training data and computational resources. To rem-
edy this, it is often advantageous to employ transfer
learning: Instead of initializing the parameters of
the network randomly, the optimized parameters
of a network trained on a similar task are reused.

1https://github.com/mozilla/DeepSpeech

Those parameters can then be fine-tuned to the spe-
cific task at hand, using less data and fewer compu-
tational resources. In the fine-tuning process many
parameters of the original model may be “frozen”,
i.e. held constant during training. This can speed up
training and improve results when less training data
is available (Kunze et al., 2017). The idea of taking
deep neural networks trained on large datasets and
fine-tuning them on tasks with less available train-
ing data has been popular in computer vision for
years (Huh et al., 2016). More recently, with the
emergence of end-to-end deep neural networks for
automatic speech recognition (like DeepSpeech), it
has also been used in this area (Kunze et al., 2017;
Li et al., 2019).

Deep neural networks learn representations of
the input data in a hierarchical manner. The in-
put is transformed into simplistic features in the
first layers of a neural network and into more com-
plex features in the layers closer to the output. If
we assume the simplistic feature representations
are applicable in similar, but different, contexts,
layer-wise freezing of parameters seems like a good
choice. This is further reinforced by findings from
image classification (Yosinski et al., 2014), where
the learned features can additionally be nicely vi-
sualized (Zeiler and Fergus, 2014).

As for automatic speech recognition, the repre-
sentations learned by the layers is not as clear-cut
as within image processing. Nonetheless, some
findings, for example that affricates are better rep-
resented at later layers in the network (Belinkov
and Glass, 2017), seem to affirm the hypothesis that
the later layers learn more abstract features and ear-
lier layers learn more primitive features. This is
important for fine-tuning, because it only makes
sense to freeze parameters if they don’t need to be
adjusted for the new task. If it is known that the
first layers of a network learn to identify “lower-
level”-features, i.e. simple shapes in the context of
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Dataset Hours Speakers

Pre-training English >6,500 ?

Transfer German 315 4,823
Swiss German 70 191

Table 1: Overview of datasets

image processing or simple sounds in the context of
ASR, these layers can be frozen completely during
fine-tuning.

3 Experimental Setup

In our experiments, we transfer an English pre-
trained version of DeepSpeech to German and to
Swiss German data and observe the impact of freez-
ing fewer or more layers during training.

3.1 Datasets
We trained the models for (standard) German on
the German part of the Mozilla Common Voice
speech dataset (Ardila et al., 2020). The utterances
are typically between 3 and 5 seconds long and are
collected from and reviewed by volunteers. This
collection method entails a rather high number of
speakers and quite some noise. The Swiss Ger-
man models were trained on the data provided by
Plüss et al. (2020). This speech data was collected
from speeches at the Bernese parliament. The En-
glish pre-trained model was trained by Mozilla on
a combination of English speech datasets, includ-
ing LibriSpeech and Common Voice English.2 The
datasets for all three languages are described in
Table 1. For inference and testing we used the lan-
guage model KenLM (Heafield, 2011), trained on
the corpus described by Radeck-Arneth et al. (2015,
Section 3.2). This corpus consists of a mixture of
texts from the sources Wikipedia and Europarl as
well as crawled sentences. The whole corpus was
preprocessed with MaryTTS (Schröder and Trou-
vain, 2003).

3.2 ASR Architecture
We use Mozilla’s DeepSpeech version 0.7 for our
experiments. The implementation differs in many
ways from the original model presented by Han-
nun et al. (2014). The architecture is described
in detail in the official documentation3 and is de-
picted in Figure 1. From the raw speech data, Mel-
Frequency Cepstral Coefficients (Imai, 1983) are

2https://github.com/mozilla/DeepSpeech/releases/tag/v0.7.0
3https://deepspeech.readthedocs.io/en/latest/DeepSpeech.html
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Figure 1: DeepSpeech architecture. The fully con-
nected (FC) layers 1 – 3 and 5 are ReLU activated, the
last layer uses a softmax function to compute character
probabilities.

extracted and passed to a 6-layer deep recurrent
neural network. The first three layers are fully con-
nected with a ReLU activation function. The fourth
layer is a Long Short-Term Memory (LSTM) unit
(Hochreiter and Schmidhuber, 1997); the fifth layer
is again fully connected and ReLU activated. The
last layer outputs probabilities for each character in
the language’s alphabet. It is fully connected and
uses a softmax activation for normalization. The
character-probabilities are used to calculate a Con-
nectionist Temporal Classification (CTC) loss func-
tion (Graves et al., 2006). The weights of the model
are optimized using the Adam method (Kingma
and Ba, 2014) with respect to the CTC loss.

3.3 Training Details

As a baseline, we directly train the German and
Swiss German model on the available data from
scratch, without any transfer (hereafter called
“Baseline”). To assess the effects of layer freezing,
we then re-train the model based on weight initial-
ization from the English pre-trained model.4 In this
step, we freeze the first N layers during training,
where N = 0, . . . , 5. For N = 4 we additionally
experiment with freezing the 5th layer instead of
the LSTM layer, which we denote as “Layers 1-3,5
Frozen”. We do this because we see the LSTM as
the most essential and flexible part of the architec-
ture; the 5th and 6th layer have a simpler interpre-
tation as transforming the LSTM hidden state into
character-level information. This stage should be
equivalent across languages, as long as the LSTM
hidden state is learned accordingly, which is en-
sured by not freezing the LSTM. For all models,
we reinitialize the last layer, because of the differ-
ent alphabet sizes of German / Swiss German and

4https://github.com/mozilla/DeepSpeech/releases
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English (ä, ö, ü), but don’t reinitialize any other
layers (as done e.g. by Hjortnaes et al. (2020)). The
complete training script, as well as the modified
versions of DeepSpeech that utilize layer freezing
are available online5. The weights were frozen
by adding trainable=False at the appropri-
ate places in the TensorFlow code, though some
other custom modifications were necessary and are
described online5. For Swiss German, we do not
train the network on the German dataset first and
transfer from German to Swiss German, as this has
been shown to lead to worse results (Agarwal and
Zesch, 2020).

3.4 Hyperparameters & Server

In training each model, we used a batch size of
24, a learning rate of 0.0005 and a dropout rate
of 0.4. We did not perform any hyperparameter
optimization. The training was done on a Linux
machine with 96 Intel Xeon Platinum 8160 CPUs
@ 2.10GHz, 256GB of memory and an NVIDIA
GeForce GTX 1080 Ti GPU with 11GB of mem-
ory. Training the German language models for 30
epochs took approximately one hour per model.
Training the Swiss German models took about 4
hours for 30 epochs on each model. We did not
observe a correlation between training time and the
number of frozen layers. For testing, the epoch
with the best validation loss during training was
taken for each model.

4 Results & Discussion

Results of our baselines are very close to the values
reported for German by Agarwal and Zesch (2019)
and Swiss German by Agarwal and Zesch (2020)
using the same architecture.

The test results for both languages from the dif-
ferent models described in Section 3.3 are com-
piled in Table 2. Figures 2 and 3 show the learning
curves for all training procedures for German and
Swiss German, respectively. The epochs used for
testing (cf. Table 2) are also marked in the figures.

For both languages, the best results were
achieved by the models with the first two to three
layers frozen during training. It is notable however,
that the other models that utilize layer freezing are
not far off, the learning curves look remarkably sim-
ilar (in both plots, these are the lower six curves).
For both languages, these models achieve much
better results than the two models without layer

5https://github.com/onnoeberhard/deepspeech

German Swiss

Method WER CER WER CER

Baseline .70 .42 .74 .52
0 Frozen Layers .63 .37 .76 .54
Layer 1 Frozen .48 .26 .69 .48
Layers 1-2 Frozen .44 .22 .67 .45
Layers 1-3 Frozen .44 .22 .68 .47
Layers 1-4 Frozen .45 .24 .68 .47
Layers 1-3,5 Frozen .46 .25 .68 .46
Layers 1-5 Frozen .44 .23 .70 .48

Table 2: Results on test sets (cf. Section 3.3)

freezing (“Baseline” and “0 Frozen Layers”). The
results seem to indicate that freezing the first layer
brings the largest advantage in training, with dimin-
ishing returns on freezing the second and third lay-
ers. For German, additionally freezing the fourth
or fifth layer slightly worsens the result, though
interestingly, freezing both results in better error
rates. This might however only be due to statistic
fluctuations, as it can be seen in Figure 2 that on
the validation set, the model with 5 frozen layers
performs worse than those with 3 or 4 frozen lay-
ers. For Swiss German, the result slightly worsens
when the third layer is frozen and performance fur-
ther drops when freezing subsequent layers. Sim-
ilar results were achieved by Ardila et al. (2020),
where freezing two or three layers also achieved
the best transfer results for German, with a word
error rate of 44%. They also used DeepSpeech and
a different version of the German Common Voice
dataset.

The results don’t show a significant difference
between freezing the fourth or the fifth layer of the
network (“Layers 1-4 Frozen” vs. “Layers 1-3,5
Frozen”). This indicates that the features learned
by the LSTM are not as language-specific as we hy-
pothesized. It might even be that, in general, it does
not matter much which specific layers are frozen,
if the number of frozen parameters is the same. It
might be interesting to see what happens if the last
instead of the first layers are frozen (not necessarily
with this architecture), thereby breaking the moti-
vation of hierarchically learned features, with later
layers being more task-specific.

It is interesting that the models with four or five
frozen layers, i.e. only 2 or 1 learnable layers, still
achieve good results. This indicates that the fea-
tures extracted by DeepSpeech when trained on
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Figure 2: Learning curves (validation loss) on the Ger-
man dataset. Layer freezing has a noticeable impact,
but how many layers are frozen does not seem to make
much of a difference. See Section 3.3 for details.

English are general enough to really be applicable
for other languages as well. It is probable that with
a larger dataset the benefits of freezing weights de-
crease and better results are achieved with freezing
fewer or no layers. For both languages it is evident
that the transfer learning approach is promising.

Limitations Our experiment is limited to a trans-
fer between closely related languages. For example,
when just transcribing speech there is no need for
such a model to learn intonation features. This
might be a problem when trying to transfer such
a pre-trained model to a tonal language like Man-
darin or Thai. There might also be phonemes that
don’t exist or are very rare in English but abundant
in other languages.

5 Summary

We investigate the effect of layer freezing on the
effectiveness of transferring a speech recognition
model to a new language with limited training data.
We find that transfer is not very effective without
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Figure 3: Learning curves (validation loss) on the
Swiss German dataset. Compare with Figure 2.

layer freezing, but that already one frozen layer
yields quite good results. The differences between
freezing schemes are surprisingly small, even when
freezing all layers but the last.
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Abstract

We introduce deInStance, a corpus of 1000
politicians’ answers in German (de) contain-
ing sentences labeled with explicitly expressed
and inferred stances - pro and con relations
- by 3 annotators. They achieved an accept-
able inter-rater agreement given the inherent
subjective nature of the task. A first base-
line, a fine-tuned BERT-based token classifier,
achieved F1-scores of around 70% . Our focus
is on the difficult subclass of sentences com-
prising only non-polar words, but still with an
(implicit) pro or con perspective of the writer.

1 Introduction

When people are asked about their position with
regard to a certain topic, they typically answer by
elaborating an argumentation in favor or against
this topic. Argument mining is concerned with the
structure of such arguments and the classification
of each part. This happens at the clause level: a
clause might be a claim, the support of a claim, etc.
But what about the entities and events within the
different parts of a clause? What can the reader
infer from the writer’s perspective on these differ-
ent subtopics contained in the author’s text? In
this work, we present a new resource together with
a first neural sequence labeling model of such in-
ferred fine-grained stances. The goal is to find all
those entities (called targets) in a text that the writer
approves (pro) or disapproves (con), explicitly or
implicitly. These targets might be aspects of the
overall topic of the text, but also any entity men-
tioned in the text towards which the writer seems to
bear a positive or negative attitude. Among these
non-aspect targets are entities reflecting the writer’s
moral convictions, political views, and all sorts of
other preferences.

2 Corpus Annotation

As a starting point, we took the German part of
the freely available xstance1 corpus. The original
corpus contains politicians’ stances consisting of an
explicit position (from strongly/weakly against to
weakly/strongly in favor) together with a comment
as answer to given questions from different topics.
We annotated a subcorpus2 of 1000 answers where
each word receives a label: pro (in favour of), con
(against) or none (neutral). A pro relation indicates
that the writer approves (i.e. is in favor of) the
denoted entity or event; correspondingly for con.3

2.1 Objective of the Annotation

In order to clarify the annotation task and to show
the differences to aspect-based sentiment analy-
sis, take the following question: Do you support
the introduction of minimum wage for employees?
One answer is: Another unhelpful blanket proposal
from the mothballs of socialism, which would fur-
ther weaken our country’s competitiveness. Social-
ism (text author is against it) and the competitive-
ness (author is in favour) are somehow related to
the question, but they are not aspects in the sense
of aspect-based sentiment analysis. Aspects are
strongly correlated categories of an item (e.g. the
price of a product). Another writer puts it in the
following way: This would be the breaking of a
promise. The author is against such a break of a
promise, which again is not an aspect (of minimum
wage). This characterization of our setting shows
that we cannot reduce the task to a mere aspect-
based sentiment analysis.

1https://github.com/ZurichNLP/xstance (Vamvas and Sen-
nrich, 2020)

2The data is available on request.
3We only labeled the dependency heads of the correspond-

ing target phrases with pro’s and con’s, all other words are
none.
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2.2 Annotation Guidelines
Our annotation guidelines are brief. Annotate those
pro/con relations of the text author that (1) explic-
itly state his/her stance or (2) implicitly bears or
must bear towards the entities mentioned in his/her
comment. It is crucial to be aware that the bor-
derline between these cases sometimes is fuzzy.
When does an opinion starts to become stated ex-
plicitly? We thus decided not to annotate the im-
plicit/explicit distinction. We just annotated the
writer’s attitude : pro or con.

Guideline (1) is plain. Given I have welcomed
the liberalizations that have been implemented,
there is a pro relation of the writer towards liberal-
izations. There are a number of linguistic indicators
for an explicit assertion of stance:

1. a personal statement (first person pronoun)
with a verb of (dis)approval: I approve it

2. predicative statements: Liberalization is good

3. modal constructions: Liberalization should be
carried out

4. verb-based inference schemata: It prevents a
solution to other problems

(1) most explicitly states that the writer is in
favor of it and the positive evaluation in (2) imme-
diately gives rise to a pro relation of the writer to-
wards liberalization. (3) expresses the need to have
liberalization. This again points out that he/she is
in favor of liberalization. In (4), prevent casts a
con relation between its logical subject (it) and the
theme role (solution). A contra relation towards a
positively connotated theme indicates a negative
subject and suggests that the writer stands in con
relation towards it (here it).

The second annotation objective is concerned
with relations that are not directly asserted or stated
by the linguistic means from above, but either must
hold as a kind of presupposition or do hold because
they follow from some conventional pragmatic rea-
soning. Take the following examples:

1. After liberalization the employees are paid
even less

2. The quality of education should not depend
on the income

3. This is what the constitution says

The pragmatically used particle even in (1) to-
gether with world knowledge (less pay is bad) indi-
cates that the writer regarded it as negative, if the

employees got less money. This, in turn, means that
she/he must be (maybe only in a situation-specific
way) in favor of the employees - not a particular
subset of but the group of employees in general.
He/She cares about their situation. Also, she/he is
against the mentioned liberalization, which is not
explicitly stated but inferred.

(2) is a response to the following question:
Should the government be more committed to equal
educational opportunities? Only if he/she is in fa-
vor of education, the answer can be understood as
an approval: education must be one of his/her val-
ues. However, there is no pro nor con relation with
respect to income.

The question underlying the answer in (3) is:
Should the government increase its support for non-
profit housing construction? The comment (just
this sentence) is an example of an implicature trig-
ger. We cannot give the whole implicature chain,
but in principle it goes like this: The constitution is
in favor of it, I, the writer, cite this authority and it
thus is an authority of mine and I hereby indicate
that I am in favor of it as well. Thus, the writer can
be understood as being in favor of the constitution,
this is the annotation goal here.

Such attitudes depend on the subjective under-
standing and reasoning of the annotators. However,
it is a worthy goal to not only be able to identify
the writer’s directly stated stance, but also to fix her
obligations, values, preferences that become visible
in what is semantically/pragmatically implied.

2.3 Annotation Results
The 1000 comments containing 32,274 tokens in
2183 sentences were manually labeled by 3 trained
raters. We performed independent harmonization
at various progress points, each annotator checking
the differences between the others’ annotation and
their own, adjusting it if needed.

As a simple concrete example, the sentence
‘In the long term, Switzerland belongs to the
EU.’ is labeled by all three annotators as:
Langfristig
none

gehört
none

die
none

Schweiz
none

zur
none

EU
pro

Although annotators A1 and A3 tend to label
more tokens (around 12.5%) than A2 (10.5%), our
annotations are sparse. The proportion of pro and
con labels is approx 70-75% and 25-30%, respec-
tively (see Table 1). This imbalance probably dete-
riorates the results for the con label.

To evaluate the reliability of our annotations,
we calculate Cohen’s kappa for the agreement and
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annotator pro con none
A1 2986 1132 28156
A2 2412 974 28888
A3 2870 1141 28263

Table 1: Label distributions for each annotator (A1-
A3). Tokens are either labeled as pro (in favor of) or
as con (against), or they are not (none).

Krippendorff’s alpha for the disagreement between
the different raters. On the whole corpus, the inter-
rater reliability measured by Krippendorff’s alpha
is above the acceptability threshold of 0.667. The
pairwise kappa coefficients show a higher agree-
ment between annotators A1 and A3 (0.8578); an-
notators A1 and A2 disagree most (0.7229).

3 Experiments

Attention-based models are the current architecture
of choice for many natural language processing
tasks. For training the stance labeling models, we
used the self-attentional transformer (Vaswani et al.,
2017) implementation provided by HuggingFace
(Wolf et al., 2020): the class BertForTokenClassifi-
cation is defined as a token classification model on
top of a language model, i.e. a linear classification
layer on top of the tokens’ hidden state output. We
chose the pretrained German BERT model from
DBMDZ4 to train our models.

3.1 Configurations
The experiment settings vary for the datasets used,
but the model parameters are fix throughout the
runs (see Appendix A). On the data configuration
side, we take each rater’s labeled dataset separately
and mix these annotations in various ways:

• Major: majority label per token

• Inter: intersection label (same or none)

• Concat: concatenation of all annotations

The setting Major means that we took those anno-
tations that two or all raters have tagged, whereas
in Inter only those are taken that all raters have
selected. To simulate a weighted average, we also
simply concatenated the labeled data from the three
annotators to form one larger Concat set. We
trained models also with the individual annotations
(models M1-M3) in order to see whether the anno-
tations are reasonable (i.e. reproducible).

4https://huggingface.co/dbmdz/bert-base-german-cased

3.2 Results

All our models achieve modest though reasonable
F1-scores given the challenging task. To mitigate
the anecdotal character of a single evaluation, we
randomly shuffle the annotated comments into 10
different dataset splits, and run the training and
evaluation on each split (cross-validation). For
instance, given the annotations of annotator A1,
we trained a model (called M1) on a train set split,
used it to predict labels for the test set split and
evaluated this with respect to the annotations of A1
for that test set split (see Table 2).

model acc F1
pro con

prec rec prec rec
M1 93.2 69.2 70.0 71.0 67.8 63.7
M2 93.6 66.4 66.3 68.5 65.5 63.4
M3 93.4 69.7 70.0 71.0 68.5 66.2
Major 93.7 70.4 70.5 73.0 68.3 66.3
Inter 94.4 64.2 64.5 67.2 63.1 58.1
Concat 93.4 70.4 71.3 71.1 70.0 67.3
Cfair 93.1 68.1 68.3 71.7 64.8 62.5

Table 2: Accuracy, F1, precision, and recall results of
the different models: models for individual annotators
(M1-M3), majority (Major), intersection (Inter), and
concatenation (Concat and Cfair).

On average, these baseline models attain an over-
all accuracy of 93-94%, achieve better precision
and recall for pro than for con labels, from the low-
est con recall of 58% to the highest pro precision of
71%. The high accuracy is due to the high number
of (word) instances of the none class (i.e. a word
that is neither pro nor con). There is no clear best
setting, but Major is better reproducible with re-
spect to F1 than Inter. It is therefore a good choice
for a gold standard generation strategy in our case.5

All these results are evaluated within each data
configuration, e.g. the intersection model on the
intersection test data. This does not allow for a
direct comparison of the models. We thus run
cross-configuration evaluations, where we created
a single test set from the annotations of A1 and
evaluated with respect to it (see Table 3). For in-
stance, a model trained on the majority (Major)
data applied to this test set has a accuracy of 92.9%
(second line of the table).

5Note that, for a fair comparison with the other settings,
the concatenation of the same data annotated by 3 different
raters, i.e. the fact that training data is tripled is compensated
at training time by the number of epochs divided by 3 (Cfair).

215



model acc F1 prec rec
M1 93.2 69.1 70.7 67.5
Major 92.9 67.9 70.0 65.9
Inter 92.6 62.7 77.2 52.7
Concat 93.3 69.0 74.9 64.0
Cfair 93.1 69.5 68.7 70.4

Table 3: Cross-configuration results

The comparison with the manual annotations
of A2 and A3 (not with the predictions of their
models, M2 and M3!) represents the upper-bound
of “human models”: the resp. F1 scores are 73.5%
and 86.7%. The accuracy and F1 scores of A1’s
model M1 (i.e. an intra-configuration evaluation)
come close to human performance, but the gap is
substantial: 69.1% versus 73.5% and 86.7% (both
Concat models contain part of A1 and performs on
par with M1). So either Concat or Major are the
natural choice for producing the final gold standard.

3.3 Discussion

About 20% of the annotated sentences do not con-
tain any explicit polar words, according to a per
se limited lexical resource6, of course. Are these
“non-polar” sentences harder for a model to tag than
the “polar” sentences?

Splitting the non-polar sentences from the po-
lar ones, we trained a polar model on A1’s an-
notations and evaluated it once on the non-polar,
i.e. exclusive subset from the same annotator (see
Table 4). Comparing these results to the individ-
ual intra-configuration results for M1-M3 shown in
Table 2, we can observe similar tendencies for pro
and con labeling quality levels. Although further
evaluations are needed to confirm these preliminary
results, this could indicate that baseline BERT mod-
els can bridge the gaps remaining in polar lexicons.

label F1 prec rec
pro 0.68 0.71 0.66
con 0.66 0.66 0.67

Table 4: F1, precision and recall of A1’s polar model
P1 evaluated on the non-polar subset

Apart from some cases where such non-polar
words are just (polarity) lexicon gaps, there are
some challenging examples of sarcasm and under-

6We use the Polart lexicon (Klenner et al., 2009) available
from the IGGSA webpage.

lying world knowledge. For example, the words
Umwelt (environment) and Landschaft (landscape)
have no explicit polarity, though they may have a
positive connotation, but the author of the follow-
ing sarcastic comment ‘Umwelt und Landschaft
kann man nur einmal kaputt machen.’ (‘Envi-
ronment and landscape can be destroyed only
once.’) reveals a pro position towards both terms.
As a further example, consider the word Atom-
kraftwerk (nuclear power plant) and its two dif-
ferent labels (pro, none) in the following sen-
tence: Darum ist es sicherer wenn die Schweiz
eigene Atomkraftwerkepro besitzt als Strom aus
ausländischen Atomkraftwerkennone zu beziehen.
(‘That is why it is safer for Switzerland to have its
own nuclear power plants than to buy electricity
from foreign nuclear power plants.’)

4 Related Work

As far as we know, there is no prior work on fine-
grained stances in German texts.

Luo et al. (2020) analyse the opinions in the
highly topical and controversial debate of climate
change. Their BERT-based classifier achieves 75%
accuracy for the stance detection of global warm-
ing. The main differences to our work concern
the language, the granularity of the labeled units,
and the number, i.e. diversity of topics. While they
label whole English sentences with stance on one
topic, we detect all possible targets at token-level in
German politicians’ comments on various issues.

Allaway and McKeown (2020) specify a conno-
tation lexicon that includes the cultural and emo-
tional perspectives of the writer. Although many
words do have a context independent connotation,
in our texts a word often switches its polarity de-
pending on the context.

5 Conclusion

In texts expressing stance, we not only find ex-
plicitly communicated opinions that comprise a
person’s overall opinion towards the target, but
also his/her implicitly given preferences and values
which establish common ground for the reader’s
understanding of the argumentation. We have intro-
duced deInStance, a corpus on such a fine-grained
level and carried out experiments with a baseline
BERT model showing a reasonable performance.
Predicting fine-grained stance could be beneficial
for overall stance detection, but it also could be
used to get closer to an author’s personal profile.
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A Appendices

Appendix A. Model settings

Regarding the model settings, we fine-tune the pre-
trained cased German model from DBMDZ while
training our token classifier, i.e. all the weights are
updated, not only the classifier’s weights. We train
models on a single GPU (NVIDIA GeForce GTX
TITAN X) for 3 epochs without early stopping. We
use the Adam optimizer (Kingma and Ba, 2015)
with default epsilon=1e-08. We use a learning rate

of 5e-5 for all experiments with a training batch
size of 32, with no gradient accumulation. We
set the random seed to 1, the maximum sequence
length to 256. As the number of examples varies
between 1720 and 1765 training sentences in the
different data splits, the optimization process runs
through 162 to 168 steps.7

7multiplied by 3 for the concatenation configuration: 5160
to 5295 training sentences, processed in 486 to 498 optimiza-
tion steps.
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Abstract

In the current state-of-the art distributional
semantics model of the meaning of noun-
noun compounds (such as chainsaw, but-
terfly, home phone), CAOSS (Marelli et al.
2017), the semantic vectors of the individ-
ual constituents are combined, and enriched
by position-specific information for each con-
stituent in its role as either modifier or head.
Most recently there have been attempts to in-
clude vision-based embeddings in these mod-
els (Günther et al., 2020b), using the linear ar-
chitecture implemented in the CAOSS model.
In the present paper, we extend this line of
research and demonstrate that moving to non-
linear models improves the results for vision
while linear models are a good choice for text.
Simply concatenating text and vision vectors
does not currently (yet) improve the prediction
of human behavioral data over models using
text- and vision-based measures separately.

1 Introduction

The meaning and interpretation of noun-noun com-
pounds, i.e. the combination of two words to form
a new word (as in chainsaw, butterfly, home phone),
is a contested area of study. In both theoretical
linguistics and psycholinguistic circles one of the
central questions is the contribution of the indi-
vidual constituents in the construction of a com-
pound’s meaning (see, e.g., Bauer et al. 2013; Bell
and Schäfer 2016; Schmidtke et al. 2018, ch. 20
for recent discussion).

Some psycho-computational approaches use dis-
tributional semantic models to produce representa-
tions of compound meanings. In the current state-
of-the art model CAOSS (Marelli et al. 2017) the
semantic vectors of the individual constituents are
combined, and enriched by position-specific infor-
mation for each constituent in its role as either
modifier or head (e.g. chain as modifier in words
like chainsaw, chain mail, chain reaction, chainsaw,

chain-smoking)1. This enrichment is achieved by a
linear architecture in which each constituent vector
is first multiplied with a position-specific matrix
before adding the two constituent representations
to derive the compound representation.

Another aspect of compound meaning has only
recently begun to attract attention, namely the role
of visual information in creating and processing in-
dividual concepts and their combination. Research
on embodied cognition revealed that concepts are
not only based on linguistic experience, but are also
grounded in perceptual experience (e.g. Barsalou
1999). In the field of neuro-psychological learning
(e.g. Devereux et al. 2018), deep learning networks
have been implemented in the learning of word
meaning. Similarly, visual information should also
play a major role in conceptual combination, at
least for concrete concepts. The first study to show
the effects of vision-based information in concep-
tual combination has been (Günther et al., 2020b).

In that study the authors compared two paral-
lel implementations of the CAOSS model: one us-
ing text-based embeddings (henceforth text embed-
dings), the other picture-based semantic embed-
dings (henceforth vision embeddings). These em-
beddings (more specifically, the cosine similarities
between the compound embeddings and their con-
stituent embeddings) were then quite successfully
used to predict behavioral data from experiments
with human participants (i.e. reaction times in dif-
ferent experimental tasks). Importantly, consider-
ing information from vision embeddings in addi-
tion to text embeddings leads to significantly better
predictions of human behavior. This work raises
two important questions that merit further explo-
ration. The first is about the modeling architecture,
the second about the combination, instead of the

1See Mitchell and Lapata (2010) for another approach of
dealing with asymmetric models of constituents and, Li et al.
(2020); Köper and im Walde (2017) for other interesting and
similar work on related phenomena.
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comparison, of the two kinds of vector spaces.
Günther et al. (2020b) have used a linear archi-

tecture as implemented in the CAOSS model. In
the present paper, we will explore whether non-
linear architectures are better-suited to construct
compound meaning representations. Our second
aim is to test whether the combination of vision em-
beddings and text embeddings is a better basis for
predicting human behavior rather than considering
text embeddings and vision embeddings separately.

2 Method

2.1 Outline

We started out with pretrained sets of text and vi-
sion embeddings for compounds and their single
components from (Günther et al., 2020b), which
were kindly provided by the authors. We trained
different machine learning architectures towards
predicting the compound embeddings from their
constituents.

2.2 Models

In our approach, we use a supervised learning task
with the aim to assess whether the estimation of dis-
tributional meaning representations of noun-noun
compounds (both, text and vision based) benefits
from adding non-linearity to the models.

We compare two generic model architectures: A
simple linear regression (LR) model predicting the
compound embedding, and a feed-forward neural
network (NN) model. Both types of model are
built with the Keras toolkit (Chollet, 2015) with a
TensorFlow back-end (Géron, 2019).

The LR model is inspired by Günther et al.
(2020b), but does not use the position matrices
of the CAOSS model. It has no hidden layers, thus
treating all features as independent. In our experi-
ments, we use the LR model as the baseline instead
of the CAOSS model for two reasons: 1) In terms of
architecture, the two models are analogous; how-
ever, 2) CAOSS does not train and test on distinct
datasets, which potentially inflates the evaluation
results (due to model memorization, Levy et al.
2015) 2. The NN model, on the other hand, has 1 or
more hidden layers that model non-linear relation-
ships between the input and output, and facilitate
interactive behavior between the input features. We
experimented with 1-4 hidden layers, and report re-

2Our datasets are designed towards minimizing memoriza-
tion.

sults up to 3 due to a decline in model performance
beyond 3 hidden layers.

For both text and vision compound estimations,
we employ the same set of model architectures,
using text-based embeddings for the former and
picture-based embeddings for the latter (Section
2.3). For each datapoint, the input is a function
of the embeddings −→c1 , −→c2 of the constituents of
the compound, f(−→c1 ,−→c2), and the output is the em-
bedding of the compound. f can be any operation;
we experiment with concatenation, addition and
multiplication.

Hyperparameters. The number of units in each
hidden layer of the NN models is optimized for
each model separately. We consider a step-size
of 50 between a range of 250 to 750 hidden units
in a hidden layer. All hidden layers use tanh as
activation function and tanh or sigmoid as the acti-
vation function for the final output layer. To avoid
over-fitting, we add a dropout layer in front of
each hidden layer with a standard dropout value of
0.5 (Baldi and Sandowski, 2013). We use mean-
squared-error as the loss function and an additional
L2 weight regularization in the range [101, 10−3]
at the time of loss computation to further optimize
over any parameters that might be outliers. For
model optimization we experimented with SGD
and Adadelta (Zeiler, 2012).

2.3 Datasets for the compound embeddings

Semantic Spaces. The 400-dimensional text and
300-dimensional vision pretrained embeddings
were obtained as-is from Baroni et al. (2014) and
Günther et al. (2020b) respectively.

Datasets 3. The training datasets are obtained
from Günther et al. (2020b). The dataset for the text
models contains 5988 datapoints with 2387 unique
constituents and 5988 compounds, the dataset for
the vision models 1577 datapoints with 942 con-
stituents and 578 compounds. Since we evaluate
model performance on both text and vision data
against human behavioural measures (Section 3),
we create a test dataset where: 1) for each data-
point, the constituents have an overlap in the text
and vision semantic spaces4; and, 2) the datapoints
in the test set do not overlap with the training
datasets. This dataset contains 352 datapoints with

3The datasets are publicly available at https://doi.
org/10.17026/dans-xdp-3qhj.

4It is not necessary to also have text and vision embeddings
for the compounds in the test sets since these are not required
by the current evaluation, see below.
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321 unique constituents and 352 compounds.
We introduce three different ways to combine the

two input constituents – the modifier (M) and head
(H): 1) Concatenation (Con) ( ~M ⊕ ~H) – allows
the model to freely combine the information of the
two embeddings; 2) Addition (Add) ( ~M+ ~H); and,
3) Multiplication (Mul) ( ~M � ~H) – both variants
make the dimension-wise correspondence between
two embeddings comparatively explicit. In addi-
tion to the above datasets, we generate in paral-
lel another set of datasets (identical to the above)
where the semantic spaces have been normalized
via L2 normalization. We choose this overhead to
ensure that the compound prediction models are
not confounded by outlier values.

3 Evaluation

The empirical performance of all models was as-
sessed with five behavioral data sets, consisting of
participant ratings from Gagné et al. (2019), and
reaction times as used by Günther et al. (2020b): 1)
rC1: ratings as to what extent the meaning of the
first constituent (modifier) is retained in the com-
pound meaning; 2) rC2: to what extent the mean-
ing of the second constituent (head) is retained in
the compound meaning; and, 3) rcmp: to what
extent the meaning of the compound is predictable
from both constituents (i.e., compositionality rat-
ings). 4) TS: timed sensibility task, in which partic-
ipants have to judge whether a given compound has
a meaningful interpretation (Günther et al., 2020b);
and, 5) LDT: lexical decision task, in which partic-
ipants have to judge whether a given word is a real
English words or not (Balota et al., 2007).

For each of these data sets, we initially iden-
tified an optimal linear mixed-effects regression
model predicting these behavioral measures from
a set of control variables (constituent frequencies
and family sizes, compound length and frequency)
using step-wise backwards model selection. We
then added to each model as additional predictors
the cosine similarities between the compound em-
beddings produced by the model and their respec-
tive constituent embeddings. These similarities
have been identified as the main predictors of hu-
man behavioral data in previous empirical studies
(Günther and Marelli, 2019; Günther et al., 2020a).
In a semantically transparent compound we expect
the embeddings of a constituent (or of both con-
stituents) to be more similar to the embedding of
the compound than in a semantically opaque com-

pound. For instance, we expect a low cosine sim-
ilarity between lady and ladybug since meaning-
wise there is little of ‘lady’ in ladybug. As shown in
numerous empirical studies, more compositionally-
transparent compounds receive higher composition-
ality ratings (e.g. Gagné et al. 2019) and are pro-
cessed faster (e.g. Günther et al. 2020b).

We obtained the conditional variance explained
(r2) of the mixed-effects regression models as our
index of goodness-of-fit (using the R package Mu-
MIn; Barton 2018). For each of the five data sets,
we determined the rank order of these r2 values for
all models under evaluation, and calculated as an
overall measure of a model’s performance its mean
rank across all five data sets.

4 Results & Discussion

Table 1 gives our main results. We start by predict-
ing the text and the vision compound embeddings
independently (columns 1-3, and 4-6, resp.). For
each model: Norm – indicates whether the seman-
tic space has been L2 normalized (or not), Input –
the type of input representation (Sec. 2.3) and Arch
– the model architecture along with the number of
hidden layers and units, if applicable (Section 2.2).
For evaluation, we combine the text and vision
model outputs for each datapoint in our test set in
two different ways (column 7): a) Mono – we com-
pute the cosine similarities between the predicted
compound embedding and the constituent embed-
dings separately for the text embeddings and the
vision embeddings (in all, 4 values); and, b) Multi
– we compute the cosine similarities between the
concatenation of the two predicted compound em-
beddings (text and vision) and the concatenations
of the respective constituent embeddings (text and
vision), i.e., we operate on multi-modal represen-
tations of compounds and constituents (in all, 2
values). Columns 8-12 give the evaluation scores
as described in Sec. 3. Column 13 gives the order
of the mean ranks for each text-vision model as
computed on the basis of the r2 values. Table 1
shows our top 5 Mono and Multi models from a
rank-ordered list. The last line is the baseline model
i.e., the LR model nearest to CAOSS (Sec. 2.2).

Two important points emerge from Table 1. First,
we see that the best text models are all LR mod-
els (column 3), and that the vision models are all
NN models (column 6). It appears that, in the
case of a picture-based semantic space, predicting
compounds effectively is a non-linear problem and
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Table 1: Rank ordered list of top 5 Mono and Multi (NN) models along with the baseline model (BL). Best r2

scores for each evaluation metric for both Mono and Multi in bold.

Text Models Vision Models Type r2 Rank

1 2 3 4 5 6 7 8 9 10 11 12 13

Norm Input Arch Norm Input Arch Type TS LDT rC1 rC2 rcmp

- Add LR L2 Add NN 450-350 Mono 0.357 0.479 0.652 0.489 0.444 1
- Add LR L2 Con NN 650-550 Mono 0.358 0.477 0.654 0.490 0.446 2
- Add LR - Add NN 450 Mono 0.355 0.483 0.650 0.492 0.428 3
- Add LR L2 Con NN 350-250 Mono 0.358 0.479 0.652 0.474 0.438 4
- Con LR L2 Add NN 450-350 Mono 0.356 0.479 0.651 0.482 0.441 5

L2 Con LR L2 Con NN 550-450-400 Multi 0.341 0.481 0.651 0.475 0.456 1704
L2 Con LR L2 Con NN 450-350 Multi 0.342 0.478 0.652 0.475 0.457 1807
L2 Con LR L2 Add NN 700-600-500 Multi 0.340 0.485 0.650 0.489 0.460 4993
L2 Con LR L2 Con NN 350-250 Multi 0.341 0.478 0.657 0.477 0.468 6436
L2 Con LR L2 Add NN 450-350 Multi 0.340 0.475 0.663 0.483 0.477 9302

- Add LR - Add LR BL 0.352 0.463 0.621 0.467 0.401 415874

should be treated as such. The vision-based space
is a comparatively richer space (than text) in terms
of features (Deng et al., 2009), and requires a more
complex architecture for an effective treatment of
compounds and constituents. The text semantic
space (normalized or otherwise), on the other hand,
is known to work well with straightforward inputs
(Baroni et al., 2012) and to that effect our results
are in line with the previous works.

Second, we see that the Mono models outper-
form the Multi models (column 7). In an ideal
scenario, the multi-modal representations should
resonate better with cognitive data as compared to
those generated from individual semantic spaces.
This is because language users do not primarily
learn word meanings from reading texts, but by en-
countering new words in situations that involve and
necessitate the integration of various kinds of infor-
mation present. Combining vision embeddings and
text embedding is thus an important step towards
a more realistic model of meaning construction
by language users. The worse performance of our
combined embeddings does not bear this out. This
may mean that the simple concatenation of text and
vision features is not optimal and seems to blur
information contained in the single text and vision
embeddings. A more promising way to combine
text and vision semantic spaces might be to encode
the two into one and use the resultant multi-modal
space as input for the compound prediction. Given
the data we currently have, this is however difficult
since the number of compounds for which we have
text and vision embeddings both for constituents
and compound is rather low.

Looking at the r2 scores between Mono and
Multi, none of the models outperforms the others in
all criteria. However, except for (Multi - TS) all our
models score considerably better than our LR base-
line analogous to (Günther et al., 2020b). We see
an improvement that is between the range of 0.6 to
7.6 percentage points, which is substantial for this
kind of behavioral data: In the mixed-effect models
for our TS and LDT data sets, most frequency ef-
fects (the most robust predictors of response times)
explain between 1 and 15 percent of variance, and
in the rating studies these values range between 1
and 5 percent.

5 Conclusion

Our results confirm that the modelling of com-
pound semantics that is aimed at emulating hu-
man cognition, does indeed benefit from the use of
non-linear models. While in this work the vision
semantic space was the main benefactor from non-
linearity, it remains to be seen if hyperparameter
tuning over a broader range might also improve
the contribution put forth by the text models. The
natural next step in further developing such models
is to give combined text and vision information at
input rather than at output level and to allow the
models to freely select the best features from both
semantic spaces for compound prediction. This
would presumably also be a step closer towards
human cognition. We aim to achieve this in our
ongoing experiments by either utilizing an existing
multi-modal space for such modelling tasks or by
encoding spaces of different modality into one.
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man, Thomas L Spalding, and Benjamin V Tucker.
2018. Conceptual relations compete during auditory
and visual compound word recognition. Language,
cognition and neuroscience, 33(7):923–942.

Matthew D. Zeiler. 2012. Adadelta: An adaptive learn-
ing rate method. In CoRR, abs/1212.5701.

222



MobIE: A German Dataset for Named Entity Recognition, Entity Linking
and Relation Extraction in the Mobility Domain

Leonhard Hennig Phuc Tran Truong Aleksandra Gabryszak

German Research Center for Artificial Intelligence (DFKI)
Speech and Language Technology Lab

{leonhard.hennig,phuc tran.truong,aleksandra.gabryszak}@dfki.de

Abstract

We present MobIE, a German-language
dataset, which is human-annotated with 20
coarse- and fine-grained entity types and entity
linking information for geographically link-
able entities. The dataset consists of 3,232 so-
cial media texts and traffic reports with 91K
tokens, and contains 20.5K annotated enti-
ties, 13.1K of which are linked to a knowl-
edge base. A subset of the dataset is human-
annotated with seven mobility-related, n-ary
relation types, while the remaining documents
are annotated using a weakly-supervised label-
ing approach implemented with the Snorkel
framework. To the best of our knowledge, this
is the first German-language dataset that com-
bines annotations for NER, EL and RE, and
thus can be used for joint and multi-task learn-
ing of these fundamental information extrac-
tion tasks. We make MobIE public at https:
//github.com/dfki-nlp/mobie.

1 Introduction

Named entity recognition (NER), entity linking
(EL) and relation extraction (RE) are fundamental
tasks in information extraction, and a key compo-
nent in numerous downstream applications, such as
question answering (Yu et al., 2017) and knowledge
base population (Ji and Grishman, 2011). Recent
neural approaches based on pre-trained language
models (e.g., BERT (Devlin et al., 2019)) have
shown impressive results for these tasks when fine-
tuned on supervised datasets (Akbik et al., 2018;
De Cao et al., 2021; Alt et al., 2019). However,
annotated datasets for fine-tuning information ex-
traction models are still scarce, even in a com-
paratively well-resourced language such as Ger-
man (Benikova et al., 2014), and generally only
contain annotations for a single task (e.g., for NER
CoNLL’03 German (Tjong Kim Sang and De Meul-
der, 2003), GermEval 2014 (Benikova et al., 2014);

entity linking GerNED (Ploch et al., 2012)). In
addition, research in multi-task (Ruder, 2017) and
joint learning (Sui et al., 2020) has shown that mod-
els can benefit from exploiting training signals of
related tasks. To the best of our knowledge, the
work of Schiersch et al. (2018) is the only dataset
for German that includes two of the three tasks,
namely NER and RE, in a single dataset.

In this work, we present MobIE, a German-
language information extraction dataset which has
been fully annotated for NER, EL, and n-ary RE.
The dataset is based upon a subset of documents
provided by Schiersch et al. (2018), but focuses
on the domain of mobility-related events, such as
traffic obstructions and public transport issues. Fig-
ure 1 displays an example traffic report with a Can-
celed Route event. All relations in our dataset are n-
ary, i.e. consist of two or more arguments, some of
which are optional. Our work expands the dataset
of Schiersch et al. (2018) with the following contri-
butions:

• We significantly extend the dataset with 1,686
annotated documents, more than doubling its
size from 1,546 to 3,232 documents

• We add entity linking annotations to geo-
linkable entity types, with references to Open
Street Map1 identifiers, as well as geo-shapes

• We implement an automatic labeling approach
using the Snorkel framework (Ratner et al.,
2017) to obtain additional high quality, but
weakly-supervised relation annotations

The dataset setup allows for training and evaluating
algorithms that aim for fine-grained typing of geo-
locations, entity linking of these, as well as for
n-ary relation extraction. The final dataset contains
20, 484 entity, 13, 104 linking, and 2, 036 relation
annotations.

1https://www.openstreetmap.org/
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Figure 1: Traffic report annotated with entity types, entity linking and arguments of a Canceled Route event
.

Figure 2: Geolinker: Annotation tool for entity linking

2 Data Collection and Annotation

2.1 Annotation Process
We collected German Twitter messages and RSS
feeds based on a set of predefined search keywords
and channels (radio stations, police and public
transport providers) continuously from June 2015
to April 2019 using the crawlers and configurations
provided by Schiersch et al. (2018), and randomly
sampled documents from this set for annotation.
The documents, including metadata, raw source
texts, and annotations, are stored with a fixed docu-
ment schema as AVRO2 and JSONL files, but can
be trivially converted to standard formats such as
CONLL. Each document was labeled iteratively,
first for named entities and concepts, then for entity
linking information, and finally for relations. For
all manual annotations, documents are first anno-
tated by a single trained annotator, and then the
annotations are validated by a second expert. All
annotations are labeled with their source, which
e.g. allows to distinguish manual from weakly su-
pervised relation annotations (see Section 2.4).

2.2 Entities
Table 3 lists entity types of the mobility domain that
are annotated in our corpus. All entity types except
for event cause originate from the corpus of Schier-
sch et al. (2018). The main characteristics of the

2avro.apache.org

original annotation scheme are the usage of coarse-
and fine-grained entity types (e.g., organization,
organization-company, location, location-street),
as well as trigger entities for phrases which indicate
annotated relations, e.g., “Stau” (“traffic jam”).
We introduce a minor change by adding a new en-
tity type label event cause, which serves as a label
for concepts that do not explicitly trigger an event,
but indicate its potential cause, e.g., “technische
Störung” (“technical problem”) as a cause for a
Delay event.

2.3 Entity Linking
In contrast to the original corpus, our dataset in-
cludes entity linking information. We use Open
Street Map (OSM) as our main knowledge base
(KB), since many of the geo-entities, such as streets
and public transport routes, are not listed in stan-
dard KBs like Wikidata. We link all geo-locatable
entities, i.e. organizations and locations, to their
KB identifiers, and external identifiers (Wikidata)
where possible. We include geo-information as an
additional source of ground truth whenever a loca-
tion is not available in OSM3. Geo-information is
provided as points and polygons in WKB format4.

3This is mainly the case for location-route and location-
stop entities, which are derived from proprietary KBs of
Deutsche Bahn and Rhein-Main-Verkehrsverbund. Standard-
ized ids for these entity types, e.g. DLID/DHID, were not yet
available at the time of creation of this dataset.

4https://www.ogc.org/standards/sfa
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Relation Arguments

Accident DEFAULT-ARGS, delay
Canceled Route DEFAULT-ARGS
Canceled Stop DEFAULT-ARGS, route
Delay DEFAULT-ARGS, delay
Obstruction DEFAULT-ARGS, delay
Rail Repl. Serv. DEFAULT-ARGS, delay
Traffic Jam DEFAULT-ARGS, delay, jam-length

Table 1: Relation definitions of the MobIE dataset.
DEFAULT-ARGS for all relations are: location, trigger,
direction, start-loc, end-loc, start-date, end-date, cause.
Location and trigger are essential arguments for all re-
lations, other arguments are optional.

Figure 2 shows the annotation tool used for entity
linking. The tool displays the document’s text, lists
all annotated geo-location entities along with their
types, and a list of KB candidates retrieved. The
annotator first checks the quality of the entity type
annotation, and may label the entity as incorrect if
applicable. Then, for each valid entity the annotator
either labels one of the candidates shown on the
map as correct, or they select missing if none of the
candidates is correct.

2.4 Relations

Table 1 lists relation types and their arguments. The
relation set focuses on events that may negatively
impact traffic flow, such as Traffic Jams and Ac-
cidents. All relations have a set of required and
optional arguments, and are labeled with their an-
notation source, i.e., human or weakly-supervised.
Different relations may co-occur in a single sen-
tence, e.g. Accidents may cause Traffic Jams, which
are often reported together.

Human annotation. The annotation in Schier-
sch et al. (2018) is performed manually. Annotators
labeled only explicitly expressed relations where
all arguments occurred within a single sentence.
The authors report an inter-annotator agreement of
0.51 (Cohen’s κ) for relations.

Automatic annotation with Snorkel. To re-
duce the amount of labor required for relation an-
notation, we explored an automatic, weakly super-
vised labeling approach. Our intuition is that due to
the formulaic nature of texts in the traffic report do-
main, weak heuristics that exploit the combination
of trigger key phrases and specific location types
provide a good signal for relation labeling. For
example, “A2 Dortmund Richtung Hannover 2 km
Stau” is easily identified as a Traffic Jam relation
mention due to the occurrence of the “Stau” trigger

Labeling functions

lf_direction_keyword(x)

lf_traffic_jam_length(x)

Label matrix

Label model

SNORKEL

Probabilistic
training

data

End model

Patterns &
dictionaries

Domain
Heuristics

"in", "um",
"Richtung",

"zwischen ... und
...", "von", "bis",

"wegen", "... Stau"

"Only traffic jams
have a jam
length..."

Weak supervision
sources

Unlabeled data

lf_delay_type(x)

Tödlicher Unfall mit
 Lkw in Berlin

Figure 3: Snorkel applies user-defined, ‘weak’ labeling
functions (LF) to unlabeled data and learns a model to
reweigh and combine the LFs’ outputs into probabilis-
tic labels.

in combination with the road name “A2”.
We use the Snorkel weak labeling frame-

work (Ratner et al., 2017). Snorkel unifies multiple
weak supervision sources by modeling their corre-
lations and dependencies, with the goal of reducing
label noise (Ratner et al., 2016). Weak supervision
sources are expressed as labeling functions (LFs),
and a label model combines the votes of all LFs
weighted by their estimated accuracies and outputs
a set of probabilistic labels (see Figure 3).

We implement LFs for the relation classifica-
tion of trigger concepts and role classification of
trigger-argument concept pairs. The output is used
to reconstruct n-ary relation annotations. Trigger
classification LFs include keyword list checks as
well as examining contextual entity types. Argu-
ment role classification LFs are inspired by Chen
and Ji (2009), and include distance heuristics, en-
tity type of the argument, event type output of the
trigger labeling functions, context words of the ar-
gument candidate, and relative position of the entity
to trigger. We trained the Snorkel label model on all
unlabeled documents in the dataset that contained
at least a trigger entity (690 documents). The prob-
abilistic relation type and argument role labels were
then combined into n-ary relation annotations.

We verified the performance of the Snorkel
model using a randomly selected development sub-
set of 55 documents with human-annotated rela-
tions. On this dev set, Snorkel-assigned trigger
class labels achieved a F1-score of 80.6 (Accuracy:
93.0), and role labeling of trigger-argument pairs
had a F1-score of 72.6 (Accuracy: 83.1). This
confirms our intuition that for the traffic report do-
main, weak labeling functions can provide useful
supervision signals.

3 Dataset Statistics

We report the statistics of the MobIE dataset in
Table 2. The majority of documents originate from
Twitter, but RSS messages are longer on average,
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Twitter RSS Total

# docs 2,562 670 3,232
# sentences 5,409 1,668 7,077
# tokens 62,330 28,641 90,971
# entities 13,573 6,911 20,484
# linked 8,715 4,389 13,104
# events 1,461 575 2,036

Table 2: Dataset statistics per source

and typically contain more annotations (e.g., 10.3
entities/doc versus 5.3 entities/doc for Twitter).
The annotated corpus is provided with a standard-
ized Train/Dev/Test split. To ensure a high data
quality for evaluating event extraction, we include
only documents with manually annotated events in
the Test split.

Table 3 lists the distribution of entity annotations
in the dataset, Table 4 the distribution of linked en-
tities. Of the 20, 484 annotated entities covering
20 entity types, 13, 104 organization* and loca-
tion* entities are linked, either to a KB reference
id, or marked as NIL. The remaining entities are
non-linkable types, such as time and date expres-
sions. The fraction of NILs among linkable entities
is 43.1% overall, but varies significantly with en-
tity type. Locations that could not be assigned to
a specific subtype are more often resolved as NIL.
A large fraction of these are highway exits (e.g.

“Pforzheim-Ost”) and non-German locations, which
were not included in the subset of OSM integrated
in our KB. In addition, candidate retrieval for or-
ganizations often returned no viable candidates,
especially for non-canonical name variants used in
tweets.

The dataset contains 2, 036 annotated traffic
events, 1, 280 manually annotated and 756 ob-
tained via weak supervision. Table 5 shows the
distribution of relation types. Canceled Stop and
Rail Replacement Service relations occur less fre-
quently in our data than the other relation types,
and Obstruction is the most frequent class.

4 Conclusion

We presented a dataset for named entity recogni-
tion, entity linking and relation extraction in Ger-
man mobility-related social media texts and traf-
fic reports. Although not as large as some popu-
lar task-specific German datasets, the dataset is,
to the best of our knowledge, the first German-
language dataset that combines annotations for
NER, EL and RE, and thus can be used for joint
and multi-task learning of these fundamental in-

Twitter RSS Total

date 434 549 983
disaster-type 78 18 96
distance 37 175 212
duration 413 157 570
event-cause 898 116 1,014
location 887 1,074 1,961
location-city 844 1,098 1,942
location-route 2,298 324 2,622
location-stop 1,913 1,114 3,027
location-street 634 612 1,246
money 16 3 19
number 527 198 725
org-position 4 0 4
organization 296 121 417
organization-company 1,843 46 1,889
percent 1 0 1
person 135 0 135
set 18 37 55
time 683 410 1,093
trigger 1,614 859 2,473

Table 3: Distribution of entity annotations

# entities # KB # NIL

location 1,961 703 1,258
location-city 1,942 1,486 456
location-route 2,622 2,138 484
location-stop 3,027 1,898 1,129
location-street 1,246 1,036 210
organization 417 0 417
organization-company 1,889 192 1,697

Table 4: Distribution of entity linking annotations

Twitter RSS Total

Accident 316 80 396
Canceled Route 259 75 334
Canceled Stop 25 42 67
Delay 337 48 385
Obstruction 386 140 526
Rail Replacement Service 71 27 98
Traffic Jam 67 163 230

Table 5: Distribution of relation annotations

formation extraction tasks. The dataset is freely
available under a CC-BY 4.0 license at https:

//github.com/dfki-nlp/mobie.
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Abstract

Conceptual complexity is concerned with the
background knowledge needed to understand
concepts within a text and their implicit con-
nections (Hulpus, et al., 2019). In the present
study, a recently proposed framework from
Hulpus, et al. (2019), which assesses the con-
ceptual complexity of English newspaper arti-
cles, is replicated and adapted to German lex-
ica entries aimed at three different age groups.
The final results on the corpus of 885 German
texts improve upon the original study in both a
pairwise classification task and a ranking task,
showing that the framework transfers well to
a different language and a different genre. We
release the dataset used, as well as an extended
version with a total of ca. 3000 texts.

1 Introduction

Text simplification aims to reduce the complexity
of a text whilst retaining the main informational
content. Conceptual complexity is concerned with
the background knowledge needed to understand
concepts within a text, and the implicit connections
between the concepts that contribute to understand-
ing a text (Hulpus, et al., 2019). The present study
aims to evaluate the conceptual complexity of Ger-
man texts, by recreating a recent study from Hulpus,
et al. (2019) in which they assess the conceptual
complexity of English language newspaper articles
from the Newsela corpus (Xu et al., 2015), which
contains articles at five different levels of complex-
ity. To do this, they develop a framework which is
based on psycholinguistic theories on reading com-
prehension, in particular priming, which states that
words are recognised faster if preceded by words
related in meaning (Collins and Loftus, 1975).

In the present study, this framework is directly
applied to German texts from three lexica designed
for beginner readers, children and adults. The
framework is then slightly adapted to account for

nuances specific to the German language, such as
compound words. The results show that the model
adapts well to German texts and works well across
domains. We also release the lexica dataset to fos-
ter research on German text simplification, and a
script to build the dataset as the lexica grow.1

2 Background

The main hypothesis in Hulpus, et al.’s (2019) study
is that the more priming in a text, the lower the con-
ceptual complexity. A spreading activation (SA)
framework (Quillian, 1962, 1967; Collins and Lof-
tus, 1975) is used to illustrate the priming pro-
cess. The framework compares concepts to nodes
in a network, with the properties of concepts rep-
resented as labelled relational links from the node
to other concept nodes. Whenever a concept is
mentioned in a text, it activates other neighbouring
concepts in the graph (Collins and Loftus, 1975).
The amounts of activation generated by this pro-
cess are used to symbolise the amount of priming
in the text.
The rest of this section provides a summary of
the model proposed by Hulpus, et al. (2019). The
model is implemented using the DBpedia knowl-
edge graph (Lehmann et al., 2014), which converts
information from Wikipedia into a graph structure.
The texts are first annotated with concepts from
DBpedia using an entity linker. The SA process
for each of these concepts is then calculated and
consists of three functions: an input, output and ac-
tivation function. Each iteration in the SA process
is called a pulse, denoted by p. A(p)(c) denotes the
amount of activation that node c has after pulse p.
Whenever a concept is mentioned in a text, referred
to as a seed concept, its activation is set to 1.0, and
all other nodes are set to 0.0. At pulse 1, the SA

1https://doi.org/10.5281/zenodo.
5196030
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process is triggered and activations flows from the
seed concept. The output function adjusts the acti-
vation according to two parameters; α is a distance
decay parameter, which decays the activation out-
putted by a node at every pulse. A firing threshold
β is also used, which limits the concepts which can
fire in the next pulse. The function is defined as
follows:2

A
(p+1)
out (c) = α · fβ(A(p)(c)) (1)

where fβ(x) = x if x ≥ β; 0 otherwise. The
input function collates the activation that flows in
to a target node from neighbouring (source) nodes
and takes two aspects into account, the popularity
and the exclusivity. The popularity is measured
by how many neighbouring nodes a concept has,
the exclusivity measures the semantic relatedness
between two nodes by using the types of relation
that connect the two nodes.3 These two factors
multiplied together are termed accessibility. The
input function is defined as follows:

A
(p+1)
in (c) =

∑

r∈ρ(c)
A

(p+1)
out (nr(c)) · accr(c) (2)

where ρ(c) refers to the set of relations of concept
c, nr(c) the neighbours of concept c through the
relation r, and accr(c) the normalised accessibility
of concept c through relation r.4 The activation
function computes the activation of a concept as a
sum of its activation at p and its incoming activation
at p+ 1:

A(p+1)(c) = A(p)(c) +A
(p+1)
in (c) (3)

The SA process finishes when there are no more
concepts which have not already fired and have an
activation value higher than the β threshold. In
a next step, a function (denoted as φ(SA(c))) is
applied to the activations that the nodes have at the
last pulse of the SA process and the resulting activa-
tion scores are then subject to a forgetting process.
φA uses the activation from the SA process, except
for the seed concept, where the popularity score is
used instead. φ1 is a constant function in which
all concepts which become active during the SA
process receive a score of 1.

2Functions are taken from Hulpus, et al. (2019).
3The functions for popularity and exclusivity can be found

in Appendix A.1 and A.3.
4The function for normalised accessibility can be found in

Appendix A.3.

Cumulative activation (CA) calculates the SA val-
ues after they have been subject to forgetting:

CA(i)(c) =

i∑

k=0

γk,iφ(SA
(k)(c)) (4)

where CA(i)(c) denotes the CA of a concept c at
the time of reading word i. γ represents the for-
getting process and is the product of three set de-
cay factors which decrease the activation of the
concepts at each encountered word, sentence and
paragraph. Scores can also increase if concepts are
repeated or if related concepts are mentioned later
in the text. The final scores for a text are calculated
at the moment the concept is encountered (AE), at
the end of sentences (AEoS), paragraphs (AEoP)
or the sum of all three (All). The inverse of the
average of these scores is used as the conceptual
complexity score for the text. The scores are used
for two tasks: a pairwise classification task (i.e.
which text of two texts is more conceptually com-
plex) evaluated by calculating the percentage of
pairs that are classified correctly over all the pairs
in the corpus, and a ranking task (i.e. correctly or-
dering the texts on one topic in order of conceptual
complexity) evaluated by comparing the model’s
ranking to the gold-standard using Kendall’s tau-b,
which is on a scale from -1 to +1 (Kendall, 1945).

3 Related work

Conceptual complexity. An earlier study, also
by Štajner and Hulpus, (2018), on the automatic as-
sessment of conceptual complexity uses knowledge
graph based features, such as the number of neigh-
bours a node has and the length of the shortest path
connecting two nodes. They build on this work by
introducing shallow and surface features based on
the output of an entity linker, such as the number of
unique entities in a sentence or the average distance
between consecutive mentions of entities (Stajner
and Hulpus, , 2020).
Feng et al. (2010) evaluate the features which
best predict readability, using magazine articles
designed for primary school children of different
ages in a classification task. They use “discourse
features” such as the density of named entities and
proper nouns across a sentence or text, or the length
of chains of semantic relations (such as synonym or
hypernym) from an entity, based on the hypothesis
that the density of named entities and proper nouns
introduced in a text relates to the burden placed
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on the readers’ working memory and therefore the
complexity level of a text.
For texts in German, Weiß and Meurers (2018) eval-
uate a large feature set of complexity indicators on
a dataset of news subtitles and scientific articles
and their counterparts aimed at children. Some
of the most informative features were frequency
measures calculated using different lexicons and
corpora as well as content overlap within sentences.
vor der Brück et al. (2008) develop a readabil-
ity checker for German texts called DeLite and
build so-called semantic networks for sentences, in
which the word-class functions of the words and
the relations between them are represented as a
graph. Using 500 German texts from the munic-
ipal domain they compare human judgements on
readability to automatic and conclude that indica-
tive features include inverse concept frequency, the
number of reference candidates for a pronoun and
the number of propositions in a sentence.
Knowledge graphs. Knowledge graphs (KGs)
have been used in a wide variety of tasks such
as computing the semantic similarity of concepts
(Zhu and Iglesias, 2017), finding relevant tokens
in text (Bronselaer and Pasi, 2013), in recommen-
dation systems (Joseph and Jiang, 2019) and for
calculating document similarity (Paul et al., 2016).
Using KGs in language-based tasks as a proxy for
background knowledge is not a novel idea, and has
been done in the context of argumentation min-
ing with reasonable success (Kobbe et al., 2019;
Botschen et al., 2018).

4 Data

The main data for the present study comes from
a total of 885 articles from three Wiki-based lex-
ica in German language: MiniKlexikon, Klexikon
and Wikipedia. Klexikon is aimed specifically at
children aged between 6 and 12 (Dunemann, 2016)
and MiniKlexikon is designed for children who are
beginner readers, and is therefore an even simpler
version of the Klexikon. We make the assumption
that the three different sub-corpora represent three
different levels of conceptual complexity due to the
target groups they are written for: younger children,
children and adults. Children have less prior knowl-
edge so therefore a text written for them should
require less background knowledge; this aspect is
explicitly mentioned in the guidelines for writing

Sub-corpus Texts Avg. AL Avg. SL
Level 0 295 134.86 9.57
Level 1 295 305.45 13.29
Level 2 295 169.89 18.41

Table 1: Average length of articles (AL) and average
sentence length (SL) in the three sub-corpora (tokens).

articles for the MiniKlexikon.5 As Wikipedia arti-
cles can be extremely long, in comparison to the
other two lexica, only the introduction or abstract
was taken for the purposes of the current study.
Any Klexikon articles longer than 2800 characters
were excluded, as well as any articles where paral-
lel topics did not exist across all sub-corpora. This
resulted in 295 texts for each level. The different
sub-corpora will be referred to hereafter as level
0 (MiniKlexikon), level 1 (Klexikon) and level 2
(Wikipedia). Table 1 shows that the level 1 sub-
corpus contains the longest articles, but the average
sentence length gets longer as the complexity level
increases. Examples from the corpus can be seen
in Table 2.

5 Experiments

The system from Hulpus, et al. (2019) was first
replicated, adapted only by changing the language
of the DBpedia graph to German. As in the origi-
nal study, different parameters were experimented
with: the extent of the forgetting process, γ, – the
so-called type of decay – and the φ function, which
is the function applied to the values which result
from the SA process. The distance decay parameter
α and the firing threshold β, two parameters which
control the amount of nodes activated in each SA
step, were not experimented with and the best per-
forming values from the original study were used,
0.25 and 0.01 respectively. The system was then
applied to all 885 texts in the lexica corpus. The
results can be seen in Table 3: the average accuracy
for pairwise classification using the best param-
eters from the original study (as documented in
(Štajner et al., 2020)) was .86, which is the same
as the original system for English texts. The best
parameters for the German texts – as can be seen
in the right-hand side of Table 3 – increased the
average accuracy for the pairwise classification to
.89. In both cases the AEoS score provided the best
results.

5https://miniklexikon.zum.de/index.
php?title=Hilfe:Regeln&oldid=23440
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Level 2 Simplified (level 0/1) Simplification
The name Allosaurus is derived from the
Greek language and translates to ‘different
lizard’.

The name Allosaurus means some-
thing like ‘different lizard’.

removal of non-essential con-
cepts that demand more back-
ground knowledge

Amsterdam is the capital city and the most
populous city in the Kingdom of the Nether-
lands.

Amsterdam is the capital city of the
Netherlands. Amsterdam is also the
biggest city in the Netherlands.

replacement of non-essential de-
manding concepts with more
commonly known ones

Furthermore, astronomy strives to under-
stand the universe as a whole, its origins and
its development.

Astronomers investigate how space
originated.

avoidance of abstract concepts

Table 2: Translated examples of conceptual simplification from the lexica corpus created for the present study. The
types of simplification are taken from (Štajner and Hulpus, , 2018).

decay medium decay, φ1 strong decay, φA

score AE AEoS AEoPAll AE AEoS AEoPAll
0-1 .56 .93 .89 .92 .58 .87 .82 .88
0-2 .35 .88 .69 .79 .52 .94 .82 .91
1-2 .30 .76 .48 .59 .48 .87 .62 .76

Table 3: The accuracy scores for the pairwise classifi-
cation task with the parameters from the original study
(Hulpus, et al., 2019). The scores on the left use the best
parameters for the Newsela corpus, the scores on the
right use the best parameters for the lexica corpus. The
highest accuracy for each pair of levels is highlighted
in bold.

5.1 Adaptations

Manual inspection of the concepts annotated by
the entity linker, DBpedia Spotlight (Mendes et al.,
2011), revealed some inaccurate annotations, par-
ticularly at a confidence level of 0.35, which is the
level used by Štajner et al. (2020). Nouns with cap-
italised articles are often tagged as films or bands
that go by the same name such as the depth (Die
Tiefe). We experimented with different confidence
levels (0.35 to 0.65, at intervals of 0.05) and with an
alternative entity linker for German, TagMe, with
the same amount of the equivalent confidence lev-
els (Ferragina and Scaiella, 2010, 2012). Whilst the
accuracy of the tagged concepts did appear to im-
prove, neither the confidence values nor the TagMe
entity linker improved the scores for either task.
Another approach was taken to try and improve
the accuracy of the entity linker for the specific
task of solely tagging concepts. In the context of
the present model, a concept is simply defined, by
proxy, as a node in the DBpedia KG. By analysing
the texts in the corpus, this definition could be
elaborated upon to say that concepts are nodes in
the DBpedia KG that are also nouns, verbs, ad-
jectives, adverbs or cardinal numbers. The whole
corpus was tagged with Part-of-Speech tags using
TreeTagger (Schmid, 1999) and entity annotations

were removed that did not fit this definition. This
reduced the amount of concepts tagged by approxi-
mately 15%.
Another challenge that the entity linkers have to
deal with, that is somewhat unique to the German
language, is the high presence of compound words
such as Pumporgan: literally pump organ, “heart”.
Pumporgan does not have its own DBpedia page
which implies it is a somewhat novel compound.
Most novel compounds are transparent, as it can
be assumed that the reader is seeing them for the
first time, so they have to be able to be understood
by the context and the meaning of the constituents
(Smolka and Libben, 2017). In this way, annotating
Pumporgan with the individual concepts Pump and
Organ would reflect the process that a reader goes
through when processing a novel compound, and
would be the ideal behaviour for the entity linker.
To facilitate the tagging of such compounds, a com-
pound splitter (Ziering and van der Plas, 2016) was
applied to the level 2 data before the entity linking
stage. According to the MiniKlexikon guidelines6,
unusual compounds should be hyphenated and so
the splitter was not used on levels 0 and 1, and
instead hyphenated words were separated.
We also experimented with different φ functions.
φU refers to unchanged, so taking the SA scores
as is, φred refers to reduced so simply applying the
forgetting process to the entity linker output, leav-
ing out the SA process completely and φpop refers
to popularity, and also leaves out the SA process
whilst including the popularity scores of the tagged
concepts. The equations for these φ functions can
be found in Appendix A.2. We also introduced an
AEoD score which sums up the score for the whole
document, and tried out different combinations of
calculating the All score.

6https://miniklexikon.zum.de/index.
php?title=Hilfe:Regeln&oldid=20790
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System φ Decay AA tau-
b

original framework,
English texts

φ1 medium .86+ .82*

framework replication,
German texts

φA strong .89 .79

PoS based outlier re-
moval

φA strong .89 .78

compound splitting,
just level 2

φA strong .89 .79

compound splitting, all
levels

φA strong .70 .41

AEoD score φA strong .52 .04
All + AEoD φA strong .81 .62
AEoS + AEoP φA strong .87 .74
unchanged scores φU medium .91 .83
entity linker + forget-
ting

φred medium .91 .83

entity linker + popular-
ity + forgetting

φpop strong .85 .70

Table 4: The average accuracy (AA) for the pairwise
classification task and tau-b for the ranking task using
the AEoS scores for various models, with different φ
and decay parameters (only the best-performing com-
binations for each system are shown). +From Štajner
et al. (2020). *From Hulpus, et al. (2019): the tau-b re-
sults are calculated using an entity linker which is not
publicly available; a direct comparison is therefore not
possible.

5.2 Results & discussion

The results on the lexica corpus can be seen in Ta-
ble 4. The best accuracy and tau-b score is for the
model with unchanged scores from the SA process
(φU ) and the model which just uses the seed con-
cepts and a forgetting process (φred). This second
model, φred, also has the advantage of being much
more efficient than the models which involve the
spreading activation process. This is an improve-
ment of 5 percentage points on the original study,
although it is worth mentioning that the results can
not be directly compared due to the different nature
of the datasets. The lexica corpora used in this
study are on 3 different levels (as apposed to the
Newsela corpus which has 5 levels) and the texts
do not necessarily represent parallel translations.
As can be seen in Table 1, the average sentence
lengths of the different levels of the corpus increase
as the complexity increases. In fact, using average
sentence length as a sole feature for the ranking
task results in a tau-b score of .87. However, for
downstream tasks such as automatic simplification
or summarisation, a content based classification of
complexity – such as the conceptual complexity
value – could prove to be a lot more informative.

Another use case for conceptual complexity is for
texts that may not conform to this pattern of shorter
sentences for less complexity. For example, when
simplifying complex sentences by including exam-
ples or extra clauses that explain difficult terms,
the sentence length will increase as the complexity
level decreases.
As the success of a framework that uses a specific
KG as a proxy for long-term memory is obviously
highly dependent on the quality of the KG, a man-
ual inspection of the DBpedia KG was carried out.
This showed that nodes are not always linked to
each other in an intuitive way, with many nodes
completely isolated. A random sample of 30 results
from the popularity function showed that the node
multiplication scores 0, as it has no neighbours,
and Helgoland and Calligra Suite score higher than
ruler or hair, which may not correspond to an av-
erage reader’s level of familiarity. Working with a
different KG or calculating the popularity or famil-
iarity of concepts in an ontology-independent way
could yield more accurate results; we leave this to
future work.

6 Conclusion & outlook

In this study, the conceptual complexity of Ger-
man lexicon entries was examined by replicating
and adapting a spreading activation framework pro-
posed by Hulpus, et al. (2019). When compared
to the results from the study using the same entity
linker (Štajner et al., 2020), the current implemen-
tation improves the average accuracy score for pair-
wise classification by 5 percentage points. This
shows that the adapted framework also works with
shorter texts and can be adapted to work with lan-
guages other than English. We release the main
dataset used and a script to continually update it.
An interesting direction for future research would
be a closer examination of the way concepts are
connected on a text level, implicitly and explicitly,
and how the discourse structure affects complexity.
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A Appendices

A.1 Popularity function
The popularity function is defined as follows:

pop(c) =
log(D(c))

log(|V | − 1)
(5)

where D(c) denotes the number of neighbours of
concept c, and |V | the total number of concepts in
the KG.

A.2 φ functions
Functions for φA and φ1 as described in Section 2,
taken from Hulpus, et al. (2019):

φA(SA(c)) =

{
SA(c), if SA(c) < 1.0

pop(c), if SA(c) ≥ 1.0
(6)

φ1(SA(c)) = 1 if SA(c) > 0.0 (7)

Additional functions for φU , φred and φpop:
φU , which refers to unchanged and simply takes
the values as-is from the SA process and is defined
as follows:

φU (SA(c)) = SA(c) (8)

φred, which refers to reduced, which just takes the
seed concepts and applies forgetting, and is defined
as follows:

φred(SA(c)) =

{
0.0, if SA(c) < 1.0

SA(c), if SA(c) ≥ 1.0
(9)

φpop, which refers to popularity, which just cal-
culates the popularity for activated concepts and
applies forgetting, which is defined as follows:

φpop(SA(c)) = pop(c) if SA(c) > 0.0 (10)

A.3 Differences to original study (Hulpus,
et al., 2019)

Our replicated framework was tested with a sub-
sample of 25 Newsela texts (Xu et al., 2015). Using
the original rankings as published here7 as gold
standard, our replicated system had a tau-b of .9.

The reasons for this slight difference could be
due to the following reasons: Štajner et al. (2020)
use a different exclusivity calculation (cf. 12), the
Newsela texts used for the present study are format-
ted slightly differently and do not have paragraph
information, two equations (11, 6) were adjusted
as the original equations in (Hulpus, et al., 2019)
do not fully match the descriptions in the accom-
panying paper. In addition to this, Štajner et al.
(2020) do not specify if they use a support parame-
ter when using the entity linker DBpedia Spotlight.
This slightly limits the pool of neighbouring nodes
which is returned. In the present study we use a
support value of 20.

The normalised accessibility function:

accr(c) =
accr(c)

(accr(c) +
∑

r′∈ρ(nr(c))
accr′(nr′ ◦ nr(c)))

(11)

The exact equation for exclusivity was not listed
in the paper, and at the time of replicating the frame-
work, no further information was available. The
following function was used, adapted from the func-
tion in (Hulpuş et al., 2015):

excl(r) =
1

|∗ τ−→ x
τ−→ ∗|+ |∗ τ−→ y

τ−→ ∗| − 1
(12)

7https://github.com/ioanahulpus/
cocospa/blob/master/results/newsela.csv
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Abstract

This paper presents WORDGUESS, a game-
with-a-purpose vocabulary training where –in
order to guess a target word (such as snow)–
the player is offered associations of that tar-
get word (such as winter, white, cold). The
game relies on existing association norms and
co-occurrence information to establish an en-
tertaining way of deepening the player’s learn-
ing and understanding of vocabulary and of
associative relatedness between words in the
vocabulary. WORDGUESS comes with data
in English and German and can be extended
with data from further languages. From an
application-oriented point of view the play-
ers’ data enables us to induce conditions and
weights for word association and to quantify
contextual relationships, which is useful for
many NLP purposes such as ontology induc-
tion and anaphora resolution.

1 Introduction

Games-with-a-purpose (GWAP) offer enjoyable
entertainment to players and at the same time al-
low researchers in Natural Language Processing
(NLP) to collect and explore cognitive and (com-
putational) linguistic facets of human-generated
data. While the term GWAP has been coined by
Von Ahn and Dabbish (2008), the underlying idea
has been pursued across linguistic levels and across
NLP purposes for much longer. To provide a few
examples across research fields, the adventure and
interactive fiction games by Gabsdil et al. (2002)
rely on natural-language question-answering dia-
logues to explore inference systems with reference
resolution, syntactic ambiguities, and scripted dia-
logues; Chamberlain et al. (2008) exploit collabo-
rative work to identify relationships between words
and phrases in web data; OntoGame (Siorpaes and
Hepp, 2008) matches classes in an ontology with
Wikipedia articles; Hladká et al. (2009) propose a

gamified annotation approach for coreference reso-
lution; Guillaume et al. (2016) design ZombiLingo,
a game for syntactic dependency annotation.

We present a GWAP-style game implementation
called WORDGUESS1 where associations of a tar-
get word are offered to players in order to guess the
target word. For example, associations such as win-
ter, white, cold provide hints to players when guess-
ing the target word snow. Our game is a web-based
and mobile-based application whose aim is to learn
and understand word-association and word-context
relationships: previous research has shown that
associations and corpus co-occurrence are related
(Church and Hanks, 1990; de Deyne and Storms,
2008a; Schulte im Walde et al., 2008, i.a.); we
plan to explore their connections and differences in
more depth. In this vein, (i) we vary associations
obtained from humans, and context-based words
induced from corpus co-occurrence; (ii) we pro-
vide a multilingual gaming environment in order
to understand the conditions across languages and
relational patterns between native and second lan-
guages; and (iii) we offer the players to choose
between levels of difficulty (i.e., providing more or
less cues). The obtained data enables us to induce
conditions and weights for word association and
to quantify contextual relationships, taking native
language, age and gender into account.

Regarding the technical setup, we use Angular,
a TypeScript-based open-source web application
framework, for the implementation of the user in-
terface (UI), while MongoDB, a cross-platform
document-oriented database program, is utilized
for storing and organizing the game constituents
(e.g., defined games, users, and played games). We
also provide a responsive UI design in order to
make the game usable on different devices such as
phones, tablets and computers.

1https://wordguess.ims.uni-stuttgart.de
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2 Related Work
Gamification is a common way to make a wide va-
riety of tasks entertaining in NLP. In the following,
we provide an overview of NLP-oriented games for
data collection, language learning and linguistic
analysis, which are the purposes closest to ours.

Data Collection Lafourcade (2007) proposes a
gamification approach by making people play with
associative words in order to memorize associa-
tions with JeuxDeMots, a two-player game based
on agreement. Kuo et al. (2009) present an in-
teractive community-based game for collecting
question-answering data in order to provide a re-
port about data quality, collection efficiency, player
retention, concept diversity, and game stability for
future community-based games. Lafourcade et al.
(2017) use games to create and enrich weighted
lexical resources from crowdsourced data by inves-
tigating existing rich lexical networks that can be
used to infer linguistic coercion.

Language Learning Advances in NLP tech-
niques have been used to investigate students’ learn-
ing situations and behaviour patterns in a wide
range of learning practices and studies. Mart (2012)
claims that guessing new words presented in isola-
tion is hard but words in context help learners to
deduce meaning from the context, whereas Crow
and Quigley (1985) demonstrate that an approach
to vocabulary studies based on semantic organi-
zation is productive. These theories indicate that
computer games are powerful tools for educational
aims (Malone, 1980). Therefore, we suggest our
game for vocabulary learning in both the native and
a second language to attract user motivation.

Many games aim to improve teaching methods
for language learning and other educational en-
vironments. Jung and Graf (2008) build a word-
association game and show that word association
supports more effective and attractive vocabulary
learning. Madge et al. (2019) offer a text-tagging
and language-learning game for enhanced syntactic
annotation and language resources.

Linguistic Analysis NLP techniques have also
helped to identify students’ behaviour and learning
models by explaining complex linguistic patterns
that occur in the games’ language data in order to
provide enhanced education methodologies. Good-
man (2014) uses a guessing game in order to un-
derstand whether reading is a series of guesses
informed by graphic, semantic and syntactic cues

while substituting the words. Picca et al. (2015)
show NLP utilization for understanding children’s
language development by gathering data from a
pedagogical Serious Game which is designed for a
primary purpose other than pure entertainment.

We offer a novel gamified approach that is in-
spired by (Goodman, 2014; Jung and Graf, 2008)
for word guessing by using word-association and
word-context pairs. Our game aims to create oppor-
tunities for both players and researchers: players
go for it for learning and entertaining purposes,
while researchers may analyze the cognitive and
linguistic inferences.

3 WORDGUESS: Motivation, Design,
Architecture

Motivation Associations, i.e., words sponta-
neously called to mind by a stimulus word, have
served as a tool in cognitive science research for
decades to investigate the mechanisms underlying
semantic memory, making use of the implicit no-
tion that associates reflect meaning components of
words. Accordingly, a large number of data collec-
tions of associations is available, such as the Edin-
burgh Association Thesaurus (Kiss et al., 1973),
the University of South Florida norms (Nelson
et al., 2004), the Database of Noun Associations
for German (Melinger and Weber, 2006), norms for
German nouns and verbs (Schulte im Walde et al.,
2008) and for Dutch words (de Deyne and Storms,
2008b), and the Small World of Words norms (de
Deyne et al., 2019), among others.

For many NLP purposes such as ontology induc-
tion and anaphora resolution, it is crucial to define
and induce semantic relations between words or
contexts, and according to the co-occurrence hy-
pothesis (Miller, 1969; Spence and Owens, 1990)
semantic association is related to the textual co-
occurrence of stimulus-associate pairs. Therefore,
a number of studies have exploited the connection
between co-occurrence distributions and seman-
tic relatedness, and used association norms as a
test-bed for distributional models of semantic relat-
edness (Church and Hanks, 1990; Rapp, 2002; de
Deyne and Storms, 2008a; Schulte im Walde et al.,
2008, i.a.).

Game Idea The aim of WORDGUESS is to ex-
ploit a gamification environment in order to deepen
the understanding of associative relatedness. Dif-
ferently to previous approaches, we do not directly
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Figure 1: Sample page views of the game: (a) On the left you can see the decision page where the player can
choose a predefined game, the number of targets and the difficulty level. (b) On the right you can see a game page
at some point during the game where (top row: left to right) the player is currently working on the third out of
five targets (3/5), currently scores 16 for this target (out of a maximum of 20) because four cue words have been
selected already, and currently holds a total score of 17 from the past two target word guesses. On the bottom left
we see an extra cue word (shape) and five underscores to indicate that the target word is five characters long;
this information corresponds to the medium difficulty level. The player can either write a guess and press ”Guess”
or give up on this target at any point and press ”Skip” (bottom right). The red+green words above the grid refer to
previously guessed (green) or not guessed (red) target words.

analyse and quantify existing norms of human as-
sociation in comparison to corpus co-occurrence.
Rather, we investigate their relatedness by utilising
them alternately in the same gaming environment
and under the same conditions, so that comparing
the ease or difficulty of players can inform us indi-
rectly about their similarities and differences.

In this vein, the game relies on existing asso-
ciation norms and co-occurrence data across lan-
guages to establish an entertaining way of collect-
ing human associations. The players see a grid with
empty cells which they can click in any order (see
Figure 1). Each click reveals a cue. The less cues
the player needs to guess the correct target word,
the higher the score; a wrong guess decreases the
score by three.

For each player who is registered2 we keep track
of the order of the chosen cues, the correct and
wrong guesses, and the required time for a correct
guess. In addition, we can relate those parameters
to the players’ profile including age, gender and
native language. The underlying cues are either
based on existing association norms or on corpus-
induced co-occurrences, so that we can use the data
to obtain a clearer picture for association-target
relations, co-occurrences and the interplay of both.

2Players can choose between playing with or without an
account. We only keep track of players who create an account.

Game Implementation WORDGUESS works in
two different modes: (1) the project mode for the
researcher to set up a new game, and (2) the player
mode for the player to play a game from the avail-
able set of games in the project mode.

In the project mode, a researcher defines a game
and specifies the game properties. Our system ac-
cepts data collections in JSON file format. Each file
corresponds to a game setup, i.e., the data is read
from a file and establishes a new game. Each target-
association pair is presented as a JSON object with
target, context, and score 〈key,value〉 pairs. After
uploading the game file, the researcher defines the
game settings, such as the name of the game, target
order, context order, context number, cue selection
and game definition (see examples in Appendix).
The name of the game is the attribute seen by the
player for the game selection. Target–context pairs
may be selected according to their order, or ran-
domly. In addition, the context number defines
how many contexts are provided to the players; the
cue selection determines the choice of extra cues
(random, highest, lowest, none).

The player mode presents the game to the play-
ers. A player may register for playing a game,
or alternatively skip the registration and play the
game anonymously for entertainment and learn-
ing. The registration is performed as explicit agree-

237



ment between researcher and player to provide data.
Without that agreement, the player is able to play
the game without sharing any information. Game-
related functions are not affected by this decision.
Before starting the game the player has to deter-
mine the game’s attributes. As can be seen from
Figure 1 (left), the decision page represents the
game-related options such as game, target number,
and difficulty level. Afterwards, the player can
start playing the game according to the selected
options. WORDGUESS currently offers two game
languages: German and English. At the same time,
target words distinguish between two word classes,
nouns and verbs. The player can select the number
of target words to guess as either five or ten. We
present two different types of cues, i.e., target cues
and context cues for each target word to guess. Tar-
get cues are derived from the target word. In the
easy mode, we provide the number of characters
of the target word together with one of the charac-
ters (e.g., r for farm), whereas in the medium
mode we only show the target’s character count
(e.g., ). We do not show any target cue in the
hard mode. Context cues for target words are the
main focus of our game and research, either human
associations or corpus co-occurrence words. They
are shown to the player in the grid, as illustrated in
Figure 1 (right), plus one bonus cue (bottom left
corner). The extra context cue which is the most
associated context word of the target is available
right from the beginning when the context cues
in the grid are still hidden. The player clicks the
boxes in the grid one by one to find the context
cues, and tries to guess the target. Previous correct
and wrong guesses for the current target word are
displayed on the same page. At the same time, the
player is able to skip a target word and to move on
to guessing the next target word. The game contin-
ues for the chosen number of target words, and at
the end of the game the player sees a summary of
wrong and correct answers, and their scores. Regis-
tered players can track their scores and vocabulary
development across games on their profile page.

Technical Setup We utilize Angular (v9.2.3) as
the application framework as well as TypeScript
(v3.2.4) as the programming language. MongoDB
(v4.2.3), a document-oriented database program,
is used for managing the stored data. Addition-
ally, Express (v4.16.1) is exploited as the server
framework for Node (v14.2.0) which is our run-
time application environment.

Motivating Users Malone (1980) indicates that
players are willing to master long-term activities
(challenge), pursue informative games (curiosity),
and let games invoke their imagination (fantasy).
Challenges require a maximum level of difficulty
whereas curiosity needs an optimum level of com-
plexity in the game. WORDGUESS enables vocabu-
lary improvement abilities as an informative reason
to activate curiosity during the game, as well as
different difficulty levels to enable a challenge.

We provide a very simple user interface to the
players to keep their attention to only the game. Ad-
ditionally, the necessary actions to play the game
are not complicated or tiring such as long read-
ing, learning additional techniques, or checking the
accuracy of the current knowledge. We use harmo-
nious colors to create serious perception whereas
simple actions (to click the boxes) make the appli-
cation game-like.

Data Privacy and Ethics As mentioned before,
the player registration is performed as explicit
agreement between researcher and player to pro-
vide data. Without that agreement, the player is
able to play the game without sharing any informa-
tion. Game-related functions are not affected by
this decision. Information about age range, gender,
and native language are kept if the player registers
to the system. Furthermore, we encode the user-
names by applying hashing algorithms. Players are
able to delete their accounts whenever they want.

4 Conclusion and Future Works

This paper presented WORDGUESS, a game-with-
a-purpose vocabulary training where associations
of a target word are offered to players in order
to guess the target word. From an application-
oriented point of view, the gamification provides
data that enables us to induce conditions and
weights for word association and to quantify con-
textual relationships, which is useful for many NLP
purposes such as ontology induction and anaphora
resolution.

As regards future work, we plan to implement
age-based user interfaces like colorful pages for
children. The multiplayer, score-based competi-
tions with enriched context based on descriptive
information are on the agenda as well. Finally,
data from further languages will be added to enable
cross-lingual studies.
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Abstract

We describe a new annotated dataset for Low
Saxon with the intention to complement ex-
isting corpora. This corpus covers the period
from the 15th to the 21st century and is anno-
tated with PoS and morphosyntactic tags as
well as century and region information. This
dataset will be used for diachronic dialecto-
metry, but can lend itself to other NLP tasks as
well. The target size is around 2000 sentences
per dialect and century and at the time of writ-
ing, 798 texts have been selected for inclusion
in the corpus. They will be gradually added as
the annnotation progresses.

1 Introduction

We present a dataset for Low Saxon,1 a Germanic
minority language spoken by roughly five mil-
lion people in Northern Central Europe (Moseley,
2010). Despite its relatively large number of speak-
ers, there are hardly any annotated corpora for this
language, hampering corpus-based research into
more modern varieties and causing a lack of well-
functioning NLP tools.

The dataset is part of our research into the di-
achronic development of the internal variation in
Low Saxon and builds upon the Reference Corpus
Middle Low German/Low Rhenish (1200-1650)
(ReN-Team, 2019) (henceforth ReN) and the LSDC
dataset (Siewert et al., 2020) attempting to fill the
gap between them. Therefore, it covers both his-
torical and contemporary Low Saxon dialects from
the Veluwe in the western corner of the language
area to the Lower-Prussian dialects in the east.

Our ultimate goal with this new dataset is to
perform analyses of the internal variation within
Low Saxon and its change over time. Questions

1Also called Low German, referring here to the varieties
protected under the European Charter for Regional and Mi-
nority Languages as Nedersaksisch in the Netherlands and
Niederdeutsch in Germany as well as extinct eastern varieties.

Figure 1: The Low Saxon dialects to be covered in the
corpus.

of interest are, for instance, the frequency and geo-
graphical spread of features like two-part conjunc-
tions (dãrümme dat, êr dat), double negation, and
whether the perfect tense of modal verbs requires
the main verb to occur in the infinitive or the perfect
participle. These relate to the larger topic of inter-
dialectal contact and how stable syntactic structures
are when the speaker community is under constant
exposure to a closely related more prestigious lan-
guage and under pressure of language shift.

2 Background

Low Saxon belongs to the western branch of the
Germanic languages and is traditionally spoken
mainly in Northern Germany and the North-Eastern
Netherlands with official recognition in both coun-
tries. The eastern dialects Pomeranian (POM) and
Low Prussian (NPR) shown in Figure 1 were spo-
ken in these regions prior to WW II.2

When the Hanseatic League lost its status in the
16th and 17th century, the Middle Low Saxon lit-
erary language was replaced by southern varieties.

2The Baltic dialects previously spoken north of the Low
Prussian area and included in the ReN will not form part of our
corpus, as although e.g. in Estonia, Low Saxon had survived
as a spoken language until the 19th, probably even until the
early 20th century, (Ariste, 1981, 97–98) the amount of written
post Middle Low Saxon sources preserved seems too small
for meaningful analyses.
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While Low Saxon survived in oral communication
and occasional Low Saxon texts continued to be
produced, German and Dutch became the dominant
written languages (Gabrielson, 1983).

Despite its official recognition and usage in e.g.
the media and school education today, no interre-
gional standard language has been introduced so
far, resulting in a tendency for Low Saxon speakers
to follow regional writing traditions or come up
with systems of their own, both of which are often
based on the majority language orthography of the
respective country.

The creation of NLP tools for modern Low
Saxon thus requires a large annotated corpus repre-
senting this dialectal and orthographic variation.

3 Resources available

The main resources already available are the ReN
and the LSDC. The ReN comes with HiNTS tags3,
morphological annotation and lemmatisation for
the major regions of the northern dialects (North
Low Saxon, East Elbian, Baltic Low Saxon), West-
phalian, Eastphalian including Elbe Eastphalian,
and South Marchian (Südmärkisch) spanning the
time from ca. 1200 to 1650 (Peters and Nagel,
2014). The 146 annotated texts contain around
1.4 million tokens and the 89 transcribed (i.e. not
annotated) ones ca. 900,000 tokens.

The LSDC dataset contains ca. 2 million tokens
in ca. 100,000 sentences representing 16 dialects
from the 19th century onward (Siewert et al., 2020).
It covers a different set of dialects than the ReN, is
smaller and includes neither PoS or morphological
tags, nor lemmatisation.

Limitations of these datasets are, for instance,
that the ReN excludes the dialects from today’s
Netherlands and that the LSDC dataset is only an-
notated for century and dialect, but does not include
morphosyntactic annotation. In addition, the LSDC
dataset is not very balanced, meaning that not all
dialects are equally well represented in all of the
three centuries covered.

The ASnA (Atlas spätmittelalterlicher Schreib-
sprachen des niederdeutschen Altlandes und an-
grenzender Gebiete) is based on a large collection
of transcriptions of Middle Low Saxon documents
excluding the eastern language area but including
varieties from today’s Netherlands (Peters, 2017).

3Historisches-Niederdeutsch-Tagset, adapted for Middle
Low Saxon based on the HiTS (Historical Tagset for German)
and explained by Barteld et al. (2018)

However, this dataset is not publicly available.
In addition to these, there is a thus far unpub-

lished dataset from the University of Groningen /
Centrum Groninger Taal en Cultuur for the Gron-
ings dialect used by de Vries et al. (2021), which
contains around 50k tokens, PoS tags and lemmati-
sation to standard Dutch, and might serve as addi-
tional training data for our tagging task.

A few larger corpus collections, such as OPUS
or the Wikipedia dumps, contain Low Saxon data
as well, but since generally no information on the
dialect is provided, we decided to exclude them.

4 Data collection and selection

We are striving to gather at least 2000 sentences per
dialect and century. Preferably, these should repre-
sent a variety of writers, genres and different places
within the dialect region. For a somewhat balanced
representation, the size of the geographical regions
should at least be roughly comparable. Whereas
in the LSDC dataset, the Westphalian group was
subdivided into several subdialects both on the Ger-
man and the Dutch side, our intention is to treat
German Westphalian as one group and Dutch West-
phalian as another one. More detailed information
on the origin of the texts, e.g. the birth place of
the writer or the printing place, will nonetheless be
provided if available.

For German Low Saxon, we primarily collect
data from the period between the middle of the 17th

and the early 19th century, since this time span is
covered by neither the ReN nor the LSDC; how-
ever, for Dutch Low Saxon it has been necessary
to start our data collection from the 15th century.
The LSDC provides a sufficiently large amount of
sentences for some dialects and centuries, but most
dialects still require additional data.

As we ultimately plan to perform syntactic analy-
ses, we prefer prose, but the lack of data for various
dialects, particularly in the 17th and 18th century,
might necessitate an inclusion of poetry. In that
case, genres will be labelled as well.

We have started to compile our own set of older
Dutch Low Saxon data where the Middle Low
Saxon data from Groningen and Drenthe mostly
originate from the Cartago website,4 from Twente
from the Twentse Taalbank.5 In addition, we also
gather digitised data from local archives.

The German Low Saxon data mainly consists

4http://cartago.nl/nl/
5http://www.twentsetaalbank.nl/
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of digitised data from German university libraries
and Google Books. Our search largely relies
on Hansen’s literature catalogue (Hansen, 2021),
which strives to list all German Low Saxon authors
as well as all books and other media published in
German Low Saxon from 1473 onward.

Table 1 shows the number of texts collected so
far. These texts differ largely in size, the shortest
ones consisting of only one or a few pages and the
longest ones being complete books with several
hundreds of pages.

The data selection for older Dutch Low Saxon
is not always straightforward. Even medieval writ-
ings from this area often contained both eastern (=
Low Saxon) and western (= Dutch) traits (Niebaum,
1997, 63), and in contrast with the switch to the
clearly distinct German in the areas further east in
the 16th and 17th century the written language in the
Dutch Low Saxon regions gradually shifts towards
the comparatively similar one used in the Western
Netherlands (Kremer, 2008, 43). Consequently, the
question arises which texts are still sufficiently Low
Saxon and which ones should instead by classified
as Dutch and excluded from the corpus. A possible
solution could be to base this on orthographic crite-
ria. On the other hand, for the regions in Germany,
it is generally easy to determine if a text is written
in Low Saxon or German.

15th 16th 17th 18th 19th

GLS 39 88 194
DLS 197 206 5 69

Table 1: Number of texts per group (GLS ’German Low
Saxon’ and DLS ’Dutch Low Saxon’) and century.

The first version of the dataset will contain 200
sentences with manually corrected PoS and mor-
phological annotation representing four dialects
(Eastphalian, Holsatian, Marchian/Brandenburgish
and Mecklenburgish - West Pomeranian) of Ger-
man Low Saxon with 50 sentences each. The
Mecklenburgish - West Pomeranian data stems
from the second half of the 17th century, the
Marchian/Brandenburgish data from the 18th cen-
tury and the Holsatian and Eastphalian data from
the first half of the 19th century. We will continu-
ously update the dataset and add more sentences as
the annotation progresses.

5 Preprocessing and annotation

Text acquisition Many of the digitised texts
from the 17th, 18th and 19th century are only avail-
able as scans, while 59 of them include raw OCR.
We have begun manual corrections of the raw OCR
for training specialised models with Transkribus6.

Sentence splitting General sentence splitting
tools tend to work well on modern Low Saxon texts,
but this is not the case for Early Modern Low Saxon
and even less so for medieval texts, since punctu-
ation does not follow the modern conventions. In
the ReN, sentence splitting was based on the occur-
rence of inflected words. As a result, the corpus
consists in large parts of sentence fragments instead
of more complex sentence structures. While this
might be an appropriate solution for the context
of the Reference Corpus, it does not suit our goal
of diachronic comparison of syntactic structures.
Furthermore, this might pose difficulties to tagging,
as disambiguation would often make it necessary
to look across sentence fragment boundaries.

Morphosyntactic tagging The ReN serves as
the basis for automatising the annotation process.
We have converted the PoS and morphological tags
in the ReN to the UD standard with a replacement
script followed by manual corrections, since the
correspondences do not always match one-to-one.
For instance, the ReN often shows no distinction
between conjunction and subjunction, and in sev-
eral cases different usages of the same lemma are
given the same PoS tag, such as only ADV in case
of of ’if, or’ even though it can function as both an
adverb and a conjunction. Furthermore, following
the ReN annotation, we have added extra labels for
marking strong and weak declension, which do not
belong to UD’s universal features.

The converted ReN data is then used for training
a full morphological tagger to annotate both the
remainder of the ReN and the Middle Low Saxon
data from the Netherlands. In a preliminary ex-
periment with a small manually corrected Dutch
Low Saxon dataset, a BiLSTM tagger (Scherrer
and Rabus, 2019) trained on ReN data achieved a
morphological tagging accuracy of around 85%.

We will manually correct a few hundred sen-
tences of the automatic annotation and use those
for fine-tuning. This process will be repeated step-
by-step with data from the following century until

6https://readcoop.eu/transkribus/?sc=
Transkribus
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# sent id = NDS 010 HOL 1910 as-noch-de-trankrusel-brenn
# text orig = Ja, wo is de Knieptang?
# text = Ja, wår is de knyptange?
1 Ja ja INTJ 0 root lemma[gml]=jâ1|SpaceAfter=No
2 , , PUNCT 3 punct
3 wår wår ADV 1 conj lemma[gml]=wôr(e)
4 is weasen AUX Number=Sing|Person=3 3 cop lemma[gml]=wēsen2

5 de de DET Gender=Fem|Number=Sing 6 det lemma[gml]=dê1

6 knyptange knyptange NOUN Gender=Fem|Number=Sing 3 nsubj lemma[gml]=knı̂ptange|SpaceAfter=No
7 ? ? PUNCT 3 punct

Figure 2: Example of the UD annotation with reduced morphological features.

the contemporary period.

UD annotation Aside from the basic corpus, we
have also started to select sentences to be included
in a separate dataset for Universal Dependencies7.
Mostly, these sentences originate from public do-
main texts included in the LSDC dataset, but we
make use of our additional resources as well. This
UD dataset will cover the Modern Low Saxon pe-
riod, contain roughly the same amount of sentences
per dialect and, in addition to PoS and morphologi-
cal tags8, it will feature dependencies and lemmati-
sation.

Due to the lack of an interregional standard,
there is not one single obvious choice for lemma-
tising a dataset for Low Saxon covering several
centuries and regions. As a compromise, we have
opted for double lemmatisation: The main lemma
will be given in the Nysassiske Skryvwyse – an inter-
regional spelling used by e.g. the Dutch Low Saxon
Wikipedia which is based on a historically moti-
vated abstract set of common phoneme distinctions
instead of a particular local pronunciation9 – while
a second lemma will be provided in normalised
Middle Low Saxon following Lasch et al. (1928 ff)
if the word was already attested at that stage of the
language, cf. the tenth column in Figure 2.

6 Challenges

A few morphological issues require further discus-
sion in relation to the annotation, since we need to
take into account that we annotate language change
in process. We will illustrate two of these issues
here.

7https://raw.githubusercontent.com/
UniversalDependencies/UD_Low_Saxon-LSDC/
master/nds_lsdc-ud-test.conllu

8The morphological tags are still missing in the first ver-
sion, but will be included in the second one.

9https://skryvwyse.eu/

Differing number of inflectional categories
Mergers of inflectional categories have occurred
in different dialects at different points in time and
to a different extent. For example, the distinction
between dative and accusative still present in Mid-
dle Low Saxon has been lost in most modern di-
alects (Lindow et al., 1998, 144). Since the cor-
pus contains both varieties with and without this
distinction, our approach is to annotate as if the
distinction had been preserved in all of the dialects.
When, however, the local variety clearly shows a
different inflection, i.e. if an accusative-like form
is used instead of the expected dative, the regional
annotation will be given in the tenth column in the
form Case[regional]=Acc.

Change in pronoun usage The data we have col-
lected shows that while it is not uncommon to still
encounter the old 2nd person singular dû in Dutch
Low Saxon texts from the 19th century, this pro-
noun has faded out of use in most dialects at the
latest by the 21st century. With the exception of
Groningen, North Drenthe and parts of Twente
and the Achterhoek, Dutch Low Saxon dialects
today have usually lost the dû (Bloemhoff, 2008,
101–103) and instead adopted the Standard Dutch
system for the 2nd person using the counterparts
of Dutch jij and jullie for the singular and plural
respectively.

Due to the fact that the original pronoun of the
second person plural gı̂ was (and partly still is) also
used as a polite address, one cannot always tell
from the context if gı̂ as referring to a single per-
son is to be interpreted as a politeness marker or
whether it already has replaced the dû as the default
2nd person singular. In such unclear cases, we re-
frain from annotating for number or politeness. By
default, the gı̂ and its agreeing verbs will neverthe-
less be annotated as plural in the sixth column with
divergent regional developments being marked in
the tenth column as Number[regional]=Sing.
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7 Access

The dataset can be accessed via our Helsinki NLP
GitHub page10. The first release is published under
a CC BY-NC licence, but as more data is added,
different parts of the dataset might be published
with separate licences depending on the licences
the original files were provided with.

8 Conclusion

Our new balanced dataset for Low Saxon will cover
the whole Modern Low Saxon period as well as
late Middle Low Saxon from the Dutch side, and
include not only annotation for dialect and century,
but also PoS and morphological tags.

This novel resource will thus facilitate investi-
gations into dialectal variation across time and, in
addition, offer new possibilities to the development
of NLP tools for this low-resource language.
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Abstract

The COVID-19 pandemic has had a signifi-
cant impact on human lives globally. As a re-
sult, it is unsurprising that it has influenced
hate speech and other sorts of abusive lan-
guage on social media. Machine learning mod-
els have been designed to automatically detect
such posts and messages, which necessitate a
significant amount of labeled data. Despite
the relevance of the COVID-19 topic in the
field of abusive language detection, no anno-
tated datasets with this focus are available. To
solve these shortfalls, we target to create such
a dataset. Our contributions are as follows: (1)
a methodology for collecting abusive language
data from Twitter with a substantial amount
of abusive and hateful content, and (2) a Ger-
man abusive language dataset with 4,960 anno-
tated tweets centered on COVID-19. Both the
methodology and the dataset are intended to
aid researchers in improving abusive language
detection.

1 Introduction

Hate speech is a serious challenge that social me-
dia platforms are currently confronting (Duggan,
2017). However, it is not limited to the online
world. According to a study, there is a link be-
tween online hate and physical crime (Williams
et al., 2020). As a result, it is critical to combat
hate speech and other forms of abusive language on
social media platforms to improve the conversation
atmosphere and prevent spillover.

Owed to the large amounts of content created
by billions of users, it is inefficient to detect this
phenomenon manually. Therefore, its automatic
detection is an essential part of the fight against
this. Machine learning is a promising technology
that aids in the training of classification models for
detecting hate speech.

∗These authors contributed equally to this work.

The success of a classification model depends
largely on its training data. It requires data to learn
patterns that can be used for solving the task. Large
amounts of labeled data are required in the con-
text of hate speech because hate speech is mul-
tifaceted and diversified (e.g., misogyny, racism,
anti-Semitism) (Rieger et al., 2021). As a result,
researchers have published many abusive language
datasets in recent years (Vidgen and Derczynski,
2020; Wich et al., 2021b; Schmidt and Wiegand,
2017). The majority of the datasets are in English,
and only a small portion is in German. Another
shortcoming of the existing datasets is that, with
some exceptions, they do not cover COVID-19-
related hate (Vidgen et al., 2020; Alshalan et al.,
2020; Ziems et al., 2020). COVID-19, however, has
become a popular topic in the hate and extremist
communities (Guhl and Gerster, 2020; Velásquez
et al., 2020), making it a suitable topic in the hate
speech detection community as well. Our research
goal is to develop a German abusive language
dataset with an emphasis on COVID-19 to solve
both shortcomings.

Contribution:

• With a topical focus, we present a method-
ology for collecting abusive language from
Twitter.

• We report a 4,960-tweet German abusive lan-
guage dataset with an emphasis on COVID-19.
The labeling schema comprises two classes:
ABUSIVE (22%) and NEUTRAL (78%).

2 Related Work

German abusive language datasets can be found
in the literature. Ross et al. (2016) published
a 469 tweets dataset on anti-refugee sentiment.
Bretschneider and Peters (2017) published a dataset
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Figure 1: Dataset creation process adapted from Räther (2021)

of 5,836 Facebook posts on anti-foreigner preju-
dices. Two abusive language datasets have been re-
ported as part of GermEval, a series of shared tasks
focusing on the German language (Wiegand et al.,
2018; Struß et al., 2019). The dataset from 2018
contains 8,541 tweets and the one from 2019 7,025.
Both utilized the same labeling schema. Based on
the interpretation of the data collection, the tweets
do not seem to have a topical focus (Wiegand et al.,
2018; Struß et al., 2019). Two additional German
datasets were reported as part of the multilingual
shared task series "Hate Speech and Offensive Con-
tent Identification in Indo-European Languages"
(HASOC) (Mandl et al., 2019, 2020). The Ger-
man dataset from the shared task contained 4,669
posts from Twitter and Facebook in 2019 (Mandl
et al., 2019); 3,425 posts from YouTube and Twit-
ter in 2020 (Mandl et al., 2020). The only German
dataset that comprises posts from the COVID-19
period is from Wich et al. (2021a). However, the
authors did not concentrate on COVID-19 content.

Several researchers have published abusive lan-
guage datasets that directly tackle the COVID-19
topics, nevertheless, they are small in number. Vid-
gen et al. (2020) published an English Twitter
dataset about East Asian prejudice from 20,000
posts collected during the pandemic. Ziems et al.
(2020) collected tweets related to anti-Asian hate
speech and counter hate. They annotated 2,400
tweets and utilized these tweets to train a classifier
and detected "891,204 hate and 200,198 counter
hate tweets" (Ziems et al., 2020, p.2). However, to
the best of our knowledge, no one has reported a
German abusive language or hate speech dataset
with attention on COVID-19.

3 Methodology

The dataset creation process comprised three parts.
The first one dealt with the data gathering and se-
lection approach we employed to retrieve data from
Twitter with a high portion of abusive content. Con-

sequently, the selected data is annotated by three an-
notators. Finally, we assessed the newly developed
dataset based on dataset metrics and compared it
with other German abusive language datasets.

3.1 Collecting Data

Figure 1 demonstrates the data collection process
that we report in the following. The tweets to be
annotated are sampled from the annotation pool
equally fed by three other pools—replies pool, com-
munity pool, and topic pool. Ensuring a topical
concentration on COVID-19 and a high portion of
hateful content is the reason for this approach.

The starting point of the data collection for all
pools was a set of three seed accounts. These ac-
counts originate from a study conducted by Richter
et al. (2020), in which the authors have described
influential Twitter accounts sharing misinformation
about COVID-19. The accounts were selected by
the authors based on the following criteria (Richter
et al., 2020): (1) At least 20,000 accounts follow
the account. (2) The account has shared or reported
misinformation about COVID-19. (3) The account
was active as of May 20, 2020. These accounts
were chosen as seeds because hateful content often
coincides with misinformation (Guhl and Gerster,
2020).

From these accounts, we retrieved the tweets that
they published between 01.01.2020 and 20.02.2021
through the Twitter API. Subsequently, we filtered
out the tweets that are related to COVID-19. We
used a list of 65 keywords for this purpose (see
Table 1). It comprised stemmed terms from a glos-
sary about the current pandemic1 and some addi-
tions. Next, we retrieved the replies to these tweets
through the Twitter API—a reply is a tweet that
refers to another tweet. These replies were stored
in the replies pool. To ensure the quality and quan-
tity of hateful content, two annotators analyzed a
sample of 100 tweets.

1 www.dwds.de/themenglossar/Corona
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The community pool comprised COVID-19-
related tweets from the accounts that replied to
the seed accounts’ tweets. We utilized a similar ap-
proach as in the previous phases. We retrieved the
tweets from the accounts, limiting the maximum
number of tweets per account to 500 and consid-
ering only tweets posted beyond 01.01.2020. The
retrieved tweets were then filtered based on the
65 COVID-19-keywords. A sample of 100 tweets
undergoes the same quality inspection as in the
previous phase.

The third and last pool was the topic pool, whose
purpose was to increase the prevalence of hateful
content and topical diversity. It consists of tweets
related to topics that coincide in the context of hate
speech and COVID-19 (sCAN, 2020). Table 2 illus-
trates the topics provided by sCAN (2020) and the
associated keywords that we employed for filtering
the tweets. To balance the different topics, we lim-
ited the number of filtered tweets per keyword to
1,000.

After filling the data pools, we applied two pre-
processing phases to the data. First, all tweets
holding less than two textual tokens were removed.
Second, close and exact duplicates were removed
by using locality-sensitive hashing with Jaccard
similarity (Leskovec et al., 2020). Third, account
names appearing in the tweets are masked to reduce
annotator bias created by account names recogni-
tion. The annotation pool was then created by
sampling the pools equally.

3.2 Annotating Data
The annotation schema for the sampled tweets com-
prised two classes:

• ABUSIVE: The tweet comprised any form of
insult, harassment, hate, degradation, identity
attack, and the threat of violence targeting an
individual or a group.

• NEUTRAL: The tweet did not fall into the
ABUSIVE class.

The data is annotated by three non-experts (two
female, one male; all between 20 and 30 years old).

To prepare them for the annotation process, they
received training that contained a presentation of
the annotation guidelines and a discussion among
all annotators to define the task. Since the anno-
tators are non-experts, we permitted them to skip
tweets if they are indifferent (e.g., due to unclear
cases or missing context information). This is to
prevent the impairment of the quality of labels. The
label indifference was handled as a missing label in
the further course. Owing to limited resources, 275
tweets were annotated by two or three annotators to
assess the inter-rater reliability with Krippendorff’s
alpha (Krippendorff, 2004). All other tweets re-
ceived only one annotation from any of the anno-
tators. We employed doccano as an annotation
tool (Nakayama et al., 2018).

3.3 Evaluating Dataset

We compared our dataset with the GermEval and
HASOC datasets by investigating the cross-dataset
classification performance. For this purpose, we
trained each dataset on a binary classification
model for abusive language and assessed the mod-
els on all test sets. This is possible because the
binary labels of all datasets are compatible. The ob-
jective of this assessment is to investigate how well
our dataset generalizes and how well classifiers
that were trained on a dataset without any COVID-
19 content performed on our dataset. The classi-
fication model employed the German pre-trained
BERT base model deepset/gbert-base as
a basis (Chan et al., 2020). Before training the
model, we removed all user names and URLs. The
models were trained for 6 epochs with a learning
rate of 5× 10−5. Evaluation was conducted after
each epoch and the model with the highest macro
F1 was selected. The validation set is 15% of the
training set.

4 Results

At the end of the data collection process, we ob-
tained 768,419 unique tweets from 7,629 users in
our overlapping pools. The final dataset sampled
from these pools without duplication, and anno-

Table 1: COVID-19-related keywords for filtering

covid, corona, wuhan, biontech, pfizer, moderna, astra, zeneca, sputnik, abstandsregel, aluhut, antikÃűrpertest, ansteck, asymptomatisch, ausgangssperre,
ausgehverbot, ausreisesperre, balkonien, beatmungsgerät, besuchsverbot, desinf, durchseuchung, einreisesperre, einreiseverbot, epidemi, existenzangst, fallzahl,
gesichtsvisier, gesundheitsamt, grundrechte, hygienedemo, hygienemaÃ§nahme, immun, impf, infekt, influenza, inkubationszeit, intensivbett, inzidenz,
kontaktbeschrÃd’nkung, kontaktverbot, lockdown, lockerungen, mundschutz, mutation, maske pandemie, pcr, pharmaunternehmen, präventionsmaÃ§nahme,
plandemie, querdenk, quarantäne, reproduktionszahl, risikogruppe, sars-cov, shutdown, sicherheitsabstand, superspreader, systemrelevant, tracing-app,
tröpfcheninfektion, übersterblichkeit, vakzin, virolog, virus
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Table 2: Hate- and COVID-19-related topics and key-
words (column Topic taken over word for word from
sCAN (2020))

Topic (sCAN, 2020) Keywords

"Anti-Asian racsim" asiat, chines, ccp,
wuhan, chinavirus

"Misinformation and
geopolitical strategy"

amerika, militär,
biowaffe

"Resurgence of old
antisemitic stereotypes"

jude, jüdisch, pest,
schwarze tod

"New world order, «anti-elites»
speech and traditional
conspiracy theories"

elite, #nwo,
weltordnung,
deepstate, plandemie

"Fear of the «internal enemy»,
exclusion of the foreigner
and scapegoating mechanisms"

greatreset, muslim,
illegal, migrant

tations by our three annotators comprised 4,960
tweets. 22% of the tweets were labeled as ABU-
SIVE by our annotators, whereas 78% were labeled
as NEUTRAL. The annotated tweets were created
by 2,662 accounts—on average 1.86 tweets per ac-
count (min: 1; max: 41). All tweets were posted
between January 2020 and February 2021.

Krippendorff’s alpha of the three annotators is
91.5%, which is a good score for inter-rater relia-
bility. Only 275 tweets were annotated by two or
three annotators owing to limited resources.

Table 3 demonstrates the classification metrics of
the classifier trained and assessed on our COVID-
19 dataset. The train set contained 3,485 tweets,
the validation set 735, and the test set 740. We
ensured that an author appeared only in one of the
three sets. Without any architecture optimization
or hyperparameter search, we obtained a macro
F1 score of 82.9%. Considering the metrics for
the ABUSIVE class, we can see that there is still
room for improvement. However, this study does
not aim to develop the latest state-of-the-art model.
This classifier is intended to serve as a baseline for
future studies utilizing our new COVID-19 dataset.

To compare our dataset with another German
abusive language dataset, we investigated the cross-
dataset classification performance. As indicated
in Table 4, the rows correspond to the classifiers,
whereas the columns to the test sets. We observed
that the model trained on the COVID-19 dataset
demonstrated similar performance as the ones from
the GermEval datasets. Its macro F1 score is in
the same range as the ones from GermEval and
it performed similarly on the other test sets. The

Table 3: Classification metrics of COVID-19 classifier
on its test set in percent

Class Precision Recall F1

NEUTRAL 92.4 93.7 93.1
ABUSIVE 74.7 70.8 72.7
Macro avg. 83.5 82.2 82.9

Table 4: Cross-dataset classification performance
(macro F1 in percent) – CD = COVID, GE = GermEval,
HC = HASOC

CD-19 GE 18 GE 19 HC 19 HC 20

CD-19 82.9 72.8 76.7 67.8 68.0
GE 18 73.4 76.9 74.6 65.4 65.4
GE 19 73.3 75.2 75.3 62.5 73.0
HC 19 60.8 63.4 63.9 66.4 64.6
HC 20 54.0 59.9 53.1 48.6 80.5

classifiers from the HASOC datasets step out of
line. The HASOC 2020 classifier seemed to con-
centrate on a different type of abusive language.
It performed quite well on its dataset but scored
lower on all other test sets. Even if the GermEval
classifiers scored higher results on the COVID-19
test set, they did not achieve the same F1 score as
the COVID-19 classifier. This indicates that abu-
sive language in the domain of COVID-19 varies
from what it was before the pandemic.

5 Conclusion

We created a German abusive language dataset that
focuses on COVID-19. It contains 4,960 annotated
tweets from 2,662 accounts. 22% of the tweets are
labeled as ABUSIVE, 78% as NEUTRAL. Due to
limited resources, not all documents were anno-
tated by two or more annotators. We prioritized
holding a variety of tweets equivalent to the size
of related German datasets. Furthermore, the high
inter-rater reliability for the overlapping annota-
tions indicates that the annotation behavior of the
three annotators was well aligned. Also, the gen-
eralizability of the dataset demonstrates that our
COVID-19 dataset has an equivalent cross-dataset
classification performance.

Our second contribution is a dataset creation
methodology for abusive language. We indicated
that it aids in the creation of a dataset with a signif-
icant portion of abusive language.

We consider both our dataset and the dataset
creation methodology noteworthy contributions to
the hate speech detection community.
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Resources

Code and data are available under github.com/

mawic/german-abusive-language-covid-19 .
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Abstract

For domain-specific NLP tasks, applying
word embeddings trained on general cor-
pora is not optimal. Meanwhile, training
domain-specific word representations poses
challenges to dataset construction and embed-
ding evaluation. In this paper, we present
and compare ELMo and Word2Vec models
trained/finetuned on philosophical data. For
evaluation, a conceptual network was used.
Results show that contextualized models pro-
vide better word embeddings than static mod-
els and that merging embeddings from differ-
ent models boosts task performance.

1 Introduction

Statistical distributions of terms in context can be
used to characterize their semantic behavior (Lenci,
2018). This is the fundamental idea that distribu-
tional models of language are built upon. When
trained on large corpora, these models can provide
valid word representations which can be further
utilized in various downstream NLP tasks. Two
common models are Word2Vec’s skipgram model
(W2V, Mikolov et al., 2013) and the ELMo model
(Peters et al., 2018). Although word embeddings
pretrained on large corpora provide good mean-
ing representations, using them in domain-specific
tasks does not achieve good results (Nooralahzadeh
et al., 2018). This is because the semantic space
of a certain domain can be different from that of
general language. For instance, the word substance
refers to matter in ordinary language but in philo-
sophical contexts it is a technical term from meta-
physics pertaining to entities (Robinson, 2020).

Contextualized models like ELMo address this
problem to some extent, but require a lot of domain-
specific data to obtain a tailored model, while such
datasets are typically smaller. The main contribu-
tions of this paper are:

• We trained and finetuned ELMo models with
a philosophical corpus.

• We examined and compared models with con-
textual embeddings and static embeddings
with intrinsic evaluations.

• We experimented with combining finetuned
W2V and pretrained ELMo embeddings for
representations of philosophical terms.

2 Related work

Efforts have been made in the following direc-
tions with regards to creating domain-specific word
embeddings. Firstly, the construction of domain-
specific corpora. Roy et al. (2017) appended man-
ual annotations (predicate-argument structure) to
training data in the field of cybersecurity. The addi-
tional annotation makes the original dataset more
suited to the task of training cybersecurity embed-
dings. Secondly, refinement can be carried out
on existing embeddings. Boukkouri et al. (2019)
combined W2V embeddings trained on a small
domain-specific corpus with ELMo embeddings
and evaluated them on a clinical entity recognition
task. They found combined embeddings outper-
formed embeddings trained on large corpora in
the medical domain. Lastly, one can also explore
suitable models for training with small amount of
data. Herbelot and Baroni (2017) proposed a re-
fined W2V model called Nonce2Vec (N2V), which
learns word meanings from tiny data. The N2V
model takes a high-risk learning approach with
heightened learning rate and larger window size
to process contexts greedily. Besides N2V, simple
additive models have also proven to work well on
small data (Lazaridou et al., 2016; Bloem et al.,
2019).

As for evaluations of domain-specific word em-
beddings, the usual approach is to design in-domain
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tasks (Nooralahzadeh et al., 2018) or ground truths
(Betti et al., 2020; Oortwijn et al., 2021). However,
many domains lack such evaluation data. Bloem
et al. (2019) proposed a general evaluation metric
of consistency, based on the idea that a stable model
could provide similar word embeddings given the
same term across similar sources.

3 Task Description

The overall goal of this paper is to examine and
compare different models by evaluating word em-
beddings trained on a small philosophy corpus.

3.1 Dataset
We used the dataset from Bloem et al. (2019), con-
sisting of version 0.4 of the QUINE corpus (Betti
et al., 2020) and evaluation terms. This corpus is
made up of all philosophical texts written by the au-
thor Willard Van Orman Quine, consisting of 228
articles, books and bundles. The corpus consists
of OCR-processed, manually corrected text and
contains about 2 millions tokens after tokenization.

3.2 Model
ELMo We trained two ELMo models of different
sizes and finetuned one. For training, we used the
above dataset with a split of training data (17000
sentences) and testing data (5016 sentences). For
finetuning, we continued training a pre-trained
ELMo model1 on the philosophical texts. Key train-
ing parameters for the three ELMo models can be
found in Appendix A. The learning rate was set to
default (0.2) for all models.

Word2Vec We trained Word2Vec skipgram mod-
els in the Gensim (Rehurek and Sojka, 2011) imple-
mentation with our data based on a pretrained-256
dimensional embedding model: the Nonce2Vec
background model (Herbelot and Baroni, 2017)
trained on Wikipedia data. We used consistency
(Bloem et al., 2019) as a metric to choose the best
hyper-parameters. It is measured as cosine similar-
ity between two vectors of the same seed word. Our
seed words were chosen from general philosophical
terms2 (Appendix B), excluding target terms from
the Quine dataset used for evaluation (Appendix D).
We abandoned terms ending with -ism and multi-
token terms and selected terms whose frequency
is over 50 in our corpus. We selected sentences
containing seed words, divided each selected set

1https://github.com/allenai/bilm-tf
2source1 URL, source2 URL

into two parts and combined each part with the rest
of the corpus. As a result, we have three corpora in
total: the whole corpus and two sub-corpora. The
model with the background semantic space is most
consistent with a learning rate of 0.005 and led to
0.97 cosine similarity.

Nonce2Vec We trained a Nonce2Vec (N2V)
model with consistency as the metric for tuning
hyper-parameters. Unlike the W2V models, N2V
only changes the embeddings of targeted terms,
with the remaining semantic space frozen. We mea-
sured consistency with seed words, as we did with
W2V. Since N2V is designed to be trained on “tiny
data”, we limited the contexts of each target term
to up to 10 sentences both during tuning and model
training. With the best selected hyperparameters,
the model has a 0.97 consistency score.

3.3 Combined Embeddings

According to Boukkouri et al. (2019), combin-
ing contextualized word embeddings with their
static counterparts works better on downstream
tasks than merely using contextualized or static
ones. The combination methods used in their paper
were concatenation and addition. In our study, we
further explored whether assigning weight works
better than simply adding the two types of em-
beddings. The new embeddings are defined as
Emix = α ∗ Eelmo + (1 − α) ∗ Ew2v, where α
is the weight assigned to the ELMo embeddings
and (1 − α) the W2V. We experimented 11 values
from 0 to 1 for α with an interval of 0.1.

3.4 Evaluation

We evaluated models based on word embeddings
of specific terms. These terms were proposed by
Oortwijn et al. (2021) as a ground truth for evalu-
ation. They constructed a conceptual network of
all relevant index terms of Quine’s Word and Ob-
ject (1960). The index terms were categorized by
domain experts into one of the six clusters they
defined (language, ontology, reality, mind, meta-
linguistic and relational terms, reproduced in Ap-
pendix D. We generated word embeddings for the
73 terms in the first five categories. 30 of these
terms have a frequency less than 100 in the corpus
(n < 100), 9 terms over 1000 (n ≥ 1000) and 34
in between (100 ≤ n < 1000). For ELMo, type
embeddings were generated by averaging token
embeddings for the same type in different contexts.
For multi-token terms that were not in the model’s
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vocabulary, we used the averaged embeddings to
represent the whole. This is done for all models
and evaluations and no other multiword term pro-
cessing takes place (e.g. on the corpus). The em-
beddings were evaluated by the following metrics:

Cluster similarity Following Oortwijn et al.
(2021), for each term, we sampled a term in the
same category and a term in the different category
and compared their similarity with the original
term. We then calculated the probability that the
cosine similarity between the same category terms
was higher than that of a different category. We
performed the sampling process 100 times for each
terms and averaged the scores as our final scores.

Rank For each target term, we find the top 5
nearest (besides itself) terms by cosine similarity.
Each term accounts for 0.2 score if it is in the same
category as the target term. The highest score for
a target term is therefore 1. We then added up the
scores for all target terms as the rank score. There
are 73 terms in total. However, the highest rank
score is not 73, but 71.4: in the category Mind,
there are only two terms, which means for each
term in Mind, the highest score is 0.2 rather than 1.

Dunn index is used to measure how well embed-
dings of terms in the same category cluster (fol-
lowing e.g. Huang et al., 2016). A higher number
suggests better clustering, which means a small
variance between members of a cluster, and large
differences between means of each cluster.

Gap is similar to cluster similarity, except that
we consider pairs of all terms in this case. We
calculated the cosine similarity between each two
terms. We then averaged the overall similarity of
the terms from the same sets and from the different
sets and got their gaps.

4 Results

The main results are shown in Table 1. Our results
show that, except for the pretrained ELMo model,
ELMo models generally provide better embeddings
than the W2V model. This might be attributed to
the sequential structure of ELMo, which encodes
neighbouring information based on contexts. To
better understand the performance scores, we di-
vided the results of rank score and cluster similarity
into two conditions, namely the single-token terms
and multi-token terms. Table 2 shows the results.
The rank score and cluster similarity of the W2V

Model Sim Rank Dunn gap
E s 0.69 49.2 0.44 0.08
E m 0.69 46.6 0.37 0.07
E pre 0.65 39.4 0.41 0.05
E ft 0.74 48.0 0.40 0.10
W2V ft 0.65 45.6 0.39 0.07
N2V 0.67 43.2 0.52 0.14
E preW ft+ 0.66 44.8 0.43 0.06
E preW ftc 0.67 44 0.42 0.05

Table 1: Evaluation results. E = ELMo, s = small, m
= medium, pre = pretrained, ft = finetuned. The last
two models provide combined embeddings, where + =
addition, c = concatenation. All models have dim=256
except for E m and E preW ftc with dim=512.

Term single-token multi-token
Model Rank Sim Rank Sim
E s 23.2 0.69 26 0.79
W2V ft 20.4 0.56 25.2 0.75
∆ 2.8 0.13 0.8 0.04

Table 2: Results of single and multi-token terms on
rank and cluster similarity. For Sim, only the original
terms were considered, instead of resampled ones.

model are lower than those of the ELMo small
model in both single and multi-token terms’ cases.
However, we found that in the single-token terms
case, there is a bigger difference of the rank (2.8
versus 0.8) and cluster similarity (0.13 versus 0.04)
between the two models. This might be because
the meaning of multi-token terms are less context
dependent. Since we averaged the embeddings for
each subtoken within the multi-tokens, the final
representation of the multi-tokens already encodes
some neighbouring information. By contrast, for
single-token terms, ELMo is better in incorporating
neighbouring information than the W2V model.

As for the combined models, we found that the
rank score performance increased greatly from 39.4
(only ELMo) to around 44 (combined). However,
there is nearly no difference between the combined
models and the finetuned W2V. This suggests our
finetuned W2V model already provides a reason-
able semantic space for the Quine data, and adding
additional information does not improve it. We
also experimented with merging the embeddings
from both models. The results for the rank score
and cluster similarity are shown in Figure 2. Con-
trary to our expectation that increasing the portion
of pretrained ELMo decreases both scores, there is
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a peak for both scores when the portion of W2V
embeddings is around 0.3-0.4. It seems that com-
bining pretrained language model embeddings with
W2V needs to be examined carefully to find the
sweetest point. Non-linear combination could also
be explored in future work.

Figure 1: Rank score and cluster similarity of the
merged embeddings as the portion of ELMo embed-
ding is increased from 0 to 1.

From Table 1 and consistent with Oortwijn et al.
(2021), we observed that the N2V model provides
the highest Dunn index (0.52). When we scale the
distance numbers to the same level for all models,
we observe that the maximal intra-cluster distance
in N2V is smaller than in other models. One reason
could be that due to limited contexts and increased
learning rate, the N2V model aggressively learns
new meanings so the new meanings encode less
noisy information, such as old meanings or contex-
tual meanings. This enables outliers to be closer to
their cluster centroids, resulting in a lower maximal
intra-cluster distance used in Dunn index calcula-
tion. A higher intra-cluster similarity could also
explain why the N2V model has a higher gap score.

Figure 2: Distributions of eight types of errors from
ELMo small model. Mul = multi-token, sin =single-
token. The order of the token type corresponds to: orig-
inal terms, same-cluster terms, different-cluster terms.

Semantic error analysis of terms in this dataset
can only be performed by Quine domain experts.
However, we can examine some superficial fea-
tures. From Table 2, we observed different perfor-
mance from single-token and multi-token terms.
To examine the influence of single/multi-token
terms on evaluation scores, we took both the cor-
rect and incorrect cases from cluster similarity and
categorized them into 8 types (2*2*2) based on
the token type (single or multi) of original terms,
sampled-same-group term and sampled-different-
group term. Figure 2 shows the results for the error
case. The all-single-term case which accounts for
the largest portion, nearly one fourth of all errors.
The next two biggest error sources are confusion
between the single and multi-token terms: in the
sin mul sin case, instead of predicting the original
term (sin) and same-cluster term (mul) to be more
similar, the model predicted the original term and
different-cluster terms (sin) as more similar. The
same observation can be found in the mul sin mul
case. When we look at the mul mul sin and the
sin sin mul types from the correct case, we found
they together account for nearly a half of all cor-
rect cases. This indicates that terms of the same
type (single/multi) have the tendency to be closer,
which could be the result of averaging subtoken
embeddings in ELMo, comparable to the sum ef-
fect observed by Kabbach et al. (2019). We present
the term distribution from the ELMo small model
in Appendix C. We conclude that full multi-token
term processing would be preferable but small
datasets may not provide enough instances of each.
N2V should be less affected by this due to its train-
ing on contexts of the full multi-token term even if
it is low-frequent.

5 Conclusions

In this study, we pretrained/finetuned ELMo and
W2V models with a small corpus of philosophical
texts and compared them using intrinsic evalua-
tion methods. We also explored combining the two
kinds of embeddings. Our main conclusions are: 1)
ELMo models provide better embeddings than the
finetuned W2V model despite the small data size,
except a pretrained model without tuning, which
performs worse. 2) Concatenating and adding em-
beddings does not bring extra value in this study;
however, when merging embeddings from different
models, performance can be gained by tuning the
contribution of each model.
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A ELMo hyper-parameters

LSTM Char cnn Data
Model Output dim Hidden dim N char Embed dim Type Token
ELMo s 256 1024 261 16 philosophy 1.6M
ELMo m 512 2048 261 16 philosophy 1.6M
Pretrained 256 1024 261 16 miscellaneous 800M
Finetuned 256 1024 261 16 combined combined

B Seed words
inference deductive argument
analytical antecedent necessary
effect cause epistemology
extension intension extensional
formal freedom identity
argument hypothetical induction
categorical infinity intension
extension justice logical
moral truth ontology
perceptual relativity identity
premise reason theoretical
property reasoning extension
proposition practical relation
nature analysis disposition
subjective analytic critical
substance appearance experience
synthetic belief empirical
analytic concept formal
knowledge practical reason
logical pure standpoint
maxim reality subject
objective rational subjective
perspective real system
existence perspective spirit
fallacy paradox verification
meaning science symbol
analogy paradox intuition
inference predicate judgment
essential sense synthetic
extension simplicity theoretical
illusion state understanding
deductive hypothetical will
intensional ideology being
fact imagination use
mention valid

C Term distribution from ELMo small
model

Term distribution after t-SNE dimension reduction for
the ELMo small embeddings. Note that the Dunn in-
dex for the clusters after dimension reduction is 0.05
(down from 0.44), so there is a large information loss
and this visualization does not fully represent the 256-
dimensional model.
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D Target terms

Language Ontology Reality Mind Metalinguistic
Pronominal singular
term

Ordinary enduring
middle sized phys-
ical thing

Operant
behavior

Prelinguistic qual-
ity space

Canonical nota-
tion

Abstract term Class Modulus Conceptual scheme Paraphrase
Adjective Concrete object Stimulation Variables
Article Physical object Phoneme Concatenation
Definite article Ideal object Stimulus Concretion
Indefinite article Geometrical object Context Conditional
Mass term Material Conjunction
Demonstrative Object Connective
Description Abstract object Construction
General term Particle Contradiction
Singular term Particular Copula
Definite singular term Physical thing Form
Indefinite singular term Function
Eternal sentence Quantification
Indicator word Quantifier
Name Quotational
Noun Predication
Relative term Plural
Substantive Regimentation
Observation sentence Elimination
Occasion sentence Explication
Open sentence Linguistic form
Pronoun Logic
Abstract singular term Syntax
Relative clause
Relative pronoun
One word sentence
Word
Verb

259




	Proceedings of the 17th Conference on Natural Language Processing/Konferenz zur Verarbeitung natürlicher Sprache (KONVENS)
	ISBN
	Preface
	People
	Satellite Events
	Invited Talks
	Table of Contents
	The Impact of Word Embeddings on Neural Dependency Parsing
	Benchmarking down-scaled (not so large) pre-trained language models
	ArgueBERT: How To Improve BERT Embeddings for Measuring the Similarity of Arguments
	How Hateful are Movies? A Study and Prediction on Movie Subtitles
	Emotion Recognition under Consideration of the Emotion Component Process Model
	Identifikation von Vorkommensformen der Lemmata in Quellenzitaten frühneuhochdeutscher Lexikoneinträge
	Emotion Stimulus Detection in German News Headlines
	Lexicon-based Sentiment Analysis in German: Systematic Evaluation of Resources and Preprocessing Techniques
	Definition Extraction from Mathematical Texts on Graph Theory in German and English
	Extraction and Normalization of Vague Time Expressions in German
	Automatic Phrase Recognition in Historical German
	Automatically Identifying Online Grooming Chats Using CNN-based Feature Extraction
	Who is we? Disambiguating the referents of first person plural pronouns in parliamentary debates
	Examining the Effects of Preprocessing on the Detection of Offensive Language in German Tweets
	Neural End-to-end Coreference Resolution for German in Different Domains
	How to Estimate Continuous Sentiments From Texts Using Binary Training Data
	forumBERT: Topic Adaptation and Classification of Contextualized Forum Comments in German
	Robustness of end-to-end Automatic Speech Recognition Models – A Case Study using Mozilla DeepSpeech
	Effects of Layer Freezing on Transferring a Speech Recognition System to Under-resourced Languages
	DeInStance: Creating and Evaluating a German Corpus for Fine-Grained Inferred Stance Detection
	Combining text and vision in compound semantics: Towards a cognitively plausible multimodal model
	MobIE: A German Dataset for Named Entity Recognition, Entity Linking and Relation Extraction in the Mobility Domain
	Automatically evaluating the conceptual complexity of German texts
	WordGuess: Using Associations for Guessing, Learning and Exploring Related Words
	Towards a balanced annotated Low Saxon dataset for diachronic investigation of dialectal variation
	German Abusive Language Dataset with Focus on COVID-19
	Comparing Contextual and Static Word Embeddings with Small Philosophical Data


