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Abstract

We extract definitions from text books and sci-
entific publications on mathematics in both,
German and English, from the sub-domain of
graph theory. Mathematical texts differ from
other domains because sentences which appear
as definitions from a linguistic perspective are
not necessarily definitions in the mathematical
sense. For the English texts we train a neu-
ral network on existing training data (Vanetik
et al., 2020). For the German texts we semi-
automatically generate training data using pat-
terns for the extraction of definitions. We show
that this is a feasible approach for the domain
of mathematical texts which generally makes
extensive use of formalized language patterns.
We measure precision and recall on a random
sample to evaluate our results. The F-Score
is similar for both languages but precision and
recall are closer to each other for the German
data. Further comparisons are made with a
term list automatically extracted from the data.
We conclude that our approach can be used to
extract candidate sentences for further postpro-
cessing.

1 Introduction

In this paper, we combine two domains where def-
initions play a significant role: lexicography and
mathematics. In lexicography, definitions provide
dictionary users with information about a term. In
mathematics, definitions are crucial to ensure a
common understanding of the domain’s concepts.
We extract definitions from texts on graph theory
to use them in a domain-specific dictionary. In
Section 2, we give an overview of related work
on types and forms of definitions and on extrac-
tion methods. In Section 3.1, we describe our data.
Sections 3.2 and 3.3 present our method for the
extraction of definitions from the English and the
German data. Section 4.1 gives a qualitative anal-
ysis of the results and Section 4.2 a quantitative

evaluation. We conclude in Section 5.

2 Background and Related Work

2.1 Definitions in Mathematical Texts

Mathematical texts consist of corollaries, lem-
mas, propositions, theorems, proofs and definitions
(Solow, 1990). Usually, a numbering indicates the
types (e.g. Theorem 2.1) but this is not necessar-
ily the case for definitions. Some authors include
them in the numbering and others simply give them
in the text. Some authors highlight defined terms,
e.g. by means of italics. Kruse and Heid (2020)
analyze mathematical definitions for lexicographic
purposes. They conclude that analytical definitions
(or logical definitions as they are also called) in the
Aristotelian scheme are mostly used. Single-clause
when-definitions appear to define adjectives and
verbs, contrary to usual practice in dictionaries for
general language, as Dziemianko and Lew (2006)
proposed. For definition extraction, however, it
is more relevant to distinguish a definition from a
non-definition rather than paying attention to the
different types of definitions. Nevertheless, some
sentences are definitions from a linguistic perspec-
tive but not from a mathematical perspective in
content. This constitutes a special challenge for
automatic definition extraction.

Different kinds of sentences may be regarded as
definitions in mathematics: The first kind defines
a term which is used in the rest of the text. Often,
one finds similar definitions for the same terms in
different works of a sub-domain. Definition 1 is an
example of such a definition from the sub-domain
of graph theory. It defines the term semiregular as a
property of bipartite graphs. We want to find such
definitions in our extraction experiments. They fol-
low the Aristotelian scheme with a definiendum
(the term defined) and the definiens (the part defin-
ing, cf. e.g. Meyer, 2001, p. 283).



The second kind of definitions follows the Aris-
totelian scheme on a syntactic level but requires
anaphora resolution to be comprehensible as it
refers to something mentioned earlier or later in
the text. For this kind, the context is indispensable
to understand its meaning. Definition 2 constitutes
such an example. These definitions are not use-
ful for our dictionary project because they do not
contain any relevant semantic information.

The third kind of definitions defines a variable
which also cannot be used for the dictionary. Even
if some variables often refer to the same objects
(e.g. G for graph) they are not considered as ter-
minology in our dictionary project as they rather
resemble named entities. For example, Definition 3
formally defines A(G) but is only relevant in the
context of the particular paragraph, i.e., a proof or
a construction, and not for the conceptual sphere
of the domain.

We thus aim to find definitions following the
scheme of Definition 1. However, the structure of
Definition 1 is ambiguous between definition and
non-definition. As an example consider Definition
4. It appears to be a definition with tree as the
definiendum and the subject as the definiens. This
example is taken from Saha Ray (2013) where it
actually is a theorem which requires a proof as tree
has been defined before (cf. Definition 5). It is
not obvious that a graph meets the criteria from
Definition 5 if it already has the properties from
Definition 4. We do not expect our system to dif-
ferentiate between these two kinds of definitions
because this would require an analysis of the con-
text beyond sentence level.

Which aspects are used in a definition and which
aspects are left to be proven depends on the au-
thor’s preferences for introducing a concept. The
decision seems arbitrary at first sight but depends
on the author’s intended target group of the text
(Rey, 1995; Solow, 1990; van Dormolen and Ar-
cavi, 2000). Some general aspects can be consid-
ered for the decision because a mathematical defi-
nition should meet certain criteria (van Dormolen
and Zaslavsky, 2003): Hierarchy, existence, equiv-
alence and axiomatization are necessary, whereas
minimality, elegance and degeneration are common
but not required.

A hierarchy between the defined terms is inher-
ent to the Aristotelian scheme. Further, a definition
is only meaningful if the term defined does actually
exist. Equivalence refers to the above-mentioned

aspect that different definitions may exist for the
same concept. It has to be shown that they are
actually equivalent. The criterion of axiomatiza-
tion is related to hierarchy: It is possible to define
more and more general hypernyms. In order to stop
this chain at one point axioms are needed, usually
related to set theory.

The following criteria are not mandatory: mini-
mality requires that only necessary properties are
mentioned in a definition without redundancies. El-
egance is hardly an objective property but can be
taken into consideration when deciding which of
several possible definitions is to be taken and which
is left to be proven. “Degenerations are instances
of a concept which are not expected to be included
when defining the concept. They are a logical
consequence from the definition. One might not
want the occurrence of such instances and therefore
change the definition in order to exclude them. De-
scribing an instance as a degeneration is, of course,
highly subjective and there is no objective criterion
for this decision” (van Dormolen and Zaslavsky,
2003). These criteria combined with the individual
preferences and ideas of concepts sum up to the
final definitions which a mathematician writes.

Mathematical definitions are usually unambigu-
ous within a certain sub-domain. Nevertheless,
homonymy may occur between different sub-
domains. For example, the German Körper is trans-
lated into English as solid figure in geometry but as
field in algebra. Another example is the adjective
complete used as an attribute to metric spaces or
graphs. The definitions differ considerably in both
cases, although the same mental concept underlies
both. As we work only with one mathematical
sub-domain we can neglect homonymy.

Examples of definitions

1. We call a bipartite graph semiregular if it has a
proper 2-colouring such that all vertices with
the same colour have the same valency.

2. We call the above procedure branching-
search.

3. Let A(G) be an incidence matrix of a con-
nected graph G with n vertices.

4. A connected graph with n vertices and n− 1
edges is a tree.

5. A tree is a connected acyclic graph.



6. The floor function bxc, also called the greatest
integer function or integer value, gives the
largest integer less than or equal to x.

7. Similarly, define the points Ac, Bc, Ba, Ca,
Cb so that the points Ac and Bc lie on the
extended segment AB, the points Ba and Ca

lie on the extended segment BC, and the point
Cb lies on the extended segment CA, and we
have AAc = a, BBc = b, BBa = b, CCa =
c and CCb = c.

2.2 Definition extraction
Definition extraction originally started with pattern-
based approaches. The patterns were then com-
bined with a grammar analysis for e.g. apposi-
tion and anaphora resolution or syntactic features.
These methods have been applied to several lan-
guages like English (Klavans and Muresan, 2001),
German (Storrer and Wellinghoff, 2006), Span-
ish (Alarcón et al., 2009) and Dutch (Fahmi and
Bouma, 2006). Examples for such patterns in En-
glish texts are is called, is the term used to describe,
is defined as, is the term for. In German, the fol-
lowing patterns can be indicative for definitions:
bedeuten, begreifen als, bekannt als, benennen,
beschreiben, bestehen aus, bezeichnen als, charak-
terisieren als, definieren als, gebrauchen, heißen,
nennen, sein, spezifizieren als, sprechen von, Ter-
minus einführen, verstehen unter, verwenden als,
vorstellen als1.

Pattern-based approaches have been used in a
wide range of applications. They were among oth-
ers used by Meyer et al. (1999), Meyer (2001), or
Pearson (1998) and are still applied today (Chris-
tensen, 2019). Barbaresi et al. (2018) extract “defin-
itory contexts” for words from a broad range of
domains (e.g. Auseinandersetzungsbilanz or Pel-
letheizung) in the context of lexicography using
patterns such as a X1 is a X2. In line with this
approach, definitions in mathematical texts can be
regarded as knowledge-rich contexts which can
be used in pattern-based approaches for informa-
tion extraction. (Meyer, 2001; Meyer et al., 1999).
Cramer (2011, 183 ff.) analyzes linguistic features
of definitions. Schumann (2014) describes (corpus-
)linguistic analyses for the detection of text pas-
sages containing description (thus not explicitly
definitions) of terminologically relevant concepts.

1Engl. mean, understand as, known as, designate, describe,
consist of, refer to as, characterize as, define as, use, be called,
state, be, specify as, speak of, introduce a term, understand by,
use as, conceive as

Other approaches combine pattern-based extrac-
tion and machine learning (e.g., Westerhout, 2009).
Boella and Di Caro (2013) combine syntactic de-
pendencies with a Support Vector Machine classi-
fier without using patterns. Fišer et al. (2010) com-
bine morphosyntactic patterns, automatic terminol-
ogy recognition and semantic tagging with Word-
Net senses for their work on Slovene Wikipedia
texts.

Today, learning algorithms and neural networks
are frequently used for definition extraction. Borg
et al. (2010) use genetic programming and genetic
algorithms to train their system on grammatical
rules. Navigli and Velardi (2010) introduce Word-
Class Lattices, an approach based on word lat-
tices generalizing over lexico-syntactic definitional
patterns which outperforms traditional extraction
methods. Reiplinger et al. (2012), however, com-
pare two methods, one based on bootstrapping
lexico-syntactic patterns and the other based on
deep analysis, and do not find major differences in
the performances. Espinosa-Anke et al. (2015) use
a weakly supervised bootstrapping approach and
Espinosa-Anke and Schockaert (2018) combine
Convolutional and Recurrent Neural Networks for
definition extraction.

Del Gaudio and Branco (2009) suggest that defi-
nition extraction is language and domain indepen-
dent. But Vanetik et al. (2020) show that this does
not hold for definition extraction from mathemat-
ical texts. They work on a corpus crawled from
Wolfram MathWorld2 and indicate whether a cer-
tain sentence is a definition.3 They conclude “that
mathematical definitions require special treatment,
and that using cross-domain learning for detection
of mathematical definitions is inefficient”.

3 Experiments

3.1 Data preprocessing

Our work is based on two comparable corpora, one
in German, one in English, with texts from the
mathematical sub-domain of graph theory. The
German corpus contains about 700, 000 tokens
with about 30, 000 types and consists of lecture
notes and (parts of) nine text books. Parts of books,
as opposed to the entire book, were used when only
some chapters cover graph theory. The English

2https://mathworld.wolfram.com
3The data of Vanetik et al. (2020) is publicly avail-

able on GitHub https://github.com/uplink007/
FinalProject/tree/master/data/wolfram

https://mathworld.wolfram.com
https://github.com/uplink007/FinalProject/tree/master/data/wolfram
https://github.com/uplink007/FinalProject/tree/master/data/wolfram


corpus consists of eight text books and 26 scien-
tific papers, totaling about one million tokens with
about 30, 000 types.

Our goal was to create corpora of a similar size.
The exact number of tokens depends on how for-
mulas are counted. We chose material from text
books and literature students at our institution work
with, as students are the target group of our dictio-
nary. The choice of texts was based on a survey we
carried out with the students (Kruse and Giacomini,
2019). Although many students indicated that they
use Wikipedia for their studies we decided against
including it into our corpus because we have less
control on its quality from an academic perspective.
Due to copyright restrictions we cannot make our
corpus publicly available but in can be reproduced
as we used published material.

Our source files are machine-readable PDF doc-
uments, scans and plain texts. As the data is not
homogeneous, we had to use different workflows
to integrate them into the corpus depending on the
source file. We used inftyreader4 and Tesseract
(Smith, 2007) to convert PDF documents into plain
text. The mathematical formulas produced some
obstacles, e.g., Tesseract had difficulties to con-
vert fractions into plain text as it works line by
line. Inftyreader is specialized in processing math-
ematical texts and converts formulas according to
the W3C standard MathML5 but has difficulties
with low quality scans. In the latter cases we used
Tesseract which ignored the formulas. Thus, some
errors remain in the texts due to errors in the opti-
cal character recognition (OCR). Afterwards, we
did some semi-manual post-processing to eliminate
the most common errors but could not cover all of
them. Thus, some errors remain as can be seen in
Examples 8 and 9.

We remove Latex commands for typesetting and
document layout, while commands for mathemati-
cal formulas (e.g. \sum) are kept to preserve parts
of the formulas in the input for the classifier. We
split the data into sentences using the tokenizer de-
scribed by Schmid (2000). Some issues with the
automatic split into sentences remain, e.g., the ex-
clamation mark is used for calculating factorials, or
sentences with the following structure appear: We
can say that G is bipartite (why?) and continue the
following way..., where (why?) should motivate the
reader to realize the truth of the given statement. As

4https://www.inftyreader.org
5https://www.w3.org/TR/MathML3/

it would cost too much effort to go through these
cases manually we leave them unchanged but they
should be kept in mind when discussing quantita-
tive results such as the number of sentences in the
corpus because a different tokenizer might yield
different results.

3.2 Definition Extraction from the English
Corpus

We use the training data compiled by Vanetik et al.
(2020) for the extraction of definitions in the En-
glish corpus. The training data consists of 1, 793
sentences of which 811 are definitions. We count
the sentences with domain-specific definition pat-
terns in the training data using the following pattern
indicators: abbreviate, termed, determine, defini-
tion, refer, name, the term, associate, consist, said
to be, then .* is, denote, known as, given by, is a(n),
define, call, is the. 72.87% of the definition sen-
tences and 28.21% of the non-definition sentences
contain at least one of the patterns. This legiti-
mates our workflow to semi-automatically create
the German training data by extracting sentences
containing definition patterns.

We further analyze the training data and find
definitions in which none of the patterns appears.
They often contain the verbs is/are, has/have not
followed by an article and thus deviate from the
standard pattern. We exclude these verbs in our set
of defining verbs to avoid too many false positives.

As mentioned above, some non-definitions also
contain the patterns. One of these cases is the
verb call which in the non-definitions is frequently
combined with also, as in Definition 6 where it is
followed by a synonym but not an actual defini-
tion. In our lexicographic application, synonyms
are dealt with separately from definitions. Simi-
lar reasons hold for the other definition patterns in
the non-definitions. We give an example for the
indicator define in Definition 7 which constitutes a
typical example of defining a variable, as described
in Section 2 (cf. Definition 3).

After the pre-processing as described in Section
3.1, our corpus contains 56, 978 English sentences
to be classified. We use the SimpleTransformers
implementation6 of BERT (Devlin et al., 2019)7

with one epoch. 11, 936 (20.95%) of the sentences
were classified as definitions and 45, 042 sentences

6https://github.com/ThilinaRajapakse/
simpletransformers

7https://huggingface.co/
bert-base-cased

https://www.inftyreader.org
https://www.w3.org/TR/MathML3/
https://github.com/ThilinaRajapakse/simpletransformers
https://github.com/ThilinaRajapakse/simpletransformers
https://huggingface.co/bert-base-cased
https://huggingface.co/bert-base-cased


(79.05%) as non-definitions.
Again, we count the sentences containing at

least one definition pattern: 51.42% of the sen-
tences classified as definitions contain a pattern but
only 15.98% of those classified as non-definitions.
Like in the training data, more sentences classi-
fied as definitions contain one of the patterns. Yet,
this holds for only half of the sentences unlike the
72.87% in the training data. The amount of sen-
tences classified as non-definitions containing a
pattern is significantly lower which might be also a
consequence of noise in the data.

We measure precision and recall on an exem-
plary random sample.8 We manually collect 100
definitions and 100 non-definitions from our data
set. To that end, we randomly sequence the sen-
tences in the corpus and find definition sentences
with help of patterns. For the non-definitions we
randomly extract 200 sentences from the corpus
and manually annotate if they are definitions. We
take the first 100 of them for the evaluation. Thus,
we have a random sample of 100 definitions and
100 non-definitions.

We measure precision and recall for the labels
these 200 sentences were assigned with by the
BERT classifier. The results for the definition sen-
tences are given in Table 1. If we evaluate, in turn,
the classification of non-definitions we get a pre-
cision of 0.8857 and a recall of 0.62 resulting in
an F-Score of 0.7229. The higher precision of the
non-definitions can probably be explained with the
much higher number of non-definitions in the data
compared to the number of definitions. Likewise,
the high recall for the definitions can be explained
by the fact that we calculate the values on a bal-
anced random sample. We would get more realistic
results if we would select 200 sentences completely
random for this evaluation but in that case we run
the risk of having almost no definitions in the sam-
ple which would not give reliable results.

3.3 Definition Extraction from the German
Corpus

For the German corpus we create our own training
data. To that end, we collect sentences contain-
ing at least one form for the following lemmas:
bestehen, bezeichnen, definieren, heißen, nennen,
sagen, sprechen, verstehen.9 We randomly extract

8We thank the anonymous reviewers for their useful com-
ments on the evaluation and discussion sections.

9Engl. consist, denote, define, call, name, (to) name, say,
speak, understand

a maximum of 100 sentences for each indicator
verb and manually annotate them as definitions or
non-definitions following the criteria detailed in
Section 2. Additionally, we manually search the
corpus for examples of definitions which do not
contain an indicator verb, e.g., because they con-
tain the verb sein (engl. be). Again, we did not
include all sentences containing sein to avoid false
positives. Further, non-definitions without any in-
dicator verbs are added to the data set. In sum, we
collect 799 sentences of which 256 are definitions.

We use the pre-trained model
bert-based-german-cased10 from the
Hugging Face library and one epoch of training.
All results are summarized in Table 1. 90.54% of
the sentences are labeled as non-definitions and
9.46% as definitions. 47.79% of the sentences
labeled as definitions contain at least one of the
patterns whereas this is the case for only 4.75%
of the sentences labeled as non-definitions which
matches the expectation as this percentage is
higher for definitions. For measuring precision,
recall and F-Scores we evaluate again a random
sample of 100 sentences for each category. We
yield a similar F-Score as for the English data. But
precision and recall for German are closer to each
other, i.e., the precision is slightly higher and the
recall slightly lower. This might be explained by
the fact that the percentage of sentences labeled
as definitions is lower in the German data set.
However, this comparison is only valid if we
expect the same percentage of definitions in both
corpora.

4 Discussion

4.1 Qualitative Analysis
Both, the English and German results have lower
values for precision but higher values for recall.
Thus, the definitions are usually found but false
positives need to be filtered. We take a closer look
at the false negatives in our evaluation samples.
The German sample contains nine and the English
sample only 15 false negatives (cf. Examples 8 to
11). Example 8 repeats the distributive law which is
not defined in this sentence. Example 9 states that
two already defined terms describe the same con-
cept. This is another example where definitions and
theorems are not distinguishable. The same holds
for Example 10. Four of the nine false negatives in

10https://huggingface.co/
bert-base-german-cased

https://huggingface.co/bert-base-german-cased
https://huggingface.co/bert-base-german-cased


German English

Number...
...of sentences 36, 103 56, 978
...classified as definition 3, 417 (9.46%) 11, 936 (20.95%)
...classified as non-definition 32, 686 (90.54%) 45, 042 (79.05%)

Patterns in sentences...
...classified as definitions 47.79% 51.42%
...classified as non-definitions 4.75% 15.98%

Evaluation of random sample
precision 0.7522 0.7054
recall 0.8500 0.9100
F-Score 0.7981 0.7948

Table 1: Overview of extraction results

the random sample contain the phrase we say that.
We searched for this phrase in the training data
and found that no example containing this phrase
is included. This might be because the data was
extracted from Wolfram MathWorld and not from
scientific publications or textbooks. This might
hint at differences in the “language for definitions”
in different resources.

Examples 12 to 14 are false positives. Exam-
ple 12 contains tokens which could also occur in
definitions (e.g. ist eine Zahl, Engl. is a number).
Example 13 is a similar case (nennt man, Engl. is
called). Example 14 is an example from the En-
glish evaluation sample. It contains the expression
is defined which is also indicative for a definition.
Furthermore, the English sample includes several
false positives beginning with If. In the whole data
set, 2, 719 sentences contain this feature; 66.50%
of them are classified as a definition. This ratio may
be a result from the training data which contains
52 sentences with an initial If which are labeled in
78.85% of the cases as definitions.

Examples

8. Es gilt das Distributivgesetz: a-(b +c ) = ( a-b
) + ( a-c ) für alle a, b, c eK.
The distributive law holds: a-(b +c ) = ( a-b )
+ ( a-c ) for all a, b, c eK.

9. Damit beschreiben die Ausdrücke { Ecken)-
3-panzyklisch und { Ecken)-panzyklisch den
gleichen Sachverhält.
Thus, the expressions { node)-3-pancyclic and
{ node)-pancyclic describe the same state of
affairs.

10. Die einzigen 3-kritischen Graphen sind Kreise
ungerader Länge.

The only 3-critical graphs are circles of odd
length.

11. We say that a graph G is reconstructible if ev-
ery reconstruction of G ’ is isomorphic to G,
in other words, if G can be ‘ reconstructed up
to isomorphism from its vertex-deleted sub-
graphs.

12. Jeder Buchstabe ist eine Zahl zwischen 1 und
n.
Each letter is a number between 1 and n.

13. In diesem speziellen Fall nennt man die
Menge {x,y} auch das ungeordnete Paar von
x und y.
In this particular case, the set {x,y} is also
called the unordered pair of x and y.

14. The matrix Miq is defined dually.

4.2 Quantitative Analysis

For a quantitative analysis we extract 1,000 key-
words and 1,000 multiword terms from our data
for each language using the corpus web tool Sketch
Engine (Kilgarriff et al., 2014) which includes a
function for keyword extraction. One rater eval-
uates in two rounds if these automatically found
“keywords” are terminologically relevant. In the
German list, 0.4705% of the keywords were rele-
vant in this sense, and 0.5350% in the English list.
These values are quite similar. Most of the false
positives are variables and multiword expressions
like following graph.

The chosen terms are manually divided into nine
semantic categories:

• ACTIVITY: events which can be performed in
graph theory, mostly verbs, e.g. connect



• ALGORITHM: domain-specific algorithms
having a given name, e.g. Dijkstra’s algo-
rithm

• GENERAL: mathematical terminology which
is not particularly attributed to the domain of
graph theory, e.g. disjoint

• MAPPING: mappings in the mathematical
sense, e.g. edge contraction

• PART: elements a graph is composed of, e.g.
edges

• PERSON: mathematicians who worked in
graph theory and related areas, e.g. Dijkstra

• PROBLEM: mathematical problems having a
given name, e.g. Traveling Salesman Problem

• PROPERTY: descriptions of a graph, mostly
adjectives, e.g. regular

• THEOREM: mathematical theorems having a
given name, e.g. Kirchhoff’s matrix tree theo-
rem

• TYPE: names for special kinds of graphs, e.g.
Petersen graph

We expect to find definitions for ACTIVITIES,
GENERAL TERMS, MAPPINGS, PARTS, PROPER-
TIES and TYPES. ALGORITHMS, PERSONS, PROB-
LEMS and THEOREMS are usually not defined in
mathematics. Thus, we analyze the terms in the
sentences considered as definitions.

Table 2 shows the percentage of lemmas in the
sentences classified as definitions. The value is
higher for the English data which can be explained
with the higher amount of definition sentences and
the slightly lower precision indicated by the ran-
dom sample. Thus, the probability to find a word
in this set is generally higher. Figures 1 and 2 show
which lemmas are found grouped by category. This
matches our hypothesis that definitions mostly lack
for the categories PERSON, PROBLEM, THEOREM

and ALGORITHM. The results are much clearer
for the German data which matches the results for
precision and recall (cf. Table 1). We conclude that
the definition extraction worked well for the major-
ity of sentences which is reflected by the values for
recall.

Still, some aspects affect the results, e.g., we did
not exclude variants in our simple search. So, there
is for example a definition for 1-Faktor-Satz but not

for 1-Faktorsatz; and some multiword terms appear
in the lemma list as a compound but are separated
in the definition.

5 Conclusion and future work

Our approach yields higher values for recall but
lower values for precision. We conclude that our
semi-automatic approach can be used for finding
candidates for mathematical definitions but they
require a subsequent manual or automatic post-
processing in order to distinguish definitions from
sentences with a similar syntactic structure and vo-
cabulary. An active learning approach in which
parts of the results are evaluated in order to in-
crease the training data iteratively could improve
the approach.

We get different results for the English and the
German data. We see several reasons for that: The
German training data was semi-automatically gen-
erated using sentences from the sample on which
the trained model was subsequently applied. There-
fore, the same rules for annotating definitions were
used for the generation of training data and for the
evaluation of the results. For our English train-
ing data provided by Vanetik et al. (2020) we only
had few indications of the annotation guidelines.
Furthermore, the German training data contained
only half as many sentences as the English data. In
combination with the fact that the training data and
evaluation data stem from the same corpus, there
might be some over-specification to the data set. It
might be interesting to train a network on this data
and to apply the model on mathematical texts from
different sub-domains.

About 20% of the English sentences are clas-
sified as a definition, but only about 10% of the
German sentences. A reason for this difference
may be the number of sources: The German corpus
comprises of only ten texts while the English cor-
pus contains 34 texts which are shorter. A reason
for the different lengths are the text types as we
used more text books for German and more scien-
tific papers for English. The number of definitions
in a mathematical text also depends on its type. In
general, we would expect scientific papers to con-
tain less definitions when compared to textbooks
because they can pick up prior knowledge of their
readers whereas textbooks are mostly targeted at
learners with less prior domain knowledge. How-
ever, our results do not confirm this hypothesis as
there are more sentences classified as definitions in



German Data English Data
number of definitions 3,417 11,936
number of lemmas 1,070 933
percentage of lemmas found in definitions 70.63% 90.47%

Table 2: Amount of lemmas in data
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Figure 1: Distribution of German lemmas in definitions over categories
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Figure 2: Distribution of English lemmas in definitions over categories



the English data than in the German. This might be
related to the lower precision for the experiments
on English texts. It would be interesting to inves-
tigate empirically if the percentage of definitions
varies across different mathematical text types.

Furthermore, for our English corpus we had to
rely more on OCR than for the German data. This
may result in more mistakes which cause difficul-
ties for the classifier. Interesting further research
would be to analyze if the English extraction results
differ when the training data is taken from the same
corpus or from a corpus of the same sub-domain or
type of resource. Maybe the results of Vanetik et al.
(2020) can be interpreted in the more general way
that the quality of definition extraction increases
with the similarity between training data and eval-
uation data even for a highly formalized language
like mathematics.

We can conclude that patterns are good indica-
tors for mathematical definitions in German and
English and can be used to generate training data.
Nevertheless, automatic solutions are still needed
for definition extraction in mathematics as some
sentences are definitions from a linguistic perspec-
tive but not intended as such by their author.
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