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Abstract

We introduce the COMBO-based approach for
EUD parsing and its implementation, which
took part in the IWPT 2021 EUD shared
task. The goal of this task is to parse raw
texts in 17 languages into Enhanced Univer-
sal Dependencies (EUD). The proposed ap-
proach uses COMBO to predict UD trees
and EUD graphs. These structures are then
merged into the final EUD graphs. Some EUD
edge labels are extended with case informa-
tion using a single language-independent ex-
pansion rule. In the official evaluation, the so-
lution ranked fourth, achieving an average
ELAS of 83.79%. The source code is avail-
able at https://gitlab.clarin-pl.eu/

syntactic-tools/combo.

1 Introduction

Data-driven dependency parsers achieve high pars-
ing performance for languages representing differ-
ent language families. The state-of-the-art depen-
dency parsers are trained with supervised learning
methods on large correctly annotated treebanks, e.g.
from Universal Dependencies (UD, Nivre et al.,
2020). UD is an international initiative aimed at
developing a cross-linguistically consistent anno-
tation schema and at building a large multilingual
collection of dependency treebanks annotated ac-
cording to this schema. A relatively small subset
of UD treebanks is annotated with higher-order
syntactic-semantic representations that encode var-
ious linguistic phenomena and are called Enhanced
Universal Dependencies (EUD).

Dependency treebanks, especially the uniformly
annotated UD treebanks, are used for multilingual
system development, e.g. within multiple shared
tasks on dependency parsing (Buchholz and Marsi,
2006; Nivre et al., 2007; Seddah et al., 2013, 2014;
Zeman et al., 2017, 2018). In particular, the IWPT

2020 shared task on Parsing into Enhanced Uni-
versal Dependencies (Bouma et al., 2020) is worth
mentioning, because it is the predecessor of the cur-
rent IWPT 2021 shared task (Bouma et al., 2021).
All shared tasks contributed to rapid advancement
of language parsing technology, inter alia, the for-
mulation of groundbreaking parsing algorithms
and their publicly available implementations (e.g.
Nivre et al., 2006; McDonald et al., 2006; Straka
and Straková, 2017; Dozat et al., 2017; Rybak and
Wróblewska, 2018; He and Choi, 2020).

Dependency parsing is an important issue in var-
ious sophisticated downstream tasks, including but
not limited to sentiment analysis (Sun et al., 2019),
relation extraction (Zhang et al., 2018; Vashishth
et al., 2018; Guo et al., 2019), semantic role la-
belling (Wang et al., 2019), or question answering
(Khashabi et al., 2018). On the other hand, even
if EUD parsing aims at predicting semantically in-
formed structures, which seem to be appropriate
in advanced NLP tasks, it is not yet used in solv-
ing these tasks. An obstacle can be the availability
of the state-of-the-art EUD parsers, e.g. two top
systems at the IWPT 2020 EUD shared task (i.e.
Kanerva et al., 2020; Heinecke, 2020) are not pub-
licly available and therefore difficult to integrate
into NLU systems without having to implement
them from scratch. Meeting the potential expecta-
tions of NLU system architects, the source code
of COMBO with the new EUD parsing module
and the pre-trained models developed as part of our
solution submitted to this shared task are publicly
available.

The proposed solution to EUD parsing is based
on (1) Stanza tokeniser (Qi et al., 2020), (2)
COMBO (Klimaszewski and Wróblewska, 2021),
a data-driven language-independent system for
morphosyntactic prediction, i.e. part-of-speech tag-
ging, morphological analysis, lemmatisation, de-
pendency parsing, and EUD parsing (see Section

https://gitlab.clarin-pl.eu/syntactic-tools/combo
https://gitlab.clarin-pl.eu/syntactic-tools/combo
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3.3), (3) an algorithm that merges predicted la-
belled dependency arcs and predicted EUD arcs,
and builds the final EUD graphs (see Section
3.4), and (4) two linguistically motivated language-
independent rules that improve the final EUD
graphs (see Section 3.5). The first expansion rule
adds case information sublabels to EUD modifiers,
and the second one amends enhanced arcs com-
ing into the function words. These two rules are
integrated into the proposed EUD parsing system.

In the official evaluation, our EUD parser ranked
4th, obtaining an average ELAS of 83.79% and
EULAS of 85.20%.1 It is worth emphasising that
COMBO predicts labelled dependency trees with
an average LAS of 88.91%, only being slightly
outperformed by the ROBERTNLP system.

2 Shared task description

The IWPT 2021 EUD shared task consists in eval-
uating systems for parsing raw texts into Enhanced
Universal Dependencies. The systems are trained
and evaluated on data supplied by the organisers.

Data The shared task dataset includes tree-
banks for 17 languages from 4 language families.
The largest group in this collection is constituted
by Indo-European languages, i.e. Bulgarian, Czech,
Polish, Russian, Slovak, Ukrainian (Slavic), Dutch,
English, Swedish (Germanic), French, Italian (Ro-
mance), and Latvian, Lithuanian (Baltic). There
are also representatives of the Uralic (Finnic) lan-
guages, i.e. Estonian and Finnish, the Afro-Asiatic
(Semitic) languages – Arabic, and the Southern
Dravidian languages – Tamil. The datasets vary in
size and type of enhancements.

Enhancement types Various linguistic phenom-
ena are encoded in EUD graphs:

• propagation of conjuncts in coordination con-
structions (see Figure 1),

• null nodes encoding elided predicates in coor-
dination constructions (see Figure 2),

• additional subject relations in control and rais-
ing constructions (see Figure 3),

• coreference relations in relative clause con-
structions (see Figure 4),

1https://universaldependencies.org/
iwpt21/results_official_coarse.html

• detailed case information sublabels of
the modifiers (see Figure 5).

The store buys and sells cameras .

det nsubj
conj

punct

cc

obj

nsubj

obj

Figure 1: The EUD graph with the conjoined predicate;
the conjoined verbs (buys and sells) share the subject
(the store) and the object (cameras), and the propagated
relations are indicated with the bottom blue enhanced
edges.

John orders tea and Timothy � coffee

nsubj obj

conj
orphan

cc

nsubj obj

conj

cc

Figure 2: The EUD graph with an empty node � and
the bottom blue enhanced edges. The tree edges re-
moved from the EUD graph are dotted.

John tried to order coffee .

nsubj
xcomp

mark obj

punct

nsubj

Figure 3: The EUD graph with the bottom blue en-
hanced edge encoding subject control with the control
predicate try.

3 System overview

The EUD parsing system is built of the following
components: a data encoder boosted with a con-
textual language model (see Section 3.1), mor-
phosyntactic predictors (see Section 3.2), an EUD
predictor (see Section 3.3), an algorithm merging
predicted labelled dependency arcs and enhanced
dependency arcs (see Section 3.4), and a post-
processing module (see Section 3.5).

https://universaldependencies.org/iwpt21/results_official_coarse.html
https://universaldependencies.org/iwpt21/results_official_coarse.html
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the house that I bought

det

acl:relcl

nsubj
obj

ref

obj

Figure 4: The EUD graph representing a relative clause
modifying the noun house. The enhanced edges are
marked with the bottom blue arcs and the tree edge re-
moved from the EUD graph is dotted.

3.1 Data encoder
The encoder vectorises the tokenised input data.
The input tokens are first represented as a concate-
nation of a character-based word embedding esti-
mated during system training with a dilated convo-
lutional neural network (Yu and Koltun, 2016), and
a BERT-based embedding estimated as follows.
BERT-based language models (LM, Devlin et al.,
2019; Conneau et al., 2020) are not fine-tuned dur-
ing system training. Instead, we apply the scalar
mix technique based on Peters et al. (2018) to pro-
duce an embedding (h) for a word i as a weighted
sum of embeddings from all layers:

hi = γ
L∑

j=1

sjhij (1)

Parameters γ and sj are learnable weights, addition-
ally sj are softmax-normalised. L is the number
of transformer layers. At the point of using LM,
the data is already tokenised. If LM intra-tokeniser
splits a word into multiple subwords, the embed-
dings h are estimated for these subwords and av-
eraged. The vectors of words or averaged vectors
of subwords are finally transformed with one fully
connected (FC) layer.

The encoder with two BiLSTM layers (Hochre-
iter and Schmidhuber, 1997; Graves and Schmid-
huber, 2005) transforms the concatenations of
the character-based word embeddings and the trans-
formed BERT-based embeddings into token vec-
tors. The BiLSTM-transformed token embeddings
are used as input to morphosyntactic predictors and
the EUD parsing module.

3.2 Morphosyntactic predictors
The proposed approach is based on various mor-
phosyntactic predictions. Part-of-speech tags, mor-
phological features, and lemmata are used in

the post-processing step to extract case informa-
tion expanding enhanced sublabels of modifiers
(see Section 3.5). The merge algorithm (see Sec-
tion 3.4), in turn, combines labelled dependency
arcs with enhanced dependency arcs predicted by
EUD parsing module.

3.3 EUD predictor
The EUD parsing module consists of an enhanced
arc classifier and an enhanced label classifier.
The arc classifier utilises two single FC layers that
transform encoded token vectors into head and de-
pendent embeddings. These embeddings are used
to calculate an adjacency matrix (A) of an enhanced
graph.A is a n×nmatrix, where n is the number of
tokens in a sentence (plus the ROOT node). The ma-
trix element Aij corresponds to the dot product of
the i-th dependent embedding and the j-th head em-
bedding. The dot product indicates the certainty of
the edge between two tokens. The sigmoid function,
applied to each element of A, allows the network
to predict many heads for a given dependent, i.e.
EUD graphs are built.
The enhanced label classifier also applies two fully
connected layers to estimate head (ei) and depen-
dent (ej) embeddings (they differ from embed-
dings estimated in the enhanced arc prediction). En-
hanced dependency labels are predicted by a fully
connected layer with the softmax activation func-
tion which is given the dependent embedding con-
catenated with the head embedding.

ehead = FC (ei) (2)

edep = FC (ej) (3)

label = argmax (FC (ehead, edep)) (4)

The loss function is only propagated for those pairs
(i, j) that belong to ground truth (i.e. arcs existing
in the enhanced dependency graph).

3.4 Merge algorithm
The predicted enhanced graphs could be used
without further processing. However, their qual-
ity could definitely be improved if they exploited
information from the predicted dependency trees.
Enhanced dependency graphs appear to be heavily
tree-based (see the example EUD graphs in Sec-
tion 2). The EUD graphs include some additional
edges, empty nodes, and extended labels of mod-
ifiers (and conjuncts in some languages), or their
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structure is slightly transformed. We therefore de-
cided to merge the predicted trees and the predicted
enhanced graphs.

Algorithm 1: The merge algorithm
Input : T := (V,ET ) : tree

G := (V,EG) : graph
Output : EUD : the final EUD graph

1 EEUD = {};
2 for e in ET do
3 if label(e) 6= acl:relcl then
4 EEUD := EEUD + e;
5 for e in EG do
6 if e /∈ EEUD and

has no cycle(EEUD + e) then
7 EEUD := EEUD + e;
8 for e in ET do
9 if label(e) = acl:relcl then

10 EEUD := EEUD + e;
11 EUD := (V,EEUD);

The merge algorithm (see Algorithm 1) succes-
sively adds the predicted tree and graph edges to
the set of EUD edges, and then composes the final
EUD graph of these edges. It starts by selecting all
tree edges except for edges with the acl:relcl label.
The EUD graphs representing relative clauses con-
tain cycles (see Figure 4). Refraining from adding
the acl:relcl relations in this step, we attempt to
avoid the cycle problem thereafter. In the second
step, consecutive graph edges are added to the EUD
set as long as they do not form a cycle or there
are no edges with the same or a different label in
the EUD set (i.e. we eliminate duplicate edges). In
the last step, the acl:relcl relations are added to
the EUD set which is then used to compose a final
EUD graph.

We are aware that UD relations selected in
the first merging step do not contain case informa-
tion, e.g. the obl relation is transferred to the EUD
set, although this relation should be de facto la-
belled obl:because of, obl:for, or obl:outside. How-
ever, our preliminary experiments indicated that
the anticipated enhanced labels often had erroneous
case extensions, which could not even come from
a sentence. Correcting labels with accidental case
extensions would require defining a large number
of relabelling rules that would have to be adapted
to a particular language. Extending the modifier la-
bels rather than correcting them seems to be a more
transparent and simple procedure. We thus define

one rule that derives case information from au-
tomatically predicted morphological features and
lemmata (see Rule 1 in Section 3.5). The rule is
utilised in the post-processing step, which is the last
step of building the EUD graphs.

3.5 Post-processing
We define two rules that improve the automatically
predicted EUD graphs.

Rule 1 The first rule specifies case information
of the following modifiers: nmod (nominal modi-
fier), obl (oblique nominal), acl (clasual modifier
of nouns), advcl (adverbial clause modifier), and of
conjuncts (conj). The case information (lemma)
is derived from case/mark or cc dependents of
a modifier or a conjunct, respectively, and from
the modifier’s morphological attribute Case. Fig-
ure 5 exemplifies extending UD labels with case
information.2

On or about Sep 23 , 1999 ... placed

case

casecc
conj:or

nummod
punct

nummod

obl:about

Figure 5: The EUD graph with blue, bolded sublabels
representing case information. The text excerpt comes
from the sentence ”On or about September 23, 1999 a
request for service was placed by the above referenced
counterparty.”.

The rule is language-independent and UD-based.
However, as not all treebanks attribute case infor-
mation to their modifiers or conjuncts, the rule ap-
plies only to predefined languages, e.g. the conjunct
extension is only valid in English, Italian, Dutch,
and Swedish.

Rule 2 The second rule corrects enhanced edges
coming into the function words that are labelled
mark, punct, root, case, det, cc, cop, aux and ref.
They should not be assigned other dependency re-
lation types in EUD graphs. If a token and is as-
signed the cc grammatical function in a dependency
tree, and thus also in the corresponding EUD graph
(the first merge step), it cannot be simultaneously
a subject (nsubj), for example. If such an erroneous
nsubj relation exists, it is removed from the EUD
graph in line with the second rule.

2This sentence originates from the English dev set. As
the case extension of the obl label is derived from the structure
coordinating two prepositions (i.e. on and about), we wonder
about correctness of selecting only about as the case extension.
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Language Model name Reference

Arabic bert-base-arabertv2 Antoun et al. (2020)
English bert-base-cased Devlin et al. (2019)
French camembert-base Martin et al. (2020)
Finnish bert-base-finnish-cased-v1 Virtanen et al. (2019)
Polish herbert-large-cased Mroczkowski et al. (2021)
Others xlm-roberta-large Conneau et al. (2020)

Table 1: Language models used in the experiments. Names refer to Transformers library (Wolf et al., 2020).

4 Experimental setup

4.1 Segmentation and preprocessing

Stanza tokeniser (Qi et al., 2020) is used to split raw
text into sentences, split sentences into tokens, and
optionally to expand multi-words. We train a new
segmentation model for each language on the train-
ing data provided in the shared task.3 Whenever
there are several UD treebanks for a language, we
train the segmentation model on the concatenation
of all training datasets available for that language.
Multi-word expansion involves only two languages,
i.e. Arabic and Tamil, because it does not cause
substantial gains in parsing other languages.

In order to collapse empty nodes, training data
are preprocessed with the official UD script.4 De-
pendents of the collapsed empty nodes are assigned
new labels, corresponding to the empty node label
and the dependent label joined with the special
symbol >. During prediction, the collapsed labels
are expanded and empty nodes are added at the end
of a sentence, following He and Choi (2020). This
design decision is motivated by the fact that (1)
it is difficult to find a proper position of elided
tokens or phrases, especially in free word order
languages, and (2) the evaluation procedure does
not take an empty node position into account, i.e.
appending an empty node at the end of a sentence
does not downgrade the score. It is important to
note that designing a heuristic that identifies proper
positions of elided elements remains an open issue,
and appending empty nodes at the end of a sentence
is only a makeshift solution.

3It is not allowed to use versions of UD other
than 2.7 in the IWPT 2021 shared task (see
https://universaldependencies.org/iwpt21/
task_and_evaluation.html). As the publicly available
Stanza models are trained on UD 2.5, we have to train new
models on UD 2.7.

4https://github.com/UniversalDependencies/
tools/blob/master/enhanced_collapse_empty_
nodes.pl

Input data are encoded using BERT-based lan-
guage models. Depending on the language, either
language-specific BERT (Devlin et al., 2019) or
multilingual XLM-R (Conneau et al., 2020) is used
(see Table 1).

4.2 Morphosyntactic prediction
COMBO system (Klimaszewski and Wróblewska,
2021) is used to predict part-of-speech tags, mor-
phological features, lemmata, and dependency
trees. For the purpose of this task, we also imple-
ment a new EUD parsing module (see Section 3.3)
and integrate it with COMBO. Similarly to seg-
mentation models, we train one COMBO model
for a language on all treebanks provided for this
language in the shared task data using the default
training parameters (see Table 2).5

Hyperparameter Value

Optimiser Adam
(Kingma and Ba, 2015)

Learning rate 0.002
β1 and β2 0.9
Number of epochs 400
BiLSTM layers 2
BiLSTM dropout rate 0.33
LSTM hidden size 512
Arc projection size 512
Label projection size 128

Table 2: COMBO training parameters (the upper en-
tries) and model parameters (the bottom entries).

5 Results

The shared task submissions are evaluated with two
evaluation metrics: ELAS – LAS6 on enhanced de-

5All models are trained and tested on a single NVIDIA
V100 card.

6LAS (labelled attachment score) is the proportion of to-
kens that are assigned the correct head and dependency label

https://universaldependencies.org/iwpt21/task_and_evaluation.html
https://universaldependencies.org/iwpt21/task_and_evaluation.html
https://github.com/UniversalDependencies/tools/blob/master/enhanced_collapse_empty_nodes.pl
https://github.com/UniversalDependencies/tools/blob/master/enhanced_collapse_empty_nodes.pl
https://github.com/UniversalDependencies/tools/blob/master/enhanced_collapse_empty_nodes.pl
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pendencies, and EULAS – LAS on enhanced de-
pendencies where labels are restricted to the UD
relation types, i.e. sublabels are ignored. COMBO
ranks 4th, achieving 84.71% ELAS in the quali-
tative evaluation (an average over treebanks), and
83.79% ELAS in the coarse evaluation (an aver-
age over languages). In terms of EULAS, it ranks
4th achieving 86.30% in the qualitative evaluation,
and 5th achieving 85.20% in the coarse evalua-
tion. In addition to ELAS and EULAS metrics,
the systems are also compared in terms of qual-
ity of predicting labelled dependency trees mea-
sured with LAS (the secondary evaluation mea-
sure). In the LAS ranking, COMBO takes second
place achieving 88.91% in the qualitative evalua-
tion, and 87.84% in the coarse evaluation, being
slightly overcome by the ROBERTNLP system
(89.25% in the qualitative evaluation, and 89.18%
in the coarse evaluation). Table 3 presents the offi-
cial results of COMBO models per language.

Language LAS EULAS ELAS

Arabic 81.04 78.35 76.39
Bulgarian 89.52 87.41 86.67
Czech 93.30 90.57 89.08
Dutch 90.93 88.90 87.07
English 87.22 85.27 84.09
Estonian 87.53 85.56 84.02
Finnish 92.28 88.79 87.28
French 89.29 88.10 87.32
Italian 93.27 91.16 90.40
Latvian 90.25 86.22 84.57
Lithuanian 84.75 81.28 79.75
Polish 92.75 90.22 87.65
Russian 94.29 91.76 90.73
Slovak 91.72 88.53 87.04
Swedish 87.82 85.26 83.20
Tamil 56.28 53.49 52.27
Ukrainian 90.96 87.60 86.92
Average 87.84 85.20 83.79

Table 3: The official evaluation results per language.

Post-processing impact We measure the impact
of the post-processing step (i.e. extending graph
labels with case information and correcting edges
coming into the function words) on the develop-
ment data per language (see Table 4). Following
the training approach, we concatenate the datasets

according to the gold standard.

Language
Before After

EULAS ELAS EULAS ELAS

Arabic 77.46 57.32 77.89 76.40
Bulgarian 89.50 78.97 90.29 89.30
Czech 89.93 74.96 91.28 89.91
Dutch 87.96 76.22 88.94 87.64
English 85.13 74.40 85.49 84.30
Estonian 86.27 68.73 86.92 85.45
Finnish 86.98 72.08 87.92 86.44
French 90.48 89.99 91.10 90.62
Italian 89.84 75.47 91.10 90.31
Latvian 85.65 73.72 86.44 84.88
Lithuanian 82.37 63.56 83.41 82.32
Polish 90.08 77.97 90.64 87.64
Russian 90.43 75.93 91.03 90.10
Slovak 87.89 71.71 89.39 87.90
Swedish 85.62 73.59 86.09 84.07
Tamil 54.35 40.48 54.84 53.38
Ukrainian 88.30 73.51 89.13 88.52

Table 4: Impact of the post-processing step.

Language
Sentences Tokens

TGIF Stanza TGIF Stanza

Arabic 96.87 79.92 99.99 99.97
Dutch 94.32 83.82 99.90 99.89
Lithuanian 96.22 87.74 99.99 99.81
Swedish 99.03 93.64 99.86 99.44

Table 5: The quality of TGIF and Stanza segmentation
in the selected languages.

if a language has multiple treebanks. The sec-
ond rule modifies the graph structure. However,
as the EULAS scores are almost negligible, using
this rule seems questionable. The first rule, in turn,
does not modify the structure of EUD graphs, but
only their edge labels, and its impact on improving
ELAS scores is significant.

Segmentation drawback The official evaluation
results show significant discrepancies in the qual-
ity of tokenisation and sentence segmentation.
The highest differences in sentence segmentation
between TGIF, the winner of the shared task, and
Stanza used in our approach are shown in Table 5.
For example, there is a loss of more than 15 percent-
age points in sentence segmentation of the Arabic
texts. We therefore decide to investigate the im-
pact of the quality of sentence segmentation and
tokenisation on the final results. For this purpose,
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Language LAS EULAS ELAS

Arabic 81.04 (+4.51) 78.35 (+4.3) 76.39 (+4.24)
Dutch 90.93 (+1.52) 88.90 (+1.61) 87.07 (+1.59)
Lithuanian 84.75 (+1.35) 81.28 (+1.34) 79.75 (+1.31)
Swedish 87.82 (+1.24) 85.26 (+1.21) 83.20 (+1.17)

Table 6: Performance gain in predicting UD trees and EUD graphs of gold-standard tokanised test sentences from
the languages with the worst segmentation quality. The values in brackets show the improvement over the baseline
(i.e. Stanza tokenisation).

we conduct an additional experiment consisting
in predicting EUD graphs on the test data with
gold-standard tokenisation and sentence segmen-
tation. The results of this experiment show a gain
of around 1.5 pp for all tested languages except
Arabic with the gain over 4 pp (see Table 6).

6 Conclusion

We presented the COMBO-based solution to EUD
parsing which took part in the IWPT 2021 EUD
shared task. The proposed approach is hybrid,
i.e. based on machine learning and rule-based al-
gorithms. First, UD trees and EUD graphs (and
also morphosyntactic features of tokens, i.e. parts
of speech, morphological features, and lemmata)
are automatically predicted with the data-driven
COMBO system. Then, the predicted structures are
combined into the EUD graphs using the developed
rule-based merge algorithm. Finally, the labels of
modifiers and conjuncts in the merged EUD graphs
are extended with case information using an ex-
pansion rule. The proposed solution is simple and
language-independent. We recognise that we could
still improve the results, e.g. by defining language-
specific correction rules. However, our objective
was to build an easy-to-use system for predicting
EUD graphs that is publicly available and can be
efficiently use to solve sophisticated NLU tasks.
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and Ireneusz Gawlik. 2021. HerBERT: Efficiently
pretrained transformer-based language model for
Polish. In Proceedings of the 8th Workshop on Balto-
Slavic Natural Language Processing, pages 1–10,
Kiyv, Ukraine. Association for Computational Lin-
guistics.

Joakim Nivre, Johan Hall, Sandra Kübler, Ryan Mc-
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