
Proceedings of the 17th International Conference on Parsing Technologies (IWPT 2021), pages 106–118
Bangkok, Thailand (online), August 6, 2021. ©2021 Association for Computational Linguistics

106

Strength in Numbers: Averaging and Clustering Effects in Mixture of
Experts for Graph-Based Dependency Parsing

Xudong Zhang, Joseph Le Roux, Thierry Charnois
Laboratoire d’Informatique de Paris Nord,

Université Sorbonne Paris Nord – CNRS UMR 7030,
F-93430, Villetaneuse, France

{xudong.zhang,leroux,thierry.charnois}@lipn.fr

Abstract
We review two features of mixture of ex-
perts (MoE) models which we call averag-
ing and clustering effects in the context of
graph-based dependency parsers learned in a
supervised probabilistic framework. Averag-
ing corresponds to the ensemble combination
of parsers and is responsible for variance re-
duction which helps stabilizing and improving
parsing accuracy. Clustering describes the ca-
pacity of MoE models to give more credit to
experts believed to be more accurate given an
input. Although promising, this is difficult to
achieve, especially without additional data.

We design an experimental set-up to study the
impact of these effects.Whereas averaging is
always beneficial, clustering requires good ini-
tialization and stabilization techniques, but its
advantages over mere averaging seem to even-
tually vanish when enough experts are present.

As a by product, we show how this leads
to state-of-the-art results on the PTB and the
CoNLL09 Chinese treebank, with low vari-
ance across experiments.

1 Introduction

Combinations of elementary parsers are known to
improve accuracy. Sometimes called joint systems,
they often use different representations, i.e. lexi-
calized constituents and dependencies (Rush et al.,
2010; Green and Žabokrtský, 2012; Le Roux et al.,
2019; Zhou et al., 2020). These approaches have
been devised to join the strengths and overcome
the weaknesses of elementary systems.

In this work, however, we follow another line
of research consisting of mixtures and products
of similar experts (Jacobs et al., 1991; Brown and
Hinton, 2001), instantiated for parsing in (Petrov
et al., 2006; Petrov, 2010) and especially appealing
when individual experts have high variance, typi-
cally when training involves neural networks. In-
deed Petrov (2010) used products of experts trained

via Expectation-Maximization (a non-convex func-
tion minimization) converging to local minima.

In this work we propose to study the combina-
tion of parsers, from a probabilistic point of view,
as a mixture model, i.e. a learnable convex inter-
polation of probabilities. This has previously been
studied in (Petrov et al., 2006) for PCFGs with the
goal of overcoming the locality assumptions, and
we want to see if neural graph-based dependency
parsers, with non-markovian feature extractors, can
also benefit from this framework. It has several
advantages: it is conceptually simple and easy to
implement, it is not restricted to projective depen-
dency parsing (although we only experiment this
case), and while the time and space complexity in-
creases with the number of systems, this is hardly a
problem in practice thanks to GPU parallelization.

Simple averaging models, or ensembles, can also
be framed as mixture models where mixture coeffi-
cients are equal. We are able to quantify the vari-
ance reduction, both theoretically and empirically
and show that this simple model of graph-based
parser combinations perform better on average, and
achieve a higher accuracy than single systems.

While the full mixture model is appealing, since
it could in principle both decrease variance and find
the optimal interpolation weights to better combine
parser predictions, the non-convexity of the learn-
ing objective is a major issue that, when added
to the non-convexity of potential functions, can
prevent parameterization to converge to a good so-
lution. By trying to specialize parsers to specific
input, the variance is not decreased. More impor-
tantly, experiments indicate that useful data, that is
data with an effect on parameterization, becomes
too scarce to train the clustering device.

Another drawback of finite mixture models is
that inference, i.e. finding the optimal tree, be-
comes intractable. We tackle this issue by using
an alternative objective similar to Minimal Bayes-

107

Risk (Goel and Byrne, 2000) and PCFG-LA combi-
nation (Petrov, 2010) for which decoding is exact.

Our contribution can be summarized as follows:
• We frame dependency parser combinations as

finite mixture models (§2) and discuss two
properties: averaging and clustering. We de-
rive an efficient decoder (LMBR) merging pre-
dictions at the arc level (§3).

• When isolating the averaging effect, we show
that resulting systems exhibit an empirical
variance reduction which corroborates theoret-
ical predictions, and are more accurate (§4).

• We study the causes of instability in mix-
ture learning, outline why simple regulariza-
tion is unhelpful and give an EM-inspired
learning method preventing detrimental over-
specialization (§5). Still, improvement over
mere averaging is difficult to achieve.

• These methods obtain state-of-the-art results
on two standard datasets, the PTB and the
CoNLL09 Chinese dataset (§6), with low vari-
ance making it robust to initial conditions.

2 Mixture of Experts

2.1 Notations

We write a sentence as x = x0, x1, . . . , xn, with
x0 a dummy root symbol, and otherwise xi the ith

word, and n the number of words. For h, d ∈ [n]
with [n] = {0, . . . , n}, (h, d) is the directed arc
from head xh to dependent xd. We note the set of
all parse trees (arborescences) for x asY(x) and the
elements in this set as y ∈ Y(x), with (h, d) ∈ y
if (h, d) is an arc in y. L stands for the set of arc
labels. The vector of arc labels in tree y is noted as
l(y) ∈ Ln. We note l(y)hd the label for arc (h, d)
in y, or lhd when y is clear from the context.

2.2 Parsers as Experts

Experts can be any probabilistic graph-based de-
pendency parser, provided that we can efficiently
compute the energy of a parse tree, the global en-
ergy of a sentence (the sum of all parse tree ener-
gies, called the partition function) and the marginal
probability of an arc in a sentence. In the remain-
ing we focus on projective first- and second-order
parsers, where these quantities are computed via
tabular methods or backpropagation1.

1Matrix-tree theorem could be used to adapt this work to
non-projective first-order models (Smith and Smith, 2007)

Tree structure For a graph-based dependency
parser, the tree probability is defined as:

p(y|x) =
exp(s(x, y))

Z(x) ≡
∑

y′∈Y(x) exp(s(x, y′))

with s(x, y) the tree energy giving the correctness
of y for x, and Z(x) the partition function.

In first-order models (Eisner, 1996), tree scores
are sums of arc scores:

s(x, y) =
∑

(h,d)∈y

s(h, d)

Eisner (1997) generalizes scores to the second-
order by considering pairs of adjacent siblings:

s(x, y) =
∑

(h,d)∈y

s(h, d) +
∑
(h,d1)

(h,d2)∈y

s(h, d1, d2)

with h < d1 < d2 or d2 < d1 < h. For projec-
tive first- or second-order models, Z(x) and p(y|x)
are efficiently calculated (Zhang et al., 2020b).
Moreover marginal arc probability p

(
(h, d)|x

)
can

be efficiently calculated from the partition func-
tion by applying backpropagation from logZ(x)
to s(h, d), see (Eisner, 2016; Zmigrod et al., 2020;
Zhang et al., 2020a):

p((h, d)|x) =
∑

y∈Y(x)
(h,d)∈y

p(y|x) =
∂ logZ(x)

∂s(h, d)

Tree Labelling The labelling model is also a
Boltzmann distribution:

p(l|(h, d), x) =
exp(s(l, h, d))∑

l′∈L exp(s(l′ , h, d))

where s(l, h, d) is the score for label l on (h, d).
Following (Dozat and Manning, 2017; Zhang

et al., 2020a), label predictions are independent:

p(l(y)|y, x) =
∏

(h,d)∈y

p(lhd|(h, d), x) (1)

Parse Probability Given the structure y and its
labelling l(y), the parse probability is:

p
(
l(y), y|x

)
= p(y|x)× p

(
l(y)|y, x

)
(2)

Learning Potential functions s can be imple-
mented by feed-forward neural networks or biaffine
functions (Dozat and Manning, 2017), and parame-
terized by maximizing a log-likelihood.

108

2.3 Mixture and Averaging
For arborescence probabilities a finite mixture
model (MoE) is a weighted sum of the probabilities
given by all experts:

p(y|x) =
K∑
k=1

ωk(x)pk(y|x) (3)

where mixture weights verify ∀x, ωk(x) ≥ 0 and∑K
k=1 ωk(x) = 1 and can be adjusted by a gating

network (Jacobs et al., 1991). We can interpret
ω as a device whose role is to cluster input in K
categories and assign each category to an expert.

By forcing ωk(x) = 1
K , ∀x, we have a simpler

averaging model, sometimes called ensemble:

p(y|x) =
1

K

K∑
k=1

pk(y|x)

Note that MoEs combine elementary probabil-
ities, not tree scores: each expert energy is first
normalized before the combination.

A similar mixture is applied to labelling, i.e.:

p(l(y)|y, x) =

K∑
k=1

λk(x)pk(l(y)|y, x)

3 Decoding with a Mixture Model

Learning MoEs will be covered in Section 5 and we
first turn to the problem of finding an appropriate
tree, for instance the most probable parse tree:

y∗ = argmax
y∈Y(x)

p(y|x) = argmax
y∈Y(x)

K∑
k=1

ωk(x)pk(y|x)

This maximization is difficult, even in the ab-
sence of labels, since this isn’t a log-linear function
of the arc scores anymore: y∗ cannot be searched
in the log-space among unnormalized arc scores.

3.1 MBR Decoding
In this case, a more attractive alternative is Mini-
mum Bayesian Risk (MBR) decoding (Smith and
Smith, 2007), because it decomposes error in a
way similar to the metrics used in dependency pars-
ing (UAS/LAS) and is tractable. MBR requires to
compute marginal arc probabilities which are the
weighted sums of elementary marginals:

p
(
(h, d)|x

)
=

K∑
k=1

ωk(x)pk
(
(h, d)|x

)

The intuition behind MBR is that instead of max-
imizing the probability of the parse tree, we try to
minimize the risk of choosing wrong arcs, i.e. to
maximize the arc marginals in the parse tree:

y∗ = argmax
y∈Y(x)

∏
(h,d)∈y

p
(
(h, d)|x

)
= MBR(x)

Once computed marginal log-probabilities, Eis-
ner algorithm (Eisner, 1996), (Eisner, 1997) or
Chu-Liu-Edmonds (McDonald et al., 2005) can
be applied to solve MBR.

3.2 MBR Decoding with Labels

In many dependency parsing models, decoding of
arcs and labels is pipelined, see for instance (Dozat
and Manning, 2017; Zhang et al., 2020a; Fossum
and Knight, 2009): first arcs are decoded and then,
with the decoded arcs, maximization is performed
over labels:

y∗ = argmax
y∈Y(x)

p(y|x) then l∗ = argmax
l=l(y∗)

p(l|y∗, x)

However, solutions found this way are not the
maximizers for p(l, y|x), as defined in Eq. 2. The
problem is that the effect of labelling is not consid-
ered in arc decoding: a high probability arc can get
picked up even with a low label score.

First we remark that each label in l∗ is the most
probable label l for a pair (h, d), denoted by Lhd =
argmaxl∈L p(l|(h, d), x) . Decoding becomes:

y∗ = argmax
y

p(y|x)
∏

(h,d)∈y

p(Lhd|(h, d), x)

This way l∗ is deterministic wrt to y∗ and (y∗, l∗)
are maximizers for Eq. 2. We note labelling L(y)
where l(y)hd = Lhd,∀(h, d) ∈ y. This can be
combined with MBR without changing decoding
algorithms, and we call this variant LMBR:

y∗ = argmax
(y,l=L(y))

∏
(h,d)∈y

p
(
(h, d)|x

)
p
(
Lhd|(h, d), x

)
i.e. we can apply MBR with arc probabilities repa-
rameterized with label probabilities. Experiments
show that LMBR exhibits a small but consistent
accuracy increase over MBR.

109

4 Averaging and Variance Reduction

In this section we assume all experts to be equally
weighted. We define the variance of the system on
T as the average variance of marginal arc probabil-
ity:

σ2 =

∑
(x,y)∈T

∑
(h,d)∈y σ

2
(
p
(
(h, d)|x

))∑
(x,y)∈T |y|

with σ2(p((h, d)|x)) the variance of the marginal
probability.

We show how the variance of the MoE is smaller
than the variance of experts. We focus on structure
prediction p(y|x), but definitions are applicable to
the labelling model as well. This is an already
known result for mixture models in general, but the
proof is here instantiated for a mixture of graph-
based parsers. Moreover, we will recover this result
experimentally in Section 6.

Assuming we have a mixture of K elementary
systems, we will estimate the marginal probability
variance with:

σ2
(
p
(
(h, d)|x

))
=

1

K

K∑
k=1

(π(k)− π̄)2

with π(k) the probability pk
(
(h, d)|x

)
given by

the kth elementary system and average π̄ =
1
K

∑K
k=1 π(k)

Increasing the number of experts in the MoE
will decrease variance of the system. To see this,
we assume that the marginal probability for a well
trained expert, over a fixed sentence and a fixed
arc, is a measurable function f(h,d),x : R → R of
a random seed Sk ∈ R, which represents the fact
that pk is the result of a learning process with many
sources of randomization2 (initialization, stochastic
batches, dropout. . .):

pk((h, d)|x) = f(h,d),x(Sk)

with Sk ∈ R a random seed assigned to kth ex-
pert at the beginning of training, assumed to be
independent for different experts.

Since in practice a pseudo-random generator is
used, the value of marginal probability for partic-
ular sentence and arc is deterministic when the
random seed is fixed. Thus, it is sufficient to use
a deterministic function to represent pk((h, d), x),

2f should also be indexed by the training set, but we omit
this for the sake of readability.

with random seed Sk as input. Moreover, we just
need the function to be measurable.

We can now view f(h,d),x(S) as a random vari-
able and we note its variance as σ2(h,d),x. It is in fact
the variance of the marginal arc probability given
by this expert, for (h, d) given x. For an averaging
MoE, the marginal probability becomes:

p((h, d)|x) =
1

K

K∑
k=1

f(h,d),x(Sk)

with K number of experts in the mixture model.
If random variables {Sk}k∈K are independent,
{f(h,d),x((Sk)}k∈K also are independent (Baldi,
2017). Thus, the variance of the mixture model
for particular sentence and arc should be 1

K times
the variance of experts:

Σ2
(h,d),x =

σ2(h,d),x

K
(4)

with Σ the variance of the mixture model. In other
words, the log-variance of a mixture model de-
creases linearly with logK, with slope −1, i.e.:

log Σ2
(h,d),x = log σ2(h,d),x − logK

Experiments in Section 6 Figure 1 show that
the estimated log-variance of the averaging system
decreases when the number of experts increases
and that this relation is close to linear with a slope
approaching −1, comforting our independence as-
sumption.

5 Training with Clustering

When mixture weights are adjustable, MoE models
are able to give more credit to experts believed
to perform better on specific input. This can be
exploited during parameterization. The role of ω is
thus to learn how to cluster input into K categories,
each category being assigned to an expert.3

For input sentence x and corresponding tree y,
assuming parameterization is performed by max-
imizing the log-likelihood of the training set via
SGD, the objective of mixture model learning with
gating network ω can be written as:

L(φ, θ) = log

K∑
k=1

ωk(x;φ)pk(y|x; θk) (5)

3We note that averaging MoE models do not require a
specific training: experts can be trained separately and the
ensemble is gathered at decoding time only.

110

where φ are the parameters of the gating network,
and θk are the parameters of the kth expert.

Partial derivatives to the gating network are:

∂L(φ, θ)

∂φ
=

K∑
k=1

ωk(φ)pk(θk)∑K
k′=1

ωk′ (φ)pk′ (θk′)

∂ logωk(φ)

∂φ

(6)
while for expert parameters we have:

∂L(φ, θ)

∂θk
=

ωk(φ)pk(θk)∑K
k′=1

ωk′ (φ)pk′ (θk′)

∂ log pk(θk)

∂θk
.

(7)
We found that optimizing directly with equa-

tions (6) and (7) causes degeneration, i.e. one ωk
approaches 1 while the other ωk′ decrease to almost
0. Indeed, gradient ascent with (6) will increase
ωk for an expert k that gives high weight to train-
ing samples while gradient ascent with (7) will
generate increased gradient, and in turn increased
probabilities, for experts with high value of ωk.
The two processes re-enforce each other and result
quickly in an extreme partition between experts.

One may think that the degeneration problem can
be alleviated with a smoothing prior or regulariza-
tion. In practice, we tried entropy as regularization
to force towards a uniform distribution on ωk. We
found that a heavy entropy penalization is required
to avoid the degeneration problem, which makes
ωk too uniform to be an accurate clustering device.

Avoid Extreme Partition Thus, to alleviate the
degeneration problem without forcing a strong
smoothing constraint, we propose to modify Eq.
(6) into:

∂L
′
(φ, θ)

∂φ
=

K∑
k=1

pk(θk)∑K
k′=1

pk′ (θk′)

∂ logωk(φ)

∂φ

(8)
i.e. we force the weight update to be proportional
to the relative probability. The advantage of Eq.
(8) is that gradient are weighted by a more objec-
tive quantity pk(θk)∑K

k
′
=1

p
k
′ (θ

k
′)

. For an example where

pk(x) is close to uniform, we can benefit from the
averaging effect, while for an example which shows
strong preference for a particular expert, we can
also learn the partition coefficients proportional to
their correctness.

Stabilize Training Neuron dropout (Srivastava
et al., 2014) is a common technique to avoid over-
fitting which unfortunately proved difficult in this
setting. The problem is that sk(x, y) gives very dif-
ferent results with or without dropout which reflects

on pk(y|x) causing drastic changes from one eval-
uation to the other. To mitigate this problem, we
use probabilities without dropout (noted as p̃k(θ))
to calculate the weighted coefficients of gradient.

The final optimization process can be separated
into two alternate parts, (i) optimization of the gat-
ing parameters:

∂L
′
(φ, θ)

∂φ
=

K∑
k=1

p̃k(θk)∑K
k′=1

p̃k′ (θk′)

∂ logωk(φ)

∂φ

and (ii) optimization of experts:

∂L(φ, θ)

∂θk
=

K∑
k=1

ω(φ)p̃k(θk)∑K
k′=1

ωk′ p̃k′ (θk′)

∂ log pk(θk)

∂θk

In practice, this permitted reaching a lower loss
value after training.

6 Experiments

Data We run experiments over two datasets for
projective dependency parsing: The English Penn
Treebank (PTB) data with Stanford Dependencies
(Marcus et al., 1993) and CoNLL09 Chinese data
(Hajič et al., 2009). We use standard train/dev/test
splits and evaluate with UAS/LAS metrics. Cus-
tomarily, punctuation is ignored on PTB evaluation.

Experts We run tests with first-order (FOP) and
second-order parsers (SOP) as mixture model ex-
perts, with re-implemented versions of the CRF
and CRF2o parsers of Zhang et al. (2020a).4 For
decoding, we use the LMBR decoding presented
in Section 3.2, which guarantees a small but con-
sistent improvement over pipeline MBR decoding.

For each input word, these systems use 3 em-
beddings: the first is a fixed pretrained vector5, the
second is trainable and looked-up in a table, and
the third is computed by a BiLSTM at the character
level (CharLSTM). The first two embeddings are
summed and concatenated with the char sequence
embedding. For FOP and SOP, contextual lexical
features are the results of 3-layer BiLSTMs applied
to word embedding sequences. The scoring of arcs
is then similar to (Dozat and Manning, 2017): lex-
ical features are transformed for head or modifier
roles by two feed-forward networks and combined
to score arcs via a biaffine transformation.

4https://github.com/kidlestar/MOE.git.
5For English we used Glove embeddings (Pennington et al.,

2014), while for Chinese we extracted pretrained embeddings
from the publicly available model of Zhang et al. (2020b).

https://github.com/kidlestar/MOE.git

111

On PTB, in order to compare with recent pars-
ing results, we set up BFOP and BSOP (B for
Bert), variants of the FOP and SOP settings: we
follow Fonseca and Martins (2020) and concate-
nate an additional BERT embedding (Devlin et al.,
2019) (the average of the 4 last layers of the bert-
base-uncased model) to the embedding vector fed
to the BiLSTM layers.

Gating (mixture weights ω) is implemented by
a K-class softmax over a feed-forward network
whose input are the concatenation of initial and
final contextual lexical feature vectors returned by
the 3-layer BiLSTM. Hyper-parameters are set sim-
ilarly to Zhang et al. (2020a), with the exception
of the learning rate decreased to 10−4 and patience
(that is the maximum number of epochs without
LAS increase on the development set) set to 20.

We train 12 independent models for each expert
type, with random seed set to system time.

6.1 Averaging Effect Analysis

The experimental procedure is shown in Experi-
mental Setup 1, with M1, . . . ,M12 denoting the
trained experts, K number of experts in the mix-
ture model and r the number of repetitions.

Models: M1, . . . ,M12;
Initialization: K, r;
repeat r times

1. Shuffle the order of M1, . . . ,M12;
2. Combine sequentially every K

models together, creating 12/K
mixture averaging models;

3. Compute UAS, LAS of models;
4. Calculate system variance for models;

end
Experimental Setup 1: Averaging Effect

We set K from 1 to 6 with r always set to 5. We
show results for PTB and CoNLL09 Chinese on
dev data for each type of mixture of experts, and
different number of experts in Table 1 and Table 3.
For UAS and LAS, each entry is given as:

Averagemax
min ± std

where average is the average score for all trials
in this setting and max (resp. min) is the highest
(resp. lowest) score obtained by an experiment in
this setting. We also give standard deviation std as
a way to see the effects of variance reduction.

Finally the last row gives the average relative
error reduction (R.E.R) from single expert mode
(K = 1) to ensemble mode with K = 6.

6.2 Clustering Effect Analysis

We conduct clustering effect analysis over the mix-
ture model with 6 experts. Preliminary experi-
ments showed that, like in most non-convex prob-
lems, good initialization is very important. For that
reason we use already trained experts as starting
points6 although the mixture could benefit from
more diversely trained experts. We leave this for
future work. The procedure is described in Ex-
perimental Setup 2 and this whole procedure is
repeated 5 times to compute average performance.

Models: M1, . . .M12;
Initialization: K = 6;
repeat r times

1. Select randomly K models, creating
mixture models;

2. Do fine tuning of mixture models
with gating network;

3. Calculating UAS, LAS of mixture
model after fine tuning;

end
Experimental Setup 2: Clustering Effect

Scores on development set before and after fine
tuning are shown in Table 4. Note that because
shuffling might give different candidate sets than
in the averaging experiments UAS and LAS results
are not exactly the same as K = 6 results in Ta-
ble 1, Table 2 and Table 3.

6.3 Discussion

Averaging Tables 1 to 3 show that UAS and LAS
generally increase on average with the number of
models in the mixture model, and that ensemble
performs often on average better than the best sin-
gle systems in each category (notable exceptions:
UAS for FOP and models with BERT on PTB).

Averaging generally decreases the standard devi-
ation, which is evident for (B)FOP. For (B)SOP the
decrease trend is less clear. However, we still found
that the smallest standard deviation is usually given
by high number of experts (K = 5, 6).

6We tried deterministic annealing with both randomly ini-
tialized experts and already trained experts. While it helped
in the former case, the latter was more accurate, but still less
accurate than systems trained without.

112

K FOP SOP
UAS LAS UAS LAS

1 95.83 96.04
95.72 ±0.08 94.06 94.24

93.91±0.08 95.87 95.94
95.77±0.06 94.07 94.16

93.97±0.05

2 95.88 96.04
95.76 ±0.06 94.15 94.32

94.05±0.07 95.92 96.05
95.85±0.05 94.15 94.27

94.08±0.04

3 95.93 96.03
95.84±0.05 94.22 94.32

94.11±0.05 95.94 96.04
95.85±0.06 94.18 94.27

94.08±0.06

4 95.95 96.04
95.90 ±0.04 94.24 94.35

94.16 ±0.05 95.98 96.07
95.91 ±0.05 94.22 94.31

94.15 ±0.04

5 95.93 96.00
95.84±0.04 94.24 94.33

94.14±0.05 95.98 96.04
95.92±0.04 94.24 94.29

94.18±0.03

6 95.95 95.98
95.91±0.02 94.24 94.30

94.21±0.03 95.98 96.01
95.94±0.02 94.24 94.28

94.18±0.03

R.E.R. 2.88% 3.03% 2.66% 2.87%

Table 1: PTB dev results, with First-Order (FOP) and Second-Order (SOP) parsers as experts.

K BFOP BSOP
UAS LAS UAS LAS

1 96.31 96.46
96.23±0.06 94.60 94.77

94.53±0.06 96.35 96.42
96.23±0.04 94.63 94.68

94.55±0.04

2 96.37 96.48
96.26±0.05 94.69 94.79

94.61±0.05 96.38 96.51
96.26±0.06 94.71 94.79

95.60±0.05

3 96.40 96.49
96.33±0.04 94.74 94.82

94.68±0.04 96.39 96.50
96.29±0.06 94.71 94.79

94.61±0.04

4 96.43 96.53
96.38 ±0.04 94.77 94.89

94.72 ±0.04 96.38 96.47
96.28±0.05 94.72 94.79

94.62±0.05

5 96.45 96.51
96.38±0.04 94.79 94.85

94.74±0.04 96.41 96.52
96.29 ±0.06 94.73 94.82

94.65 ±0.05

6 96.44 96.51
96.40±0.03 94.79 94.85

94.74±0.03 96.39 96.46
96.32±0.04 94.73 94.82

94.67±0.04

R.E.R. 3.52% 3.52% 1.64% 1.86%

Table 2: PTB dev results, with Bert-First-Order (BFOP) and Bert-Second-Order (BSOP) parsers as experts.

K FOP SOP
UAS LAS UAS LAS

1 89.20 89.42
89.04±0.12 86.28 86.49

86.10±0.12 89.40 89.48
89.31±0.06 86.45 86.52

86.28±0.07

2 89.44 89.60
89.32±0.08 86.59 86.74

86.45±0.08 89.65 89.78
89.51±0.07 86.76 86.89

86.57±0.07

3 89.55 89.66
89.39±0.07 86.71 86.82

86.54±0.07 89.74 89.86
89.62±0.07 86.86 86.98

86.72±0.08

4 89.62 89.68
89.52±0.04 86.80 86.87

86.70±0.05 89.83 89.94
89.70±0.08 86.96 87.08

86.86±0.07

5 89.66 89.71
89.57±0.04 86.83 86.89

86.75±0.04 89.87 89.98
89.75 ±0.07 87.00 87.11

86.87 ±0.07

6 89.66 89.77
89.61±0.05 86.85 86.93

86.81±0.04 89.87 89.93
89.79±0.05 87.00 87.08

86.92±0.04

R.E.R. 4.26% 4.15% 4.43% 4.06%

Table 3: CoNLL09 dev results, with First-Order (FOP) and Second-Order (SOP) parsers as experts.

Method PTB CoNLL09 Chinese
UAS LAS UAS LAS

FOP 95.94 95.96
95.91±0.02 94.23 94.26

94.21±0.02 89.67 89.71
89.62±0.03 86.86 86.91

86.81±0.04

CFOP 95.98 96.00
95.94±0.02 94.29 94.31

94.27±0.02 89.68 89.72
89.62±0.04 86.86 86.90

86.80±0.04

SOP 95.98 96.00
95.95±0.02 94.23 94.28

94.20±0.03 89.85 89.92
89.81±0.04 86.98 87.06

86.93±0.06

CSOP 95.99 96.01
95.97±0.01 94.25 94.28

94.22±0.02 89.89 89.95
89.82±0.04 87.03 87.12

86.95±0.06

BFOP 96.43 96.46
96.42±0.02 94.79 94.82

94.76±0.02 - -

CBFOP 96.42 96.46
96.39±0.03 94.78 94.81

94.72±0.03 - -

BSOP 96.41 96.46
96.37±0.04 94.75 94.82

94.67±0.05 - -

CBSOP 96.42 96.46
96.38±0.04 94.76 94.82

94.70±0.05 - -

Table 4: Clustering Effect with K = 6 on dev, where CFOP, CSOP, CBSOP represent models after training

We remark that on PTB similar performance on
dev was achieved by FOP and SOP, with a slightly
better UAS for SOP, which is expected by the ca-
pacity of the model to better represent structures.
This corroborates findings of (Falenska and Kuhn,
2019). But this contradicts results for CoNLL09
where SOP always gives best results, in line with
observations of Fonseca and Martins (2020). For

BERT experiments on PTB, BSOP achieves better
performance than BFOP with one or two experts.
However, when the number of experts increases,
BFOP outperforms BSOP.

We complement our discussion with Figure 17

which depicts variance reduction by the number of
7For CoNLL09, we found similar results. The figure is not

shown for space limitation.

113

experts in log-scale: almost linear of for all models,
as predicted by our independence assumption.

We note that UAS and LAS improves little or not
at all from K = 5 to K = 6. This is in accordance
with the variance analysis for that the decrease
of variance will become smaller when number of
experts becomes higher. Indeed, applying Eq. (4),
the decrease of variance from K = 1 to K = 2 is
1
2σ

2
(h,d),x, while from K = 5 to K = 6 it is only

1
30σ

2
(h,d),x, 15 times lower. This correponds to the

observation the improvements of UAS and LAS
tend to decrease with the number of experts until it
reaches a plateau.

0 0.4 0.8 1.2 1.6
−9

−8

−7

−6

logK

lo
g

Σ
2

BFOParc
BFOPlabel
BSOParc

BSOPlabel
FOParc

FOPlabel
SOParc

SOPlabel

Figure 1: Variance by experts on PTB Dev Data.

Clustering We found that a modest improve-
ment on UAS and LAS (0.01%-0.06% absolute)
can be achieved by clustering (except for FOP on
CoNLL09 Chinese). The average performance ben-
efits generally from clustering while a tiny decrease
(0.01%) is observed for BFOP on PTB.

Since FOP, SOP, BFOP and BSOP are all strong
learners for PTB and CoNLL09 Chinese, i.e. UAS
and LAS approaches 99% for both PTB and
CoNLL09 on training data for all models, we can
assume that an expert belonging to one of these
models can learn efficiently most of the training
data, as opposed to just a portion of it. Thus, only a
a few of training instances can significantly be bet-
ter covered by clustering. Moreover, as averaging
has already achieved a considerable improvement
(around 0.2%-0.6% absolute), a biased ωk obtained
from clustering may harm the gain from averaging.

6.4 Results on Test

Tables 5 and 6 show test results on PTB and
CoNLL09, comparisons with recent models. We
show test results of SOP and CSOP with 6 experts
for PTB and CoNLL09. Additionally for PTB, we
show BFOP, CBFOP, BSOP and CBSOP with 6

experts to make comparison with recent parsers,
often more sophisticated than our approach, with
BERT. We give the results with the same typograph-
ical system as Zhang et al. (2020a) Please note that,
while average results keep the same semantics, max
and min give test results of the LAS highest- and
lowest- (resp.) scoring systems on the development
set. We note that results of Zhang et al. (2020a)
would correspond our model with K = 1.

For averaging models, we apply significance t-
tests (Dror et al., 2018) with level α = 0.05 to FOP,
BFOP, SOP, BSOP with K = 6 against K = 1.
For PTB and CoNLL09, p-value is always smaller
than 0.005. We note that for parsers without BERT,
averaging can achieve a considerable improvement
with SOP and gives new SOTA. We also point out
that, if FOP and SOP could find equivalently good
models on dev, SOP models seem to better general-
ize. For parsers with BERT, with a simple averag-
ing of BSOP, we achieve comparable performances
(or even better in case of LAS) when comparing to
more involved methods such as (Li et al., 2020; Mo-
hammadshahi and Henderson, 2021). It remains to
be seen whether they can also benefit from MoEs.

Regarding clustering, even if we obtained an av-
erage improvement on dev, test data hardly benefits
from it. Still, we note a small improvement of UAS
on SOP CoNLL09. Finally we stress that best per-
forming settings on PTB test, namely BSOP and
CBSOP, were not better performing than BFOP and
CBFOP on development data on average (although
max systems were similar): second-order models
seem to slightly better handle unseen data.

6.5 Parallel Training and Decoding

Training averaging ensembles can be paralleled
with sufficient GPUs, since each expert is trained in-
dependently. For fine tuning with clustering, most
of the training could in principle be paralleled as
well, although for the sake of simplicity we didn’t
implement such a training procedure: the training
time of clustering model increases linearly with
number of experts. As we only need a few epochs
for fine tuning, the overall training time is compa-
rable to training a single expert.

For decoding, calculations are performed in par-
allel as well. First marginal probabilities for arcs
and labels are computed for every expert in parallel.
Then they are combined either as a simple average
or as a weighted sum. Finally, we apply the de-
coding algorithm (LMBR) once over the combined

114

Method PTB CoNLL09 Chinese
UAS LAS UAS LAS

(Dozat and Manning, 2017) 95.74 94.08 88.90 85.38

(Li et al., 2019) 95.93 94.19 88.77 85.58

(Ji et al., 2019) 95.97 94.31 - -
(Zhang et al., 2020a) 96.14 94.49 89.63 86.52

FOP,K = 6 96.20 96.19
96.20±0.02 94.64 94.63

94.64±0.02 89.91 89.84
89.99±0.06 87.00 86.94

87.09±0.07

CFOP,K = 6 96.20 96.18
96.18±0.02 94.65 94.62

94.63±0.02 89.94 89.92
89.93±0.04 87.03 87.02

87.00±0.04

SOP,K = 6 96.29 96.30
96.29±0.02 94.71 94.72

94.73±0.02 90.06 90.14
89.97±0.07 87.12 87.19

87.00±0.07

CSOP,K = 6 96.27 96.27
96.32±0.03 94.69 94.70

94.72±0.03 90.07 90.00
89.99±0.08 87.12 87.24

87.02±0.09

Table 5: Comparison on test sets without BERT.

Method PTB
UAS LAS

(Li et al., 2020) 96.44 94.63

(Mohammadshahi and Henderson, 2021) 96.66 95.01

BFOP,K = 6 96.58 96.60
96.57±0.02 95.06 95.07

95.02±0.02

CBFOP,K = 6 96.58 96.59
96.54±0.02 95.06 95.07

95.02±0.02

BSOP,K = 6 96.64 96.66
96.58 ±0.02 95.09 95.11

95.12±0.03

CBSOP,K = 6 96.62 96.66
96.64 ±0.03 95.07 95.12

95.07 ±0.03

Table 6: Comparison of BERT models on PTB test set.

probability. The overhead is thus quite limited, for
instance with K = 6 the overall decoding time is
only around 10% higher than with a single expert.

7 Related Work

Ensembling parsers showed good results in shared
tasks (Che et al., 2018)8 and were framed as a
combination of experts in (Petrov, 2010). In this
work we show how this is related to mixtures and
distinguish averaging and clustering effects.

The use of mixture model for syntactic parsing
was introduced in (Petrov et al., 2006) for PCFG
models, where it provided an access to non-local
features unreachable to mere PCFGs. However,
now that powerful non-Markovian feature extrac-
tors (i.e. BiLSTMs or Transformers) are widely
used, the expected gain is more difficult to charac-
terize, but we hypothesize that it is related to the
softmax bottleneck (Yang et al., 2018) implied by
using different exponential models in all predic-
tions, even when richly parameterized.

We modelled parser combinations with finite
mixture models, but more sophisticated parsing
models (Kim et al., 2019) use infinite mixture mod-
els. In this case it might be more difficult to dis-
criminate between averaging and clustering. Our
mixture is essentially a latent variable model where

8Ensembling is widely used in Machine Translation shared
tasks, such as WMT.

the latent variables range over experts. Although
inspired from EM with neural networks, similarly
to (Nishida and Nakayama, 2020), other methods
based on ELBo and sampling could also be uti-
lized (Corro and Titov, 2019; Zhu et al., 2020).

8 Conclusion

We framed dependency parser combination as
a finite mixture model, showed that this model
presents two distinct properties –an averaging ef-
fect and a clustering effect– and devised an effi-
cient decoding method. Moreover, we studied the
impact of the averaging effect, namely variance
reduction during training, and consequently better
accuracy. We investigated the reasons of instability
when learning mixture models, and proposed an
EM-inspired method to avoid over-specialization.
When used as fine-tuning, this method may im-
prove accuracy over averaging. As a by-product,
this method gives state-of-the-art results when com-
bined with first-order and second-order projective
parsers on two standard datasets.

This work can be further expanded in future re-
search: the increase of parameters can be seen as
overparameterization, and many parameters must
be redundant. A potentially fruitful avenue of re-
search could be the investigation of the subnetwork
hypothesis, i.e. whether distillation could give a
smaller network with similar performance.

Acknowledgments

This work is partially supported by a public granto-
verseen by the French National Research Agency
(ANR) as part of the program Investissements
d’Avenir (ANR-10-LABX-0083). It contributes
to the IdEx Université de Paris (ANR-18-IDEX-
0001). This work is partially supported by a public
grant overseen by the French ANR (ANR-16-CE33-
0021).

115

References
Paolo Baldi. 2017. Stochastic calculus. In Stochastic

Calculus, pages 1–14. Springer.

Andrew D. Brown and Geoffrey E. Hinton. 2001. Prod-
ucts of hidden markov models. In Proceedings of
the Eighth International Workshop on Artificial In-
telligence and Statistics, AISTATS 2001, Key West,
Florida, USA, January 4-7, 2001. Society for Artifi-
cial Intelligence and Statistics.

Wanxiang Che, Yijia Liu, Yuxuan Wang, Bo Zheng,
and Ting Liu. 2018. Towards better UD parsing:
Deep contextualized word embeddings, ensemble,
and treebank concatenation. In Proceedings of the
CoNLL 2018 Shared Task: Multilingual Parsing
from Raw Text to Universal Dependencies, pages
55–64, Brussels, Belgium. Association for Compu-
tational Linguistics.

Caio Corro and Ivan Titov. 2019. Differentiable
perturb-and-parse: Semi-supervised parsing with a
structured variational autoencoder. In 7th Inter-
national Conference on Learning Representations,
ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.
OpenReview.net.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Timothy Dozat and Christopher D. Manning. 2017.
Deep biaffine attention for neural dependency pars-
ing. In 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April
24-26, 2017, Conference Track Proceedings. Open-
Review.net.

Rotem Dror, Gili Baumer, Segev Shlomov, and Roi Re-
ichart. 2018. The hitchhiker’s guide to testing statis-
tical significance in natural language processing. In
Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 1383–1392, Melbourne, Aus-
tralia. Association for Computational Linguistics.

Jason Eisner. 1996. Efficient normal-form parsing for
Combinatory Categorial Grammar. In 34th Annual
Meeting of the Association for Computational Lin-
guistics, pages 79–86, Santa Cruz, California, USA.
Association for Computational Linguistics.

Jason Eisner. 1997. Bilexical grammars and a cubic-
time probabilistic parser. In Proceedings of the Fifth
International Workshop on Parsing Technologies,
pages 54–65, Boston/Cambridge, Massachusetts,
USA. Association for Computational Linguistics.

Jason Eisner. 2016. Inside-outside and forward-
backward algorithms are just backprop (tutorial pa-
per). In Proceedings of the Workshop on Structured
Prediction for NLP, pages 1–17, Austin, TX. Asso-
ciation for Computational Linguistics.

Agnieszka Falenska and Jonas Kuhn. 2019. The (non-
)utility of structural features in BiLSTM-based de-
pendency parsers. In Proceedings of the 57th An-
nual Meeting of the Association for Computational
Linguistics, pages 117–128, Florence, Italy. Associ-
ation for Computational Linguistics.

Erick Fonseca and André F. T. Martins. 2020. Re-
visiting higher-order dependency parsers. In Pro-
ceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 8795–
8800, Online. Association for Computational Lin-
guistics.

Victoria Fossum and Kevin Knight. 2009. Combining
constituent parsers. In Proceedings of Human Lan-
guage Technologies: The 2009 Annual Conference
of the North American Chapter of the Association
for Computational Linguistics, Companion Volume:
Short Papers, pages 253–256, Boulder, Colorado.
Association for Computational Linguistics.

Vaibhava Goel and William J. Byrne. 2000. Minimum
bayes-risk automatic speech recognition. Comput.
Speech Lang., 14(2):115–135.

Nathan Green and Zdeněk Žabokrtský. 2012. Hy-
brid combination of constituency and dependency
trees into an ensemble dependency parser. In Pro-
ceedings of the Workshop on Innovative Hybrid Ap-
proaches to the Processing of Textual Data, pages
19–26, Avignon, France. Association for Computa-
tional Linguistics.

Jan Hajič, Massimiliano Ciaramita, Richard Johans-
son, Daisuke Kawahara, Maria Antònia Martı́, Lluı́s
Màrquez, Adam Meyers, Joakim Nivre, Sebastian
Padó, Jan Štěpánek, Pavel Straňák, Mihai Surdeanu,
Nianwen Xue, and Yi Zhang. 2009. The CoNLL-
2009 shared task: Syntactic and semantic depen-
dencies in multiple languages. In Proceedings of
the Thirteenth Conference on Computational Nat-
ural Language Learning (CoNLL 2009): Shared
Task, pages 1–18, Boulder, Colorado. Association
for Computational Linguistics.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Robert A Jacobs, Michael I Jordan, Steven J Nowlan,
and Geoffrey E Hinton. 1991. Adaptive mixtures of
local experts. Neural computation, 3(1):79–87.

Tao Ji, Yuanbin Wu, and Man Lan. 2019. Graph-
based dependency parsing with graph neural net-
works. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguis-
tics, pages 2475–2485, Florence, Italy. Association
for Computational Linguistics.

http://www.gatsby.ucl.ac.uk/aistats/aistats2001/files/brown143.ps
http://www.gatsby.ucl.ac.uk/aistats/aistats2001/files/brown143.ps
https://doi.org/10.18653/v1/K18-2005
https://doi.org/10.18653/v1/K18-2005
https://doi.org/10.18653/v1/K18-2005
https://openreview.net/forum?id=BJlgNh0qKQ
https://openreview.net/forum?id=BJlgNh0qKQ
https://openreview.net/forum?id=BJlgNh0qKQ
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://openreview.net/forum?id=Hk95PK9le
https://openreview.net/forum?id=Hk95PK9le
https://doi.org/10.18653/v1/P18-1128
https://doi.org/10.18653/v1/P18-1128
https://doi.org/10.3115/981863.981874
https://doi.org/10.3115/981863.981874
https://www.aclweb.org/anthology/1997.iwpt-1.10
https://www.aclweb.org/anthology/1997.iwpt-1.10
https://doi.org/10.18653/v1/W16-5901
https://doi.org/10.18653/v1/W16-5901
https://doi.org/10.18653/v1/W16-5901
https://doi.org/10.18653/v1/P19-1012
https://doi.org/10.18653/v1/P19-1012
https://doi.org/10.18653/v1/P19-1012
https://doi.org/10.18653/v1/2020.acl-main.776
https://doi.org/10.18653/v1/2020.acl-main.776
https://www.aclweb.org/anthology/N09-2064
https://www.aclweb.org/anthology/N09-2064
https://doi.org/10.1006/csla.2000.0138
https://doi.org/10.1006/csla.2000.0138
https://www.aclweb.org/anthology/W12-0503
https://www.aclweb.org/anthology/W12-0503
https://www.aclweb.org/anthology/W12-0503
https://www.aclweb.org/anthology/W09-1201
https://www.aclweb.org/anthology/W09-1201
https://www.aclweb.org/anthology/W09-1201
https://doi.org/10.18653/v1/P19-1237
https://doi.org/10.18653/v1/P19-1237
https://doi.org/10.18653/v1/P19-1237

116

Yoon Kim, Chris Dyer, and Alexander Rush. 2019.
Compound probabilistic context-free grammars for
grammar induction. In Proceedings of the 57th An-
nual Meeting of the Association for Computational
Linguistics, pages 2369–2385, Florence, Italy. Asso-
ciation for Computational Linguistics.

Guillaume Lample, Miguel Ballesteros, Sandeep Sub-
ramanian, Kazuya Kawakami, and Chris Dyer. 2016.
Neural architectures for named entity recognition.
In Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 260–270, San Diego, California. Association
for Computational Linguistics.

Joseph Le Roux, Antoine Rozenknop, and Mathieu
Lacroix. 2019. Representation learning and dy-
namic programming for arc-hybrid parsing. In Pro-
ceedings of the 23rd Conference on Computational
Natural Language Learning (CoNLL), pages 238–
248, Hong Kong, China. Association for Computa-
tional Linguistics.

Ying Li, Zhenghua Li, Min Zhang, Rui Wang, Sheng
Li, and Luo Si. 2019. Self-attentive biaffine depen-
dency parsing. In IJCAI, pages 5067–5073.

Zuchao Li, Hai Zhao, and Kevin Parnow. 2020. Global
greedy dependency parsing. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 34, pages 8319–8326.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated
corpus of English: The Penn Treebank. Computa-
tional Linguistics, 19(2):313–330.

Ryan McDonald, Fernando Pereira, Kiril Ribarov, and
Jan Hajič. 2005. Non-projective dependency pars-
ing using spanning tree algorithms. In Proceed-
ings of Human Language Technology Conference
and Conference on Empirical Methods in Natural
Language Processing, pages 523–530, Vancouver,
British Columbia, Canada. Association for Compu-
tational Linguistics.

Alireza Mohammadshahi and James Henderson. 2021.
Recursive Non-Autoregressive Graph-to-Graph
Transformer for Dependency Parsing with Iterative
Refinement. Transactions of the Association for
Computational Linguistics, 9:120–138.

Noriki Nishida and Hideki Nakayama. 2020. Unsuper-
vised discourse constituency parsing using Viterbi
EM. Transactions of the Association for Computa-
tional Linguistics, 8:215–230.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. GloVe: Global vectors for word
representation. In Proceedings of the 2014 Confer-
ence on Empirical Methods in Natural Language
Processing (EMNLP), pages 1532–1543, Doha,
Qatar. Association for Computational Linguistics.

Slav Petrov. 2010. Products of random latent vari-
able grammars. In Human Language Technologies:
The 2010 Annual Conference of the North American
Chapter of the Association for Computational Lin-
guistics, pages 19–27, Los Angeles, California. As-
sociation for Computational Linguistics.

Slav Petrov, Leon Barrett, and Dan Klein. 2006. Non-
local modeling with a mixture of PCFGs. In Pro-
ceedings of the Tenth Conference on Computational
Natural Language Learning (CoNLL-X), pages 14–
20, New York City. Association for Computational
Linguistics.

Sashank J. Reddi, Satyen Kale, and Sanjiv Kumar.
2018. On the convergence of adam and beyond. In
International Conference on Learning Representa-
tions.

Alexander M. Rush, David Sontag, Michael Collins,
and Tommi Jaakkola. 2010. On dual decomposition
and linear programming relaxations for natural lan-
guage processing. In Proceedings of the 2010 Con-
ference on Empirical Methods in Natural Language
Processing, pages 1–11, Cambridge, MA. Associa-
tion for Computational Linguistics.

David A. Smith and Noah A. Smith. 2007. Proba-
bilistic models of nonprojective dependency trees.
In Proceedings of the 2007 Joint Conference on
Empirical Methods in Natural Language Process-
ing and Computational Natural Language Learning
(EMNLP-CoNLL), pages 132–140, Prague, Czech
Republic. Association for Computational Linguis-
tics.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: a simple way to prevent neural networks
from overfitting. The journal of machine learning
research, 15(1):1929–1958.

Zhilin Yang, Zihang Dai, Ruslan Salakhutdinov, and
William W. Cohen. 2018. Breaking the softmax bot-
tleneck: A high-rank RNN language model. In 6th
International Conference on Learning Representa-
tions, ICLR 2018, Vancouver, BC, Canada, April 30
- May 3, 2018, Conference Track Proceedings. Open-
Review.net.

Yu Zhang, Zhenghua Li, and Min Zhang. 2020a. Effi-
cient second-order TreeCRF for neural dependency
parsing. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 3295–3305, Online. Association for Computa-
tional Linguistics.

Yu Zhang, Houquan Zhou, and Zhenghua Li. 2020b.
Fast and accurate neural CRF constituency parsing.
In Proceedings of IJCAI, pages 4046–4053.

Junru Zhou, Zuchao Li, and Hai Zhao. 2020. Parsing
all: Syntax and semantics, dependencies and spans.
In Findings of the Association for Computational
Linguistics: EMNLP 2020, pages 4438–4449, On-
line. Association for Computational Linguistics.

https://doi.org/10.18653/v1/P19-1228
https://doi.org/10.18653/v1/P19-1228
https://doi.org/10.18653/v1/N16-1030
https://doi.org/10.18653/v1/K19-1023
https://doi.org/10.18653/v1/K19-1023
https://www.aclweb.org/anthology/J93-2004
https://www.aclweb.org/anthology/J93-2004
https://www.aclweb.org/anthology/H05-1066
https://www.aclweb.org/anthology/H05-1066
https://doi.org/10.1162/tacl_a_00358
https://doi.org/10.1162/tacl_a_00358
https://doi.org/10.1162/tacl_a_00358
https://doi.org/10.1162/tacl_a_00312
https://doi.org/10.1162/tacl_a_00312
https://doi.org/10.1162/tacl_a_00312
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.3115/v1/D14-1162
https://www.aclweb.org/anthology/N10-1003
https://www.aclweb.org/anthology/N10-1003
https://www.aclweb.org/anthology/W06-2903
https://www.aclweb.org/anthology/W06-2903
https://openreview.net/forum?id=ryQu7f-RZ
https://www.aclweb.org/anthology/D10-1001
https://www.aclweb.org/anthology/D10-1001
https://www.aclweb.org/anthology/D10-1001
https://www.aclweb.org/anthology/D07-1014
https://www.aclweb.org/anthology/D07-1014
https://openreview.net/forum?id=HkwZSG-CZ
https://openreview.net/forum?id=HkwZSG-CZ
https://doi.org/10.18653/v1/2020.acl-main.302
https://doi.org/10.18653/v1/2020.acl-main.302
https://doi.org/10.18653/v1/2020.acl-main.302
https://doi.org/10.24963/ijcai.2020/560
https://doi.org/10.18653/v1/2020.findings-emnlp.398
https://doi.org/10.18653/v1/2020.findings-emnlp.398

117

Hao Zhu, Yonatan Bisk, and Graham Neubig. 2020.
The return of lexical dependencies: Neural lexical-
ized pcfgs.

Ran Zmigrod, Tim Vieira, and Ryan Cotterell. 2020.
Efficient computation of expectations under span-
ning tree distributions.

A Marginal Probability of Arc for
Mixture Model

With Eq. (3). The marginal probability of mixture
model can be written as:

p((h, d)|x) =
∑

y∈Y(x)
(h,d)∈y

K∑
k=1

ωkpk(y|x)

By changing the order of sum, we can have:

p((h, d)|x) =

K∑
k=1

ωk
∑

y∈Y(x)
(h,d)∈y

pk(y|x)

The inner part is exactly pk((h, d)|x). Thus, we
have:

p((h, d)|x) =
K∑
k=1

ωkpk((h, d)|x)

B Quick Gradient Analysis of Gating
Network

We start from Eq. (6).
For mixture model with well trained experts,

most of the data are equivalent for all experts,
which means pk(y|x) have similar value for all
experts. To see quickly why gradient approaches
0 in this case, we assume further that pk(y|x) has
the same value for equivalent data. Thus, Eq. (6)
becomes:

∂L(φ, θ)

∂φ
=

K∑
k=1

ωk(φ)
∂ logωk(φ)

∂φ

With a little more deduction, we have:

∂L(φ, θ)

∂φ
=

K∑
k=1

ωk(φ)
1

ωk(φ)

∂ωk(φ)

∂φ

=

K∑
k=1

∂ωk(φ)

∂φ

=
∂
∑K

k=1 ωk(φ)

∂φ

=
∂1

∂φ

= 0

As the function is continuous w.r.t. pk, for data
which provides similar value of probability on all
experts, the gradient will approaches zero. Thus,
for training with Eq. (6), only a small part of data,
which shows strong preference of particular ex-
perts, is used to train the gating network.

For training with Eq. (8), all the data is useful
for training the gating network. In fact, the gradient
of Eq. (8) becomes zero when:

ωk(φ) =
pk(θk)∑K

k′=1
pk′ (θk′)

Thus for data which are equivalent for all experts,
a uniform weight will be learnt while for data with
strong preference of particular experts, a biased
weight proportional to the probability correctness
on each expert can also be learnt.

C Gating Network Structure,
hyper-parameters of training

The gating network structure is similar to the struc-
ture of parse model.

Embedding Word embedding for word xi is an
concatenation of two parts: normal word embed-
ding and CharLSTM embedding:

ei = emb(xi)
⊕

CharLSTM(xi)

when there is pre-trained embedding, the first item
is the sum of word embedding calculated by neural
network, and the exterior pretrained embedding:

emb(xi) = WordEMB(xi) + PreEMB(xi)

We suppose that PreEMB has the same size as
WordEMB

BiLSTM The embedding vectors are then
passed to 3 layers of BiLSTM, with the output
at position i is noted as hi.

Coefficient Extractor The coefficient extractor
part is constructed of one layer of LSTM (Hochre-
iter and Schmidhuber, 1997) and one layer of MLP.
The last hidden state of LSTM is passed to MLP,
which compress the vector size to the number of
experts in the mixture model. Two groups of coef-
ficient extractor are used to calculate separately the
weight of combination for arc and label. We note
the output of MLP as C ∈ RK , with:

Carc = MLParc(LSTMarc(h0, ..., hn))

Clabel = MLPlabel(LSTMlabel(h0, ..., hn))

http://arxiv.org/abs/2007.15135
http://arxiv.org/abs/2007.15135
http://arxiv.org/abs/2008.12988
http://arxiv.org/abs/2008.12988

118

The output of MLP is passed to Softmax to cal-
culate the weight for each expert:

[ω1, ..., ωK] = Softmax(Carc)

[ωl1, ..., ω
l
K] = Softmax(Clabel)

Model hyper-parameters of fine tuning is shown
in Table 7. We use also Adam (Reddi et al., 2018)
for training, with learning rate set to 2e−4 (10 times
smaller than learning rate used for training experts).
The patience is set to 20 instead of the original
value 100. For fine tuning, we found that best score
is usually achieved in less than 20 epochs and does
not increase later.

Param Value Param Value
WordEMB size 100 Embedding dropout 0.33

CharLSTM size 50 CharLSTM dropout 0.00

BiLSTM size 400 BiLSTM dropout 0.33

LSTMarc size 400 LSTMarc dropout 0.00

LSTMlabel size 400 LSTMlabel dropout 0.00

MLParc size K MLParc dropout 0.00

MLPlabel size K MLPlabel dropout 0.00

Learning Rate 2e−4 β1, β2 0.90

Annealing 0.75
t

5000 Patience 20

Table 7: Hyper-parameters of Fine Tuning

D Implementation Differences

We implement Zhang et al. (2020a) CRF model and
CRF2o model with two tiny technical differences.

The first one is that the CharLSTM (Lample
et al., 2016) part in Zhang et al. (2020a) treats
the beginning of the sentence <bos> (the special
token to represent the beginning of the sentence)
as five separate characters: <,b,o,s,>.

Our implementation treats the beginning of sen-
tence as one special character for CharLSTM.

Another difference is that Zhang et al. (2020a)
treats the lengths of every sentence as n + 2 by
considering two special tokens <bos> and <eos>
(although in practice, only <bos> was added to
every sentence). In our implementation, we keep
the length of sentence as the number of words n.
This is because the log probability of arc and label
only considers the words in the sentence without
special tokens. Thus our batch size should be a
little bit higher than Zhang et al. (2020a).

One final difference is that for MBR decod-
ing, (Zhang et al., 2020a) maximizes the sum of
marginal arc probability. While in our implementa-
tion of MBR, we maximize the product of marginal
arc probability.

E Variance Reduction on CoNLL09

We note that the label variance for FOP and SOP
are quite similar that they overlap together for
CoNLL09 Chinese.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
−8

−7.5

−7

−6.5

−6

−5.5

−5

−4.5

logK

lo
g

Σ
2

WKParc
WKPlabel
FOParc

FOPlabel
SOParc

SOPlabel

Figure 2: Variance of System to CoNLL09 Chinese

