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Indiana University

skuebler@indiana.edu

Abstract
Domain adaption in syntactic parsing is still
a significant challenge. We address the issue
of data imbalance between the in-domain and
out-of-domain treebank typically used for the
problem. We define domain adaptation as a
Multi-task learning (MTL) problem, which al-
lows us to train two parsers, one for each do-
main. Our results show that the MTL approach
is beneficial for the smaller treebank. For the
larger treebank, we need to use loss weighting
in order to avoid a decrease in performance be-
low the single task. In order to determine to
what degree the data imbalance between two
domains and the domain differences affect re-
sults, we also carry out an experiment with
two imbalanced in-domain treebanks and show
that loss weighting also improves performance
in an in-domain setting. Given loss weight-
ing in MTL, we can improve results for both
parsers.

1 Introduction

Domain adaption in syntactic parsing is still a sig-
nificant challenge. While recent work has shown
steady improvements, we have not necessarily
achieved proportionally better results as expected
with neural models (Fried et al., 2019). One simple
reason can be attributed to the fact that we have se-
vere limitations in terms of existing data, data sizes,
and the imbalance between the two treebanks typi-
cally present in domain adaptation settings.

Multi-task learning (MTL; Caruana, 1997) al-
lows for joint learning, which can help facilitate
cross information sharing between tasks. This has
proven particularly beneficial for tasks that have
large data imbalances, with the smaller data tasks
benefiting substantially more (Johansson, 2013;
Benton et al., 2017; Ruder et al., 2019), and should
thus also be useful in domain adaptation.

We define domain adaptation as an MTL prob-
lem where the two tasks correspond to training on

two treebanks from different domains. Note that
in this setting, we do not have a primary and a sec-
ondary task, but instead we can interpret both tasks
as primary.

One of the inherent difficulties we face in cross-
domain parsing are large discrepancies in the size
of the treebanks. This creates a default training sce-
nario of imbalance across the domains that should
benefit the smaller domain, but it may inversely
impact the larger domain, resulting in a degrada-
tion in performance due to negative transfer in a
multi-task learning model, compared to their single
task (STL) baselines. We investigate here whether
it is possible to control the negative impact of the
smaller domain on the larger one, and how the im-
balance factor impacts this balance. This means
that in all cases, we evaluate on both domains.

More specifically, we investigate the following
questions:

1. How does the MTL parser handle different
levels of data imbalance? This assumes that
in a domain adaptation setting, normally a
small in-domain treebank is combined with a
large out-of-domain treebank.

2. How effective is loss weighting in addressing
the data imbalance? Can we optimize both
MTL tasks given the data imbalance?

3. Is it more important to address the data imbal-
ance or the differences between domains for
successful domain adaptation?

2 Related Work

2.1 MTL in Parsing

MTL inherently allows for the joint learning of
tasks. Learning related tasks, such as POS tagging
and dependency parsing, has been shown to be ben-
eficial (Bohnet and Nivre, 2012; Zhang and Weiss,
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2016). A practical assumption is that there is shared
information that can be beneficial, particularly if
the tasks are closely related.

Neural networks have increased the ability and
ease by which models can exploit information
sharing. Much recent parsing research has exam-
ined the impact of parameter sharing across tree-
banks and languages (Ammar et al., 2016; Kitaev
et al., 2019), though often not explicitly within an
MTL setup, where different treebanks/languages
are treated as multiple tasks. Soft sharing of param-
eters has proven effective on treebanks of the same
annotation style in lower resource settings (Duong
et al., 2015) as well as for multiple treebanks of the
same language when hard sharing all other param-
eters (Stymne et al., 2018). However, sharing too
many parameters between unrelated languages has
been shown not to be beneficial (de Lhoneux et al.,
2018).

More explicit MTL settings with treebanks rep-
resenting different individual tasks have proven
successful in array of settings across languages
and architectures (Guo et al., 2016; Johansson and
Adesam, 2020; Kankanampati et al., 2020).

2.2 MTL in Domain Adaptation

Much recent work has resulted in significant gains
in domain adaptation across several languages via
the direct or indirect transfer of parameters and em-
beddings for languages such as Chinese (Li et al.,
2019, 2020), English (Joshi et al., 2018; Fried et al.,
2019), Finnish (Virtanen et al., 2019), and French
(Martin et al., 2020).

More explicit MTL work by Søgaard and Gold-
berg (2016) found that lower level tasks are best
kept at lower layers, as the shared representations
benefit from the sequence of information learned,
with the approach demonstrating success in domain
adaption for chunking for English. Using hyper-
links as a form of weak supervision was used by
Søgaard (2017) to improve several NLP tasks both
in-domain and out-of-domain, including chunking,
for both English and Quechua. Peng and Dredze
(2017) use an MTL setting to leverage Chinese
word segmentation and NER across two domains,
news and social media. They share lower levels
but retain domain specific projection layers with
task specific models. Results outperform disjoint
adaption methods and suffer less from diminishing
returns as training sizes increase.

2.3 MTL Performance

While MTL has resulted in improvements across
many tasks and settings, an STL can still outper-
form an MTL model (Martı́nez Alonso and Plank,
2017; Bingel and Søgaard, 2017; Liang et al.,
2020). Reasons for such a lack of increase or even
degradation in performance for a certain task may
be found in negative transfer as tasks may learn at
different rates, and a single task may dominate the
learning (Lee et al., 2016), or poor scheduling may
result in catastrophic forgetting (French, 1999).

Another key fact is the correct choice of tasks.
However, it is not clear how to best select tasks.
Auxiliary task label distributions (Martı́nez Alonso
and Plank, 2017), the learning curve of the primary
task (Bingel and Søgaard, 2017), the difficulty of
the auxiliary task (Liebel and Körner, 2018), the
relationship between the data of the tasks in terms
of size (Luong et al., 2015; Benton et al., 2017;
Augenstein and Søgaard, 2017; Schulz et al., 2018)
and properties (Wu et al., 2020), among other find-
ings1, have all shown to influence the effectiveness
of MTL.

One way to mitigate the negative transfer is to
give different weights to the tasks, helping to maxi-
mize the contributions for the more pertinent tasks
and lessen the impact of sub-optimal tasks (Lee
et al., 2016, 2018). Such strategies have shown
promise in computer vision, where optimal loss
weights can allow an MTL model to improve over a
corresponding STL when it would otherwise show
a degradation in performance (Kendall et al., 2018).

Winata et al. (2018) weighted losses for lan-
guage modeling and POS tagging in an MTL set-
ting, finding a lower weight to language modeling
yielded a reduction in perplexity in modeling code-
switching between Chinese and English. A multi-
task supervised pretraining adaption strategy using
a hierarchical architecture that learns multiple tasks
on a source domain before fine-tuning them on the
target was implemented by Meftah et al. (2020).
By using different weights for the different level
tasks, starting with higher weights for lower tasks
before incrementally increasing weights to higher
level tasks during training, they achieve a notice-
able error reduction in POS tagging, dependency
parsing, and chunking.

Our experiments focus on improving parsing in a
domain adaptation setting using MTL plus separate

1See (Søgaard and Goldberg, 2016; Guo et al., 2019;
Schröder and Biemann, 2020) for more discussion.
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Train Dev Test
German GSD 13 814 799 977

tweeDe 1 000 150 151
Italian ISDT 13 121 564 482

TWITTIRÒ 1 000 144 142
PoSTWITA 1 000 150 150
ParTUT 1 000 150 150

Table 1: Treebank sizes (number of sentences).

loss weighting to improve both tasks.

3 Methodology

3.1 Treebanks
For our experiments, we focus on German and Ital-
ian, since both languages have smaller treebanks
based on Twitter data, which will allow us to avoid
domain differences in the smaller domain. We use
treebanks annotated with Universal Dependencies
V2.7 (Nivre et al., 2020). For German, we use GSD,
which is based on news, reviews, and Wikipedia
pages, and tweeDe (Rehbein et al., 2019) as the
Twitter treebank. For Italian, we use ISDT and Par-
TUT, which consist of legal, news, and Wikipedia
texts, plus TWITTIRÒ (Cignarella et al., 2019) and
PoSTWITA (Sanguinetti et al., 2018) as the Twitter
treebanks.

Table 1 shows the sizes of the treebanks used
in our experiments. For tweeDe we used the first
1 000 sentences for train, and the following 150
and 151 sentences for dev and test respectively.
In order to account for treebank size variations of
the Twitter treebanks, we limit the maximal sizes
of train and dev for TWITTIRÒ and PoSTWITA
to the first 1 000 train sentences and 150 dev and
test sentences respectively, but we do not reduce
the GSD or ISDT treebanks. For the in-domain
experiments in section 6, we also use the ParTUT
treebank, since it covers domains similar to ISDT.
We reduce the treebank size in the manner in which
we reduce the Twitter treebanks.

3.2 Parser
We use the graph-based neural dependency parser
by Dozat and Manning (2017) as our base parser
and extend it to an MTL architecture using hard pa-
rameter sharing. Our MTL parser treats the parsing
of each treebank as a separate MTL task, where the
tasks share the BiLSTM layers which encode the
input embeddings, which are calculated by concate-
nating all the different types of embeddings that are

Hyperparameters Value
Embedding Dimensions 300
POS Tag Embedding Dimension 100
Bert Mapping Dimenstion 100
Number of BERT Layers Used 4
Number of LSTM Layers 3
LSTM Hidden Layer Dimension 400
Optimizer Adam
Patience 50
Batch Size 20k tokens
Learning Rate 2e-3

Table 2: Hyperparameter settings for MTL parser.

used. These BiLSTM encodings are then passed
through a dimension-reducing Multi-layered Per-
ceptrons (MLP) to strip away arc and relationship
information deemed irrelevant for the task at hand.
We implement two MLP schemes, one in which we
share the MLP layers across tasks (shared-MLP;
left part of Figure 1 ) and the other in which each
task has its own MLP layers (unshared; right part
of Figure 1). Finally, in order for the model to learn
task specific information, we apply task-specific bi-
affine attention layers to the MLP output to produce
scores for both arcs and labels. A more detailed
description of the parser architecture can be found
in Sayyed and Dakota (2021).

We modify the PyTorch (Paszke et al., 2019)
implementation of the biaffine parser provided
by Zhang et al. (2020)2, to implement our MTL
parser3. We retain many of the default hyperparam-
eters used in the original base parser. Table 2 lists
the parameters which we have changed. Word and
POS embeddings are initialized randomly. For the
BERT embeddings (Devlin et al., 2019), a scalar
mixture of the last four layers of BERT is passed
through a linear layer to produce BERT embed-
dings of the specified dimension.

3.3 Loss Weighting
We train the MTL parser by having a different ob-
jective function for each task, and we optimize
for each task separately. We do this by randomly
choosing a task from the given tasks and then ran-
domly choosing a batch of sentences along with
their annotations from that task before calculating
the loss for that batch, backpropagating the errors,
and updating all the model parameters (shared and

2https://github.com/yzhangcs/parser
3Our code is available from https://github.com/

zeeshansayyed/multiparser

https://github.com/yzhangcs/parser
https://github.com/zeeshansayyed/multiparser
https://github.com/zeeshansayyed/multiparser


96

Figure 1: Multi-task model architecture.

unshared). In a given epoch, we chose sentences
without replacement.

The task specific objective function is given by:

Lt(Xt; Θ) = La(Xt; Θ) + Ll(Xt; Θ) (1)

where t is the task number, Xt represents the input
batch for task t, Θ denotes all model parameters,
La and Ll represent the cross entropy losses for arc
and label scores in batch Xt respectively.

In the loss weighting experiments in section 5,
in order to compensate for the varying difficulty of
tasks, we weigh each objective function differently
and then optimize for it, as follows:

Lt(Xt; Θ) = wt · (La(Xt; Θ) + Ll(Xt; Θ)) (2)

where wt is the weight for task t and
∑

wt = 1.

3.4 Experimental Setup
Our focus is on comparing the performance of the
MTL parser against that of an STL baseline. This
means that we need a better understanding of the in-
teractions between treebank sizes, learning curves,
and weighting. For this reason, we show learning
curves comparing corresponding MTL and STL
models or different MTL weight settings.

For the learning curves, we start with 1 000 sen-
tences from each treebank and then double the train-
ing size for the large treebank until the max. size is
reached, while the Twitter treebanks remain fixed.

We experiment with three different input em-
beddings: We train word and POS embeddings
(using gold POS tags as input). We then use the

word embeddings, POS embeddings, and the com-
bination of word and POS embeddings plus BERT
embeddings (Devlin et al., 2019). For the BERT
embeddings, German and Italian language specific
BERT embeddings are used4.

We report the average LAS score over three
seeds (10, 20, 30)5 using the CoNLL 2018 shared
task scorer (Zeman et al., 2018). All reported exper-
iments are on the development set unless otherwise
stated.

4 STL vs. MTL Learning Curves

Our first set of experiments concerns the ques-
tion how different levels of size imbalance in the
training data from the two domains affect an MTL
parser.

Figure 2 presents learning curves comparing the
German treebanks, Figures 3 and 4 compare the
two Italian Twitter treebanks to ISDT. Across all
settings, we see that using only word embeddings
gives the lowest results, followed by word plus
POS tag embeddings, with word plus POS tag plus
BERT embeddings resulting in the highest LAS.
Lt(Xt; Θ) = wt · (La;t + Ll;t)

Also across all experiments, we see that sharing
the MLP layers (in green) is slightly more benefi-
cial to the smaller Twitter treebanks than having
separate layers (in blue). The differences between
the shared and unshared model are even smaller for

4https://github.com/stefan-it/
fine-tuned-berts-seq

5For a small number of settings, one of the seeds produced
results that were >30 points lower than for the other seeds.
For those cases, we used seed 40 as a replacement.

https://github.com/stefan-it/fine-tuned-berts-seq
https://github.com/stefan-it/fine-tuned-berts-seq
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Figure 2: Results on German (GSD and tweeDe) when adding GSD training sentences (using word, word+POS,
and word+POS+BERT embeddings respectively).

Figure 3: Results on Italian TWITTIRÒ when adding ISDT training sentences (word, word+POS, and
word+POS+BERT embeddings). For legend, see Figure 2.

the large treebanks.
The two German treebanks have very similar

performance at 1k while there is a considerable
difference between the Italian trebanks, with the
Twitter treebanks being more difficult to parse than
ISDT.

When looking at the results on German in Fig-
ure 2, we see that in all settings, the MTL setup
is beneficial for the tweeDe treebank, independent
of the amount of out of domain training data. The
same holds initially for the GSD treebank.

However, as more GSD data becomes avail-
able, the MTL setup starts to be detrimental for
the GSD parser, and the results stay below the
STL baseline. Additionally, the type of embed-
dings plays a factor in the overall improvement:
While the curves flatten out quickly for word+POS
and word+POS+BERT embeddings, the curve for
word embeddings indicates that adding the full set
still results in gains. It is also concerning that for

the word+POS and word+POS+BERT embeddings,
the results on GSD start decreasing after 4k GSD
sentences. We attribute this to negative transfer, i.e.,
the MTL setting is more focused on finding an opti-
mal solution between the non-Twitter and the Twit-
ter task, resulting in a degradation in performance
of the non-Twitter task from the equally prioritized
Twitter signals. Note that while this makes sense
from a MTL point of view, it is counter-intuitive
from a domain adaptation perspective: For the GSD
task, this means that adding more in-domain data
results in lower in-domain performance.

The results for the Italian treebanks in Figures 3
and 4 exhibit similar, but not identical trends to the
German experiments. One noticeable difference is
that the ISDT improvements tend to be far more
linear, where we only begin to see a flattening of
the curve at the full training size. Another more
interesting difference concerns the point where the
STL on the large treebank (GSD or ISDT) improves



98

Figure 4: Results on Italian PoSTWITA when adding ISDT training sentences (word, word+POS, and
word+POS+BERT embeddings). For legend, see Figure 2.

Figure 5: Effect of loss weighting in German; all experiments use 1k tweeDe and range from 1k, 2k (upper), 4k to
all GSD data (lower) for training.

over the MTL model: For German, this happens
systematically at 4k, for Italian, it ranges from 4-8k
for TWITTIRÒ and 2-8k for PoSTWITA depend-
ing on the type of embeddings. We see that for
word+POS+BERT, the STL is already on par with
the MTL model at 2k, but the word embeddings
model needs closer to 8k.

5 Loss Weighting

We now turn to the question of loss weighing, i.e.,
can we address the data imbalance problem if we
assign higher weights to one or the other task in
the loss function? Using loss weighting would give
us a principled way of handling the data imbal-
ance. For a description of the weighting scheme,
see section 3.3. For the experiments in this sec-
tion, all MTL tasks are learned using the shared
MLP setting (as it performed better in most set-

tings of section 4) and word+POS embeddings (as
it performed better than word-only embeddings but
does not require pretraining on external sources,
such as BERT), and we vary the training size of the
large treebank between 1k, 2k, 4k, and all available
training data.

Figure 5 shows the results for the German tree-
banks, Figure 6 shows the combination of the Ital-
ian ISDT and TWITTIRÒ, and Figure 7 the combi-
nation of ISDT and PoSTWITA. Each graph shows
the results for the two tasks per setting.

All experiments in section 4 are based on stan-
dard alternating loss for both tasks, i.e., the loss
for each task is used as is, which is equivalent to
having a weight of 1. For the experiments here, the
X-axis denotes the weights applied to the large tree-
bank task, ranging from 0 to 1. The corresponding
weight applied to the second task is 1 − x, i.e., it
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Figure 6: Effect of loss weighting in Italian; all experiments use 1k TWITTIRÒ and range from 1k, 2k (upper), 4k
to all ISDT data (lower) for training.

decreases from 1 to 0. For each weight, we report
the LAS for either task, blue denoting the large tree-
bank and orange the Twitter treebank. The vertical
dotted lines mark the 0.5 weight setting, where both
tasks are weighted equally, and the horizontal dot-
ted lines denote the performance of the MTL parser
in this setting. The diamond markers in each line
denote the best performance achieved by weighted
MTL parser for that task.

Looking at the German results in Figure 5, we
see that in the 1k setting, the optimal performance
for GSD is reached when each task is assigned
a weight of 0.5. For tweeDe, the optimal perfor-
mance is reached in the same area, namely for a
weight setting of 0.45:0.55 for GSD:tweeDe. In the
2k setting, even though the optimal performance
shifts towards higher weights for the large treebank
(0.85 for GSD and 0.4 for tweeDe), the actual in-
crease in performance is minimal compared to the
balanced weight setting. This trend continues as
we add more data to GSD (for 4k and full settings):
The optimal weights move closer to the maximal
weight for the large treebank. This shows that as
the treebank sizes become more imbalanced, the op-
timal performance is reached by applying a higher
weight to the large treebank and consequently a
lower weight to the small Twitter treebank.

It is also interesting to see that for the 1k set-
ting, the tweeDe results surpass the GSD results.
This suggests that the tweeDe data are syntactically

easier than the GSD ones. We also see that the
performance for tweeDe starts plateauing once it
reaches the 0.5 weight setting for imbalanced sce-
narios (2k, 4k and full). Hence, for tweeDe, the
performance gain in the optimal setting beyond 0.5
is smaller than for GSD. Moreover, while the MTL
models using balanced weights (section 4) do not
always improve over the STL baselines, weighted
MTL improves in all settings and all tasks. For
GSD, the highest gain over the STL occurs in the
1k setting. The more data we add, the smaller the
improvement. For the full GSD set, the improve-
ment is minimal.

The results for the two Italian experiments, in
Figure 6 for the combination of ISDT and TWIT-
TIRÒ, and in Figure 7 for the combination of ISDT
and PoSTWITA, show similar trends with some
differences. For both experiments, the Twitter task
shows slightly concave curves for 1k and 2k respec-
tively. Starting from 4k, we see an upward trend
for ISDT as the weight for the large task increases.
For German, this only occurs with the full GSD
training set.

These results show that for smaller data sizes,
i.e., when the two treebanks are closer to balanced,
weighting does not matter that much: For most
settings, the optimal results are close to a 0.5
weight. As the data imbalance increases, it be-
comes more important to slide the weights towards
the larger task in order to avoid negative transfer.
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Figure 7: Effect of loss weighting in Italian; all experiments use 1k PoSTWITA and range from 1k, 2k (upper), 4k
to all ISDT data (lower) for training.

The weighted MTL models allow us to use the max-
imum data for the larger treebank and even reach
a slight gain in performance over the STL. The
Twitter treebanks show even more improvement
than in the standard MTL setup, suggesting that
they benefit from a reduction of their own signal
along with a more powerful signal from the large
treebank.

Weighting the different losses is akin to having
different learning rates for each task (i.e., treebank),
impacting the contribution each has on the step
sizes derived from the loss in finding an optimal
solution (Sébastien et al., 2018). When the data
sizes of the two domains are closer, the steps taken
by each benefit each other. As the non-Twitter
data increases however, the Twitter data have too
much influence on the step sizes, resulting in a
degradation on the non-Twitter treebank since stan-
dard MTL optimizes both equally. While MTL is
thought to help overcome local optima that can oc-
cur in an STL (Bingel and Søgaard, 2017), in our
case, we assume that the weights have a similar
effect: They help both the non-Twitter and Twitter
models overcome local optima encountered in a
standard MTL setup.

6 Controlling Data Imbalance Vs.
Domain Differences

So far, we have treated domain adaptation as a data
imbalance problem. This is certainly a factor since

we mostly use a large scale out-of-domain treebank
to improve results in-domain. However, there are
also genuine differences between the domains, and
it is unclear to what degree they individually con-
tribute to the difficulty. For this reason we conduct
two additional experiments on Italian, in which we
pair a larger treebank with its smaller counterpart
from the same domain. In other words, we now
focus on an in-domain comparison of a small and
a large treebank. The more these results deviate
from the previous results, the more influence the
domain differences have on parser performance.

In the first experiment, we compare Twitter tree-
banks, i.e., we pair the smaller TWITTIRÒ tree-
bank with the larger PoSTWITA treebank. In the
second experiment, we compare the more gen-
eral treebanks, i.e., we pair the smaller ParTUT
treebank with the larger ISDT. For the Twitter in-
domain experiments, we simply double the PoS-
TWITA data as we did with the ISDT reaching the
full size (at about 5.3k sentences). For ISDT and
ParTUT we follow the same methodology.

Figure 8 shows non-weighted MTL curves for
Twitter and non-Twitter in-domain data sets respec-
tively. The curves in both settings exhibit similar
trends to the trends in Figure 3 in that the STL
system begins to outperform the MTL system at
the end of the curves, but that the small in-domain
treebanks reach a very similar performance to their
larger counterparts. This suggests that while do-
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Figure 8: Results on Italian TWITTIRÒ when adding PoSTWITA training sentences on left and Italian ParTUT
when adding ISDT on the right, both using word+POS.

STL MTL weighted MTL wMTL weights
PoSTWITA 83.60 83.46 83.66 0.65
TWITTIRÒ 78.17 83.65 84.14 0.35

ISDT 91.31 90.71 91.27 0.90
ParTUT 85.35 91.05 91.34 0.10

Table 3: LAS Results Word+POS for STL, shared MTL, and weighted shared MTL using the full data sets. ISDT
paired with ParTUT.

main differences play a role in negative transfer,
they appear to be less important than the data im-
balance between treebanks, thus validating our de-
cision to approach domain adaptation as an MTL
task.

We conduct a single weighted experiment, using
the best weights from Figures 5-7 and the best re-
sults reported in section 7. The results are shown
in Table 3. We see a similar trend as in the out-of-
domain experiments where the MTL setting shows
a degradation for ISDT compared to its STL set-
ting while ParTUT shows an increase at higher
imbalances. For the Twitter treebanks, the differ-
ences are minimal. The weighted MTL increases
the performance on ISDT over the MTL setting
but does not quite match the STL setting, while
the weighted MTL setting further increases the per-
formance of the ParTUT treebank. The weighted
MTL for PoSTWITA shows a slight increase over
the STL and over the non-weighted MTL setting
for TWITTIRÒ. Such findings suggest that even
in-domain data imbalances can benefit from weight-
ing, but may not benefit as much as treebank pairs
in a domain adaptation setting.

7 Best Results

In Table 4, we show the highest LAS scores for the
STL and shared MTL models, on dev and test using
Word+POS embeddings. While the unweighted

MTL settings result in noticeable lower LAS for
both large treebanks, we see slight gains in the
weighted MTL experiments, when given upwards
of 0.9 loss weights. For all Twitter treebanks, the
MTL setting shows considerable gains between 3-
5% absolute. The weighted MTL setting improves
over MTL by another 1-1.5%. We see the same
developments across the dev and test sets.

8 Conclusion & Future Work

We have investigated the use of MTL for domain
adaptation in parsing to address the data imbal-
ance. The effectiveness of MTL depends on many
interacting factors as laid out in section 2.3. Impor-
tant factors we directly examine in our experiments
are data size imbalances, difficulty of tasks, and
task learning rates. Our learning curves for Ger-
man and Italian show that MTL underperforms an
STL when the data size imbalances become too
great, due to negative transfer in optimizing for
two tasks. Additionally, both our out-of-domain
and in-domain experiments demonstrate that task
learning difficulty affects both setups, even with
balanced data. By using loss weighting, we are able
to influence the learning rates of individual tasks,
which helps reduce the negative transfer caused by
both the data size imbalances and tasks difficul-
ties. This allows us to train weighted MTL models
where both parsers are able to outperform both STL
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Test Lg. Treebank STL MTL weighted MTL wMTL weights
dev German GSD 84.63 83.76 84.74 0.90

tweeDe 74.69 79.01 79.99 0.10
Italian ISDT 91.31 T: 90.59; P: 90.31 T: 91.54; P: 91.45 0.95; 0.90

TWITTIRÒ 78.17 82.83 84.11 0.15
PoSTWITA 77.22 80.48 81.58 0.05

test German GSD 81.35 80.70 81.56 0.90
tweeDe 76.18 81.77 82.52 0.10

Italian ISDT 91.80 T: 91.18; P:90.92 T: 92.07; P: 91.79 0.95; 0.90
TWITTIRÒ 78.07 81.64 82.28 0.15
PoSTWITA 75.46 78.57 79.24 0.05

Table 4: LAS Results Word+POS for STL, shared MTL, and weighted shared MTL using the full data sets. T:
paired with TWITTIRÒ, P: with PoSTWITA.

and non-weighted MTL models on both treebanks
at the same time, even when highly imbalanced,
for in-domain and out-of-domain experiments for
both German and Italian. We conclude that while
domain differences certainly play a factor, data im-
balance appears to have more influence on parser
performance.

In the future, our experiments need to be ex-
tended to a wider range of languages and target
domains. Additionally, we will investigate strate-
gies for dynamic learning of weights (Guo et al.,
2019; Liu et al., 2019; Ming et al., 2019; Yim and
Kim, 2020) for determining optimal loss weighting
automatically, as well as more complex scheduling
approaches (Kiperwasser and Ballesteros, 2018;
Guo et al., 2018; Sébastien et al., 2018) to further
improve performance.
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ter, Jan Hajič, Christopher D. Manning, Sampo
Pyysalo, Sebastian Schuster, Francis Tyers, and
Daniel Zeman. 2020. Universal Dependencies v2:
An evergrowing multilingual treebank collection. In
Proceedings of the 12th Language Resources and
Evaluation Conference (LREC), pages 4034–4043,
Marseille, France.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, et al. 2019. Pytorch: An impera-
tive style, high-performance deep learning library.
arXiv:1912.01703.

Nanyun Peng and Mark Dredze. 2017. Multi-task do-
main adaptation for sequence tagging. In Proceed-
ings of the 2nd Workshop on Representation Learn-
ing for NLP, pages 91–100, Vancouver, Canada.

Ines Rehbein, Josef Ruppenhofer, and Bich-Ngoc Do.
2019. tweeDe – a Universal Dependencies treebank
for German tweets. In Proceedings of the 18th Inter-
national Workshop on Treebanks and Linguistic The-
ories (TLT, SyntaxFest 2019), pages 100–108, Paris,
France.

Sebastian Ruder, Joachim Bingel, Isabelle Augenstein,
and Anders Søgaard. 2019. Latent multi-task archi-
tecture learning. Proceedings of the AAAI Confer-
ence on Artificial Intelligence, 33(01):4822–4829.

Manuela Sanguinetti, Cristina Bosco, Alberto Lavelli,
Alessandro Mazzei, Oronzo Antonelli, and Fabio
Tamburini. 2018. PoSTWITA-UD: an Italian Twit-
ter treebank in Universal Dependencies. In Pro-
ceedings of the Eleventh International Conference
on Language Resources and Evaluation (LREC),
Miyazaki, Japan.

Zeeshan Ali Sayyed and Daniel Dakota. 2021. Annota-
tions matter: Leveraging multi-task learning to parse
UD and SUD. In Findings of the ACL: ACL-IJCNLP
2021, Online.
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