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Abstract

When learned without exploration, local mod-
els for structured prediction tasks are subject
to exposure bias and cannot be trained without
detailed guidance. Active Imitation Learning
(AIL), also known in NLP as Dynamic Ora-
cle Learning, is a general technique for work-
ing around these issues by allowing the explo-
ration of different outputs at training time.

AIL requires oracle feedback: an oracle is any
algorithm which can, given a partial candidate
solution and gold annotation, find the correct
(minimum loss) next output to produce.

This paper describes a general finite state tech-
nique for deriving oracles. The technique de-
scribed is also efficient and will greatly expand
the tasks for which AIL can be used.

1 Introduction

Structured Prediction tasks, e.g., POS tagging, ma-
chine translation or syntactic parsing, are central
to NLP and are commonly solved with machine
learning based models. There are two main ways
of approaching these problems: in one, a model
scores fragments of possible outputs and an effi-
cient decoding algorithm finds the highest scoring
solution, e.g., using conditional random fields and
the forward-backward algorithm. In the second
approach a model produces an output through a se-
quence of decisions, each extending a partial output
produced by the previous steps, e.g., picking one
word after the other in a sequence to sequence trans-
lation system or repeatedly splitting a sentence into
constituents. Modern neural models use complex
hidden states to express the interdependence be-
tween outputs, making efficient decoding difficult
and the latter approach ever more important.

When training models to make sequential deci-
sions it is necessary to provide guidance on which
actions to take to achieve minimum loss against a

gold output. Sometimes there is a clear sequence of
correct actions, e.g., when learning to translate or
tag, there is the option of simply training the model
to follow the gold annotation, which corresponds
1-1 to possible model outputs.

1.1 The Problems Dynamic Oracles Solve

Not all tasks have straightforward gold sequences.
Consider the problem of simplifying a sentence by
tagging words either to be deleted or replaced with
more common, semantically similar words. There
may be multiple ways to simplify that generate the
same end result. If only a gold simplification is
annotated, and no gold sequence of actions (i.e.
deletion or replacement), then it is not clear which
sequence of actions to train for. For another ex-
ample, consider multiple annotations coming from
multiple annotators, where it is necessary to inter-
polate between them.

Furthermore, when only following gold se-
quences, the model will never learn to recover from
incorrect choices, as they are not encountered dur-
ing training - the so called exposure bias. Consider
the following example: assume that we want to
map a sentence to a parse tree as in Fig. 1. For a
simple sequence to sequence model, a parse tree is
produced by outputting opening and closing brack-
ets as well as words and mapping the result to a tree.
If the model incorrectly added an NP( bracket right
before “hit”, then a gold sequence based training
would never expose the model to a similar situation.
The model would have no knowledge of how to re-
cover from the error with minimal loss, and how
to best represent a sequence with a questionable
bracket.

Both exposure bias and the absence of clear gold
training sequences can be tackled with active imi-
tation learning (AIL). AIL uses a source of ground
truth to determine the optimal action to take at each
step. These sources of ground truth are called dy-
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Input Output

“John hit the ball” S

John VP

hit NP

the ball

Action Sequence S( John VP( hit NP( the ball ) ) )

Figure 1: Example structured prediction task for active imitation learning.

namic oracles in the NLP literature, or experts in
AIL focused works. Dynamic oracles determine
what to do for any partially complete solution to
minimize the loss relative to a gold annotation and
they contrast with static oracles, which only pro-
vide a gold output sequence.1 This paper is con-
cerned with a generic way to build dynamic oracles
for NLP problems. In our example of an incorrectly
placed NP(, AIL would enable us to create training
examples that contain similar errors and show how
to recover from them.

1.2 Contribution

Dynamic oracles have been developed for dif-
ferent parsing tasks (Goldberg and Nivre, 2012;
Goldberg et al., 2014; Coavoux and Crabbé,
2016; Fernández-González and Gómez-Rodrı́guez,
2018b; Coavoux and Cohen, 2019; Gómez-
Rodrı́guez and Fernández-González, 2015) and
have been shown to improve parsing performance
(Ballesteros et al., 2016; Goldberg and Nivre, 2012;
Coavoux and Crabbé, 2016; Fernández-González
and Gómez-Rodrı́guez, 2018b). These oracles
work for specific output types and losses. It is
sometimes possible to use an oracle derived for
one problem in a different context, but this trans-
fer is limited. Here we instead give a completely
generic technique for deriving dynamic oracles.

We focus on problems that involve mapping an
input sequence to an output sequence in left to right
order, which also generalizes the task of tagging
the sequence. Our approach is general enough to
subsume others, e.g., parsers based on transition
systems can be encoded through tagging (Gómez-
Rodrı́guez et al., 2020). Our technique is based on
encoding possible outputs in a finite state automa-
ton. By incorporating the loss via a transducer, we

1We occasionally drop the “dynamic” part, as dynamic
oracles are a strict generalization of static ones.

are able to formulate oracles as a minimum weight
problem on regular languages. We also investigate
the complexity of repeatedly solving these mini-
mum weight problems.

2 Formal background

Before we describe our approach, we will recap
some of the theory of AIL and finite state machines.
Through a detailed discussion of both topics in
a shared vocabulary, the connection will become
clearer. We use the task of mapping sentences to
parse trees as our running example.

General Notation We start with generic nota-
tions that will be used throughout the paper: we
denote by [k, n] the set of natural numbers between
k (included) and n (included). For any set Σ we
let ℘(Σ) denote the powerset (set of all subsets)
of Σ, and Σ∗ denote the set of sequences of el-
ements of Σ. For such a sequence α ∈ Σ∗, |α|
denotes the length of the sequence, for an index
i ∈ [1, |α|], αi denotes the ist element in the se-
quence α. We also refer to sequences by extension-
ally listing their elements within angle brackets,
as in α = 〈x1, . . . , xn〉.2 ε denotes an empty se-
quence, as does 〈αk, . . . , αn〉 whenever n < k.
For two sequences α, β, α ≤ β holds iff α is a pre-
fix of β. Accordingly α < β holds iff α ≤ β
and α 6= β. α • β denotes the concatenation
of the two sequences α and β (〈α1, . . . , αn〉 •
〈β1, . . . , βm〉 = 〈α1, . . . , αn, β1, . . . βm〉). Finally
we adopt the convention that minx∈∅ f(x) = +∞
for any real-valued function f of one variable, and
arg minx∈E f(x) denotes the set {x ∈ E | f(x) =
minx′∈E f(x′)}.

2In this case, |α| = n.
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2.1 Active Imitation Learning

Imitation learning is concerned with using super-
vised feedback in order to learn models which can
make sequential decisions. Example NLP prob-
lems for which imitation learning can be used are
Named-Entity Recognition tagging (Brantley et al.,
2020) and shift-reduce dependency parsing (Gold-
berg and Nivre, 2012). We focus on problems in
which the model chooses from a fixed set of ac-
tions O at every step (also referred to as the output
lexicon) and define an imitation learning input as
follows:

Definition 1 (Imitation Learning Input). An im-
itation learning input3 x consists of a sequence
w = 〈w1, . . . , wn〉, a successor function s :
O∗ → ℘(O), and a stopping criterion t : O∗ →
{true, false}.

Intuitively, the successor function s restricts the
actions that the model can choose to the set s(α) ⊆
O, depending on the sequence of previously taken
actions α. Such a restriction is generally needed
to ensure that only meaningful output (e.g. well-
formed trees) are produced for a given input.

For our example of generating a sequence cor-
responding to a parse tree, the input sequence con-
sists of word tokens. Our output lexicon consists of
all possible word tokens that occur in the input, as
well as opening brackets labeled with all possible
nonterminals in the set N , e.g., NP( or S(, and the
closing bracket ). The stopping criterion is true
once all tokens in the input have been generated in
the output and there are no unmatched open brack-
ets. For ease of presentation we will only consider
context free parses without unary productions, i.e.
we do not allow trees of the form X(t) where t is
any complete parse tree. This means the succes-
sor function allows generation of ) whenever there
is at least one more unmatched open bracket, the
previous output is either a word token or another
) and closing the bracket would not create a unary
bracketing. s will allow opening brackets as long
as there are more word tokens left to be produced
than there are words left to produce and the last
output was not a word token. Finally the s function
allows wi after an opening bracket or another word,
if wi−1 has been produced.

We obtain a solution α1, . . . , αk for a given in-
put with a model m by repeatedly choosing the
next action αk among the admissible actions in

3We simplify to just input whenever the meaning is clear.

s(α1, . . . , αk−1), according to the scores assigned
by m. Whenever t(α1, . . . , αk) becomes true, the
model will have to score the option of stopping
against all possible outputs. This is relevant to prob-
lems such as machine translation, where it is possi-
ble to continue even after a potential stopping point.
Our definition of an input restricts admissible can-
didate solutions to the set τx = {α ∈ O∗ | ∀k ∈
[1, |α|]αk ∈ s(α1, . . . , αk−1) ∧ t(α) = true}.

We assume that every imitation learning problem
comes with a set Y of possible results, and that
every (admissible) action sequence α for an input
x can be interpreted as an element JαK ∈ Y . In
our parsing example, the interpretation function
simply takes a valid bracketing and maps it to the
corresponding tree with Y being the set of parse
trees for the sentence. Another example would
be outputting the tokens of an SQL command and
mapping them to their evaluation result relative to
a database.

Note that J·K is not necessarily an injective map-
ping. For the SQL example, different commands
evaluate to the same results. In some settings the
interpretation of an action sequences can depend
on the words of the input sequence w, e.g., if our
outputs were actions in classical shift-reduce pars-
ing. For this reason, we assume a collection of
interpretation functions indexed by the input rather
than a unique, input-independent one. Finally, in
order to unify the treatment of the training and test
setting, we generally assume that there is a gold
output g ∈ Y . This leads to this definition of an
imitation learning problem:

Definition 2 (Imitation Learning Problem). An im-
itation learning problem P is a set of instances,
each being a triple 〈x, g, J·K〉 where x is an input,
g ∈ Y is a gold annotation. and J·K : τx 7→ Y is a
function interpreting any admissible output action
sequence as an outcome in Y .

A model’s performance is measured by a loss
function. A loss function is a functionL : Y ×Y 7→
R+. The arguments fed to the loss function typi-
cally are the interpretation of an action sequence
and the gold annotation. For constituency parsing
the loss function for training and testing is 1 minus
the F1 score - for a loss function, smaller values
should indicate better results. To give another ex-
ample, for machine translation, a loss would be
1 minus the BLEU score computed between gold
translations and the output translation. Because
we measure the loss of an (admissible) output ac-
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tion sequence α on a problem instance 〈x, g, J·K〉
through the quantity L(JαK, g), it is not necessary
that the output action sequence and the gold anno-
tation are of the same “type”. The comparison is
mediated by the interpretation function and train-
ing will aim to learn to produce action sequences
that interpret to low loss targets.

2.2 Learning Set-Up
How does one learn in this setting? One option
is to use reinforcement learning to obtain a model
through trial and error feedback coming from the
loss function (Sutton and Barto, 2018). This is gen-
erally not the most efficient way to use the informa-
tion available. If it is possible to derive a sequence
of outputs 〈α1, . . . , αm〉 with minimum loss, then
this can be used as the basis of standard imitation
learning, without any exploration (Hussein et al.,
2017). This is known as static oracle learning in
NLP. In the parsing example this means obtaining
the action sequence that is given in Fig. 1, as it
corresponds to the “correct” parse tree, and train-
ing a classifier to produce S( as a first step given
the input, then produce NP ( given the input and
S( and so on. We can further exploit the knowl-
edge implicit in the loss function through active
imitation learning(Hussein et al., 2017; Ross et al.,
2011), also known as dynamic oracle learning in
NLP (Goldberg and Nivre, 2012). In this setting
the learning is active because it obtains feedback
for which action is optimal for a given instance and
partial action output α = 〈α1, . . . , αk〉, where we
will call α a prefix. This makes it possible to learn
to adjust for errors that a model is likely to make,
and to explore different sequences of actions, in
order to find one that is easy to learn.

When teaching a robot how to move, or learning
to automatically drive, human intervention might
be required in order to give the optimal action for
every situation. We are focused on deriving optimal
actions directly from gold outputs so that no further
annotator intervention is necessary. We define a
dynamic oracle as follows:

Definition 3 (Dynamic Oracle). A dynamic oracle
π for an imitation learning instance 〈x, g, J·K〉 and
loss L is a function such that:

∀α ∈ O∗ : π(α) ∈ arg min
o∈s(α)

min
β∈τx,α•o≤β

L(JβK, g)

To put the definition of π in words: an oracle
gives, for every prefix, an action that is the next

• Inputs

– interpolation schedule ι0 ∈ (0, 1), . . .

– instances 〈x1, g1, J·K〉, . . . , 〈xn, gn, J·K〉
– dynamic oracle πj for each 〈x1, g1, J·K〉
– starting model φ0

• Data = ∅

• Steps for i = 0 to max steps:

1. for j = 1 to n:
(a) go to example in = 〈xj , gj , J·K〉 and set

α← ε
(b) iterate:

i. with probability ιi set pred = φi(in, α)
otherwise set pred = πj(α)

ii. add 〈in, α, πj(α)〉 to Data
iii. if pred is to stop, end iterate
iv. set α← α • pred

2. train φi+1 from Data

Figure 2: Pseudocode for Dagger.

step in a sequence that has the minimum loss pos-
sible for this prefix. Dynamic oracles enable the
implementation of special learning algorithms with
strong guarantees on test time performance and no
exposure bias. One such algorithm is Dagger (Ross
et al., 2011), which comes with attractive guaran-
tees on model convergence. For clarity we provide
the pseudo-code for Dagger, adjusted for our fram-
ing of the problem, in Figure 2, where we denote
the prediction of a model φ for a given instance
in = 〈x, g, J·K〉 and action sequence α as φ(α, in).

The Dagger algorithm alternates between pursu-
ing an optimal action and pursuing one chosen by
the current model with probability ιi. ι0 is usually
set to 0, to train a first model on optimal action se-
quences. By adding pairs of prefixes that a model
visited and the dynamic oracle actions for these pre-
fixes to the training data, models are able to learn
what to do for prefixes they are likely to encounter.
The last model trained is usually the one used at
test time.

We presented dynamic oracles as the solution to
an optimization problem over sequences. With this
in mind, we will build on concepts from finite state
automata in order to make these problems clearer
and to solve them efficiently.

2.3 Finite State Machines

Given any finite set Q, called states, and finite set
Σ, called alphabet, we call δ a transition function



5

if δ assigns a weight w ∈ R∪{+∞}4 to any triple
〈q, o, q′〉 ∈ Q × Σ × Q. Given such a transition
function, we write δ∗ for the (weighted) transitive
closure of δ. δ∗ extends δ to words in Σ∗ and is
defined inductively:

δ∗(q, ε, q) = 0

δ∗(q, α · o, q′) = min
q′′

δ∗(q, α, q′′) + δ(q′′, o, q′).

Where q, q′, q′′ range over Q, o over Σ and α over
Σ∗, and all free variables are implicitly universally
quantified.

In order to later discuss transducers, we will also
use the classic extension of transition functions to
a pair of a left-hand side alphabet and a right-hand-
side alphabet 〈Σ,Λ〉. Such an (extended) transi-
tion function δ assigns a weight to any quadruple
〈q, o1, o2, q′〉 ∈ Q×(Σ∪{ε})×(Λ∪{ε})×Q.5 In
this extended case, the definition of the (weighted)
transitive closure of δ is amended to:

δ∗(q, ε, ε, q) = 0

δ∗(q, α, β, q′) = min
γ,λ,o1,o2∈H(α,β)

min
q′′

δ∗(q, γ, λ, q′′) + δ(q′′, o1, o2, q
′).

Where the first minimum is taken over the set
H(α, β) = {〈γ, λ, o1, o2〉 ∈ Σ∗×Λ∗×(Σ∪{ε})×
(Λ∪ {ε}) | 〈o1, o2〉 6= 〈ε, ε〉 and 〈γ • o1, λ • o2〉 =
〈α, β〉}

This paper uses automata exclusively for mini-
mum weight problems. This means that we only
focus on tropical weighted finite state automata and
transducers (Mohri, 2009), which use the addition
and minimum operations. We drop both “tropical”
and “weighted” where appropriate.

Definition 4 (Weighted Finite State Automaton).
A tropical weighted finite state automaton (automa-
ton) A is a tuple 〈q0, Q,Σ, δ, ρ〉 where q0 ∈ Q is
the start state, Q and Σ are the states and the al-
phabet, δ is a transition function and ρ : Q → R
is the final weight function. A defines a function
A(α) = minq∈Q δ

∗(q0, α, q)+ρ(q). The weighted
language L(A) of A is the set {〈α,w〉 | A(α) =
w}.

We say that a (non weighted) language L ⊆ Σ∗

is regular, iff there exists an automaton AL such
that, for any α ∈ Σ∗, AL(α) = 0 if α ∈ L and

4As we will be reasoning about minimum weight paths,
∞ corresponds to an absent transition.

5Note the addition of the empty sequence ε to the left-hand-
side and right-hand-side alphabets.

AL(α) = +∞ otherwise. Such an automaton is
said to recognize L.

Definition 5. A tropical transducer T is a tuple
〈q0, Q,Σ,Λ, δ, ρ〉, where Σ and Λ are two alpha-
bets, and δ is an extended transition function
over theses two alphabets. All other members
of T are exactly as in definition 4. T defines a
weight function (of two arguments) T (α, β) =
minq∈Q δ

∗(q0, α, β, q) + ρ(q). The weighted rela-
tion L(T ) of T is the set {〈〈σ, σ′〉, w〉 | T (σ, σ′) =
w}

The size |A| (resp. |T |) of an automaton A
(resp. a transducer T ) is defined as |Q|+ |δ|, where
|δ| is the number of finite-weight transitions. If
A and A′ are both weighted automata, we write
L(A) ∩ L(A′) to denote the weighted language
{〈α,w〉 | w = A(α) + A′(α)}. This is the inter-
section ofA andA′. If T is a transducer andA is an
automaton, we write L(T )◦L(A) for the weighted
relation {〈〈α, β〉, w〉 | w = T (α, β) +A(β)}. Sy-
metrically, we write L(A) ◦L(T ) for the weighted
relation {〈〈α, β〉, w〉 | w = A(α) + T (α, β)}.
Both are called applications of T to A. Note that
the intersection of two automata can be expressed
as an finite automaton as well and the application
of a transducer can be expressed as another trans-
ducer:

Lemma 1. 1. IfA andA′ are automata, one can
construct an automataA∩A′ such that L(A∩
A′) = L(A) ∩ L(A′). Moreover, A ∩A′ can
be computed in time O(|A||A′|) (Rabin and
Scott, 1959).

2. If A is an automaton and T is a transducer,
there exists a transducer T ◦ A such that
L(T ◦ A) = L(T ) ◦ L(A). Moreover, T ◦ A
can be effectively computed in time O(|T ||A|)
(Mohri, 2004). The same holds, up to symme-
try, for L(A) ◦ L(T ), and we write A ◦ T for
the corresponding transducer.

For all of the above statements the intuition is to
construct a new automaton/transducer that has pairs
of the two automata’s states as its states and has a
transition with weight w + w′ if the two automata
have matching transitions with weight w and w′

respectively. As a consequence, if A has m states,
u transitions and A′ (resp. T ) has m′ states, u′

transitions, then A∩A′ (resp. A ◦ T or T ◦A) has
O(|k||l|) states and O(|u||u′|) transitions.

Definition 6. For any transducer T , we let VT de-
note the function which maps every state to the
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minimal score which can be assigned to some se-
quence read from that state. Formally: VT (q) =
minα,β,q′δ

∗(q, α, β, q′) + ρ(q′).

In other words, VT gives the weight of the mini-
mum weight or shortest path to any final state plus
the weight of that state (Mohri, 2009).

Lemma 2. For any transducer T and state q, the
set

{〈q, VT (q)〉 | q ∈ Q}

can be computed in O(|Q||δ|) (Mohri, 2009).

This is a shortest path problem, solvable by
the Bellman-Ford (Mohri, 2009) algorithm. If
all weights are positive, this is amenable to
O(|Q|log(|Q|) + |δ|) through Dijkstra’s algorithm
(Dijkstra, 1959).

3 Finite State Automata Oracles

We now provide generic dynamic oracles, prove the
soundness of our constructions and provide com-
plexity upper-bounds. We will encode all the possi-
ble action sequences for a given imitation learning
problem as an automaton and then retrieve the next
transition in a minimum loss complete solution for
a given prefix.

The key question is how to derive an automaton
of losses from a problem instance without having to
explicitly go through all possible action sequences.
In order to do this, we need three requirements
guaranteeing applicability of finite-state techniques.
First, we must be able to build a decomposition au-
tomaton inverting the interpretation function, and
its language must not be empty. Second, we must
be able to approximate the loss function with a
transducer working over action sequences. Third,
there must be an automaton recognizing the set
of admissible candidate output action sequences
for the considered input. These requirements are
formally captured by the following definitions.

Definition 7. 〈x, g, J·K〉 has a decomposable gold
annotation if the set JgK−1 = {α ∈ O∗ | JαK = g}
is both regular and non-empty. An automaton
recognising this set is called a decomposition au-
tomaton.

In our constituency parsing example, the decom-
position automaton for a tree is simply the automa-
ton that accepts the bracketing for the tree, e.g., the
one recognizing “S( John VP( hit NP( the ball ) )
)” for the tree in Fig. 1. The automaton recogniz-
ing this sequence would have positions in the gold
output as states and would have transitions such

as 1, John, 2 or 2, V P (, 3 with weight 0. For ma-
chine translation the decomposition automaton may
recognize any of a number of possible gold trans-
lations. Note that our notion of “decomposable”
is unrelated to the notion of “arc-decomposable”
used in previous research on oracles for depen-
dency parsing. Our notions of decomposability is
concerned with decomposing every possible way
of arriving at the gold output into a sequence of
actions, while arc-decomposability tells us about
the interaction between added edges during depen-
dency parsing.

Definition 8. We say that L is decomposable if
there exists a transducer T such that for any in-
stance 〈x, g, J·K〉 ∈ P and sequences α, α′, β ∈
O∗, if L(Jα′K, JβK) < L(JαK, JβK), then there ex-
ists β′ ∈ O∗ such that Jβ′K = JβK and T (α′, β′) <
T (α, β).

Definition 8 relates the transducer and loss func-
tion with an inequality, not an equality. This pro-
vides more flexibility: we do not require that the
loss function be directly computed by a transducer.
If we did, then that would rule out very common
losses such as F-Score. Rather, we allow transduc-
ers which conserve the right minima (see Lemma 3
below). Variations of the Levenshtein edit-distance
between the output and gold-sequence are express-
ible as a (single state) transducer, and provides a
generic loss function in practical cases. Consider
our example of constituency parsing: the F-Score
is the harmonic mean of two measures that require
division by the total count of constituents present
in a prediction and is hard to express as a trans-
ducer. However, as shown by Cross and Huang
(2016), for purposes of an oracle, the number of
incorrectly inserted and missing brackets (which
corresponds to the edit distance between input and
output for our setting) fits definition 8 and can thus
replace a loss based on the F-Score. An incorrectly
inserted bracket will always reduce precision with-
out changing recall and vice versa for dropping a
bracket. For our example problem the transducer
would have have transitions 0, x, x, 0 with weight
0, which map every symbol to itself, transitions
0, X(, ε, 0, 0, ε,X(, 0 and 0, Y (, X(, 0 which al-
low us to delete, insert, or relable any opening
brackets X(, Y ( with weight 1, as well as transi-
tions 0, X), ε, 0 and 0, ε,X), 0 with weight 0.6

6Because closing brackets need to be matched, each in-
correctly inserted one will incur a loss through an incorrect
opening bracket
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The next lemma states that for any set of action
sequences, the input action sequence assigned min-
imum weight by some decomposition transducer is
indeed a minimum loss action sequence out of that
set.

Lemma 3. LetL be decomposable, 〈x, g, J·K〉 ∈ P ,
and T be as described in definition 8. For any
subset D ⊆ O∗,

if α̃ ∈ arg min
α∈D

min
β,JβK=g

T (α, β),

then α̃ ∈ arg min
α∈D

L(JαK, g)

Proof. Let α̃ ∈ arg minα∈D minβ,JβK=g T (α, β)

and β̃ ∈ arg minJβK=g T (α̃, β). If there existed
α′ ∈ D such that L(Jα′K, g) < L(Jα̃K, g), it
would follow from definition 8 that ∃β′, Jβ′K =
Jβ̃K = g and T (α′, β′) < T (α̃, β̃), which
contradicts the definition of α̃. Hence α̃ ∈
arg minα∈D L(α, β).

Finally, we need to add the regularity of the pos-
sible action sequences:

Definition 9. We say that x has regular constraints
iff τx is regular.

For our context free parsing example, all the pos-
sible parses for a sentence can be expressed in a
finite state automaton by virtue of the fact that any
finite language is regular. We obtain an automa-
ton of size O(n2) for an input of length n, when
we construct states that encode how many brack-
ets are open and which word was last produced.
We would have a state (3, c, t), which would be
reached after producing, e.g., ((a(bc for the input
sentence abcd. t and f would be use to indicate
whether we can still produce closing brackets be-
fore outputting the next word, to prevent outputs
like ((a(b(). We would allow, e.g., a transition
of the form (3, c, t), ), (2, c, t). Note that we only
need to maintain numbers up to the length of the
inputs sentence, since no more can be used in a
permissible parse for the input. Our construction
for the action sequence automaton allows for unary
bracketings, but since they do not occur in the gold
output and would always incur additional loss, this
will not constitute a difficulty.

From here on, we assume 〈x, g, J·K〉 to be an
instance with both decomposable gold annotation
and regular constraints, and L to be a decompos-
able loss function. We now proceed to a first oracle
construction which follows naturally from these as-
sumptions and some of the properties of finite state

machines listed in section 2. Let α ∈ O∗ represent
a sequence of k actions that the model has already
taken. We can find an optimal action for the next
step: consider an arbitrary candidate action o ∈ O
and recall that the oracle must determine which,
among the possible choices for o, is part of the
minimum loss completion of α into an admissible
action sequence. Letting (for any action sequence
γ) contγ = {γ′ ∈ τx | γ′ ≥ γ} denote the set
of admissible continuations of γ, we can formally
rephrase our objective as choosing an action o min-
imizing the quantity minα′∈contα•o L(Jα′K, g).

To ease notational clutter, let us define l(α′) =
minβ′∈JgK−1 T (α′, β′). Observe that lemma 3 en-
sures that we solve the oracle task if we find
õ ∈ arg mino∈O minα′∈contα·o l(α

′). For if we find
such õ, letting α̃ ∈ arg minα′∈contα•o l(α

′), we
have α̃ ∈ arg minα′∈contα l(α

′) (easily checked
from the definition of õ). Then, from lemma 3 fol-
lows that α̃ ∈ arg minα′∈contα L(Jα′K, g), which
(since α̃ ∈ contα•õ) finally shows that õ is one
of the optimal choices for continuing α, i.e. õ ∈
arg mino∈O minα′∈contα•o L(Jα′K, g).

How can we compute this quantity? We first
build an automaton Aα•o which recognizes the
set α • o • O∗. This is easily done as depicted
below, with the following graphical conventions:
states are circled, the start state (0) is marked with
a left-dangling incoming arrow, arrows between
states represented transitions, annotated with their
label(s) and weight (a set of labels like O is a
factored representation of one transition for each
o ∈ O, all with the same indicated weight), and
final weights are given by the downwards outgoing
arrows.

0 1 . . . k − 1 k α

α1, 0 α2, 0 αk−1, 0 αk, 0 o, 0

O, 0

+∞ +∞ +∞ +∞ 0

In our example setting, this would be an automa-
ton that accepts the brackets and word tokens pro-
duced so far, followed by all possible words and
brackets and which assigns weight 0 to each of
those transitions.

Let Cx be an automaton recognizing the set τx
of admissible actions for x (Cx exists since x has
regular constraints). In our example this would be
an automaton that accepts all the valid bracketings
of the input. Note that this can be represented as
a finite state automaton, due to the limit on open
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brackets we stipulated. Observe that Cx∩Aα•o (as
provided by lemma 1) recognizes contα•o.

Let now T be the transducer provided by defini-
tion 8, and Dg be a decomposition automaton for
g. Consider the transducer Tα•o = (Cx ∩Aα•o) ◦
(T ◦ Dg) (provided by two successive applications
of lemma 1), and let q0 be its initial state. With a
little work (we skip the details here, due to space
limitations), one can show that if β′ /∈ JgK−1 or
α′ /∈ contα•o then Tα•o(α′, β′) = +∞, and that
otherwise Tα•o(α′, β′) = T (α′, β′). This guaran-
tees:

min
α′

min
β′

Tα•o(α
′, β′)

= min
α′∈contα•o

min
β′∈JgK−1

T (α′, β′).
(1)

Recall that VTα•o(q0) = minα′ minβ′ Tα•o(α
′, β′).

Equation (1) and preceding observations establish
the soundness of the following oracle computation:

Oracle computation for prefix α. For each o ∈
O, construct Tα•o, then computes VTα•o(q0). Find
and output the action o minimizing VTα•o(q0).

In terms of our example, this would mean taking
the automaton that expresses all possible contin-
uations of a partial parse and intersecting it with
the automaton of all possible bracketings of the
input. Then we apply a transducer that encodes the
edit distance to the gold bracketing and extract the
shortest path from the resulting automaton

We now briefly discuss the complexity of a sin-
gle call to this oracle, and of a sequence of pre-
diction, at each timestep of an input’s processing.
Recall that k = |α| and observe thatAα•o hasO(k)
states and O(k) transitions. Let mT , mg and mx

denote the number of states of T , Dg and Cx re-
sepectively, and eT , eg, ex their respective number
of finite-weight transitions. We consider the size
of the alphabet O constant and exclude it from the
underlying variables of all the asymptotic bounds
reported. By lemma 1, computing Tα•o is done
in time O(k|Dg||T ||Cx|) = O(k(mg + eg)(mx +
ex)(mT + eT )), it has O(kmgmTmx) states and
O(kegeT ex) transitions. By lemma 2 computing
VTα•o(q0) is done in O((kmgmTmx)(kegeT ex)),
and is asymptotically the dominant term. Iterating
(a constant number of times) over o ∈ O leaves the
asymptotic bound O(k2(mgmTmxegeT ex)).

If a machine learning system builds and out-
puts a (complete) sequence of n actions in pro-
cessing (entirely) a given input x, and needs
to call the oracle at each timestep k ∈ [1, n]

(i.e., there is a call on each prefix of length
k of the complete action sequence), the overall
cost of oracle calls in the processing of x will
then be O(n3(mgmTmxegeT ex)). If no nega-
tive weights are involved, this can be lowered to
O(n2(mgmTmxlog(nmgmTmx) + egeT ex)).

This is extremely suboptimal, because the al-
gorithm discussed above is only superficially dy-
namic: at every timestep, an independent com-
putation arises with redundant work all the way
up to the prefix α of previous actions disregard-
ing the result of previous timesteps’ computations.
In fact, shortest path computations can be per-
formed in advance. To this aim, we can work with
Tε = Cx ◦ (T ◦ Dg), a transducer that combines
the automaton of all possible input sequences with
the decompositions of the gold output. This trans-
ducer is only dependent on the problem and the
loss function, hence only needs to be computed
once, at the time the corpus is created. We can
use the following observation: when we start pro-
ducing the output sequence, the best action is the
first action of the best path from Tε’s start state q0.
After outputting an action a, we can obtain a set
c of states in Tε that are reachable by reading a
from q0. The best next action must then be the first
action of some path from some state q′ ∈ c, which
is determined according to the cost of reaching q′

through a plus the weight of the best path from q′.
This updating can be carried forward during the
whole decoding process. This frees us from having
to repeat a lot of computation, as we will see that
we only need to compute the best paths in Tε once.
To formalize this: let Tε = 〈q0, Q,O,O, δ, ρ〉, then

min
α′∈contα

min
β′∈O∗

Tε(α
′, β′)

= min
q′

(min
β
δ∗(q0, α, β, q

′) + VTε(q
′)).

(2)

Let Preα(q′) = minβ∈O∗ δ
∗(q0, α, β, q

′), the
minimum weight of a path reaching q′ from the
start state with α. Using Eq. (2), we have

arg min
o∈O

min
α′∈contα•o

min
β′

Tε(α
′, β′)

= arg min
o

min
q′

Preα•o(q′) + VTε(q
′).

Finally, since by construction Tε(α′, β′) 6= +∞
entails Jβ′K = g, it is sufficient to find

õ ∈ arg min
o

min
q′

(Preα•o(q′) + VTε(q
′)) (3)

to solve the oracle problem for prefix α. Our sec-
ond construction thus proceeds as follows:
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Second oracle computation for α. When con-
structing the problem, compute VTε for each in-
stance. During iteration, to obtain the optimal next
action o ∈ O for prefix α, choose the minimum of
Preα•o(q′) + VTε(q

′).
What we gain from this obviously depends on

the cost of computing Preα(q′) for every state q′.
The key insight is that Preα•o can be computed
inductively from Preα:

Preα•o(q′)

= min
β∈O∗

δ∗(q0, α • o, β, q′)

= min
β′,β′′,p

min
q′′

δ∗(q0, α, β
′, q′′)

+ min
q′′′

δ(q′′, o, p, q′′′)

+ δ∗(q′′′, ε, β′′, q′)

= min
q′′

Preα(q′′)

+ min
q′′′

min
p
δ(q′′, o, p, q′′′)

+ δ∗(q′′′, ε, β′′, q′)

Obverse that in the second equality above, the quan-
tity minq′′′ minp δ(q

′′, o, p, q′′′) + δ∗(q′′′, ε, β′′, q′)
depends only on Tε, the states q′′ and q′, and not
on the prefix α. We thus refer to this quantity
as C(q′′, q′). Since it does not depend on α, it
can be precomputed once for every pair 〈q′′, q′〉,
and reused through every iteration. The cost of
this precomputation is asymptotically bounded by
O(|Q|3): the lion’s share is computing a table for
the (lhs) epsilon closure δ∗(q′′′, ε, β′′, q′), for all
pairs 〈q′′′, q′〉. This is an instance of an all-pair
shortest-path problem and solved with the Floyd-
Warshall algorithm (Mohri, 2009). This is also akin
to considering Tε has an automaton rather than a
transducer, using only the ’input’ side (lhs) of tran-
sitions, and eliminating ε transitions. Note in pass-
ing, that computing Preε is a similar problem and
therefore done with the same asymptotic bound.

Because Preα•o can be computed inductively, it
is possible to update it as the Dagger algorithm is
going through a problem instance computing first
Preε, and then updating by taking a minimum over
all possible transitions for the next action produced.
The induction step then computes Preα•o(q′) from
the different Preα(q′′) and C(q′′, q′) in O(|Q|2)
(since for each entry q′ we need to range over all
q′′). This could be reduced to constant time by
looking just at the inputs of Tε and making the
induced automaton deterministic (Hopcroft et al.,

2006), however, that would come at the cost of a
worst-case exponentially larger precomputation.

We now turn to the complexity analysis of the
refined oracle construction. Computing VTε is
the only precomputation that we have not yet ad-
dressed, and can be achieved in time O(|Q||δ|)
before any Dagger iterations. We can bound this
with O(|Q|3) as well. Oracle calls will receive a
(possibly empty) prefix of the form α. To compute
the oracle we have to compute Preα·o from Preα,
which will cost O(|Q|2) for a nondeterministic au-
tomaton, and then compute the minimum in equa-
tion (3). Hence, over a sequence of n actions with
oracle calls in one entire pass over input x in Dag-
ger, the total cost of oracle calls will be bounded
by O(|Q|3 + n|Q|2), or with the same notations as
before O((mxmgmT )3 + n(mxmgmT )2). Hold-
ing other parameters fixed, our second construction
is much more efficient with respect to n, the length
of the input. We can therefore conclude that our
second construction is much more efficient during
the actual Dagger training steps, with most of the
computation moved into preprocessing, which is
only needed once during the lifetime of a corpus.

Applied to our context free parsing example, our
analysis bounds an oracle call (and update of Pre)
with O(n6). The precomputation is bounded by
O(n9), and the total of oracle calls in building a
complete output is bounded with O(n7). However,
we used here a generic bound that will hold for
all instances of our method. No assumption were
made on the nature of the automata involved7, and
specific instances will allow more efficient imple-
mentation of automata-theoretic operations, with
no change to the general framework. We leave dis-
cussion of the automata theoretic properties that
enable more efficient oracles for future work.

4 Related Work

Our dynamic oracle construction is general and
only takes limited bookkeeping as seen in the previ-
ous section. However, this computation can still be
costly and one topic in existing imitation learning
is avoiding oracles computations where possible.
A recent approach uses statistical techniques for
the so called task of apple tasting to learn when
it is necessary to call to an expensive oracle and
when it is possible to instead use a cheap heuristic
(Brantley et al., 2020). We could implement trans-

7Also, we relied for simplicity on a worst-case estimation
O(Q2) for the number of transitions of Tε.
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ducer application and other computations on the
finite state automata in a lazy manner and avoid or-
acle computations in order to save on computations
for the automata and for tracking shortest paths.
Other work uses reinforcement learning in order to
derive approximate oracles (Yu et al., 2018; Fried
and Klein, 2018). By using reinforcement learning
to replace many of the oracle evaluation, it would
also be possible to save on automaton construction.

The finite state approach we have sketched can
give us an optimal action to take next. While this
is sufficient to implement active imitation learning
with a technique like Dagger, in some settings it
can be beneficial to use not just information on
what the best next action is, but rather to obtain the
minimum loss for every available action in a given
state (Ross and Bagnell, 2014) and to then train a
loss aware classifier. As we are already computing
these quantities, our algorithms would also suitable
for this setting.

Related Dynamic Oracles There are a number
of previously published oracles that are related to
our setting, even if they proceed slightly differ-
ently. They are particularly used for dependency or
constituency parsing. Note that our approach for
constructing an automaton expressing the loss for
all possible continuations could be applied to set-
ting where the output is produced in a fashion other
than left to right. Assume, e.g., that we use an algo-
rithm which produces parse trees by “splitting” a
sentence into sub-sequences repeatedly as in Stern
et al. (2017). Let the output generated to far be
S(NP(The old baker)VP(uses a sharp knife)). We
would then simply construct an automaton equiva-
lent to the regular expression S(NP(.∗The.∗old.∗
baker.∗)VP(.∗uses.∗a.∗sharp.∗knife.∗)), where
.∗ stands for an arbitrary sequence of brackets.
Through application of the loss transducer approx-
imating the loss for all possible action sequences,
we could retrieve the minimum loss continuation.
We leave work on whether this construction allows
for more efficient look-up to future work.

A predecessor of the work by Stern et al. (2017)
is the paper by (Cross and Huang, 2016) which
discusses a shift-reduce system for constituency
parsing and gives a constant time dynamic ora-
cle for this system. It would be possible to ex-
press their setting, as well as those of Coavoux and
Crabbé (2016), Fernández-González and Gómez-
Rodrı́guez (2018b) and the discourse parsing fo-
cused on of Hung et al. (2020) in our framework.

Dynamic oracles have also been developed for
different formalizations of the dependency pars-
ing problem (Goldberg and Nivre, 2012; Gold-
berg et al., 2014) for shift reduce parsing. For the
projective setting, one could generalize these ora-
cles by translating dependency tree to constituency
trees Mareček and Žabokrtský (2011) or tag se-
quences (Gómez-Rodrı́guez et al., 2020). Oracles
for non-projective dependency and constituency
parsing (Coavoux and Cohen, 2019; Nederhof,
2021; Gómez-Rodrı́guez and Fernández-González,
2015; Fernández-González and Gómez-Rodrı́guez,
2018a; de Lhoneux et al., 2017; Gómez-Rodrı́guez
et al., 2014) can in certain cases be computed in
polynomial time, but would be harder to express
in this framework without necessitating extremely
large automata as it would be difficult to encode
the different admissible sets of actions.

Our idea of using interpretations of action se-
quences is inspired by Interpreted Regular Tree
Grammars (IRTGs) (Koller and Kuhlmann, 2011).
Our approach works in terms of automata over
string sequences and IRTGs are based on automata
over trees. In future work we will use IRTGs to
extend our approach to additional domains.

5 Conclusion

This paper gives a generic approach for deriving
dynamic oracles for NLP. The oracles make it possi-
ble to implement error aware learning and learning
in ambiguous environments for a wide range of
NLP problems, including most problems that can
be approached with sequence to sequence models.
There is no need to derive new oracles for every
new loss or set of output actions, instead automata
can be derived once and reused if only part of a
problem changes. We also showed how to substan-
tially improve the efficiency of oracle lookup, by
moving most computational cost into a one time
pre-computation.
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