
Proceedings of the 14th International Conference on Computational Semantics, pages 38–50
June 17–18, 2021. ©2021 Association for Computational Linguistics

38

Encoding Explanatory Knowledge for Zero-shot
Science Question Answering

Zili Zhou1,2, Marco Valentino1, Dónal Landers2, André Freitas1,2,3
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Abstract
This paper describes N-XKT (Neural encod-
ing based on eXplanatory Knowledge Trans-
fer), a novel method for the automatic transfer
of explanatory knowledge through neural en-
coding mechanisms. We demonstrate that N-
XKT is able to improve accuracy and general-
ization on science Question Answering (QA).
Specifically, by leveraging facts from back-
ground explanatory knowledge corpora, the N-
XKT model shows a clear improvement on
zero-shot QA. Furthermore, we show that N-
XKT can be fine-tuned on a target QA dataset,
enabling faster convergence and more accurate
results. A systematic analysis is conducted to
quantitatively analyze the performance of the
N-XKT model and the impact of different cat-
egories of knowledge on the zero-shot general-
ization task.

1 Introduction

Contemporary Question Answering (QA) is evolv-
ing in the direction of addressing more abstrac-
tive reasoning tasks (Thayaparan et al., 2020; Dua
et al., 2019; Clark et al., 2018; Mihaylov et al.,
2018), supported by multi-hop inference (Khot
et al., 2020; Yang et al., 2018) and explanatory
scientific facts (Jansen and Ustalov, 2019; Jansen
et al., 2018, 2016).

This trend of aiming to address more complex,
multi-evidence and chained inference is pushing
the envelope for novel representation and architec-
tural patterns (Ding et al., 2019; Qiu et al., 2019;
Asai et al., 2020; Thayaparan et al., 2019; Kundu
et al., 2019; Valentino et al., 2021), which are mov-
ing from modelling meaning from immediate distri-
butional semantics patterns into deeper abstractive
capabilities. This poses a paradigmatic challenge
on the design of QA architectures, which need to
operate over high-level semantic patterns and ac-
quire the necessary knowledge to perform abstrac-
tion (Clark et al., 2018). At the same time, the

design of new strategies to incorporate explana-
tory knowledge into neural representation has the
potential to address fundamental data efficiency
problems and promote zero-shot generalisation on
out-of-distribution examples.

Explanation-based Science QA (Jansen et al.,
2018) provides a rich framework to evaluate these
emerging requirements, as the task typically re-
quires multi-hop reasoning through the compo-
sition of explanatory facts. While existing ap-
proaches in the field mainly focus on the construc-
tion of natural language explanations (Jansen et al.,
2018; Jansen and Ustalov, 2019), this work aims
to explore the impact of explanatory knowledge on
zero-shot generalisation.

In this paper, we argue that explanation-centred
corpora can serve as a resource to boost zero-shot
capabilities on Question Answering tasks which
demand deeper inference. To this end, we explore
the adoption of latent knowledge representations
for supporting generalisation on downstream QA
tasks requiring multi-hop inference.

Our hypothesis is that explanatory scientific
knowledge expressed in natural language can be
transferred into neural network representations, and
subsequently used to achieve knowledge based in-
ference on scientific QA tasks. To validate this
hypothesis, this paper proposes a unified approach
that frames Question Answering as an explanatory
knowledge reasoning problem. The unification
between the two tasks allows us to explore the
adoption of pre-training strategies over explana-
tory knowledge bases, and subsequently leverage
the same paradigm to generalise on the Question
Answering task.

An empirical evaluation is performed on
Transformers-based architectures adopting the
WorldTree corpus as a knowledge base (Xie et al.,
2020; Jansen et al., 2018) and measuring generalisa-
tion on ARC (Clark et al., 2018) and OpenbookQA



39

(Mihaylov et al., 2018). The main contributions of
this paper are as follows:

• We propose N-XKT, a neural mechanism for
encoding and transferring explanatory knowl-
edge for science QA. To the best of our knowl-
edge, N-XKT is the first work tackling sci-
ence QA tasks through the transfer of external
explanatory knowledge via neural encoding
mechanisms.

• We introduce the explanatory knowledge
transfer task on explanation-centred knowl-
edge bases, describing the methodology to
implement N-XKT for knowledge acquisition
and downstream Question Answering using
Transformer-based models as neural encoders.

• We conduct a systematic empirical analysis to
demonstrate the effectiveness of N-XKT on
improving downstream QA accuracy and over-
all convergence speed in the training phase.
An ablation analysis on different types of
knowledge facts is performed to measure the
impact of different knowledge categories.

2 Related Work

In this section we describe several works related to
knowledge-based scientific QA.

Explanation Bank Explanation Bank1 is a core
component of the WorldTree corpus (Jansen et al.,
2018; Xie et al., 2020). The dataset provides ex-
planations for multiple-choice science questions
in the form of graphs connecting questions and
correct answers, where multiple sentences from
a knowledge base (KB) are aggregated through
lexical overlap between terms. The background
knowledge used for the explanations is grouped
in semi-structured tables, whose facts range from
common-sense to core scientific statements. Expla-
nation Bank has been proposed for the task of ex-
planation regeneration (Jansen and Ustalov, 2019)
– i.e. given a multiple-choice science question, re-
generate the gold explanation supporting the cor-
rect answer. The explanation regeneration task has
been framed as an Information Retrieval (IR) prob-
lem (Valentino et al., 2021). In this paper, we aim
to leverage the knowledge expressed in the expla-
nations to enhance generalisation and zero-shot
capability on multiple-choice scientific question
answering.

1http://cognitiveai.org/explanationbank/

Bidirectional Encoder Representations from
Transformers BERT represents the foundation
which defines the state-of-the-art in several NLP
tasks (Devlin et al., 2019). This model adopts a
Transformer-based architecture composed of sev-
eral layers of attention (Vaswani et al., 2017) that
are used to learn a deep bidirectional representa-
tion of language. BERT-based models have demon-
strated remarkable results in Question Answering
when directly fine-tuned on the answer prediction
task or additionally pre-trained using domain spe-
cific knowledge (Clark et al., 2020; Beltagy et al.,
2019). A recent line of research attempts to en-
rich the input of BERT with background knowl-
edge in the form of explanations in order to boost
generalisation and accuracy for challenging QA
settings. Here, the explanations are explicitly con-
structed through the adoption of language models
(Rajani et al., 2019) or information retrieval (IR)
approaches (Valentino et al., 2021; Yadav et al.,
2019). Conversely, this paper explores mechanisms
to implicitly encode explanatory knowledge in the
neural representation to improve the capability of
performing downstream inference. Specifically, in
this work, we adopt Transformers as text neural
encoders.

Leveraging External Knowledge for Scientific
QA Recently, many solutions have been pro-
posed for science QA that leverage either exter-
nal reference corpora (Khot et al., 2017; Khashabi
et al., 2018; Zhang et al., 2018) or existing knowl-
edge graphs (Li and Clark, 2015; Sachan et al.,
2016; Wang et al., 2018; Musa et al., 2019; Zhong
et al., 2019). Generally, previous works rely on
Information Retrieval models or on structural em-
beddings for Knowledge Bases, while our work
focuses on directly encoding explanatory knowl-
edge, evaluating it in a downstream scientific QA
setting.

3 Methodology

Scientific Question Answering has the distinctive
property of requiring the articulation of multi-hop
and explanatory reasoning. This can be contrasted
with the lexical-retrieval style of factoid Question
Answering. Additionally, the explanatory chains
required to arrive at the correct answer typically
operate at an abstract level, through the combina-
tion of definitions and scientific laws (Thayaparan
et al., 2020). This characteristic makes the gener-
alisation process more challenging, as the answer
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Figure 1: Outline of the proposed approach.

prediction model needs to acquire the ability to per-
form abstraction from the specific context in the
question.

This paper hypothesises that it is possible to au-
tomatically transfer abstractive knowledge from ex-
planatory facts into neural encoding representation
for more accurate scientific QA, and for enabling
zero-shot generalization. To this end, we propose
N-XKT (Neural encoding based on eXplanatory
Knowledge Transfer) which encodes abstractive
knowledge into neural representation to improve
the effectiveness in both zero-shot QA task and
fine-tuning based QA task. The general neural
encoding mechanism is evaluated adopting the fol-
lowing training tasks:

1. Explanatory Knowledge Acquisition: In
this pre-training task, the N-XKT model en-
codes the explanatory textual knowledge from
a set of explanatory facts into supporting em-
beddings. This process aims to acquire the
necessary explanatory knowledge to test gen-
eralization on downstream science QA. We
frame this problem as a knowledge base com-
pletion task. Specifically, after casting each
explanatory fact in the knowledge base into a
tuple composed of subject, object, and predi-
cate, the model is trained on completing each
fact by alternatively masking each element in

the tuple (additional details can be found in
section 3.1).

2. Cloze-style Question Answering: To keep
the encoding mechanism consistent with the
pre-training explanatory knowledge acquisi-
tion task, we cast Multiple-choice Question
Answering into a cloze-style QA problem.
Specifically, we train the N-XKT model to
complete the question with the expected can-
didate answer. This task aims to acquire addi-
tional knowledge for addressing downstream
science QA since the patterns in the questions
are typically more complex than the back-
ground explanatory facts (additional details
can be found in section 3.2).

The training tasks defined above can be used
to encode different types and levels of knowledge
into the N-XKT model, allowing us to perform
a detailed evaluation on both zero-shot and fine-
tuning-based Question Answering tasks.

Figure 1 shows a schematic representation of the
proposed approach.

3.1 Explanatory Knowledge Acquisition
The WorldTree corpus (Jansen et al., 2018) con-
tains natural language explanatory facts, which are
stored in semi-structured tables whose columns
correspond to semantic roles. The knowledge base
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contains a total of 82 tables, where each table rep-
resents a different knowledge type, with different
arity and argument types. N-XKT can be used
as a unified approach for transferring knowledge
from heterogeneous explanatory facts via a neural
encoding mechanism.

To acquire the explanatory knowledge in a uni-
fied way for subsequent transfer learning, we nor-
malize the semi-structured facts using a binary
predicate-argument structure as typical practice in
standard knowledge-base completion tasks (Bordes
et al., 2013; Wang et al., 2014; Lin et al., 2015).
Specifically, for each table, we map the columns
into three main components: subject, predicate,
and object. After performing the mapping for each
table in the knowledge base, we generate triples for
all the facts in the knowledge base.

By framing the explanatory knowledge acquisi-
tion task as a knowledge base completion problem,
we alternatively mask subjects and objects from the
triples and train the model to predict the missing
component in the triple by giving in input the re-
maining ones. Specifically, we simulate a question
answering problem adopting either subject or ob-
ject as an answer, and the other two components in
the triple as a question.

The neural encoder of N-XKT learns an embed-
ding representation for each pair in input. A soft-
max layer is added on top of the embedding to
predict the probability of the missing component
in the triple. The configuration adopted for the
N-XKT model is described in equation 1;.

θK ← argminθL(N-XKTθ(qK , aK), lK) (1)

Here, qK and aK represent the simulated question-
answer pair generated from a generic explanatory
fact triple, while lK represents the target labels (i.e.
1 if a is the correct component for completing the
triple, 0 otherwise). θK is the set of parameters
optimised during the explanatory knowledge acqui-
sition stage. The negative samples are generated by
replacing each correct answer with a random com-
ponent extracted from different explanatory facts
in the knowledge base.

The transformer neural network is used as a tex-
tual neural encoder component of N-XKT, where
each question-answer pair is compiled into the in-
put token sequence:

[CLS][question][SEP ][answer][SEP ] (2)

The final hidden vectorC ∈ RH of the Transformer
neural network that corresponds to the first input

token ([CLS]) is used as an embedding to perform
the final classification.

3.2 Cloze-style Question Answering

Normally, the explanatory knowledge patterns do
not contain the complete information to address
downstream Question Answering. However, the
questions in WorldTree can be used as additional
knowledge to deal with complex structured science
questions, allowing N-XKT to learn to recognize
more complex patterns.

To acquire additional knowledge while keeping
the encoding mechanism consistent with the pre-
training explanatory knowledge acquisition task,
we cast Multiple-choice Question Answering into
a cloze-style QA problem. The particular encoding
configuration of the N-XKT model can be used
in fact to address this type of question answering
problems, where the model is trained to complete
the question with the expected candidate answer.
The detailed parameters and inputs adopted for
cloze-style QA are described in equation 3:

θK+Q ← argminθL(N-XKTθK (q
Q, aQ), lQ)

(3)

The setting adopted for cloze-style QA is similar
to the one adopted for explanatory knowledge ac-
quisition, but with two main differences: 1) In
this case, the question qQ, the answer aQ, and the
target label lK are generated from the WorldTree
multiple-choice question answering set, where the
right candidate answer of each question acts as a
positive sample, and the incorrect candidate an-
swers act as the negative samples. 2) The initial
parameters are initially set with θK , that is, we
adopt the parameters that have been optimised dur-
ing the explanatory knowledge acquisition stage.

3.3 Zero-shot and Fine-tuning Settings

Given a multiple-choice science question, N-XKT
can perform question answering by framing it as
a sequence classification problem, where the ques-
tion is paired with each candidate answer to com-
pute a probability score. The candidate choice with
highest score can then be selected as the predicted
answer. We evaluate N-XKT in two different set-
tings: zero-shot and fine-tuning-based QA.

Regarding the zero-shot setting, the N-XKT is
trained only on the explanatory knowledge acqui-
sition task and then directly tested on downstream
Question Answering. We also evaluate the model
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trained jointly on explanatory knowledge and sci-
ence questions in WorldTree, evaluating its gener-
alization capabilities on different multiple-choice
Question Answering datasets, such as ARC2 (Clark
et al., 2018) and OpenBook QA3 (Mihaylov et al.,
2018). For each pair of question and candidate
answer, the scores are computed as described in
equation 4. Here, (qT , cT ) represent the test ques-
tion and a candidate answer, while lTpred is the score
predicted by the model.

lTpred = N-XKTθK+Q
(qT , cT ) (4)

In the fine-tuning setting, the N-XKT model is
additionally fine-tuned on each target QA dataset as
in equation 6. Here, (qS , aS) represents a question-
answer pair from the target QA training set, while
lS is the label indicating whether the answer is
correct or not.

θF ← argminθL(N-XKTθK+Q
(qS , aS), lS) (5)

As shown in equation 6, we adopt the same config-
uration as in the zero-shot setting, where the only
difference is represented by the fine-tuned parame-
ters set θF :

lTpred = N-XKTθF (q
T , cT ) (6)

4 Empirical Evaluation

We conduct our experiments on four widely used
science QA datasets, WorldTree V2.0 (Xie et al.,
2020), ARC Easy and Challenge (Clark et al.,
2018), and Openbook QA (Mihaylov et al., 2018).
The results tend to confirm our research hypothesis
that explanatory knowledge encoding can improve
generalization in downstream science Question An-
swering (QA) tasks. Furthermore, we systemati-
cally analyze several factors which may have an
impact on the final results, including the use of
Transformer-based models with a larger number
of parameters (BERT-large), testing the model on
QA tasks using different types of explanatory back-
ground knowledge, and measuring training and test
performance by further fine-tuning the model on
other datasets.

4.1 Experimental Setup
QA dataset size. In order to conduct a thor-
ough quantitative analysis, we use four science QA

2https://allenai.org/data/arc
3https://allenai.org/data/open-book-qa

Table 1: QA datasets size.

Dataset #Train #Dev #Test

WorldTree V2.0 3,947 1,019 4,165
ARC Easy 2,251 570 2,376
ARC Challenge 1,119 299 1,172
Openbook QA 4,957 500 500

Table 2: Number of instances in each explanatory
knowledge category.

Type Size

All 9,701
Retrieval 7,006
Inference-supporting 1,670
Complex Inference 1,025

datasets, WorldTree V2.0 (Xie et al., 2020), ARC
Easy and Challenge (Clark et al., 2018), and Open-
book QA (Mihaylov et al., 2018). The number of
question-answer pairs in each dataset is listed in
Table. 1.

Explanatory knowledge dataset size. We en-
code different types of explanatory knowledge in
the WorldTree corpus into Transformer neural net-
works. The statistics of the adopted explanatory
facts are reported in Table 2. Because we further
analyze the impact of different types of knowledge,
the number of each knowledge type is also given
in the table.

Hyperparameters configuration. We adjust
two major hyperparameters for the training of the
model, namely batch size and learning rate. We
optimize the parameters considering the follow-
ing combinations: we adopt training batch sizes in
{16, 32}, and learning rate in {1e−5, 3e−5, 5e−
5}. The best results are obtained with batch size
32 and learning rate 3e − 5 for the BERT-base
model, and batch size 16 and learning rate 1e− 5
for BERT-large (Devlin et al., 2019).

Information Retrieval baseline. We adopt an
Information Retrieval (IR) baseline similar to the
one described in Clark et al. (2018). Given a
question q, for each candidate answer ci ∈ C =
{c1, . . . , cn}, the IR solver uses BM25 vectors and
cosine similarity to retrieve the top K sentences in
the WorldTree corpus that are most similar to the
concatenation of q and ci. The score of a candi-
date answer ci is then obtained by considering the
sum of the BM25 relevance scores associated to

https://allenai.org/data/arc
https://allenai.org/data/open-book-qa
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Table 3: N-XKT Question Answering accuracy results.

Config Explanation Bank ARC Easy ARC Challenge Openbook QA
Dev Test Dev Test Dev Test Dev Test

IR BM25 (K = 5) 50.29% 44.55% 54.56% 50.00% 37.46% 31.14% 24.80% 26.80%

K base 49.30% 44.74% 50.18% 50.89% 34.38% 33.17% 30.96% 32.72%
Q base 44.86% 40.34% 50.81% 47.43% 24.41% 26.86% 27.92% 33.12%
K+Q base 58.14% 50.42% 58.53% 57.98% 37.46% 35.87% 35.32% 37.60%

K large 51.62% 45.85% 52.81% 52.58% 37.53% 33.07% 31.72% 34.12%
Q large 47.54% 43.47% 53.61% 51.41% 27.09% 28.63% 28.24% 36.04%
K+Q large 60.16% 50.98% 61.19% 58.24% 39.00% 37.63% 35.64% 38.20%

base FT - - 53.61% 53.82% 36.72% 32.71% 53.64% 53.16%

K base FT - - 53.61% 52.81% 35.79% 34.90% 53.60% 54.60%
Q base FT - - 59.05% 58.44% 33.65% 35.09% 56.04% 57.08%
K+Q base FT 59.33% 58.79% 38.13% 38.09% 56.12% 56.56%

Table 4: Question Answering accuracy results using different explanatory knowledge categories.

Knowledge Config Explanation Bank ARC Easy ARC Challenge Openbook QA
Dev Test Dev Test Dev Test Dev Test

None Q base 44.86% 40.34% 50.81% 47.43% 24.41% 26.86% 27.92% 33.12%

Retrieval K base 39.05% 38.72% 44.42% 45.25% 23.75% 26.25% 27.12% 29.96%
K+Q base 51.00% 46.08% 51.79% 53.22% 34.65% 33.00% 31.96% 32.96%

Inference-supporting K base 41.60% 38.24% 45.96% 44.77% 26.09% 26.02% 27.40% 30.88%
K+Q base 52.72% 47.33% 54.35% 54.32% 34.85% 34.40% 33.64% 37.16%

Complex inference K base 41.01% 38.58% 46.32% 45.98% 24.95% 23.75% 26.96% 29.76%
K+Q base 52.99% 46.12% 55.30% 52.74% 34.78% 34.51% 32.08% 35.08%

All K base 49.30% 44.74% 50.18% 50.89% 34.38% 33.17% 30.96% 32.72%
K+Q base 58.14% 50.42% 58.53% 57.98% 37.46% 35.87% 35.32% 37.60%

the retrieved sentences. The predicted answer cor-
responds to the candidate choice with the highest
score. To test the generalisation of this approach on
ARC and OpenbookQA, we keep the same back-
ground knowledge throughout the experiments.

Configuration Setting. We adopt different con-
figurations in the experiments to control for training
data, Transformer model, and target QA test dataset
fine-tuning. We report the different configurations
in the “Config” column of Table 6 and Table 7.
The label “K” indicates that the model is trained
only on the explanatory knowledge acquisition task,
“Q” means that the model is trained only on the
cloze-style QA task using WorldTree as reference
dataset, “K+Q” means that the model is pre-trained
for explanatory knowledge acquisition and then fur-
ther fine-tuned on cloze-style QA (again using only
WorldTree as training dataset). Moreover, “base”
means using BERT-base as Transformer model,
while “large” means using BERT-large. Finally,
“FT” means that the model is additionally fine-
tuned on the target QA dataset’s training data.

4.2 Overall Results on Zero-shot Science
Question Answering

In Table 6, we report the performance of N-XKT
under different configurations along with the accu-
racy of the BM25 baseline with K = 5 number
of facts. The models are tested across multiple
QA datasets including WorldTree, ARC, and Open-
bookQA.

From the results, we derive the following con-
clusions. First, the proposed N-XKT model can
clearly achieve better accuracy than the BM25 base-
line since N-XKT uses Transformer-based neural
mechanisms to acquire and encode external knowl-
edge. Second, using BERT-large instead of BERT-
base as initial Transformer can improve the perfor-
mance since BERT-large contains more parameters
than BERT-base. However, we found that the ad-
vantage of using BERT-large is not significant since
more parameters implies more resources needed for
training. Third, we observe than N-XKT obtains
better performance than pre-trained BERT when
fine-tuning on the target datasets.



44

Table 5: Accuracy comparison between N-XKT and othe approaches. External KB adopted by the models: 1.ARC-
corpus (Clark et al., 2018), 2.ConceptNet (Speer et al., 2017), 3.Wikipedia (https://www.wikipedia.org/), 4.SciTail
(Khot et al., 2018), 5.SNLI (Bowman et al., 2015), 6.MultiNLI (Williams et al., 2018), 7.RACE (Lai et al., 2017),
8.MCScript (Ostermann et al., 2018), 9.WorldTree (Jansen et al., 2018).

ARC Easy ARC Challenge Openbook QA External KB IR-based Fine-tuned

IR BM25 (K = 5) 50.00% 31.14% 26.80% 9 yes no
Clark et al. (2018) 62.60% 20.30% - 1 yes yes
Mihaylov et al. (2018) - - 50.20% 2, 3 yes yes
Khot et al. (2018) 59.00% 27.10% 24.40% 4 yes yes
Zhang et al. (2018) - 31.70% - 1 no yes
Yadav et al. (2018) 58.40% 26.60% - none no yes
Musa et al. (2019) 52.20% 33.20% - 1 yes yes
Zhong et al. (2019) - 33.40% - 2 no yes
Pı̂rtoacă et al. (2019) 61.10% 26.90% - 4, 5, 6 no yes
Ni et al. (2019) - 36.60% - 7, 8 no yes
GPT II (Radford, 2018) 57.00% 38.20% 52.00% 7 no yes
RSII (Sun et al., 2019) 66.60% 40.70% 55.20% 7 no yes

N-XKT K+Q base (ours) 57.98% 35.87% 37.60% 9 no no

4.3 Ablation Analysis on Impact of Different
Explanatory Knowledge Types

To understand the impact of different types of ex-
planation on the final accuracy, we breakdown
the facts stored in the knowledge base using
three different categories (i.e., retrieval, inference-
supporting and complex inference) and rerun the
training of the N-XKT model using only one cate-
gory per time.

The adopted categories are provided in the
WorldTree corpus and can be described as follows:

• Retrieval: facts expressing knowledge about
taxonomic relations and/or properties.

• Inference-Supporting: Facts expressing
knowledge about actions, affordances,
requirements.

• Complex Inference: Facts expressing knowl-
edge about causality, processes, and if/then
relationships.

The obtained accuracy is showed in Table 7. The
results highlight the importance of using all the
explanation categories to achieve the final accuracy
for the combined approach. However, the retrieval
category seems to have a higher impact on the gen-
eralisation. We believe that this result is due to the
taxonomic knowledge encoded in the retrieval cat-
egory (i.e. “x is a kind of y”), which facilitates the
acquisition of the implicit explanatory capabilities
necessary for answering science questions.

In Table 7, we compare the impact of different
explanatory knowledge types and get the follow-
ing conclusion. 1) All three types of explanatory

knowledge are helpful for further science QA task.
The results using all three types of knowledge are
significantly better than the results obtained when
using no explanatory knowledge at all (first rown in
Table 7). 2) The model trained on all explanatory
knowledge outperforms the models using each in-
dividual type of knowledge alone, confirming that
different types of knowledge are complementary
for achieving the final performance.

4.4 Evaluating Zero-shot N-XKT with
Start-of-the-art baselines

In Table 5, we evaluate several start-of-the-art meth-
ods as baselines along with N-XKT trained only
on the WorldTree. The table reports the accuracy
results on ARC and OpenbookQA. In the “External
KB” column, we list the external Knowledge Bases
(KB) adopted by different models. The “IR-based”
column indicates whether the model adopts Infor-
mation Retrieval (IR) techniques, and the “Fine-
tuned” column indicates whether the approach is
fine-tuned on the target dataset.

Table 5 is intended to provide a general compara-
tive analysis between N-XKT and the baseline mod-
els, most of them fine-tuned on the target datasets.
N-XKT is able to achieve comparable performance
under a transfer learning setting. The generaliza-
tion performance of the proposed model is more
noticeable for the ARC Challenge dataset, which
requires the implicit encoding of more complex
explanatory knowledge.
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Figure 2: Convergence curve when fine-tuning different version of N-XTK on the target QA datasets.

4.5 Improvement on Fine-tuning
Convergence

In Figure 2, we visualize the convergence curve for
the fine-tuning over three science QA tasks (ARC
Easy, ARC Challenge and OpenBookQA), com-
paring a pure BERT-based N-XKT model with a
pre-trained N-XKT models using different config-
urations, AFK (pre-trained on explanatory knowl-
edge acquisition), QAP (pre-trained on WorldTree
cloze-style QA), AFK+QAP (pre-trained on both).
It is noticeable that the encoding of explanatory
knowledge impacts the convergence of the model
for all three datasets, with a particular emphasis on
the two ARC variants.

5 Conclusion

In this paper, we proposed a neural encoding mech-
anism for explanatory knowledge acquisition and
transfer, N-XKT. We evaluated the impact of the
encoding mechanism on downstream science QA.
The proposed model delivers better generalisation
and accuracy for QA tasks that require multi-hop
and explanatory inference. The proposed encod-
ing mechanism can be used to deliver zero-shot
inference capabilities, providing comparable per-
formance when compared to supervised models on
QA. These results supports the hypothesis that pre-
training tasks targeting abstract and explanatory
knowledge acquisition can constitute and impor-
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tant direction to improve inference capabilities and
generalization of state-of-the-art neural models.
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Table 6: N-XKT Question Answering accuracy result comparison

Config Explanation Bank ARC Easy ARC Challenge Openbook QA
Dev Test Dev Test Dev Test Dev Test

IR BM25 (K = 5) 50.29% 44.55% 54.56% 50.00% 37.46% 31.14% 24.80% 26.80%

K base 49.30% 44.74% 50.18% 50.89% 34.38% 33.17% 30.96% 32.72%
±0.0238 ±0.0166 ±0.0167 ±0.0198 ±0.0255 ±0.0165 ±0.0359 ±0.0273

Q base 44.86% 40.34% 50.81% 47.43% 24.41% 26.86% 27.92% 33.12%
±0.0229 ±0.0087 ±0.0258 ±0.0136 ±0.0101 ±0.0049 ±0.0342 ±0.0176

K+Q base 58.14% 50.42% 58.53% 57.98% 37.46% 35.87% 35.32% 37.60%
±0.0119 ±0.0039 ±0.0047 ±0.0014 ±0.0135 ±0.0149 ±0.0124 ±0.0085

K large 51.62% 45.85% 52.81% 52.58% 37.53% 33.07% 31.72% 34.12%
±0.0159 ±0.0089 ±0.004 ±0.0136 ±0.0109 ±0.0129 ±0.0199 ±0.0232

Q large 47.54% 43.47% 53.61% 51.41% 27.09% 28.63% 28.24% 36.04%
±0.0131 ±0.0061 ±0.0176 ±0.0073 ±0.012 ±0.0125 ±0.0118 ±0.0167

K+Q large 60.16% 50.98% 61.19% 58.24% 39.00% 37.63% 35.64% 38.20%
±0.0168 ±0.0102 ±0.0108 ±0.0076 ±0.0268 ±0.0155 ±0.0076 ±0.0161

base FT - - 53.61% 53.82% 36.72% 32.71% 53.64% 53.16%
- - ±0.0168 ±0.0093 ±0.0104 ±0.0086 ±0.0182 ±0.0223

K base FT - - 53.61% 52.81% 35.79% 34.90% 53.60% 54.60%
- - ±0.0159 ±0.0241 ±0.0218 ±0.0239 ±0.0248 ±0.0281

Q base FT - - 59.05% 58.44% 33.65% 35.09% 56.04% 57.08%
- - ±0.0177 ±0.0070 ±0.0280 ±0.0065 ±0.0126 ±0.0178

K+Q base FT 59.33% 58.79% 38.13% 38.09% 56.12% 56.56%
- - ±0.0187 ±0.0087 ±0.0224 ±0.0124 ±0.0186 ±0.0111

Table 7: Question Answering accuracy result in different abstractive knowledge categories

Knowledge Config Explanation Bank ARC Easy ARC Challenge Openbook QA
Dev Test Dev Test Dev Test Dev Test

None Q base 44.86% 40.34% 50.81% 47.43% 24.41% 26.86% 27.92% 33.12%
±0.0229 ±0.0087 ±0.0258 ±0.0136 ±0.0101 ±0.0049 ±0.0342 ±0.0176

RET
K base 39.05% 38.72% 44.42% 45.25% 23.75% 26.25% 27.12% 29.96%

±0.0258 ±0.0106 ±0.011 ±0.0139 ±0.0165 ±0.0141 ±0.0099 ±0.0202

K+Q base 51.00% 46.08% 51.79% 53.22% 34.65% 33.00% 31.96% 32.96%
±0.0173 ±0.0135 ±0.0178 ±0.0141 ±0.0321 ±0.0128 ±0.0192 ±0.0182

INSUPP
K base 41.60% 38.24% 45.96% 44.77% 26.09% 26.02% 27.40% 30.88%

±0.0149 ±0.0075 ±0.0127 ±0.0118 ±0.0164 ±0.0099 ±0.0168 ±0.0122

K+Q base 52.72% 47.33% 54.35% 54.32% 34.85% 34.40% 33.64% 37.16%
±0.0247 ±0.0062 ±0.0206 ±0.0092 ±0.031 ±0.0128 ±0.0279 ±0.0306

COMPLEX
K base 41.01% 38.58% 46.32% 45.98% 24.95% 23.75% 26.96% 29.76%

±0.0132 ±0.0035 ±0.0134 ±0.0091 ±0.0263 ±0.0066 ±0.012 ±0.0163

K+Q base 52.99% 46.12% 55.30% 52.74% 34.78% 34.51% 32.08% 35.08%
±0.0098 ±0.0131 ±0.0081 ±0.0087 ±0.0112 ±0.0194 ±0.018 ±0.0153

All
K base 49.30% 44.74% 50.18% 50.89% 34.38% 33.17% 30.96% 32.72%

±0.0238 ±0.0166 ±0.0167 ±0.0198 ±0.0255 ±0.0165 ±0.0359 ±0.0273

K+Q base 58.14% 50.42% 58.53% 57.98% 37.46% 35.87% 35.32% 37.60%
±0.0119 ±0.0039 ±0.0047 ±0.0014 ±0.0135 ±0.0149 ±0.0124 ±0.0085



50

Tab. 6 is for overall accuracy of N-XKT model
on QA tasks, and Tab. 7 is for ablation analysis
results, only use part of explanations in training
process.


