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Abstract
We adopt, evaluate, and improve upon a two-
step natural language understanding (NLU)
pipeline that incrementally tames the vari-
ation of unconstrained natural language in-
put and maps to executable robot behaviors.
The pipeline first leverages Abstract Mean-
ing Representation (AMR) parsing to capture
the propositional content of the utterance, and
second converts this into “Dialogue-AMR,”
which augments standard AMR with informa-
tion on tense, aspect, and speech acts. Sev-
eral alternative approaches and training data
sets are evaluated for both steps and corre-
sponding components of the pipeline, some of
which outperform the original. We extend the
Dialogue-AMR annotation schema to cover a
different collaborative instruction domain and
evaluate on both domains. With very little
training data, we achieve promising perfor-
mance in the new domain, demonstrating the
scalability of this approach.

1 Introduction

We adopt, evaluate, and improve upon the two-step
NLU pipeline, described in Bonial et al. (2020),
which aims to incrementally tame the variation of
incoming natural language that the robot must inter-
pret before responding. For each domain in which
it operates, the robot must determine whether or
not the commands it receives correspond to one
of its executable behaviors, such as MOVEMENT

(along a front-back axis) and ROTATION. The NLU
pipeline leverages AMR to capture the basic con-
tent of the input language, and then a conversion
system adds behavior time, completion status and
speech act information to the original “Standard-
AMR,” and updates the main action relation of
the input AMR to a relation consistently represent-
ing an executable robot behavior (see Fig. 1 for
a Standard and Dialogue-AMR example compari-
son). There are two high-level components of the

NLU pipeline: a Standard-AMR parser and a graph-
to-graph conversion system to convert the Standard-
AMR into Dialogue-AMR. Here, we offer the first
evaluation of both the Dialogue-AMR annotation
schema itself and the components of the pipeline
used to automatically obtain the Dialogue-AMR.
We test not only in the human-robot, search-and-
navigation dialogue domain for which the schema
and pipeline was developed, but also in a somewhat
similar, yet challenging domain: human-human
communication collaboratively building structures
in the virtual gaming environment, “Minecraft.” In
this way, we address the question of what would
happen if we wanted our robot to collaborate on a
new and different task. We refer to this challenge
as “domain extension,” instead of “domain adap-
tation,” as we aim to maintain the coverage of our
original domain while extending to a new one.
(a) (b)
(m / move-01 (c / command-SA
:ARG0 (y / you) :ARG0 (c2 / commander)
:direction (b / back)) :ARG1 (g / go-02 :completable -

:ARG0 r
:direction (b / back)
:time (a / after

:op1 (n / now)))
:ARG2 (r / robot))

Figure 1: Move back in (a) Standard-AMR (parser out-
put), (b) Dialogue-AMR (conversion system output).

After providing background on AMR and
Dialogue-AMR (§2) and detailing our approach
(§3), we report on the human-robot evaluation (§4),
followed by the Minecraft evaluation (§5), and do-
main extension of the conversion system and sub-
sequent evaluation (§6). Our contributions include:
i. Retraining existing Standard-AMR parsers
(3.1) and evaluating on the human-robot (4.1) and
Minecraft domains (5.1);
ii. Evaluating and improving a conversion system
for automatically obtaining Dialogue-AMR (3.2) in
both the robot (4.2) and Minecraft (5.2) domains;
iii. Extending the coverage of the Dialogue-AMR
annotation schema (2.1) to a new domain (6.1)
and evaluation after domain extension (6.3).
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2 Background

To summarize where this work is situated with
respect to the past research on this topic—while
Bonial et al. (2020) details the Dialogue-AMR an-
notation schema and proposes the two-step pipeline
as one way of automatically obtaining Dialogue-
AMR, the technical details of an implementation
of the pipeline itself are not described and no eval-
uation is given. Subsequent research from Abrams
et al. (2020) does provide an initial evaluation of a
baseline version of the graph-to-graph conversion
component of the proposed two-step pipeline; we
adopt and evaluate an updated version of this com-
ponent (described in greater detail in §3.2), how-
ever, our evaluation is not directly comparable to
the evaluation given in Abrams et al. (2020), since
the earlier version of the component was tested on
only a limited subset of the annotation categories
of Dialogue-AMR. Thus, the current paper consti-
tutes the first evaluation of the proposed two-step
pipeline and its components, as well as an evalua-
tion of the extensibility of those components and
the Dialogue-AMR schema itself to a new domain.

2.1 AMR & Dialogue-AMR

The two-step NLU pipeline of Bonial et al. (2020)
leverages AMR, as it abstracts away from some id-
iosyncratic surface variation in favor of a more con-
sistent representation for the same concept. This
serves the purposes of a dialogue system well:
AMR smooths over the nuances of language that
may be unimportant for mapping a particular in-
put to one of the robot’s behaviors. Nonetheless,
“Standard-AMR” does not represent some aspects
of meaning that are critical for the human-robot
dialogue domain, where the robot must be cued
as to what the current dialogue state is, as well
as what the current time and completion status of
various instructions are. To capture this informa-
tion, the NLU pipeline uses the “Dialogue-AMR”
formalism (Bonial et al., 2020), which adds action
time, completion status (i.e., limited tense, aspect)
and speech act information to the Standard-AMR.
Additionally, to facilitate the final step of mapping
to one of the robot’s behaviors, Dialogue-AMR fur-
ther generalizes from the input language, convert-
ing a variety of surface realizations (e.g., turn, ro-
tate, pivot) of a particular action relation into a sin-
gle canonical numbered relation (e.g., turn-01)
to represent one of the robot’s behaviors (e.g., RO-
TATION). Standard-AMR and Dialogue-AMR are

contrasted in Figs. 1 and 2.
In Dialogue-AMR, the content of the Standard-

AMR is nested in a structure that adds the
speech act information as the root predicate
(e.g., command-SA in Figs. 1, 2). Additionally,
the main action from the Standard-AMR (e.g.,
move-01) is converted to one of the action re-
lations (e.g., go-02), termed the “robot-concept
relation” that maps to an executable robot behav-
ior. Information about the time of that behavior is
added (in Fig. 2, the motion event will happen in
the future, after the speaking time of the command;
thus, it is represented as :time after-now).1

Finally, the behavior completion status, a type of
aspect information, is added—whether or not the
instructed behavior is telic or contains a clear end
point (in Fig. 2, indicated by completable +).2

Dialogue-AMR draws upon an inventory of 13
speech acts and 26 robot behaviors or “robot-
concept relations.” Action time and comple-
tion status are integrated into Dialogue-AMR
by adopting the annotation schema of Do-
natelli et al. (2018), which categorizes the
robot behavior as past, present, or future,
and categorizes 4 aspectual labels: :stable
+/-, :ongoing +/-, :complete +/-, and
:habitual +/-. Dialogue-AMR uses the
added category :completable +/- to signal
whether or not a hypothetical event has an end-goal
achievable for the robot.

2.2 Annotated Corpora

We draw from two datasets with Standard-AMR
annotations, collected with the aim of developing
an interactive agent for collaboration in grounded
scenarios. We leverage the DialAMR corpus (Bo-
nial et al., 2020) as training and evaluation data for
the NLU pipeline within the human-robot dialogue
domain. DialAMR encompasses 1122 instances
of The Situated Corpus of Understanding Trans-

1In ongoing work to extend the Dialogue-AMR schema,
we plan to refine the :time annotations to better capture the
possibility that an instructed action could already be under-
way at speaking time, given that we observed that in highly
collaborative dialogue, utterances often overlap with actions.

2End-point information is needed by a robot to execute
a behavior in a low-bandwidth environment where there is
a communications lag, precluding real-time voice teleopera-
tion. What constitutes a fully specified behavior is somewhat
task and robot-specific; for example, a robot with a static,
front-facing camera can assume, as a default, that a picture
taken for a user will be from this perspective unless the user
specifies otherwise, but a robot with a movable, 360-degree
view camera may need to ask the user to provide information
on the desired camera angle.
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actions (SCOUT), annotated with both Standard-
AMR and Dialogue-AMR. SCOUT is comprised
of over 80 hours of dialogues from the robot navi-
gation domain (Marge et al., 2016, 2017), collected
via a “Wizard-of-Oz” experimental design (Riek,
2012), in which participants directed what they
believed to be an autonomous robot to complete
search and navigation tasks. The DialAMR cor-
pus was used in the development of the Dialogue-
AMR schema, as well as training and testing of the
components of the conversion system of Abrams
et al. (2020), which we initially adopt, described
in §3.2. The data from SCOUT selected for the Di-
alAMR corpus includes a randomly selected, con-
tinuous 20-minute experimental trial, which con-
tains 304 utterances (called the Continuous-Trial
subset). This is the held-out test set that we use
throughout our “in-domain” evaluation, as it is rep-
resentative of an ongoing human-robot interaction.

In addition to in-domain evaluation, we extend
evaluation of the Dialogue-AMR schema and NLU
pipeline by annotating and testing on the Minecraft
Dialogue Corpus (Narayan-Chen et al., 2019). This
corpus consists of 509 conversations and game
logs, in which two humans communicate via the
Minecraft gaming interface chat window while col-
laboratively building blocks structures. Standard-
AMR annotations for the Minecraft corpus (Bonn
et al., 2020) were obtained from the developers
via a private data-sharing agreement. Our addi-
tion of Dialogue-AMR annotations to this corpus
is described in §6.1.

3 Approach: Two-Step NLU Pipeline

We adopt and evaluate the two-step NLU pipeline
described in Bonial et al. (2020) and Bonial et al.
(2019), including both a Standard-AMR parser and
a system for converting this into Dialogue-AMR.
We describe our selection of an initial Standard-
AMR parser and conversion system, both of which
we retrain and improve upon, below.

3.1 Standard-AMR Retrained Parser

Standard-AMR provides an initial interpretation of
an utterance to be transferred to the Dialogue-AMR.
Therefore, an effective Standard-AMR parser is
critical for the overall success of the NLU pipeline.
We considered several open-source AMR parsers
as candidates, and selected two recent releases, the
parsers described in Zhang et al. (2019) and Linde-
mann et al. (2019), which both make use of BERT

embeddings (Devlin et al., 2019) and were eval-
uated on AMR releases, thus providing us with
baselines to compare them to each other and to
assess our retrained models against their reported
performances.

We were able to retrain both of these state-of-the-
art AMR parsers on the AMR 2.0 corpus and the
recently released AMR 3.0 corpus (a larger corpus
including the 2.0 data), and then also retrain them
on each of these individual releases of Standard-
AMR together with the Standard-AMR subset of
the DialAMR corpus of over 800 Standard-AMRs,
to adapt them to our human-robot dialogue domain.
We evaluated these particular combinations of train-
ing data because we wanted to explore whether or
not the larger set of data in the AMR 3.0 corpus im-
proved performance on the human-robot dialogue
domain, or if it further washed out the distinctions
from our smaller in-domain corpus. This yielded a
total of eight parsers (see Table 1) for us to evaluate
and select from for the purpose of then including
in the full NLU parsing pipeline.

3.2 Conversion System

The next step in the NLU pipeline is a graph-to-
graph conversion system that uses the input of the
utterance text and the Standard-AMR graph to cre-
ate a Dialogue-AMR graph. We leverage an exist-
ing conversion system, “Abrams+”, and experiment
with improvements to how it classifies the robot-
concept relation in our own updated graph-to-graph
conversion system, “G2G”.

3.2.1 Abrams+ Conversion
We obtained a version of the conversion system
described in Abrams et al. (2020), which had been
updated by that author in two ways: i. expanded
to handle the additional speech acts and robot-
concept relation categories of the full Dialogue-
AMR schema outlined in Bonial et al. (2020), not
all of which were present during the original de-
velopment, and ii. shifted from a Naı̈ve Bayes to a
SVM model for speech act classification. We refer
to this system as “Abrams+”. This graph-to-graph
conversion system implements both rule-based and
classifier-based methods in converting a Standard-
AMR graph into a Dialogue-AMR graph, and lever-
ages the original utterance and the structure of
the Standard-AMR to produce the final Dialogue-
AMR, which includes the speech act, tense and
aspect information, and a designation of the robot-
concept relation. As we use this system as our



176

Figure 2: Standard and Dialogue-AMR comparison for
Commander instructing robot Move forward three feet.

starting point for improvement, we will briefly de-
scribe how each of these additions are made in the
order just listed, but refer the reader to Abrams et al.
(2020) for full details.

Following the numbering of the example in
Fig. 2, the first step in the transformation process
employs a SVM model with token unigrams fea-
tures to predict the speech act from the original
utterance—critical information for human-robot
communication that cannot be gleaned from the
Standard-AMR graphs alone.3 After classifica-
tion, the speech act label is then stored as a slot
to be added to the Dialogue-AMR graph and refer-
enced for decision-making processes downstream.
Second, to add behavior time, another classifier—
a Naı̈ve Bayes model using token unigrams as
features—determines if the event corresponding
to the robot behavior pertains to a past, present,
or future action. Third, designation of the robot
behavior is implemented through a keyword-based
approach, which extracts the top root relation (key-
word) in the Standard-AMR and checks it against a
keyword dictionary of similar actions, and maps it
to a single robot-concept relation. Fourth, particu-

3We acknowledge that the interpretation of speech acts,
and indirect speech acts in particular, can be affected by con-
text. Following (Hinkelman and Allen, 1989), we start with
only the linguistic signal in the first phase. Since the restricted
domain is predictable, it is usually sufficient, but further re-
search aims to leverage situational information and dialogue
context where necessary, e.g., to disambiguate an ability ques-
tion from an indirect instruction.

lar combinations of speech act, tense, and the pres-
ence or absence of certain arguments of the robot-
concept relation trigger an aspectual label that cor-
responds to an action’s completion status. In the
final step of transformation process, the system’s
rule-based methods use pattern matching tech-
niques to serve multiple functions, including slot
filling and slot changing (e.g., transforming men-
tions of you to the fixed role of the addressee
in Dialogue-AMR).

3.2.2 G2G: Our Updated Conversion System
While we hypothesize speech act, tense, and aspect
classification may be fairly robust to language in a
new domain, we readily acknowledge that new do-
mains will require the robot to engage in novel be-
haviors, for example, BUILDING in the Minecraft
domain. Thus, although there are many different
aspects of the conversion system that we could
attempt to improve upon (e.g., classifier types, or-
dering of components), we saw an opportunity to
have the most impact on system performance in
multiple domains by focusing on varying the robot-
concept relation classification approach. We de-
scribe three variants (one keyword-based and two
classifier-based) of our updated G2G conversion
system below.

G2G Expanded Keyword-Based Variant We
expanded upon the keyword approach of the
Abrams+ system, which was restricted to search-
ing for keyword matches with the top, root rela-
tion of the Standard-AMR. We found that this re-
striction was problematic because the same root
relation in the Standard-AMR could correspond
to multiple robot-concept relations. Move and go,
generally parsed as move-01 and go-02, are par-
ticularly prevalent and could correspond to either
front-back MOVEMENT or a ROTATION behavior;
both of these were keywords triggering front-back
movement in Abrams+, which therefore incorrectly
categorized utterances like Move right 45 degrees
(a ROTATION behavior). In our expansion, the G2G
keyword variant searches for matches within all
utterance tokens, AMR relations, and arguments.
Furthermore, the keyword dictionary was informed
by a data-driven analysis in which we created his-
tograms of all utterance tokens and Standard-AMR
relations within an instance mapped to a particu-
lar robot-concept relation in the manual Dialogue-
AMR annotations. In this way, we could see which
words and relations occurred with multiple robot-
concept relations, like move-01, and therefore



177

remove these from our keyword dictionaries, while
adding keywords that are unique to a particular
robot-concept relation in the data, such as degrees,
which consistently cues a ROTATION behavior.

G2G One-Hot and GloVe Variants We also
experimented with classifier-based approaches to
robot-behavior classification, which we hypothe-
sized may be more efficient to extend to a new
domain than a keyword-based approach. The clas-
sifiers are Support Vector Machines with different
vectorization methods including one-hot encoding
and word embeddings from GloVe. Training data
for the robot-concept relation classifier comes from
examples of each robot-concept category in Bo-
nial et al. (2020), gold-standard labels from the
Continuous-Trial subset utterances 101-305 (those
not used in a held-out test set), and examples pulled
from speech act classifier training bins. There are
a total of 26 labels for this task, and while many
of the movement actions were abundant from these
other sources, some of the minority labels (e.g.,
equip-01, wait-01, clarify-10) required
up-sampling to balance training proportions.

4 In-Domain Evaluation

4.1 In-Domain Standard-AMR Parsing

We evaluated the retrained parsers on the SCOUT
Continuous-trial dataset. We note substantial
improvement in Standard-AMR parsing Smatch
scores on this set when training with DialAMR in
addition to the base training sets (AMR 2.0 and
3.0).4 Results for the AMR parsing models are pre-
sented in Table 1. The noticeably high scores on
the parsers retrained on the AMR 3.0 + DialAMR
is due in large part to the nature of the speakers’
language in the SCOUT corpus and the high lev-
els of similarity in participants’ instructions to the
robot. This underscores how critical evaluation
in another dialogue domain is. We note that, at
the segment level as well as can be seen in the Ta-
ble 1, the Lindemann et al. (2019) parser retrained
with DialAMR data evaluated across-the-board to
higher scores than the comparably retrained Zhang
et al. (2019) parser. Of those two Lindemann et al.
(2019) parsers whose Smatch scores did not differ
significantly, we selected the one trained with the
larger 3.0 dataset with its larger language model as
the first component in the full parsing pipeline.

4Smatch is an evaluation algorithm for scoring AMR
graphs (Cai and Knight, 2013).

Parser Training P R F

Zhang et al.

AMR 2.0 .47 .77 .58
2.0 + DialAMR .73 .77 .75
AMR 3.0 .52 .80 .63
3.0 + DialAMR .88 .89 .89

Lindemann

AMR 2.0 .53 .77 .63
2.0 + DialAMR .92 .94 .93
AMR 3.0 .55 .81 .65
3.0 + DialAMR .91 .95 .93

Table 1: Retrained AMR parser Smatch results on
SCOUT Continuous-trial test set.

4.2 In-Domain Conversion to Dialogue-AMR

To pinpoint the performance of the conversion
system alone (without error introduced by the
automatic Standard-AMR parsing), we report re-
sults with gold-standard, manually assigned input
Standard-AMR parses. Results are summarized
in Evaluation Domain A of Table 2. Focusing ini-
tially on the overall Smatch Precision, Recall, and
F-scores of the conversion system, our updated sys-
tem, G2G, leveraging the classifier with one-hot
vectorization achieves the highest precision (.85)
and F-score (.83) in our domain. All approaches
perform comparably overall, especially given that
Smatch scores can vary slightly (Opitz et al., 2020)
because Smatch is a non-deterministic, greedy hill-
climbing algorithm with a preset, default number
of random restarts (Cai and Knight, 2013).

Drilling down into the accuracy of the individual
component classification tasks, we find accuracy
scores of 1.00 for speech acts, .93 for tense, and
.93 for aspect across all system variants, as these
components are unchanged, and we only alter the
robot-concept classification. Again, we note that
these accuracy scores are extremely high, given
the repetitive nature of the language and preva-
lence of certain types of commands and feedback
assertions. For robot-concept classification, the
G2G expanded keyword approach (.97 accuracy)
does outperform the Abrams+ baseline keyword
method (.94 accuracy). Both keyword approaches
outperform the G2G classifier-based approaches:
one-hot vectorization achieves an accuracy of .90
and GloVe an accuracy of .84. Notably, higher
accuracy on the robot-concept classification task
does not necessarily translate to higher Smatch F-
scores overall. High component accuracy but lower
overall F-Score generally indicates that while the
system is correctly determining all of the informa-
tion being added to the Dialogue-AMR, it is not
always putting these pieces together correctly. In
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Conversion
Variant

Evaluation Domain A:
SCOUT test data

Evaluation Domain B:
Minecraft test data

Smatch
Robot

Concept
Smatch

Robot
Concept

P R F Accuracy P R F Accuracy
Abrams+ .81 .82 .82 .94 .71 .63 .67 .30
G2G-Keyword .82 .82 .82 .97 .72 .64 .68 .32
G2G-One-Hot .85 .82 .83 .90 .73 .62 .67 .20
G2G-GloVe .84 .81 .82 .84 .74 .62 .67 .24
Extended G2G-Keyword .82 .81 .82 .94 .73 .67 .70 .41
Extended G2G-One-Hot .85 .82 .83 .93 .77 .65 .71 .54
Extended G2G-GloVe .84 .81 .82 .89 .76 .65 .70 .45

Table 2: Summary of Smatch scores & Robot-Concept Relation classification accuracy for each variant conversion
system, including our G2G system before and after Minecraft domain extension, tested on SCOUT and Minecraft.

other words, the final step in the conversion sys-
tem, where slots are captured and changed from the
original Standard-AMR structure to the structure
of the Dialogue-AMR, is where some of the error
reflected in Smatch scores stems from.

5 Minecraft Domain Evaluation

In this section, we report on the Minecraft domain
performance of the NLU pipeline with the retrained
Standard-AMR parser, the Abrams+ conversion
system, and our updated G2G system variants prior
to any domain adaptation in order to determine how
vital domain extension really is in somewhat simi-
lar instruction-giving domains. Given that theoreti-
cally speech acts, tense and aspect are somewhat
consistent in language regardless of the domain, we
hypothesize that these features of our annotation
schema and the components of the conversion sys-
tem capturing them will perform reasonably well
on the new Minecraft dialogue domain. However,
the main actions or behaviors involved in the collab-
oration of interlocutors in the original search and
navigation domain are quite different from those of
building virtual structures from blocks in the new
Minecraft domain. We therefore expect that the
conversion system will fail to correctly map many
of the main action predicates in the Minecraft dia-
logues to an executable robot behavior. However,
we accept this as an interesting question of domain
extension for moving our robot to a new task: Is it
more efficient to expand a rule-based approach for
capturing these new behaviors, or to use a classifier-
based approach?

5.1 Minecraft Standard-AMR Parsing
We test the parser selected as the first pipeline com-
ponent (described in §4.1) on Minecraft data, scor-

ing the parser output on 100 sequential instances
of Minecraft dialogue against manually assigned
Standard-AMR annotations.5 The overall Smatch
F-score is .57, with a Precision of .63 and Recall
of .52. Thus, despite the potential similarity in the
two instruction-giving dialogue domains, it is clear
that the automatic parsing performance is signifi-
cantly worse for the Minecraft data than our orig-
inal domain (where the best Smatch F-score was
.93). Error analysis reveals some extremely compli-
cated language phenomena, including dimensions
and frequency expressions capturing, for example,
the repetition of a placement action: For the four
squares that come out from the middle blocks, add
two blue blocks on. Although this indicates that the
parser would benefit from retraining with Minecraft
data,6 in our immediate research we focus on do-
main extension of the conversion system in order
to explore how robust the conversion system might
be to noise in the parser input.

5.2 Minecraft Conversion to Dialogue-AMR

This evaluation compares the conversion system
output against manually assigned Dialogue-AMRs
for the same 100-instance, sequential subset of ut-
terances from the Minecraft corpus used as the
test set for the Standard-AMR parser (see §6.1 for
Dialogue-AMR annotation details); again, we use
gold-standard, manually assigned Standard-AMR
parses as input to the conversion system. Results
are summarized in Evaluation Domain B of Ta-

5The Minecraft AMR corpus includes AMRs for the loca-
tions of blocks (expressed as Cartesian coordinates) as each
movement takes place; because our focus is natural language
dialogue, we removed these instances from our test set.

6Bonn et al. (2020) report an F-score of .66 on a Minecraft
test set after retraining the Zhang et al. (2019) parser on
Minecraft data.
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ble 2. Focusing first on overall Smatch scores, our
updated system variant leveraging the expanded
keyword approach performs slightly better (.68 F-
score) than both the baseline Abrams+ (.67 F-score)
and the classifier-based approaches (.67 F-scores).
Although the scores have dropped about 15 points
from the original domain, they remain comparable
across variants.

When drilling down into the accuracy of the
individual components of the conversion system,
we find that robot concept classification yields the
lowest accuracy scores, with a range of .20-.32.
Among the variant approaches to robot-concept
classification explored, the expanded keyword ap-
proach achieves the highest accuracy. The speech
act and tense have the same accuracy scores across
all versions, .44 and .56, respectively, since these
classifiers are stable within the system variants. In
this evaluation, aspect varies slightly across ap-
proaches as it depends on combinations of speech
act and robot-concept relation slot values—its accu-
racy ranges from .25-.49, with the Abrams+ variant
obtaining the highest result. Thus, we see that our
hypothesis that speech act, tense, and aspect clas-
sification may be fairly robust to a new domain is
partially confirmed: robot-concept classification is
certainly the most challenging with the lowest accu-
racy, but the performance of all components is sig-
nificantly worse than the original domain, suggest-
ing more widespread differences in the language of
the two domains.

6 Domain Extension

Here, we describe the small amount of domain
extension done to tailor our G2G conversion system
to the Minecraft domain, beginning with extensions
of the annotation schema itself.

6.1 Extending Dialogue-AMR Schema

One expert Standard-AMR and Dialogue-AMR an-
notator provided manual Dialogue-AMR annota-
tions to a continuous 100-instance subset of the
Minecraft corpus to serve as a test set. This was
done by manually augmenting the Standard-AMR
release of the Minecraft corpus, maintaining all of
the Standard-AMR annotation choices. Addition-
ally, a separate, continuous 200-instance subset of
the data was annotated with speech acts and the
corresponding robot-concept relations of Dialogue-
AMR to serve as training data for the speech act

classifier and robot-concept relation classification.7

In providing the manual Dialogue-AMR anno-
tation of the Minecraft data, we noted several
changes and additions that needed to be made to
the annotation schema to account for novel con-
cepts arising in the collaborative building domain,
as well as novel dialogue phenomena. First, as ex-
pected, we added agent behaviors that would be
needed for this domain: BUILDING, represented
with the relation build-01 (e.g., What are we
building this time?), and PLACING, represented
with the relation move-01 (e.g., Please place two
red blocks on top of each side...).

Second, we noted novel dialogue phenomena
that we had not observed in the SCOUT data.
Speech acts were often nested in this data, such
that the content of one speech act was not a typical
agent behavior (e.g., a speech act of commanding
a ROTATION behavior), but instead another speech
act. For example, there were frequent requests
for evaluation, often after each building step was
completed: How’s this? and Is this good?8 As a
result, we had to shift our annotation schema and
conversion system in order to allow for speech act
relations to sit where we would normally expect
the robot-concept relation.

Finally, we noted frequent use of the verb need
as an indicator of a less direct command in the
Minecraft data: This will need to be placed as
far right as you can.... This was interpreted by
the interlocutor as a command, i.e., Place this as
far right as you can. Thus, the need relation that
roots the Standard-AMR ultimately mapped to the
command-SA relation of the Dialogue AMR. This
phenomenon has significant ramifications for the
conversion system, as it was generally assumed, for
the SCOUT data, that the utterance and Standard-
AMR provides propositional content cuing the
robot-concept relation, but we did not expect AMR
relations corresponding to the speech act in our

7Contact the first author for Minecraft Dialogue-AMR
annotations used for train/test.

8Following Bunt et al. (2012), Dialogue-AMR speech acts
are distinguished between Information Transfer Functions
and Action Discussion Functions. Thus, while syntactically
questions, cases such as How’s this? are not annotated using
the Dialogue-AMR Question speech act, which is reserved
for questions that obligate the addressee to introduce new in-
formation content into the conversation and demonstrate a
commitment to the answer assertion (Traum, 2003). In con-
trast, these cases obligate the addressee to evaluate the current
state of play while simultaneously providing feedback that
common conversational ground has been achieved with re-
spect to the desired structure. Indeed, common responses such
as Excellent, Builder do not fit with a question interpretation.
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domain, although plausible (e.g., I command you
to move forward).

6.2 Extending Robot-Concept Classification
We added to our expanded keyword dictionary
to test the effectiveness of a rule-based approach
in domain extension. Only two additional con-
cepts were required, build-01 and move-01,
but these robot concepts are extremely prevalent
in the data. Additionally, in order to test how well
a classifier-based approach would capture new be-
haviors and extend the conversion system to a new
domain, we retrained the robot-concept classifier
on 166 new manually-annotated training instances
of robot concepts from the Minecraft domain. Do-
main extension also included retraining the speech
act classifier on 224 speech acts found in 200 in-
stances of manually annotated Minecraft data.

6.3 Domain-Extended G2G Evaluation
After domain extension, the G2G variant leveraging
the one-hot classifier (.71 F-score) very slightly
outperforms the keyword (.70 F-score) and GloVe
variants (.70 F-score) (again, comparing system
output against manually assigned Dialogue-AMRs
for the continuous, 100-instance Minecraft test set).
Results are summarized in the bottom three rows
of Evaluation Domain B of Table 2. The scores
remain comparable across all three variants, but
we do see improvement overall when comparing
against system variants prior to domain extension.

Turning to analysis of the accuracy of individual
components of the conversion system, the addi-
tional training instances improve speech act clas-
sification (from .44 prior to retraining to .57 after)
and robot-concept classification for the Minecraft
domain. Prior to domain extension, the expanded
keyword variant achieved the highest accuracy for
robot-concept classification (.32), but classifier-
based methods with more training data outper-
form even a domain-extended, data-driven key-
word approach, which achieves an accuracy of .41,
while one-hot vectorization achieves an accuracy
of .54 and GloVe .45. Error analysis reveals that
the keyword-based approach struggles to classify
robot concepts in this domain, in part, because of
language that contains vocatives (e.g. Excellent,
builder)–which triggers a top say-01 relation in
the Standard-AMR graph–and various uses of need,
which trigger a need-01 relation. As noted in the
discussion of domain extension of the annotation
schema (§6.1), both of these root relations do not

cue any domain robot concept, but rather provide
information about speech acts and speaker/listener
roles, which were consistently implicit in our orig-
inal domain. Thus, we are currently updating the
system to allow for certain relations in the Standard-
AMR (e.g., need-01) to cue for or map to partic-
ular speech acts (e.g., command-SA).

This demonstrates a weakness of the keyword-
based approach in general: unforeseen linguistic
phenomena such as vocatives can strongly affect
the accuracy of this approach, while the classi-
fier approach is more robust to these differences
since it considers all tokens in the utterance for
robot-concept relation prediction, thereby avoid-
ing mis-classification due to this kind of “noise” in
the data. When considering our earlier hypothesis
that the classifier-based approach to robot-concept
classification would be more efficient to extend to
a new domain than the keyword-based approach,
the results and error analysis here provide modest
support for this hypothesis. Both approaches are
similarly time-efficient as far as the initial exten-
sion efforts are concerned: the keyword approach
requires manual observation of the data and sub-
sequent selection and addition of keywords to the
dictionaries associated with certain robot-concept
relations, while the classifier approach requires
some additional manual annotation in the new do-
main. However, empirically the classifier-based
approach slightly outperforms the keyword-based
approach in the Minecraft domain, and extending
the keyword-based approach requires additional
changes in traversal of the graph in order to find
the appropriate concept to serve as the keyword
for matching, so the effort necessarily goes beyond
merely selecting and adding keywords.

Turning back to our original SCOUT test set
after Minecraft domain extension (results summa-
rized in the bottom three rows of Evaluation Do-
main A in Table 2), we find that tailoring the con-
version system to Minecraft and expanding the cov-
erage of language that the system can handle has
little negative effect on performance in our orig-
inal domain. We see comparable results for the
classifier-based model using one-hot vectorization,
maintaining an F-score of .83, which was also the
best-performing model for the original domain.

6.4 Full Automatic Pipeline Evaluation
In order to scale up to real-time use, the two-step
NLU pipeline will leverage the retrained automatic
Standard-AMR parser described in §3.1; however,
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up to this point we have reported conversion sys-
tem results using manually obtained, gold-standard
Standard-AMR parses in order to explore the va-
lidity of our conversion system approaches with-
out the noise from parsing. Table 3 summarizes
the performance of the overall best-performing
(across both Smatch scores and component accu-
racy) expanded keyword and one-hot vectorization
classifier G2G variants, after domain extension,
given Standard-AMR input from the parser. The
expanded keyword variant is the best-performing
model with automatic input, but the scores are
close. Although the Smatch F-score has dropped
from .71 (with gold-standard input) to .59, we still
find this to be very encouraging performance, given
the challenges of semantic parsing in a new domain.

Conversion
Variant SCOUT Minecraft

P R F P R F
Ext. G2G
Keyword

.75 .76 .75 .67 .53 .59

Ext. G2G
One-Hot

.83 .80 .81 .62 .52 .57

Table 3: Smatch scores for best-performing domain-
extended (ext.) G2G variants using automatically ob-
tained Standard-AMR input from retrained parser.

7 Related Work

This research is part of a growing body of work
in representing various levels of interpretation in
existing meaning representation frameworks, and
in AMR in particular. We briefly note especially
relevant work here. Bastianelli et al. (2014) present
their Human Robot Interaction Corpus (HuRIC)
following the same Penman Notation (Penman Nat-
ural Language Group, 1989) syntax of AMR, but
significantly altering AMR to use the sense distinc-
tions and semantic role labels of FrameNet (Fill-
more et al., 2012), thereby rendering the use of au-
tomatic parsers trained on AMR data challenging.
Shen (2018) presents a small corpus (266 instances)
of manually annotated AMRs for spoken language
to explore the validity of using AMR for spoken
language understanding, with promising results
but noting that additional data is needed. There
is also a neural AMR graph converter for abstrac-
tive summarization (producing summary graphs
from source graphs) (Liu et al., 2015); however,
neural approaches require substantial training data
in the form of annotated input and output graphs.
The current motivation for the multi-step approach

explored here is to handle a low resource problem,
as we lack sufficient data to experiment with em-
ploying a neural network.

8 Conclusions & Future Work
This paper evaluates and improves upon a two-step
NLU pipeline that gradually tames the variation
of language so that it can be understood and acted
upon by a robot with a limited repertoire of do-
main concepts and behaviors. After enumerating
the extensions needed for the annotation schema
itself and contributing a dataset of Dialogue-AMR
for the new Minecraft collaborative dialogue do-
main, we achieve promising results with roughly
200 instances of training data.

We have integrated our updated pipeline into a
software stack for a physical robot and are now per-
forming a series of experiments where we use the
same dialogue-management system, but vary the
NLU component in order to compare task success
with the two-step NLU pipeline against a baseline
NLU system with a simple syntactic parser. We
hypothesize that the NLU pipeline described here,
and the deeper semantics of Dialogue-AMR specif-
ically, will be especially advantageous for tracking
and grounding user utterances involving corefer-
ence (e.g., Go to the sign and send a picture of it.),
light verb constructions, which AMR represents
identically to parallel synthetic verbs (e.g., make a
left turn; turn left), negation (e.g., no, not the door
on the right, the left!), and complex, nested prepo-
sitions (e.g., move through the doorway in front
of you on the left)—all utterances where a simple
syntactic parse has been found to lack information
needed for interpretation of the intent and ground-
ing. The extrinsic evaluation will also provide an
opportunity to explore whether or not the conver-
sion system variant with the best overall Smatch
scores corresponds to the best real-world perfor-
mance, or if we should consider other metrics, such
as S2match (Opitz et al., 2020) and SemBleu (Song
and Gildea, 2019). As our results did not demon-
strate a clear “best” rule-based, keyword or classi-
fier approach to domain extension, we will continue
to experiment with all three variants and consider
which is the most time-efficient to extend, either by
adding to the keyword dictionary or adding annota-
tions. Overall, we are optimistic that the semantic
representation of Dialogue-AMR, which provides
a deeper understanding of both what a person said
and what they really meant in the conversational
context, will enhance human-robot collaboration.
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