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Abstract

Transformer-based language models such
as BERT have outperformed previous mod-
els on a large number of English bench-
marks, but their evaluation is often lim-
ited to English or a small number of well-
resourced languages. In this work, we eval-
uate monolingual, multilingual, and ran-
domly initialized language models from the
BERT family on a variety of Uralic lan-
guages including Estonian, Finnish, Hun-
garian, Erzya, Moksha, Karelian, Livvi,
Komi Permyak, Komi Zyrian, Northern
Sámi, and Skolt Sámi. When monolingual
models are available (currently only et, fi,
hu), these perform better on their native lan-
guage, but in general they transfer worse
than multilingual models or models of ge-
netically unrelated languages that share the
same character set. Remarkably, straight-
forward transfer of high-resource models,
even without special efforts toward hyper-
parameter optimization, yields what appear
to be state of the art POS and NER tools for
theminority Uralic languages where there is
sufficient data for finetuning.
A BERT- és más Transformer-alapú nyelv-
modellek számos angol tesztadaton job-
ban teljesítenek, mint a korábbi modellek,
azonban ezek a tesztadatok az angolra
és néhány hasonlóan sok erőforrással ren-
delkező nyelvre korlátozódnak. Ebben a
cikkben egynyelvű, soknyelvű és random
súlyokkal inicializált BERT modelleket
értékelünk ki a következő uráli nyelvekre:
észt, finn, magyar, erza, moksa, karjalai,
livvi-karjalai, komi-permják, komi-zürjén,
északi számi és kolta számi. Az egynyelvű
modellek – jelenleg csak észt, finn és mag-

yar érhető el – ugyan jobban teljesítenek
az adott nyelvre, általában rosszabbul tran-
szferálhatóak, mint a soknyelvű modellek
vagy a nem rokon, de azonos írást használó
egynyelvű modellek. Érdekes módon a
sok erőforráson tanult modellek még hiper-
paraméter optimalizálás nélkül is könnyen
transzferálhatók és finomhangolásra alka-
lmas tanítóadattal csúcsminőségű POS és
NER taggerek hozhatóak létre a kisebbségi
uráli nyelvekre.

1 Introduction
Contextualized language models such as BERT
(Devlin et al., 2019) drastically improved the state
of the art for a multitude of natural language pro-
cessing applications. Devlin et al. (2019) origi-
nally released 4 English and 2 multilingual pre-
trained versions of BERT (mBERT for short) that
support over 100 languages including three Uralic
languages: Estonian [et], Finnish [fi], and Hun-
garian [hu]. BERT was quickly followed by other
large pretrained Transformer (Vaswani et al., 2017)
based models such as RoBERTa (Liu et al., 2019)
and multilingual models such as XLM-RoBERTa
(Conneau et al., 2019). Huggingface released the
Transformers library (Wolf et al., 2020), a Py-
Torch implementation of Transformer-based lan-
guage models along with a repository for pretrained
models from community contribution¹. This list
now contains over 1000 entries, many of which are
domain-specific or monolingual models.
Despite the wealth of multilingual and mono-

lingual models, most evaluation methods are lim-
ited to English, especially for the early mod-
els. Devlin et al. (2019) showed that the origi-
nal mBERT outperformed existing models on the
XNLI dataset (Conneau et al., 2018), a translation

¹https://huggingface.co/models

https://huggingface.co/models


of the MultiNLI (Williams et al., 2018) to 15 lan-
guages. mBERT was further evaluated by Wu and
Dredze (2019) for 5 tasks in 39 languages, which
they later expanded to over 50 languages for part-
of-speech (POS) tagging, named entity recognition
(NER) and dependency parsing (Wu and Dredze,
2020). mBERT has been applied to a variety of
multilingual tasks such as dependency (Kondratyuk
and Straka, 2019) and constituency parsing (Kitaev
et al., 2019). The surprisingly effective multilin-
guality of mBERT was further explored by Dufter
and Schütze (2020).
Uralic languages have received relatively moder-

ate interest from the language modeling commu-
nity. Aside from the three national languages, no
other Uralic language is supported by any of the
multilingual models, nor does any have a monolin-
gual model. There are no Uralic languages among
the 15 languages of XNLI. Wu and Dredze (2020)
do explore all 100 languages that mBERT supports
but do not go into monolingual details. Alnajjar
(2021) transfer existing BERT models to minority
Uralic languages, the only work that focuses solely
on Uralic languages.
In this paper we evaluate multilingual and mono-

lingual models on Uralic languages. We consider
three evaluation tasks: morphological probing, POS
tagging and NER. We also use the models in a
crosslingual setting, in other words, we test how
monolingual models perform on related languages.
We show that

• these language models are very good at all
three tasks when finetuned on a small amount
of task specific data,

• for morphological tasks, when native BERT
models are available (et, fi, hu), these out-
perform the others on their native language,
though the advantage over XLM-RoBERTa is
not statistically significant,

• for POS and NER, the use of native models
from related, even closely related languages,
rarely brings improvement over the multilin-
gual models or even English models,

• as long as the alphabet that the language uses
is covered in the vocabulary of the model, we
can transfermBERT (or RuBERT) to theNER
and POS tasks with surprisingly little finetun-
ing data.

2 Approach

We evaluate the models through three tasks: mor-
phological probing, POS tagging and NER. Uralic
languages have rich inflectional morphology and
largely free word order. Morphology plays a key
role in parsing sentences. Morphological probing
tries to recover morphological tags from the sen-
tence representation from these models.
For assessing the sentence level behavior of the

models we chose two token-level sentence tagging
tasks, POS and NER. Part of speech tagging is a
common subtask of downstream NLP applications
such as dependency parsing. Named entity recog-
nition is indispensable for various high level seman-
tic applications such as building knowledge graphs.
Our model architecture is identical for POS and
NER.

2.1 Morphological probing
Probing is a popular evaluation method for black
box models. Our approach is illustrated in Figure 1.
The input of a probing classifier is a sentence and a
target position (a token in the sentence). We feed
the sentence to the contextualized model and ex-
tract the representation corresponding to the target
token. Early experiments showed that lower layers
retain more morphological information than higher
layers so instead of using the top layer, we take
the weighted average of all Transformer layers and
the embedding layer. The layer weights are learned
along with the other parameters of the neural net-
work. We train a small classifier on top of this rep-
resentation that predicts a morphological tag. We
expose the classifier to a limited amount of training
data (2000 training and 200 validation instances). If
the classifier performs well on unseen data, we con-
clude that the representation includes the relevant
morphological information.
We generate the probing data for Estonian and

Finnish from the Universal Dependencies (UD)
Treebanks (Nivre et al., 2020; Haverinen et al.,
2014; Pyysalo et al., 2015; Vincze et al., 2010) and
from the automatically tagged Webcorpus 2.0 for
Hungarian since the Hungarian UD is very small.
Unfortunately we could not extend the list of lan-
guages to other Uralic languages because their tree-
banks are too small to sample enough data.
The sampling method is constrained so that the

target words have no overlap between train, valida-
tion and test, and we limit class imbalance to 3-to-
1 which resulted in filtering some rare values. We



subword tokenizer

You have patience .

[CLS] You have pati ##ence . [SEP]

contextualized model

∑
wixiMLPP (label)

Figure 1: Probing architecture. Input is tok-
enized into subwords and a weighted average of the
mBERT layers taken on the last subword of the tar-
get word is used for classification by an MLP. Only
the MLP parameters and the layer weights wi are
trained.

were able to generate enough probing data for 11
Estonian, 16 Finnish and 11 Hungarian tasks, see
Table 4 for the full list of these.

2.2 Sequence tagging tasks
Our setup for the two sequence tagging tasks is sim-
ilar to that of the morphological probes except we
train a shared classifier on top of all token represen-
tations. We use the vector corresponding to the first
subword in both tasks. Although this may be subop-
timal in morphology, Ács et al. (2021) showed that
the difference is smaller for POS and NER. We also
finetune the models which seems to close the gap
between first and last subword pooling for morphol-
ogy, see 4.1. For sequence tagging tasks, unlike for
morphology, we found that the weighted average of
all layers is suboptimal compared to simply using
the top layer, so the experiments presented here all
use the top layer.
We sample 2000 train, 200 validation and 200

test sentences as POS training data from the largest
UD treebank in Estonian and Finnish, and fromWe-
bcorpus 2.0 for Hungarian. Aside from these three,
Erzya [myv]; Moksha [mdf]; Karelian [krl]; Livvi
[olo]; Komi Permyak [koi]; Komi Zyrian [kpv];
Northern Sámi [sme]; and Skolt Sámi [sms] have
UD treebanks (Rueter and Tyers, 2018; Rueter,
2018; Pirinen, 2019; Rueter, 2014; Rueter et al.,
2020; Partanen et al., 2018; Sheyanova and Tyers,
2017), but these are considerably smaller in size.

Language Code Morph POS NER
Hungarian [hu] 26k 2000 2000
Finnish [fi] 38k 2000 2000
Estonian [et] 26k 2000 2000
Erzya [myv] 0 1680 1800
Moksha [mdf] 0 164 400
Karelian [krl] 0 224 0
Livvi [olo] 0 122 0
Komi Permyak [koi] 0 78 2000
Komi Zyrian [kpv] 0 562 1700
Northern Sámi [sme] 0 2000 1200
Skolt Sámi [sms] 0 101 0

Table 1: Size of training data for each language.

Although none of these languages are officially sup-
ported by any of the language models we evaluate,
we train crosslingual models and find that the mod-
els have remarkable crosslingual capabilities.
Our NER data is sampled from WikiAnn (Pan

et al., 2017). WikiAnn has data in Erzya, Estonian,
Finnish, Hungarian, Komi Permyak, Komi Zyrian,
Moksha, and Northern Sámi.² Similarly to the POS
training data, we sample 2000 training, 200 vali-
dation and 200 test sentences when available, see
Table 1 for actual training set sizes.

2.3 Training details
We train all classifiers with identical hyperparam-
eters. The classifiers have one hidden layer with
50 neurons and ReLU activation. The input and
the output dimensions are determined by the choice
of language model and the number of target labels.
The classifiers have 40 to 60k trainable parame-
ters which are randomly initialized and updated us-
ing the backpropagation algorithm. We run experi-
ments both with andwithout finetuning the language
models. Finetuning involves updating both the lan-
guage model (all 110M parameters) and the classi-
fication layer (end-to-end training).
All models are trained using the AdamW opti-

mizer (Loshchilov and Hutter, 2019) with lr =
0.0001, β1 = 0.9, β2 = 0.999. We use 0.2 dropout
for regularization and early stopping based on the
development set. We set the batch size to 128 when
not finetuning the models, and we use batch size 8,
12 or 20 when we finetune them.
The evaluated models, all from the

²WikiAnn also has Udmurt data, but the transcription
is problematic: Latin and Cyrillic are used inconsistently,
Wikipedia Markup is parsed incorrectly etc.



BERT/RoBERTa family, differ only in the
choice of training data and the training objective.
They all have 12 Transformer layers, with 12 heads,
and 768 hidden dimensions, for a total of 110M
parameters.

3 The models evaluated

Our goal is twofold: we want to assess monolingual
models against multilingual models, and we want
to evaluate the models on ’unsupported’ languages,
both typologically related and unrelated.
We pick two multilingual models, mBERT and

XLM-RoBERTa. Our choices for monolingual
models are EstBERT for Estonian, FinBERT for
Finnish and HuBERT for Hungarian (See Table 2).
As a control, we also test the English BERT as a
general test for cross-language transfer. Since many
Uralic speaking communities are in Russia and the
languages are heavily influenced by Russian, we test
RuBERT on these languages. Finally, we also test
a randomly initialized mBERT. We do this because
the capacity of the BERT-base models is so large
that they may memorize the probing data alone.
Many models have cased and uncased version, the
latter often removing diacritics along with lowercas-
ing. Since diacritics play an important role in many
Uralic languages, we only use the cased models. We
return to this issue in 3.1.
The models along with their string identifier are

summarized in Table 2.

3.1 Subword tokenization
Subword tokenization is a key component in achiev-
ing good performance on morphologically rich
languages. There are two different tokeniza-
tion methods used in the models we compare:
XLM-RoBERTa uses the SentencePiece algorithm
(Kudo and Richardson, 2018), the other models
use the WordPiece algorithm (Schuster and Naka-
jima, 2012). The two types of tokenizers are al-
gorithmically very similar, the differences between
them are mainly dependent on the vocabulary size
per language. The multilingual models consist of
about 100 languages, and the vocabularies per lan-
guage apper sublinearly proportional to the amount
of training data available per language: in case of
mBERT, 77% of the word pieces are pure ascii
(Ács, 2019).
The native models, trained on monolingual data,

have longer and more meaningful subwords (see the
bolded entries in Table 3). This greatly facilitates

the sharing of train data, a matter of great impor-
tance for Uralic languages where there is little text
available to begin with.

Both BERT- and RoBERTa-based models first
tokenize along whitespaces, but the handling of
missing characters differs significantly. In BERT-
based models, if there is a character missing from
the tokenizer’s vocabulary, the model discards the
whole segment between whitespaces, labeling it
[UNK]. In cross-lingual cases many words are lost
since monolingual models tend to lack the extra
characters of a different language. In contrast,
XLM-RoBERTa deletes the unknown characters,
but the string that remains between whitespaces is
segmented, so the loss of information is not as se-
vere.

Table 3 summarizes different measures in
language-model pairs. As a general observation,
Latin script models (FinBERT, HuBERT, Est-
BERT) are unusable on Cyrillic text, as seen e.g. on
Erzya, where Latin script models produce [UNK]
token for 97.5% of the word types. This is also
seen for Northern Sámi and Hungarian, which have
many non-ascii characters (á, é, í, ó, ö, ő, ú, ü, ű
for Hungarian, č, đ, ŋ, š, ŧ, ž for Northern Sámi)
see the Hungarian-EstBert/FinBERT pairs and the
Northern Sámi-FinBERT/HuBERT pairs.

The mean subword length generally lies between
3.0 and 3.5 for most pairs - naturally, the corre-
sponding language-model pairs have much higher
mean subword length, 5.0 to even 5.9. This range
is true not only for Latin script languages, but for
Cyrillic script languages as well, as indicated by
Erzya, which has a mean subword length of 3.1 to
3.4 on the multilingual models and on RuBERT.

Fertility (Ács, 2019) is defined as the average
number of BERT word pieces found in a single real
word type. EstBERT on Estonian and FinBERT on
Finnish have very similar fertility values (2.1 and
1.9), but HuBERT on Hungarian has much higher
fertility. This is mainly caused by the different vo-
cabulary sizes - the Finnic models have 50000 sub-
words in their vocabulary, HuBERT only contains
32000 subwords. The rest of the fertility values
are mostly over 3. In extreme cases, a word is seg-
mented into letters, which is the case for EngBERT
on Erzya, but the non-Hungarian models on Hun-
garian also produce very high fertility values.



Model Identifier Language(s) Reference
mBERT bert-base-multilingual-cased 100+ inc. et, fi, hu Devlin et al. (2019)
XLM-RoBERTa xlm-roberta-base 100 inc. et, fi, hu Liu et al. (2019)
EstBERT tartuNLP/EstBERT Estonian Tanvir et al. (2021)
FinBERT TurkuNLP/bert-base-finnish-cased-v1 Finnish Virtanen et al. (2019)
HuBERT SZTAKI-HLT/hubert-base-cc Hungarian Nemeskey (2020)
EngBERT bert-base-cased English Devlin et al. (2019)
RuBERT DeepPavlov/rubert-base-cased Russian Kuratov and Arkhipov (2019)
rand-mBERT mBERT with random weights any described in Section 3

Table 2: List of models we evaluate.

mBERT RoBERTa EstBERT FinBERT HuBERT RuBERT EngBERT
Vocab. size 120k 250k 50k 50k 32k 120k 29k
Missing [et] (%) .0 .0 .2 .0 .5 .1 .2
Missing [fi] (%) .0 .0 .0 .0 .4 .0 .0
Missing [hu] (%) .1 .0 21.5 48.3 .1 2.7 .2
Missing [sme] (%) .2 .0 15.0 47.4 5.1 4.8 .2
Missing [myv] (%) .0 .0 97.5 97.5 97.5 .0 .0
Subword length [et] 3.7±1.4 4.2±1.7 5.8±2.6 3.7±1.4 3.1±1.2 3.1±1.2 3.5±1.4
Subword length [fi] 3.8±1.4 4.5±1.9 3.8±1.4 5.9±2.5 3.1±1.1 3.1±1.1 3.4±1.4
Subword length [hu] 3.5±1.5 4.2±2.0 3.3±1.2 3.1±1.1 5.0±2.4 3.0±1.1 3.3±1.4
Subword length [sme] 3.2±1.0 3.4±1.1 3.2±1.1 3.2±1.1 3.1±1.2 2.9±1.0 3.0±1.0
Subword length [myv] 3.1±1.2 3.2±1.0 1.0±0.0 1.0±0.0 1.0±0.0 3.4±1.2 1.1±0.4
Character length [et] 9.2 9.2 9.2 9.2 9.2 9.2 9.2
Character length [fi] 9.3 9.3 9.3 9.3 9.3 9.3 9.3
Character length [hu] 9.8 9.8 9.6 8.8 9.8 9.8 9.9
Character length [sme] 8.5 8.5 8.3 7.6 8.5 8.4 8.5
Character length [myv] 7.3 7.3 1.8 1.8 1.7 7.3 7.3
Fertility [et] 3.4 2.8 2.1 3.6 4.4 4.3 4.3
Fertility [fi] 3.3 2.7 3.5 1.9 4.6 4.4 4.5
Fertility [hu] 4.0 3.2 5.2 4.5 2.8 5.4 5.6
Fertility [sme] 3.7 3.6 4.1 3.3 4.5 4.6 4.7
Fertility [myv] 3.6 3.3 1.1 1.1 1.1 3.0 7.2

Table 3: Major characteristics of cross-language tokenization. Boldface font marks the corresponding
language-model pairs.
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Figure 2: Mean accuracy of morphological tasks by language. The bars are grouped in two, the left one is
the result of probing the first subword, the right one is the results of probing the last subword. Blue bars are
without finetuning, green bars are with finetuning. Monolingual models are highlighted.

4 Results
4.1 Morphology
Morphological tasks are generally easy for most
models and we see reasonable accuracy from
crosslingual models as illustrated by Figure 2. Mean
accuracies, especially after finetuning, are gener-
ally above 90%, except, unsurprisingly, for the ran-
domly initialized models.

Subword choice We first start by examining the
choice of subword on morphological tasks. We try
probing the first and the last subword and we find
that there is a substantial gap in favor of the last sub-
word. This is unsurprising considering that Uralic
languages are mainly suffixing. This gap on aver-
age shrinks from 0.21 to 0.032 when we finetune
the models on the probing data (Figure 2 shows this
gap in green). Without finetuning there is only one

task, ⟨Hungarian, Degree, ADJ⟩, where probing the
first subword is better than probing the last one for
some models. This is explained by the fact that the
superlative in Hungarian is formed from the com-
parative by a prefix.

Monolingual models are only slightly better than
the two multilingual models, XLM-RoBERTa in
particular. We run paired t-tests on the accuracy of
each model pair over the 11 (et, hu) or 16 (fi) mor-
phological tasks in a particular language and find
that the difference between the monolingual model
and XLM-RoBERTa is never significant, and for
Estonian, neither is the difference between Est-
BERT and mBERT.

Cross-lingual transfer works only if we finetune
the models. Interestingly, language relatedness does
not seem to play a role here. FinBERT transfers



worse to Estonian than HuBERT, and EstBERT
transfers worse to Finnish than HuBERT. Interest-
ingly, EngBERT transfers better to all three models
than the other native BERTs, and for Finnish and
Hungarian it is actually on par with mBERT.
Diacritics As seen from the first panel of Ta-
ble 3, EstBERT and FinBERT replace words with
unknown characters with [UNK] to such an extent
that a large proportion of types end up being filtered.
We try to mitigate this issue by preemptively remov-
ing all diacritics from the input. It appears that this
has little effect on the original language, but cross-
lingual transfer is improved for Finnish. In the se-
quence tagging tasks that we now turn to, we re-
move the diacritics when we evaluate EstBERT or
FinBERT in a cross-lingual setting.

4.2 POS and NER
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Figure 3: POS and NER results on languages that
use the Latin alphabet.

We extend our studies to all Uralic languages with
any training data (see Table 1) and we limit the
discussion to finetuned models since cross-lingual
transfer does not work without finetuning. We split
the languages into two groups, Latin and Cyrillic,
and we only test models with explicit support for
the script that the language uses. Multilingual mod-
els support both scripts. Figures 3 and 4 show the
results by language.
National languages We generally find the best
performance in the three languages with native sup-
port: Estonian, Finnish and Hungarian. Monolin-
gual models perform the best in their respective lan-
guage but the two multilingual models are also very
capable.
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Figure 4: POS and NER results on languages that
use the Cyrillic alphabet.

Cross-lingual transfer does not seem to bene-
fit from language relatedness, EngBERT transfers
just as well as other monolingual models. Even ex-
tremely close relatives such as Livvi and Finnish do
not transfer better than XLM-RoBERTa to Livvi.
On the other hand, FinBERT is the best for Kare-
lian POS, another close relative of Finnish. The
writing system and shared vocabulary also seem to
play an important role, as seen fromRuBERT’s use-
fulness on unrelated but Cyrillic-using Uralic lan-
guages, see Figure 4.

XLM-RoBERTa is generally a strong model for
cross-lingual transfer for all Uralic languages. We
suspect that this is due to its large subword vocabu-
lary, which may provide a better generalization ba-
sis for capturing the orthographic cues that are often
highly indicative in agglutinative languages.

North Sámi Both POS and NER in North Sámi
are relatively easy as long as the orthographic cues
can be captured (i.e. the Latin script is supported).
rand-mBERT is suprisingly successful at NER in
North Sámi, suggesting that orthograpic cues (rand-
mBERT uses mBERT’s tokenizer) are highly pre-
dictive of named entities in North Sámi.

5 Conclusion

Altogether we find that it is possible, and relatively
easy, to transfer models to new languages with fine-
tuning on very limited training data, though ex-
tremely limited data still hinders progress: compare
Erzya (1680 train sentences) to Moksha (164 train
sentences) on Fig. 4.



Morph tag POS Estonian Finnish Hungarian
Case adj 8 classes 11 classes
Case noun 15 classes 12 classes 18 classes
Case propn 8 classes
Case verb 12 classes
Degree adj Cmp, Pos, Sup Cmp, Pos, Sup
Derivation adj Inen, Lainen, Llinen, Ton
Derivation noun Ja, Lainen, Minen, U, Vs
InfForm verb 1, 2, 3
Mood verb Cnd, Imp, Ind Cnd, Imp, Ind, Pot
Number psor noun Sing, Plur
Number a/n/v Sing, Plur Sing, Plur Sing, Plur
PartForm verb Pres, Past, Agt
Person psor noun 1, 2, 3
Person verb 1, 2, 3 1, 2, 3
Tense adj Pres, Past
Tense verb Pres, Past Pres, Past Pres, Past
VerbForm verb Conv, Fin, Inf, Part, Sup Inf, Fin, Part Inf, Fin
Voice adj Act, Pass
Voice verb Act, Pass Act, Pass

Table 4: List of morphological probing tasks.

EngBERT and RuBERT, which we introduced
as a control for language transfer among genetically
unrelated languages, transfer quite well: in partic-
ular the Latin-script EngBERT transfers better to
Hungarian than FinBERT or EstBERT.

We note that we did not perform monolin-
gual hyperparameter search or any preprocessing,
and there is probably room for improvement for
each of these languages. The biggest immediate
gains are expected from extending the UD and
WikiAnn datasets, and from careful handling of
low-level characterset and subword tokenization is-
sues. There are many Uralic languages that still lack
basic resources, in particular the entire Samoyedic
branch, Mari, and Ob-Ugric languages, are cur-
rently out of scope. Another avenue of research
could be to work towards a stronger mBERT inter-
lingua, or perhaps one for each script family, as the
charset issues are clearly relevant.

Our data, code and the full result tables will be
available along with the final submission.
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