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Abstract
Semi-Supervised Variational Autoencoders
(SSVAEs) are widely used models for data ef-
ficient learning. In this paper, we question the
adequacy of the standard design of sequence
SSVAEs for the task of text classification as
we exhibit two sources of overcomplexity for
which we provide simplifications.

These simplifications to SSVAEs preserve
their theoretical soundness while providing a
number of practical advantages in the semi-
supervised setup where the result of training is
a text classifier. These simplifications are the
removal of (i) the Kullback-Liebler divergence
from its objective and (ii) the fully unobserved
latent variable from its probabilistic model.
These changes relieve users from choosing a
prior for their latent variables, make the model
smaller and faster, and allow for a better flow
of information into the latent variables.

We compare the simplified versions to stan-
dard SSVAEs on 4 text classification tasks.
On top of the above-mentioned simplification,
experiments show a speed-up of 26%, while
keeping equivalent classification scores. The
code to reproduce our experiments is public1.

1 Introduction

Obtaining labeled data to train NLP systems is
a process that has often proven to be costly and
time-consuming, and this is still largely the case
(Martínez Alonso et al., 2016; Seddah et al., 2020).
Consequently, semi-supervised approaches are ap-
pealing to improve performance while alleviating
dependence on annotations. To that end, Varia-
tional Autoencoders (VAEs) (Kingma and Welling,
2014) have been adapted to semi-supervised learn-
ing (Kingma et al., 2014), and subsequently applied
to several NLP tasks (Chen et al., 2018a; Corro and
Titov, 2019; Gururangan et al., 2020).

A notable difference between the generative
model case from where VAEs originate, and the

1https://github.com/ghazi-f/Challenging-SSVAEs

semi-supervised case is that only the decoder (gen-
erator) of the VAE is kept after training in the first
case, while in the second, it is the encoder (classi-
fier) that we keep. This difference, as well as the
autoregressive nature of text generators has not suf-
ficiently been taken into account in the adaptation
of VAEs to semi-supervised text classification. In
this work, we show that some components can be
ablated from the long used semi-supervised VAEs
(SSVAEs) when only aiming for text classification.
These ablations simplify SSVAEs and offer several
practical advantages while preserving their perfor-
mance and theoretical soundness.

The usage of unlabeled data through SSVAEs is
often described as a regularization on representa-
tions (Chen et al., 2018a; Wolf-Sonkin et al., 2018;
Yacoby et al., 2020). More specifically, SSVAEs
add to the supervised learning signal, a conditional
generation learning signal that is used to train on un-
labeled samples. From this observation, we study
two changes to the standard SSVAE framework.
The first simplification we study is the removal of a
term from the objective of SSVAEs: the Kullback-
Leibler term. This encourages the flow of infor-
mation into latent variables, frees the users from
choosing priors for their latent variables, and is
harmless to the theoretical soundness of the semi-
supervised framework. The second simplification
we study is made to account for the autoregres-
sive nature of text generators. In the general case,
input samples in SSVAEs are described with two
latent variables: a partially-observed latent vari-
able, which is also used to infer the label for the
supervised learning task, and an unobserved latent
variable, which describes the rest of the variability
in the data. However, autoregressive text genera-
tors are powerful enough to converge without the
need for latent variables. Therefore, removing the
unobserved latent variable is the second change we
study in SSVAEs. The above modifications can be
found in some rare works throughout the literature,

https://github.com/ghazi-f/Challenging-SSVAEs
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e.g. (Corro and Titov, 2019). We, however, aim to
provide justification for these changes beyond the
empirical gains that they exhibit for some tasks.

Our experiments on four text classification
datasets show no harm to the empirical classifi-
cation performance of SSVAE in applying the sim-
plifications above. Additionally, we show that re-
moving the unobserved latent variable leads to a
significant speed-up.

To summarize our contribution, we justify two
simplifications to the standard SSVAE framework,
explain the practical advantage of applying these
modifications, and provide empirical results show-
ing that they speed up the training process while
causing no harm to the classification performance.

2 Background

2.1 Variational Autoencoders
Variational Autoencoders (Kingma and Welling,
2019) are a class of generative models that combine
Variational Inference with Deep Learning modules
to train a generative model. For a latent variable z,
and an observed variable x, the generative model
pθ consists of a prior pθ(z) and a decoder pθ(x|z).
VAEs also include an approximate posterior (also
called the encoder) qφ(z|x). Both are used during
training to maximize an objective called the Evi-
dence Lower Bound (ELBo), a lower-bound of the
log-likelihood:

log pθ(x) ≥
Ez∼qφ(z|x) [log pθ(x|z)]−KL [qφ(z|x); pθ(z)]

= ELBo(x; z) (1)

Throughout the paper, we will continue to use
this ELBo(.; .) operator, with the observed vari-
able(s) as a first argument, and the latent variable(s)
as a second argument. In the original VAE frame-
work, after training, the encoder qφ is discarded
and only the generative model (the prior and the
decoder) are kept.

2.2 Semi-Supervised VAEs
The idea of using the VAE encoder as a classi-
fier for semi-supervised learning has first been ex-
plored in (Kingma et al., 2014). Besides the usual
unobserved latent variable z, the semi-supervised
VAE framework also uses a partially-observed la-
tent variable y. The encoder qφ(y|x) serves both as
the inference module for the supervised task, and

as an approximate posterior (and encoder) for the
y variable in the VAE framework.

Consider a set of labeled examples L =
{(x1, y1), ..., (x|L|, y|L|)}, and a set of unlabeled
examples U = {x′1, ..., x′|U |}. For the set L,
qφ(y|x) is trained i) with the usual supervised ob-
jective (typically, a cross-entropy objective for a
classification task) ii) with an ELBo that consid-
ers x and y to be observed, and z to be a latent
variable. A weight α is used on the supervised ob-
jective to control its balance with ELBo. For the
set U , qφ(y|x) is only trained as part of the VAE
model with an ELBO where y is used, this time,
as a latent variable like z. Formally, the training
objective J α of a SSVAE is as follows:

J α =
∑

(x,y)∈L

(
ELBo((x, y); z) + α log qφ(y|x)

)
+
∑
x∈U

ELBo(x; (y, z)) (2)

3 Simplifying SSVAEs for Text
Classification

The simplifications we propose stem from the anal-
ysis of an alternative form under which ELBO
can be written (Eq. 2.8 in Kingma and Welling,
2019). Although it is valid for any arguments of
ELBo(.; .), we display it here for an observed vari-
able x, and the couple of latent variables (y, z):

ELBo(x; (y, z)) =

log pθ(x)−KL[qφ(y, z|x)||pθ(y, z|x)] (3)

For the case of SSVAEs, this form provides a clear
reading of the additional effect of ELBo on the
learning process: i) maximizing the log-likelihood
of the generative model pθ(x), ii) bringing the pa-
rameters of the inference model qφ(y, z|x) closer
to the posterior of the generative model pθ(y, z|x).
Since pθ(y, z|x) is the distribution of the latent
variables expected by the generative model pθ for
it to be able to generate x, we can conclude that
ELBo trains both latent variables for conditional
generation on the unsupervised dataset U .

3.1 Dropping the Unobserved Latent
Variable

Building on observations from equation 3, we ques-
tion the usefulness of training both latent variables
for conditional generation when semi-supervised
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learning only aims for an improvement on the in-
ference of the partially-observed latent variable y.

For the case of language generation, the se-
quence of discrete symbols in each sample is
often modeled by an autoregressive distribution
pθ(x|y, z) =

∏
i pθ(xi|y, z, x<i) where xi is the

ith symbol in the sequence, and x<i are the sym-
bols preceding xi. Such a distribution is able to gen-
erate realistic samples when trained on a target text
corpus, so much that text VAEs are plagued with
a problem known as posterior collapse (Bowman
et al., 2016) where the latent variable is ignored
by the generative model. We therefore propose to
keep only y and to drop z from the model avoiding
its presence in the Kullback-Leibler divergence in
Equation 3 and saving some parameters.2

3.2 Dropping the Kullback-Leibler Term

Previous work on VAE-based language models
showed that the KL divergence in Eq. 1 sometimes
discourages the model from using latent variables
and makes them useless in practice (Bowman et al.,
2016; Zhao et al., 2017; Chen et al., 2018b).

An interesting result from Zhao et al. (2017) is
that ELBo without KL divergence (KL-free) is still
a theoretically sound objective for generative mod-
eling with VAEs. The difference between the gen-
erative model resulting from a regular ELBo and a
KL-free ELBo is the prior of the model. A KL-free
ELBo results in a generative model that uses as a
prior qφ(z) =

∫
z qφ(z|x)pdata(x)dx. This prior is

intractable which makes the resulting model im-
practical for generation, but causes no problem for
semi-supervised VAEs. We therefore propose, as a
second change to the standard SSVAE framework,
the removal of the KL-divergence in Eq. 1.

Note that in this case, the network formulates its
own prior instead of requiring the user to choose it.
That is a significant advantage since the choice of
a good prior is difficult: it must model adequately
the default behavior of the latent variables, and
requires a closed form for the KL-divergence in
Eq. 1 to stabilize training.

3.3 Resulting Objective

Applying both of the previous simplifications to
the semi-supervised objective in Eq. 2 leads to the

2In this case, one may be tempted to drop the VAE frame-
work entirely and resort to other learning algorithms such as
EM or direct likelihood maximization. Although possible in
theory, this would disconnect qφ from the generator’s training,
and thus discard the benefit from using unlabeled data.

following objective:

∑
(x,y)∈L

(
log pθ(x|y) + α log qφ(y|x)

)
+
∑
x∈U

Ey∼qφ(y|x) [log pθ(x|y)]) (4)

As can be seen, the first ELBo in Eq. 2 turns into a
supervised conditional generation objective, while
the second ELBo turns into a reconstruction term
that relies only on y. Nevertheless, we stress that
the second term is still an ELBo, and the whole ob-
jective is still a VAE-based semi-supervised learn-
ing objective. It should also be noted that, with-
out z, the latent variables cannot provide the de-
coder with the full information about a sentence
and, therefore, cannot reach a state where each sam-
ple is reconstructed. To avoid confusion, instead of
reconstructing from y, the role of the reconstruc-
tion term is better read in our case as raising the
probability of the sample at hand under the associ-
ated label y.

4 Experiments

In this section, we display comparisons between in-
stances of standard SSVAEs and the same SSVAEs
after applying the changes we propose.

4.1 Setup
Datasets We consider 4 Datasets for our study:
the IMDB (Maas et al., 2011) and Yelp review (Li
et al., 2018) binary sentiment analysis datasets, and
the AG News and DBPedia (Zhang et al., 2015)
topic classification datasets. The Datasets have
been chosen to represent a range over different
tasks (Sentiment Analysis and Topic Classifica-
tion), different numbers of classes, and different
sentence lengths. A summary of dataset statistics
is in Table 1.

dataset Labels Av. Sample length N° Classes
AG News Topic 37.85±10.09 4
DBPedia Topic 46.13±22.46 14
IMDB Sentiment 233.79±173.72 2
Yelp Sentiment 8.88±3.64 2

Table 1: Dataset properties.

As was done in Chen et al. (2020), we measure
performance on the different datasets with equal
numbers of samples. Accordingly, for each dataset,
we randomly subsample 10K samples from the
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Objective AGNEWS DBPedia IMDB Yelp
Supervised 86.98(0.74) 96.97(0.28) 81.02(0.64) 92.47(0.48)

SSVAE 87.89(0.54) 97.75(0.11) 83.34(0.91) 92.85(0.78)
SSVAE-{KL} 87.95(0.19) 97.58(0.13) 83.87(0.47) 92.90(0.54)
SSVAE-{z} 87.94(0.33) 97.40(0.14) 81.90(5.17) 93.60(0.74)

SSVAE-{KL, z} 87.85(0.29) 97.58(0.19) 84.79(1.34) 93.77(0.61)

Table 2: Accuracies On AGNEWS, DBPedia, IMDB, and Yelp. The values are averages over 5 runs with standard
deviations between parentheses. The best score for each dataset and each amount of labeled data is given in bold.

original training set as unlabeled data. We also
use 4K labeled samples a training set and 1K as
development set. We use the original test sets from
each dataset. All the samples are tokenized using a
simple whitespace tokenizer.

Network Architecture The size of z is set to 32.
For experiments without z, we simply drop all the
components associated to it from the network.

The encoder consists of a pre-trained 300-
dimensional fastText (Bojanowski et al., 2017) em-
bedding layer, and 2 Bidirectional LSTM networks
with 100 hidden states each, one for each of the
latent variables y and z. The logits of y are then
obtained by passing the last state of its Bidirec-
tional LSTM through a linear layer. Similarly the
last state of the Bidirectional LSTM for z is passed
through a linear layer to obtain its mean parame-
ter, and a linear layer with a softplus activation to
obtain its standard deviation parameter.

As for the decoding step, to allow backpropa-
gation, z is sampled using the reparameterization
trick (Kingma and Welling, 2014), and y is sampled
using the Gumbel-Softmax trick (Jang et al., 2017).
Xu et al. (2017) have shown that latent variables are
best exploited in SSVAEs when concatenated with
the previous word at each generation step to obtain
the next word. We design our decoder accordingly
and use a 1-layered LSTM with size 200. The only
hyper-parameter we tune on the development set is
α, the coefficient weighting the supervised learn-
ing objective in Eq. 2, which is selected in the set
{100, 10−1, 10−2, 10−3}. Further implementation
details are provided in Appendix A.

4.2 Results

Classification performance In Table 2, we com-
pare the performance of a standard SSVAE, to a SS-
VAE where we remove the KL-divergence (SSVAE-
{KL}) another where z is removed (SSVAE-{z})
and a third version where both the KL-divergence
and z are removed (SSVAE-{KL, z}). We measure

performance on all datasets using accuracy. As a
baseline, we also include the results of an objective
that does not use unlabeled data. The architec-
ture we use for this objective is simply the LSTM
encoder that we use to obtain y for the SSVAE ob-
jectives. This baseline is referred to as Supervised.

The aim of our experiment is to see whether we
observe that there is a harm to the performance
of SSVAEs when applying the proposed simpli-
fications. In Table 2, we see that applying both
changes compares favorably to the standard SS-
VAE 2 times out of 4. The removal of z yields the
same comparison, while removing the KL term
causes improvement 3 times out of 4. For more
extensive testing, we ran experiments for varying
amounts of labeled data (from 1% to 100%; cf. Ap-
pendix C), and only found 4 statistically significant
differences between SSVAE and its variants: 3 in
favor of one of our Simplified SSVAEs, and 1 in
favor of the standard SSVAE.

We performed additional experiments in an out-
of-domain setting (c.f Appendix B.) using our senti-
ment analysis datasets, and also observed improve-
ments with our simplifications.

Speeding Up the Learning Process By remov-
ing the KL-divergence and the components associ-
ated with z, an improvement on the speed of the
learning process is to be expected. This improve-
ment is highly dependent on the model and on the
implementation at hand. As an example, we mea-
sure the average speed of an optimization iteration
for each dataset, and each version of SSVAE. In
Table 3, the speed of each objective is displayed
proportionally to the speed of standard SSVAEs.
The calculations associated with the KL-divergence
do not seem to slow down the iterations. However,
removing z and its associated components consis-
tently cuts out a considerable proportion of the
duration of optimization steps. This proportion
ranges from 14% (DBPedia) to 26%(AGNEWS).
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Dataset SSVAE-{KL} SSVAE-{z} SSVAE-{KL, z}
AGNEWS 0.911(0.73) 0.742(0.65) 0.742(0.81)
DBPedia 1.03(0.56) 0.861(0.61) 0.867(0.56)
IMDB 1.018(0.25) 0.822(0.25) 0.816(0.25)
Yelp 0.986(1.52) 0.819(1.39) 0.819(1.52)

Table 3: Training durations for each objective relative
to standard SSVAE, averaged over 200 iterations. Stan-
dard deviations are given between parentheses. Lowest
duration for each dataset is given in bold.

5 Related Works

After the pioneering work of Kingma et al. (2014),
SSVAEs were extended to tasks such as morpho-
logical inflections (Wolf-Sonkin et al., 2018), con-
trollable speech synthesis (Habib et al., 2019),
parsing (Corro and Titov, 2019), sequential label-
ing (Chen et al., 2018a) among many others. VAE
internals have also been tweaked in various man-
ners to improve the learning performance. For in-
stance, Gururangan et al. (2020) introduce a low
resource pretraining scheme to improve transfer
with VAEs, while Zhang et al. (2019) propose to
use the deterministic ancestor of a latent variable
to perform classification, and constrain it with an
adversarial term to have it abide by the values of
the random latent variable.

While our work is a focused contribution dedi-
cated to the theoretical soundness and the practical
advantages of two simplifications to the SSVAE
framework for text classifications, it could be ex-
tendend to other tasks involving text generation as
the unsupervised VAE objective. For instance, the
work of Corro and Titov (2019) shows that semi-
supervised dependency parsing scores higher with
both the changes we study.

6 Conclusion

Starting from the observation that SSVAEs can be
viewed as the combination of a supervised learning
signal with an unsupervised conditional genera-
tion learning signal, we show that this framework
needs neither to include a KL-divergence nor an
unobserved latent variable (z) when dealing with
text classification. We subsequently perform ex-
perimental comparisons between standard SSVAEs
and simplified SSVAEs that indicate that they are
globally equivalent in performance.

Our changes provide a number of practical ad-
vantages. First, removing the KL-divergence frees
practitioners from choosing priors for the variables
they use, and allows information to flow freely into

these variables. Second, removing the latent vari-
able z from the computational graph speeds up
computation and shrinks the size of the network.
Despite their popularity, VAEs are often tedious to
train for NLP tasks. In that regard, our simplifica-
tions should facilite their usage in future works.
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Dataset Supervised SSVAE SSVAE-{KL} SSVAE-{z} SSVAE-{KL, z}
IMDB−→Yelp 59.07(1.19) 61.78(6.03) 68.67+(4.85) 71.30+(7.67) 64.69+(3.84)
Yelp−→IMDB 66.17(2.62) 69.54(2.49) 66.67(3.26) 65.15(2.31) 66.13(3.82)

Table 4: Out-of-domain Accuracies between IMDB and Yelp for the different objectives. The best objective for
each out-of-domain inference direction is given in bold. The scores displaying statistically significant improvement
compared to the score of the supervised objective are marked with +

A Implementation Details

Training and validation data splits We sample
5 labeled data splits of size 1K. Each of these 5
splits will, in turn, play the role of validation set for
one experiment, while the other 4 splits are used
for training. Looping over these splits yields 5 runs
for each experiment. The results we display are the
average (and standard deviation) of the results for
each of these runs. The validation score serves se-
lecting hyper-parameters (in our case only α from
Eq. 2). The final test scores are measured on the
original test set of each dataset.

Probabilistic Graphical Model For models that
use both z and y, we consider the latent variables
to be conditionally independent in the inference
model (i.e. qφ(y, z|x) = qφ(y|x)qφ(z|x)) ) and
independent in the generation model (i.e pθ(y, z) =
p(y)p(z)).

Training Procedure We use the STL estimator
(Roeder et al., 2017) which is a low-variance unbi-
ased gradient estimator for ELBo.

The network is optimized using ADAM (Kingma
and Ba, 2015), with a learning rate of 4e-3 and a
dropout rate of 0.5. If the accuracy on the validation
set doesn’t increase for 4 epochs, the learning rate
is divided by 4. If it doesn’t increase for 8 epochs,
the training is stopped. For objectives that include
a KL-divergence, we scale it with a coefficient that
is null for 3K steps then linearly increased to 1 for
the following 3K steps to avoid posterior collapse
(Li et al., 2020).

B Out-of-domain experiments

The sentiment analysis tasks we use for these exper-
iments take place in different domains (Restaurant
reviews for Yelp, and Movie reviews for IMDB).
Using models trained for each domain (with %100
of the data), we measure performance on the other
domain to see whether the changes we study have
an effect on out-of-domain generalization. In Table
4, we compare the out-of-domain performances of

each of the objectives to that of the baseline that
doesn’t use unlabeled data (Supervised).

The table shows no statistically significant gains
from using unlabeled Yelp training data for infer-
ence on IMDB. This is to be expected as reviews
from Yelp are drastically shorter than those from
IMDB (cf. Table 1). However, for out-of-domain
inference in the opposite direction, all the semi-
supervised objectives except the standard SSVAE
show statistically significant gains. Removing the
KL-divergence to accumulate more information in
y, and removing z to have conditional generation
exclusively rely on y seem to be effective to help
generalization beyond the original domain of the
task.

C Results Over Varying Amounts of
Data

We display results with varying amounts of data in
Table 5.
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Dataset Objective 1% 3% 10% 30% 100%

IMDB

Supervised 54.62(3.30) 56.47(1.02) 62.01(2.75) 69.65(2.02) 81.02(0.64)
SSVAE 53.92(2.34) 56.03(4.20) 62.15(5.03) 75.39(0.49) 83.34(0.91)

SSVAE-{KL} 52.70(1.72) 54.95(0.77) 62.37(4.45) 74.18(1.97) 83.87(0.47)
SSVAE-{z} 54.15(2.46) 56.86(1.77) 62.15(2.87) 75.42(1.80) 81.90(5.17)

SSVAE-{KL, z} 53.51(1.99) 56.58(2.22) 63.24(4.15) 75.87(1.30) 84.79(1.34)

AGNEWS

Supervised 68.60(4.88) 75.92(1.74) 81.96(0.83) 84.59(0.67) 86.98(0.74)
SSVAE 65.79(5.02) 75.95(1.27) 82.47(0.43) 85.50(0.30) 87.89(0.54)

SSVAE-{KL} 68.56(1.89) 76.25(2.21) 82.76(0.45) 85.73(0.80) 87.95(0.19)
SSVAE-{z} 67.13(6.55) 77.28(1.81) 83.48∗(0.75) 85.75(0.74) 87.94(0.33)

SSVAE-{KL, z} 66.96(3.42) 76.47(1.24) 82.58(0.97) 85.51(0.57) 87.85(0.29)

Yelp

Supervised 70.32(1.84) 76.32(2.07) 83.41(1.75) 87.85(0.58) 92.47(0.48)
SSVAE 71.34(1.93) 76.96(1.64) 82.96(0.69) 89.35(0.39) 92.85(0.78)

SSVAE-{KL} 69.85(2.86) 76.82(1.31) 82.90(2.23) 88.33(0.99) 92.90(0.54)
SSVAE-{z} 68.74(2.95) 78.26(1.70) 84.11(1.25) 90.27∗(0.28) 93.60(0.74)

SSVAE-{KL, z} 69.21(1.10) 77.30(2.57) 85.02∗(1.24) 89.74(1.31) 93.77(0.61)

DBPedia

Supervised 63.67(1.74) 81.49(2.25) 90.56(1.21) 94.63(0.32) 96.97(0.28)
SSVAE 64.42(1.83) 83.16(1.49) 92.95(0.82) 96.26(0.25) 97.75(0.11)

SSVAE-{KL} 66.09(3.05) 81.97(1.54) 93.64(0.76) 96.32(0.28) 97.58(0.13)
SSVAE-{z} 62.56(5.60) 83.40(2.42) 93.37(1.00) 96.39(0.21) 97.40†(0.14)

SSVAE-{KL, z} 62.15(1.68) 82.67(2.16) 93.40(1.10) 96.31(0.24) 97.58(0.19)

Table 5: Accuracies on IMDB, AGNEWS, Yelp and DBPedia with varying amount of labeled data. The values
are averages over 5 runs with standard deviations between parentheses. The best score for each dataset and each
amount of labeled data is given in bold. Each semi-supervised objective that scores above (resp. below) SSVAE
with p-value<0.05 is marked with ∗ (resp. †)


