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Abstract

Much of recent progress in NLU was shown
to be due to models’ learning dataset-specific
heuristics. We conduct a case study of gener-
alization in NLI (from MNLI to the adversar-
ially constructed HANS dataset) in a range of
BERT-based architectures (adapters, Siamese
Transformers, HEX debiasing), as well as with
subsampling the data and increasing the model
size. We report 2 successful and 3 unsuccess-
ful strategies, all providing insights into how
Transformer-based models learn to generalize.

1 Introduction

Many popular NLP datasets contain spurious pat-
terns, which get learned instead of the actual task
(Gururangan et al., 2018; Belinkov et al., 2019;
Rogers et al., 2020a; Gardner et al., 2021). This
raises the issue of learning methods that would
avoid that problem. We present a case study of gen-
eralization to adversarial data in Natural Language
Inference (NLI), reporting both positive and nega-
tive results for a range of BERT-based approaches.

2 Methodology

Data. NLI is a 3-class classification task: does
the premise entails, contradicts, or is neutral with
respect to the hypothesis? MNLI (Williams et al.,
2018) is one of the most popular resources for this
task, but it has been shown to suffer from both an-
notation artifacts (Gururangan et al., 2018; Poliak
et al., 2018) and annotator bias (Geva et al., 2019).
A cartography (Swayamdipta et al., 2020) map of
MNLI (fig. 1) suggests that most of its examples
are easy to learn, which explains why vanilla fine-
tuning with modern models is sufficient to achieve
high accuracy on MNLI benchmark.

We measure generalization of models fine-tuned
on MNLI with HANS (McCoy et al., 2019b), a
synthetic dataset targeting lexical overlap, subse-
quence and constituent heuristics. According to

Figure 1: MNLI data map (with RoBERTa-large)

McCoy et al. (2019b), a model trained on MNLI
is likely to learn these heuristics and thus predict
the “entailment" label for most HANS examples.
E.g. it would incorrectly predict that “The doctor
was paid by the actor" entails “The doctor paid the
actor", simply because these sentences contain the
same words. See Appendix A for more examples.

Methodology. We experiment with variants1 of
BERT (Devlin et al., 2019), RoBERTa (Liu et al.,
2019), and ALBERT (Lan et al., 2020). Our imple-
mentation2 is based on Transformers (Wolf et al.,
2019) and Pytorch (Paszke et al., 2019), and for
two experiments we also report results with a cus-
tom Pytorch-Lightning trainer3. HANS has 30K
examples used only for testing, where we report
the accuracy4. MNLI test set is not public, and
we report accuracy on the “matched” dev set (20K
examples, 393K for training).

1Most models we used were provided by HuggingFace
Transformers library. In scope of this project we ported the
smaller BERT versions by Turc et al. (2019) for that library.

2https://github.com/prajjwal1/
generalize_lm_nli

3https://github.com/vecto-ai/langmo
4Since HANS contains only two labels (entailment, non-

entailment), and a model trained on MNLI would have three
(entailment, contradiction, neutral), a completely random
model would be biased towards the “non-entailment". For
direct comparison with MNLI we report the average accuracy
for the two HANS labels, unless specified otherwise.

https://github.com/prajjwal1/generalize_lm_nli
https://github.com/prajjwal1/generalize_lm_nli
https://github.com/vecto-ai/langmo


126

3 Experiments

There are two main directions for solving the gen-
eralization challenge: modifying the training dis-
tribution and the model itself. For the former we
experimented with subsampling (§3.1), and for the
latter – with bottlenecking with Siamese Trans-
formers (§3.2) and adapters (§3.3), explicit debias-
ing (§3.4), and increasing model size (§3.5). This
section presents the motivation and setup for all
experiments, and all the results are shown in §4.

§3.1 Subsampling the training data with car-
tography. Data cartography (Swayamdipta et al.,
2020) characterizes training data points via the
model’s confidence in the true class, and the vari-
ability of this confidence across epochs. Fig-
ure 1 shows that MNLI examples form a spectrum:
some are consistently “easy” (high-confidence) and
“hard” (low-confidence) across epochs. “Ambigu-
ous” samples have midrange confidence and high
variability. If much of MNLI is “easy”, presumably
these samples are less informative.

Experiments. We partition MNLI based on the
training dynamics of RoBERTa-large and BERT-
base, and train the respective models on varying
amounts of “hard” and “ambiguous” examples (pre-
ceded by 25% of “easy” samples for 2 epochs). See
appendix B for more details.

§3.2 Siamese Networks. In this architecture
predictions are based on a pair of inputs (Chopra
et al., 2005; Koch et al., 2015). It was success-
ful on NLI (Chen et al., 2017) and in conjunc-
tion with BERT encoders (Reimers and Gurevych,
2019). One of their properties is forcing the model
to consider the relation between two sequences
in a more holistic way than with cross-attention
between concatenated premise+hypothesis (as in
standard BERT fine-tuning). Intuitively, encod-
ing premise and hypothesis separately could bot-
tleneck5 their interaction and encourage learning
more abstract patterns, which is what we need here:
ideally, an NLI model would learn logical rules
rather than numerous lexical or syntactic patterns.

Experiments. Our Siamese Transformer consists
of a MLP and two BERT encoders which receive
hypotheses and premises in a segregated manner.
We used mean-pooled outputs of last transformer

5The information bottleneck idea (Tishby et al., 2000;
Alemi et al., 2016) has recently been successfully adapted
for BERT fine-tuning to avoid overfitting in a low-resource
setting by Mahabadi et al. (2020), who propose a regulariza-
tion term suppressing the learning of irrelevant information.

layer (CLS embedding yielded similar results) com-
bined as [U, V, U−V,U ∗V ] as inputs to MLP clas-
sifier. We experiment with base and large BERTs,
with both frozen and trainable encoders.

§3.3 Adapter Networks. Intuitively, standard
fine-tuning of BERT changes the amount of task-
independent linguistic knowledge that the model
can store, and may corrupt it (if the supervised task
has significant artifacts). Therefore, by adding sep-
arate task-specific components rather than chang-
ing the language model weights, we could ex-
pect to increase the amount of non-task-specific
knowledge in the model. This could be done with
adapters (Houlsby et al., 2019; Pfeiffer et al., 2020):
trainable MLPs inserted within each sub-layer of
encoder. Concretely, in a transformer layer l, ad-
ditional adapter parameters φl are introduced to
learn task specific parameters while keeping pre-
trained parameters intact. Having smaller trainable
components should also bottleneck the model and
encourage it to learn higher-level patterns.

Experiments. We add adapters in each sub-layer
as proposed in Houlsby et al. (2019) to BERT and
RoBERTa with the configuration defined in Pfeiffer
et al. (2020). The adapter consists of two linear
layers (up and down) with a bottleneck of reduction
factor of 16 and the ReLU non-linearity.

§3.4 Explicit De-biasing. If MNLI ‘teaches’
to rely on superficial features, we could try to avoid
them. Following Zhou and Bansal (2020), we use
HEX projection (Wang et al., 2019). The system in-
cludes the main Transformer encoder and a ‘naive’
model learning superficial features. HEX orthogo-
nally projects the Transformer representation into
the affine space the most different from the ‘naive’
representation, hopefully removing the bias.

Experiments. We extract pooled representations
from our main model (BERT-base). The ‘naive’
model is a CBOW model with a self-attention layer
(Vaswani et al., 2017) to capture co-occurrence
information from the sequence with input and to-
ken embeddings. See Wang et al. (2019) for more
details on the method, and Appendix C for im-
plementation and hyperparameter details. During
inference, we use logits from BERT only.

§3.5 Increasing Model Size. Scaling language
models to massive amounts of data has been a
reliable source of success on NLP leaderboards,
and yielded some interesting emergent properties
(Brown et al., 2020; Raffel et al., 2020). If pre-
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Architecture Encoder HF trainer Custom Trainer
MNLI/std HANS/std runs MNLI/std HANS/std runs

Siamese networks /
frozen encoder

BERT-base 51.43 50.74 1 57.2 / 0.2 51.3 / 0.1 3
BERT-large 51.72 51.12 1 61.4 / 0.1 51.6 / 0.1 5

Siamese networks /
trainable encoder

BERT-base 58.9 52.79 1 76.5 / 0.03 51.3 / 0.03 3
BERT-large 59.9 51.21 1 78.7 52.5 1

Adapter networks

BERT-base 82.6 50.97 1
BERT-large 84.75 57.17 1
RoBERTa-base 86.33 57.21 1
RoBERTa-large 90.4 75.93 1

HEX debiasing BERT-base 56.25 50.58 1

Vanilla finetuning:
increased model
size

BERT-tiny (4.4M) 64.48/0.24 50/0 3 67.4 / 0.2 50 / 0.02 5
BERT-mini (11.3M) 72.3/0.29 50.97/0.04 3 76.3 / 1 52.3 / 0.3 10
BERT-small (29.1M) 76.48/0.12 50.39/0.14 3 78.4 / 0.5 51.1 / 0.3 5
BERT-medium (41.7M) 79.64/0.14 51.02/0.26 3 80 / 0.3 52 / 0.4 5
BERT-base (110M) 83.74/0.04 53.98/0.78 3 84 / 0.2 69 / 4 16
BERT-large (340M) 85.9/0.02 72.04/1.97 3 86.5 / 0.1 77.8 / 2.4 3
RoBERTa-base (125M) 87.46/0.1 73.11/1.13 3 87.5 / 0.3 77.7 / 1.7 10
RoBERTa-large (355M) 90.3/0.07 79.95/0.56 3 90 / 0.4 82.05 / 1 3
ALBERT-base-v2 (11M) 83.06/0.13 66.6/0.78 3 84.2 / 0.6 69.2 / 2.2 4
ALBERT-large-v2 (17M) 85.08/0.3 70.64/2.91 3 85.5 / 0.9 70.5 / 1.6 4

Table 1: Generalization from MNLI to HANS in selected approaches.

training “teaches" transferable linguistic knowl-
edge, the models absorbing more data could be
expected to generalize better.

Experiments. We perform standard fine-tuning
on MNLI with variants of BERT: tiny, mini, small,
medium by Turc et al. (2019), base and large by
Devlin et al. (2019), as well as RoBERTa (Liu et al.,
2019) and ALBERT (Lan et al., 2020). In this and
the Siamese network experiment we report not only
the results obtained with the HuggingFace Trainer,
but also with our custom implementation based on
Pytorch Lightning (also with the AdamW optimizer
and with similar learning rates).

4 Results and Discussion

4.1 Negative Results

Table 1 shows that Siamese networks and HEX
debiasing perform at chance level on HANS.
Adapters work better, but do not match vanilla
fine-tuning of their base models. While it is im-
possible to prove the negative, our experience sug-
gests that, given a reasonable amount of effort,
these approaches are not the most promising for the
generalization problem we considered. The paper
is accompanied by code for our implementations.

Our Siamese model would be expected to fail
if high performance of vanilla BERT was largely
due to cross-attention across [premise + hypoth-
esis], enabling it to learn many specific patterns
(such as negation in the hypothesis). Our bottleneck
MLP would not have the capacity to do that, and it

clearly also fails to find a more abstract pattern in
the representations it receives. Further experiments
are needed to verify this hypothesis. Whether or
not overall we would like our NLI models to be
able to operate with independent representations of
premise and hypothesis rather than cross-attention
within one representation, is an open question.

For HEX, Zhou and Bansal (2020) suggest that
the problem might be that it has access only to the
final output of BERT, which could contain more
information about the predicted NLI labels than the
input sequence as such. Then there would be little
to debias. Our results support this hypothesis, but
more qualitative research is needed to verify it.

The RoBERTa-large MNLI results of our adapter
implementation is on par with the recent state-
of-the-art Compacter adapters on T5 (Mahabadi
et al., 2021), but generalization in both BERT and
RoBERTa is overall worse than with vanilla fine-
tuning. Following on the recent report of adapter ef-
ficacy in low-resource setting (He et al., 2021), we
conducted an additional experiment with adapters
and RoBERTa-large, where the model had to learn
from a small, more informative subsample. At
1024 training examples adapters performed better
when the MNLI subsample was diverse (selected
with K-means-based clustering, see appendix D)
rather than randomly selected: 80.7% vs 85%. But
the generalization to HANS was still not very im-
pressive: 67.8% vs 57.5%, respectively. This strat-
egy does seem to select more informative examples
for MNLI distribution, but not for HANS.
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Figure 2: Generalization to HANS at varying stages of
training on “hard” MNLI samples. Graph labels indi-
cate % of MNLI training data used.

4.2 (Cautiously) Positive Results

Figure 2 shows that when trained on the “hard”
samples, for RoBERTa-large there does exist a
MNLI subsample (at about 25% training data)
yielding good performance on both HANS and
MNLI. Further 13% addition of biased MNLI data
makes the model lose its performance on HANS.
But we could not find such a sample for BERT-base,
although the cartography samples were model-
specific. This also does not happen for either model
when training on the “ambiguous” subsamples:
RoBERTa initially “learns” HANS at 5% of train-
ing data, but “loses” it before reaching even 60%
accuracy on MNLI (see fig. 4 in the Appendix).

The most encouraging results come from the
increased model size with our custom trainer, as
shown in fig. 3. For BERT, RoBERTa and AL-
BERT, the “large" versions generalize consis-
tently better than the “base" versions. Concur-
rent work (Anonymous, 2021) focusing specifically
on the effect of model size on the learning of lexical
overlap heuristic came to a similar conclusion.

However, “larger is better" is not the whole story.
The improvement occurs only past a certain thresh-
old: going from BERT-tiny to BERT-medium does
not help generalization. At the same time, both AL-
BERTs have fewer parameters than BERT-small,
but they do generalize, which suggests that their pa-
rameter sharing is truly effective. Also RoBERTa-
base learns to generalize more consistently than
BERT-large, which may be either due to some in-
herent superiority of RoBERTa, or because this
instance of RoBERTa happens to be better than
this instance of BERT. One point that is clear is
that better generalization also requires longer
fine-tuning, which interestingly barely affects the
core MNLI performance on the larger models, but
makes a lot of difference for the smaller BERTs.
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MNLI (Validation)
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bert-tiny (4.4M params)
bert-mini (11.3M params)
bert-small (29.1M params)
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bert-large (340M params)
albert-base (11M params)
albert-large (17M params)
roberta-base (125M params)
roberta-large (355M params)

Figure 3: Generalization from MNLI to HANS: model
size effect (custom Pytorch Lightning implementation).
The dots on the line for each model indicate perfor-
mance after training epochs 1-4.

5 Related work

Several studies have reported successful general-
ization from MNLI to HANS. Among data-based
strategies, it has been achieved via augmenting
MNLI data with predicate-argument structures
(Moosavi et al., 2020) and syntactic transforma-
tions (Min et al., 2020). Although there are many
reports of syntactic knowledge in pre-trained BERT
(Rogers et al., 2020b), Min et al. (2020) suggest
that pre-training does not yield a strong inductive
bias to use syntax in downstream tasks, and aug-
mentation “nudges” the model towards that.

Theoretically, subsampling that reduces the
saliency of spurious patterns should have a similar
effect, but our cartography-based subsampling did
not work consistently, possibly because MNLI has
little counter-evidence to spurious patterns, and the
right subsample is hard to find reliably. We have
additional negative results for subsampling with
K-means clustering (see Appendix D for details).

The idea of using shallow models to identify
biases before training and “teach” the model to treat
them differently has been successfully explored
by Utama et al. (2020), Clark et al. (2020), and
Sanh et al. (2021). Our negative results with HEX
debiasing after training complements these reports.

Our results corroborate that generalization is im-
proved by larger models (Anonymous, 2021) and
longer fine-tuning (Tu et al., 2020). The latter work
shows that this happens thanks to the few HANS-
like samples in MNLI: they take longer to learn,
and without them longer fine-tuning does not help.

A general challenge for DL-based NLP research
is variability due to extraneous factors. Generaliza-
tion from MNLI to HANS may be much improved
simply with a lucky fine-tuning initialization (Mc-
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Coy et al., 2019a). For QA Crane (2018) show
that there are many other external factors (down
to linear algebra library version) that also play a
role, and for Transformers overall implementations
make a big difference (Narang et al., 2021). Our
work provides an illustration of that phenomenon
in NLI. The reported HANS performance of vanilla
fine-tuned BERT-base varies in the published stud-
ies from 50.0% to 62.5%. Our Pytorch-Lightning
implementation at 4 epochs achieves 69% (avg. of
16 runs), not due to any architectural differences.
Overall it also has higher variability between runs,
possibly due to batch size differences.

6 Analysis: Bias Under Low Confidence

Our overall ratio of positive to negative results illus-
trates the difficulty of the spurious patterns problem.
Once the model learns that some pattern is a strong
signal for a label, it will over-rely on it. But how
much heuristic-matching evidence does it need?

In this experiment we fine-tune the base versions
of BERT and RoBERTa for 4 epochs. We use the
dataset cartography to identify the “hard” training
samples for both models. As shown in Figure 1, the
classifier has overall low confidence for the “hard”
samples. We corrupt these “hard ” samples by
inserting extra characters randomly in 30% content
words in the sequence. For example:

Premise: do it now,

ythink︷ ︸︸ ︷
think’

ubout︷︸︸︷
bout it later

Hypothesis:

zthink︷︸︸︷
think about it now, do it

late ( r︷︸︸︷
later

The corrupted sequences remain relatively read-
able for humans, but this reduces the signal from
direct lexical matches seen by the model (even
with BERT tokenization). Note that the model has
already seen these samples 4 times before corrup-
tion. We repeated this experiment with substituting,
deleting and swapping characters.

Since the classifier confidence for the “hard” ex-
amples is low, and the perturbations are random,
they could be expected to just flip the predictions
in random directions, equally across MNLI labels.
Instead, with all corruption strategies and for both
models we see the pattern shown in Table 2: the
accuracy drops significantly for contradiction (by
10-20 points), and improves significantly for entail-
ment (by 10-30 points). For the neutral class the
change is not as large (mostly gaining 5-13 points).

These results suggest that in low-confidence
context even decreased lexical overlap still

Corruption Labels BERT RoBERTa

Character Entailment +18.2 +11.9
insert Neural +13.78 +0.8

Contradiction −28.89 −8.4

Character Entailment +35.5 +20.4
substitute Neural +1.6 +5.9

Contradiction −23.9 −17.6

Character Entailment +23.8 +18.1
swap Neural −1.6 +3.3

Contradiction −15.5 −13.9

Character Entailment +31.73 +18.4
delete Neural −11.2 +5.8

Contradiction −10.3 −16.3

Table 2: “Hard” samples: changes in prediction accu-
racy for MNLI classes by BERT-base and RoBERTa-
base after random character corruption.

nudges the model towards entailment rather
than contradiction. This runs contrary to the overall
strategy shown by HANS, and it is not due to the
majority class bias (as MNLI train set is balanced
between entailment and contradiction). One possi-
ble explanation is that if it is non-entailment that
the generalizing models slowly learn from the lit-
tle supporting evidence in MNLI (Tu et al., 2020),
then corruption would make that already-difficult
job even harder for the model, decreasing the accu-
racy on non-entailment. On the other hand, even
corrupted MNLI examples still have some lexical
overlap, and so the model, unable to recognize any
subtler patterns, might default to that.

This finding has implications for high-cost-of-
error applications where false positives are prefer-
able to false negatives. If the data has spurious pat-
terns, the model may score well on a generalization
benchmark, but be still biased towards a certain la-
bel when its confidence is low. Consider e.g. most
of COVID detection models are “at high risk of
bias” due to noisy data (Wynants et al., 2020).

7 Conclusion

Most supervised datasets are biased in one way or
the other, and task-independent techniques to im-
prove NLP model generalization are crucial for fur-
ther advances. We experimented with 5 strategies
to improve generalization of BERT-class models
for NLI task: explicit debiasing, bottlenecking the
model, adapters, data subsampling, and increasing
model size. We find the latter strategy the most
promising, but we also report all the negative re-
sults, which contribute to the overall knowledge
about generalization in BERT-based models.
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A Additional details and samples from the used datasets

We use MNLI to perform training of LMs and
evaluate their generalization capabilities on HANS.
See Table 3 for some sample sentences from MNLI
and HANS. MNLI has three classes (“entailment",
“contradiction" and “neutral"), while HANS only
has “entailment" and “non-entailment". HANS
targets the three heuristics (“lexical overlap", “sub-
sequence" and “constituent") which are usually
adopted by pre-trained LMs such as BERT.

MNLI contains 393K and 20K examples in the
train and dev sets respectively (the test set is not
publicly available). HANS contains 30K examples
split across 10K across each heuristic, which were
used entirely for testing.

Label Premise Hypothesis

Entailment A member of my team will - One of our number will carry out -
execute your orders with immense precision. your instructions minutely.
This information belongs to them. How do you know? -

All this is their information again.

Neutral Product and geography are - Conceptually cream skimming has two -
what make cream skimming work basic dimensions - product and geography.
The speaker doesn’t know who it is. Who could there be ?

Contradiction I ignored Ben. Hello, Ben.
He only muttered something about - He distinctly said -
splitting the sky. you were to repair the sky.

(a) Examples of sentences from MNLI (Williams et al., 2018)

Heuristic Premise Hypothesis Label

Lexical The banker near the judge saw the actor. The banker saw the actor. E
overlap The judge by the actor stopped the banker. The banker stopped the actor. N

Subsequence The artist and the student called the judge. The student called the judge. E
The senator near the lawyer danced. The lawyer danced. N

Constituent Before the actor slept, the senator ran. The actor slept. E
If the actor slept, the judge saw the artist. The actor slept. N

(b) Examples of sentences from HANS (McCoy et al., 2019b).
The label column shows the correct label for the sentence pair; E stands for entailment and N stands for non-entailment.

A model relying on the heuristics would label all examples as entailment (incorrectly for those marked as N)

Table 3: The NLI data used in this study
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B Cartography

Cartography is a recent method for characterizing
the difficulty of training samples. It describes data
points as “easy”, “ambiguous” and “hard” through
analyzing predictions of the model during training
on those samples (training dynamics).

Sampling. In our experiments, we sample the
datasets in the ranked order. For example, the easi-
est example is at the top, so it is first in the sampled
batch of dataset. Our implementation of obtaining
ranked ordering is based on the original implemen-
tation by the authors of the method6.

Role of “easy” examples. During vanilla fine-
tuning on randomly subsampled data, the model en-
counters all three kinds of examples some of which
may provide meaningful signals to learn and some
may aid in out-of-domain generalization. In our ex-
periments, we find that training solely on “ambigu-
ous” and “hard” examples do not aid the network in
improving the performance. This finding is consis-
tent with the observation from (Swayamdipta et al.,
2020) wherein they showed that “easy” examples
aid in optimization of the network during initial
stages and are crucial for training. Therefore, in
our experiments the models were trained first on
25% “easy” examples, and then on subsets of “hard”
examples containing the top 1%, 5%, 10%, 17%,
25%, 33%, 50% and 75% of the “hard” data (for
consistency with the experiment by Swayamdipta
et al. (2020), see sec. 4). The results of this experi-
ment are shown in fig. 2. The same experiment was
repeated with the “ambiguous” samples, shown in
fig. 4.
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Figure 4: Evaluating generalization at varying stages
of training on “ambiguous” samples. Percentages on
marker represents percentage of MNLI train data used
as training progresses.

6https://github.com/allenai/
cartography
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Figure 5: Orthogonal debiasing with HEX projection

C Stabilizing HEX

Here we provide more details about how HEX is
being used. The self-attention output from BERT is
pooled and passed through two MLP layers to get
an individual representation of each input sequence,
as shown in fig. 5. We feed the pooled representa-
tion of BERT and the intermediate representation of
CBOW into two MLPs to obtain vectors U and V .
We use f to represent classification layer parame-
terized by ξ. The output vectors FA = f([U, V ]; ξ)
and FG = f([0, V ]; ξ) are concatenated along the
non-batch dimension.

FA = f([U, V ]; ξ),

FG = f([0, V ]; ξ)
(1)

where FA, FG denotes both concatenated repre-
sentations and zero matrix prepended with network
B’s representation [, ] denotes concatenation opera-
tion along the non-batch dimension.

Following Vaswani et al. (2017), we project FA:

FL = (I − FG(F
T
GFG + λI)−1F T

G )FA (2)

Table 4 shows hyperparameter search for λ. Dur-
ing inference, we use logits obtained through BERT
only.

We follow a slight variation of Equation 2 to
smoothen the process of optimization. The addi-
tion of λ hyper-parameter has been done to ensure
that inverse is carried out on a non-singular matrix.
The value of λ plays a significant role in determin-
ing how these representations are being learned.
In our experiments, 1e − 4 worked well and was
used for initializing it after which it was set as a
model’s parameter. We observe that pseudo-inverse
of F T

GFG is unstable and can make optimization

https://github.com/allenai/cartography
https://github.com/allenai/cartography
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(b) Random sampling: HANS
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Figure 6: Fine-tuning BERT-base on varied amounts of MNLI data: in-domain and generalization performance

λ MNLI HANS (Average)
L S C

1e-4 55.2 49.50 / 52.62 / 52.52
2e-4 56.54 49.81 / 50.90 / 50.83
3e-4 57.02 50.03 / 50.11 / 49.93
4e-4 57.72 49.49 / 52.39 / 51.42
5e-4 57.09 49.93 / 50.16 / 50.03
6e-4 55.26 49.66 / 51.59 / 52.68
7e-4 57.25 49.60 / 51.09 / 49.63
8e-4 57.78 49.60 / 51.20 / 51.37
9e-4 48.58 50.00 / 50.00 / 49.98
1e-5 53.45 49.80 / 50.69 / 50.68
2e-5 53.77 50.00 / 50.00 / 50.00
3e-5 56.46 49.19 / 52.84 / 54.41
4e-5 47.30 49.61 / 50.90 / 49.28
5e-5 50.80 49.69 / 51.07 / 50.41

Table 4: Performance on MNLI and HANS with HEX
(BERT-base) with different values of λ. L, S, C denote
lexical overlap, subsequence and constituent heuristic

process hard, so we make U and V square matrices
to obtain inverse instead. Additionally, during infer-
ence time, we directly feed outputs from the main
network to the MLP layer to obtain logit vectors
instead of using FL. It has been reported (Wang
et al., 2019) that this doesn’t have any profound im-
pact on the logit vector and makes inference faster.
We also applied L1 and L2 normalization on U and
V to account for differences in scale but did not see
any noticeable improvement. We found that values
of λ greater than 0.0001 do not aid the network in
learning.

D Subsampling the Training Data with
K-means clustering

Motivation. Fundamentally, the problem is the
mismatch between MNLI and HANS distributions.
For a biased dataset, one solution could be to find
such a subsample that would enable the model to
perform well on both distributions.

Experiments. We encode MNLI examples as
BERT [CLS] embeddings and cluster them in 512

clusters using K-means. We then fine-tune BERT-
base on varying amounts of MNLI data, progres-
sively increasing the amount of training examples
by 10%. The data in the sub-sample is selected
(a) randomly (as a control), (b) so as to maxi-
mize the diversity of examples within the sample
(Katharopoulos and Fleuret, 2018). At the small-
est subsample size we sample the data from all
clusters. As data size increases, smaller clusters
are exhausted while the larger ones remain, so the
smallest subsamples are the most diverse, and the
diversity decreases as the sample size increases.
The experiment is repeated with 5 random seeds.

Results. Figure 6 shows that on MNLI, diverse
sampling yields much more variation with small
amounts of data than random sampling, but as the
subsample approaches the full dataset the perfor-
mance also becomes the same. Neither subsam-
pling strategy improves generalization: the model
still predicts “entailment" for most HANS exam-
ples. Thus overall the result for this strategy is
negative.


