
Proceedings of the Second Workshop on Insights from Negative Results in NLP, pages 62–66
November 10, 2021. ©2021 Association for Computational Linguistics

ISBN 978-1-954085-93-0

62

Recurrent Attention for the Transformer

Jan Rosendahl Christian Herold Frithjof Petrick Hermann Ney
Human Language Technology and Pattern Recognition Group

Computer Science Department
RWTH Aachen University
D-52056 Aachen, Germany

{surname}@i6.informatik.rwth-aachen.de

Abstract
In this work, we conduct a comprehensive in-
vestigation on one of the centerpieces of mod-
ern machine translation systems: the encoder-
decoder attention mechanism. Motivated by
the concept of first-order alignments, we ex-
tend the (cross-)attention mechanism by a re-
current connection, allowing direct access to
previous attention/alignment decisions. We
propose several ways to include such a recur-
rency into the attention mechanism. Verifying
their performance across different translation
tasks we conclude that these extensions and
dependencies are not beneficial for the transla-
tion performance of the Transformer architec-
ture.

1 Introduction

Since its introduction by Vaswani et al. (2017),
the Transformer architecture has enabled state of
the art results on nearly all machine translation
(MT) tasks (Bojar et al., 2018; Barrault et al., 2019;
Ott et al., 2018). Compared to previous neural
machine translation (NMT) approaches (Sutskever
et al., 2014; Bahdanau et al., 2015), it introduces
many new concepts like self-attention, positional
encoding and multi-head attention. However, the
Transformer still relies on the encoder-decoder at-
tention mechanism introduced by Bahdanau et al.
(2015) to translate a source sentence into the tar-
get language. While for earlier NMT models, this
attention mechanism was thoroughly investigated
and many different variants were proposed (Feng
et al., 2016; Cohn et al., 2016; Sankaran et al., 2016;
Tu et al., 2016), the same can not be said for the
Transformer. In the present work, we discuss the
Transformer encoder-decoder attention mechanism,
propose different ways to enhance its capabilities
and analyze the resulting systems.

One particular design decision in the Trans-
former attention mechanism catches the eye: When
calculating the context vector in the current decod-
ing step, there is no direct information flow coming

from the previous steps. While earlier neural ar-
chitectures explicitly incorporated the hidden state
from the previous decoding step in the attention
calculation (Bahdanau et al., 2015) and traditional
count-based alignment models used higher order
Markov assumptions, the Transformer relies on
the self-attention mechanism and layer stacking to
learn context dependencies. Therefore we ask the
questions if and how an explicit dependency on the
previous attention decisions should be included in
the Transformer encoder-decoder attention mech-
anism. In order to provide an answer we propose
numerous approaches towards modeling such an
explicit dependency and report our findings across
three language pairs.

2 Related Work

In recurrent network architectures (Bahdanau et al.,
2015) the decoder state recurrently depends on the
previous decoding step. Many works have extended
this by additionally adding an explicit recurrent
dependency within the attention mechanism itself.

Feng et al. (2016) concatenate the attention con-
text produced in the previous decoding step to
the input of the attention mechanism. Other ap-
proaches approximate a coverage value for ev-
ery source position by accumulating the attention
weights over all previous time steps, which is then
included in the attention calculation (Cohn et al.,
2016). Tu et al. (2016) extend this idea by renor-
malizing the coverage using a fertility model that
predicts how much attention a specific source word
should receive. In a similar spirit Sankaran et al.
(2016) explicitly bias the attention weights to be
more focused on source positions that did not re-
ceive much attention yet.

In contrast to network architectures with a recur-
rent decoder, the Transformer (Vaswani et al., 2017)
is trained completely parallel and uses multi-head,
additive cross-attention. This work tries to answer
whether introducing a recurrent dependency can
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also benefit the Transformer cross-attention.

3 Recurrent Cross-Attention

3.1 Encoder-Decoder Attention

The ‘vanilla’ Transformer is an intricate encoder-
decoder architecture that uses an attention mecha-
nism to map a sequence of input tokens fJ1 onto a
sequence of output tokens eI1. In this framework,
a context vector c`,ni for the `-th decoder layer and
the n-th attention head is calculated in the i-th de-
coding step by

c`,ni =
∑
j

α`,n
i,j (W `,n

v hj).

Here, hj denotes the j-th output of the encoder
which is transformed by a trainable weight matrix
W `,n

v into the value. α`,n
i,j is calculated using hj

as well as the output of the previous decoder layer
(after self-attention) s`i . More specifically, we cal-
culate the energy

α̂`,n
i,j = 1√

dk
(W `,n

k hj)
ᵀ(W `,n

q s`i)

where dk is the feature dimension, W `,n
k and W `,n

q

are trainable weight matrices, transforming hj and
s`i into the key and query respectively. This naming
stems from the intuition that we use a queryW `,n

q s`i
to perform a lookup on a series of key-value pairs:(
W `,n

k h1,W
`,n
v h1

)
, . . . ,

(
W `,n

k hJ ,W
`,n
v hJ

)
.

The energy α̂`,n
i,j is then normalized using the

softmax operation to get the so called attention
‘weights’

α`,n
i,j = softmax(α̂`,n

i,j ) =
exp(α̂`,n

i,j )∑
j′ exp(α̂`,n

i,j′)
. (1)

Once the c`,ni are calculated, the full context vector
c`i is formed by concatenating the outputs of all
attention heads followed by a linear transformation.
A combination of residual connections, feedfor-
ward and self attention layers is used to transform
c`i into s`+1

i = f(c`i), the decoder state before the
next cross-attention layer. In this work we focus on
the cross-attention and refere the reader to Vaswani
et al. (2017) for the details on the self-attention
concept.

One thing that becomes obvious in the above
description is the lack of information flow along
the decoder ‘time-axis’ i. The only way the system
can make use of such information is through the
aforementioned self-attention concept. In this work
we raise the question whether such an indirect way

of information flow is sufficient or if the system
can profit from a more direct integration of its ‘past
attention decisions’.

3.2 Modifying the Query

A straight forward way to use information from
the previous decoder time step i− 1 in the current
attention calculation is by modifying the query vec-
tor. We do this by simple concatenation, resulting
in

α̂`,n
i,j = 1√

dk
(W `,n

k hj)
ᵀ
(
W `,n

q′

(
s`i
fi−1

))
where fi−1 is some function holding information
from the previous time step. One apparent way to
define this function is the concatenate previous
context variant,

fi−1 = c`,ni−1 (2)

where we simply use the context vector of the pre-
vious time step. One can argue that the previous
attention weight of the j-th source position, α`,n

i−1,j ,
is more useful than the already condensed context
vector. Therefore we consider the concatenate
previous weight approach:

fi−1 = α`,n
i−1,j . (3)

However, here we only take into account the time
step directly preceding the current one. In order to
investigate if additional information from earlier
decisions might be helpful, we define the concate-
nate previous accumulated weight approach:

fi−1 =

i−1∑
i′=1

α`,n

i′j
(4)

specifying how much the encoder output from the
j-th position has been attended to so far.

For all of the variants described in this section,
the resulting energies α̂`,n

i,j are normalized using a
softmax operation (see Equation 1).

3.3 Expanding the Key-Value List

Staying in the ‘query-key-value’ framework, the
pendant to modifying the query vector (as in Sec-
tion 3.2) would be to modify the key-value list in
order to incorporate information from the previous
time step. We expand this list by inserting one ad-
ditional vector pair (gk, gv) along the time axis and
name this approach expand key-value list.

For choosing the vectors gk and gv, we test four
different variants. In variant 1 we use the (linearly
transformed) full context vector c`i−1 from the pre-
vious time step as both additional key and value
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vector

gk = W `,n
k c`i−1, gv = W `,n

v c`i−1. (5)

The context vector is transformed using the same
matrices W `,n

k and W `,n
v which we also use for

transforming the other keys and values respectively.
One can argue that a separate transformation is
needed for the context vector, which leads us to
variant 2,

gk = W `,n
gk
c`i−1, gv = W `,n

gv c
`
i−1 (6)

where W `,n
gk and W `,n

gv are used specifically for
transforming c`i−1. Furthermore, we speculate that
a specific attention head should mostly just benefit
from incorporating its own previous output. There-
fore we define variant 3 as:

gk = W `,n
gk
c`,ni−1, gv = W `,n

gv c
`,n
i−1. (7)

where just the context vector c`,ni−1, produced by
the same head, is considered in the calculation.
Finally we test variant 4 in which only the key is
transformed but the value is not:

gk = W `,n
gk
c`,ni−1, gv = c`,ni−1. (8)

The rationale here is that c`,ni−1 already ‘belongs’ in
the context vector embedding space (not the en-
coder output space like hj) and therefore no trans-
formation should be necessary. On a side note,
while all of these changes might make sense from
an architectural point of view, they certainly raise
questions regarding the interpretability of the atten-
tion weights as a target to source alignment.

3.4 Re-scaling the Attention Weights
Finally, the most direct way to use information
from the previous time step i − 1 in the current
attention calculation is by directly modifying the
attention weights. We test two ways of doing this:

• Encouraging continuous attention patterns
where the attention weights from the previous
decoding step are similar to the weights of the
current one

α̊`,n
i,j = λα̂`,n

i,j +
1− λ
2k + 1

j+k∑
j′=j−k

α̊`,n
i−1,j′ . (9)

• Encouraging coverage by reducing the atten-
tion weight by an amount proportional to the
extend in which the source position j already
has been attended to in all preceding time steps
combined

α̊`,n
i,j = α̂`,n

i,j −
λ√
dk

i−1∑
i′=1

α`,n
i′,j . (10)

For both variants we apply normalization

α`,n
i,j = softmax(α̊`,n

i,j ) (11)

and tune the hyperparameters: the scaling factor
λ (both approaches) and the window size k (only
first).

4 Experimental Setup

We evaluate our approaches on three tasks: The
WMT 2016 news translation Romanian→English
task, the WMT 2018 news translation
Turkish→English task, as well as the IWSLT 2017
English→Italian translation task on TED data.
Our training data consists of 612k (Ro→En: SE
Times, Europarl v8), 208k (Tr→En: SE Times)
and 227k (En→It: TED talk) parallel sentences,
which we preprocess using 20k byte-pair-encoding
operations (8k for En→It) learned jointly on
source and target data.

We train a 6-layer Transformer for each task,
similar to the ‘base’-configuration of Vaswani et al.
(2017). All models are implemented in RETURNN

(Zeyer et al., 2018). We tie the weights of all em-
bedding/projection matrices and apply a dropout of
20% for Ro→En and 30% for Tr→En and En→It.
The baseline models use a batch size of 9600, how-
ever GPU memory limitations allow a batch size
of maximum 7600 for some experiments that add
a recurrency to the decoder. We select the best
checkpoint according to BLEU on the development
set and report case-sensitive BLEU calculated with
SacreBLEU (Post, 2018) and TER with TERCom
(Snover et al., 2006) on a holdout test set.

System Architecture Variant BLEU TER

Baseline - 35.7 51.4
Expand key-value list 1 (Eq. 5) 35.9 51.1

2 (Eq. 6) 35.9 51.1
3 (Eq. 7) 35.7 51.5
4 (Eq. 8) 33.8 53.2

Table 1: Performance of the different variants of the
expand key-value lists approach (Section 3.3) on the
development set of the Ro→En task.

5 Experimental Results

5.1 Tuning of the Methods
We tune and select all presented hyperparameters
of specific model variants on the development set
of the Ro→En task.

The different variants of the expand key-value
list approach introduced in Section 3.3 differ solely
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System Architecture
Ro→En Tr→En En→It

Train
Timenewstest2016 newstest2018 TED tst2010

BLEU TER BLEU TER BLEU TER

current state-of-the-art 34.51 - 20.22 - 28.53 - -
Baseline 34.2 53.5 19.6 70.2 28.9 58.5 1.0x
Concat prev context (Eq. 2) 33.8 53.8 19.5 70.3 28.9 58.3 5.6x
Concat prev weight (Eq. 3) 34.3 53.4 19.8 70.2 29.1 58.0 6.0x
Concat prev accum weight (Eq. 4) 34.2 53.4 19.7 70.3 29.1 58.3 6.1x
Expand key-value list (Eq. 5) 34.0 53.6 19.8 70.5 28.9 58.5 7.5x
Accumulation of the energies (Eq. 9) 34.2 53.2 19.6 70.2 28.7 58.7 5.4x
Subtract the weights (Eq. 10) 34.3 53.2 19.5 71.2 28.7 58.8 7.9x

Table 2: Performance comparison of the approaches using additional context information from the previous time
steps as described in Section 3.1. Train time refers to the average GPU time per training checkpoint measured on
Ro→En. We show the best results reported in literature for each task: 1 Kasai et al. (2020), 2 Marie et al. (2018)
and 3 Lakew et al. (2017)

in the way in which the context vector is trans-
formed before being used as an additional key-
value pair. The performance of each variant in
terms of BLEU and TER is shown in Table 1. The
variants 1 (Equation 5) and 2 (Equation 6) perform
the strongest, being both slightly better than our
baseline system. Re-using the transformation ma-
trices from the other key-value pairs does not seem
to hurt the system. Limiting the additional context
information to the same attention head (variant
3, Equation 7) results in a slight performance loss.
Additionally, omitting the transformation of c`,ni−1
for the value-list (variant 4, Equation 8) results
in a significant performance loss, indicating that
this vector is not directly compatible with the other
vectors in the list after all. Since it exhibits the
best balance between performance and complexity,
we choose variant 1 (Equation 5) for the complete
system comparison.

Furthermore, we have to look at the different
ways for re-scaling the attention weights as intro-
duced in Section 3.4. We tune the hyperparameters
k and λ for each method applicable. For the win-
dow size, we find k = 5 to work best and for the
scaling factor we choose λ = 0.5 for all variants.

5.2 Main Comparison

The comparison of all the approaches defined in
Section 3.1 and tuned/selected in Section 5.1 are
shown in Table 2. Note that all the approach-
specific hyperparameter tuning was done on the
Ro→En task, distinguishing it from the other two.

For the most part there is very little variation in
system performance across all proposed methods,
none of which can outperform the Transformer

baseline by a significant amount. While there were
still some (although small) improvements visible
when evaluating on the development set, e.g. for
the methods discussed in Section 3.4, these mostly
vanish when evaluating on unseen test sets and
on different tasks. This might be a testament to
overfitting on the development set when tuning the
hyperparameters.

While one can argue that the proposed methods
exhibit the same level of performance as the Trans-
former baseline, there is a significant downside:
training speed. In the last column of Table 2 the
average computation time per checkpoint relative
to the Transformer baseline is shown. All proposed
methods slow down the training by at least a fac-
tor of 5. This is due to a combination of breaking
the parallelization inside the decoder (we have to
wait for timestep i− 1 to finish in order to do the
computations for timestep i) and having to use a
smaller batch size in training.

6 Conclusion

In this work we provide a detailed analysis on the
encoder-decoder attention mechanism in the Trans-
former architecture. We argue that – compared to
previous attention formulations – there does not ex-
ist a direct link to the context produced in the earlier
decoding steps. We propose different approaches to
explicitly model this link and test the resulting sys-
tems on three machine translation tasks. The results
show no significant improvements for any of the
tested approaches. This leads us to the conclusion
that the context information which is incorporated
through self-attention is already sufficient for the
given task of machine translation.
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