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Abstract

Recently, a large pre-trained language model
called T5 (A Unified Text-to-Text Transfer
Transformer) has achieved state-of-the-art per-
formance in many NLP tasks. However, no
study has been found using this pre-trained
model on Text Simplification. Therefore in
this paper, we explore the use of T5 fine-tuning
on Text Simplification combining with a con-
trollable mechanism to regulate the system out-
puts that can help generate adapted text for dif-
ferent target audiences. Our experiments show
that our model achieves remarkable results
with gains of between +0.69 and +1.41 over
the current state-of-the-art (BART+ACCESS).
We argue that using a pre-trained model such
as T5, trained on several tasks with large
amounts of data, can help improve Text Sim-
plification.1

1 Introduction

Text Simplification (TS) can be regarded as a natu-
ral language generation task where the generated
text has a reduced language complexity in both
vocabulary and sentence structure while preserv-
ing its original information and meaning (Saggion,
2017). Its applications can be used as reading as-
sessment tools for people with low-literacy skills
such as children (Watanabe et al., 2009), and non-
native speakers (Paetzold and Specia, 2016), or
people with cognitive disabilities such as autism
(Barbu et al., 2015), aphasia (Carroll et al., 1999),
and dyslexia (Rello et al., 2013a; Matausch and
Peböck, 2010). In addition, TS can also be used
as a preprocessing step to improve the results of
many NLP tasks, e.g., Parsing (Chandrasekar et al.,
1996), Information Extraction (Evans, 2011; Jon-
nalagadda and Gonzalez, 2010), Question Genera-
tion (Bernhard et al., 2012), Text Summarization

1The code and data are available at https://github.
com/KimChengSHEANG/TS_T5

(Siddharthan et al., 2004), and Machine Translation
(Štajner and Popović, 2016, 2019).

In recent years, research in TS has been mostly
focused on developing models based on deep neu-
ral networks (Vu et al., 2018; Zhao et al., 2018b;
Martin et al., 2020b). However, and to the best of
our knowledge, very few studies of transfer learn-
ing –where a model is first pre-trained on a data-
rich task and then fine-tuned on downstream tasks–
have been explored in TS.

In this paper, we propose a transfer learning
and controllable sentence simplification model that
harnesses the power of the Unified Text-to-Text
Transfer Transformer (T5) pre-trained model (Raf-
fel et al., 2020), combining it with control tokens
to provide a way to generate output that adapts to
different target users. Such a model can be adjusted
to fit the need of different users without having to
build everything from the ground up.

We make the following contributions:

• We introduce a transfer learning approach
combined with a controllable mechanism for
sentence simplification task.

• We make an improvement to the performance
of the sentence simplification system.

• We introduce a new control token #words to
help the model generate sentences by replac-
ing long complex words with shorter alterna-
tives.

• We conduct an evaluation and comparison be-
tween different sizes of pre-trained models
and a detailed analysis on the effect of each
control token.

• We show that by choosing the right control
token values and pre-trained model, the model
achieves the state-of-the-art performance in
two well-known benchmarking datasets.

https://github.com/KimChengSHEANG/TS_T5
https://github.com/KimChengSHEANG/TS_T5
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2 Related Work

2.1 Sentence Simplification
It is often regarded as a monolingual translation
problem (Zhu et al., 2010; Coster and Kauchak,
2011; Wubben et al., 2012), where the models are
trained on parallel complex-simple sentences ex-
tracted from English Wikipedia and Simple English
Wikipedia (SEW) (Zhu et al., 2010).

There are many approaches based on statisti-
cal Machine Translation (SMT), including phrase-
based MT (PBMT) (Štajner et al., 2015), and
syntax-based MT (SBMT) (Xu et al., 2016). Nisioi
et al. (2017) introduced Neural Text Simplifica-
tion (NTS), a Neural-Machine-Translation-based
system (NMT) which performs better than SMT.
Zhang and Lapata (2017) took a similar approach
adding lexical constraints combining the NMT
model with reinforcement learning. After the re-
lease of Transformer (Vaswani et al., 2017), Zhao
et al. (2018a) introduced a Transformer-based ap-
proach and integrated it with a paraphrase database
for simplification called Simple PPDB (Pavlick and
Callison-Burch, 2016a). The model outperforms
all previous state-of-the-art models in sentence sim-
plification.

Our proposed model is also a sequence-to-
sequence Transformer-based model, but instead
of using the original Transformer by Vaswani et al.
(2017), we use T5 (Raffel et al., 2020).

2.2 Controllable Sentence Simplification
In recent years, there has been increased interest
in conditional training with sequence-to-sequence
models. It has been applied to some NLP tasks
such as controlling the length and content of sum-
maries (Kikuchi et al., 2016; Fan et al., 2017),
politeness in machine translation (Sennrich et al.,
2016), and linguistic style in text generation (Ficler
and Goldberg, 2017). Scarton and Specia (2018)
introduced the controllable TS model by embed-
ding grade level token <grade> into the sequence-
to-sequence model. Martin et al. (2020b) took a
similar approach adding 4 tokens into source sen-
tences to control different aspects of the output
such as length, paraphrasing, lexical complexity,
and syntactic complexity. Kariuk and Karamshuk
(2020) took the idea of using control tokens from
Martin et al. (2020b) and used it in unsupervised
approach by integrating those control tokens into
the back translation algorithm, which allows the
model to self-supervise the process of learning

inter-relations between a control sequence and the
complexity of the outputs. The results of Scar-
ton and Specia (2018), Martin et al. (2020b), and
Kariuk and Karamshuk (2020) have shown that
adding control tokens does help improve the per-
formance of sentence simplification models quite
significantly.

Building upon Martin et al. (2020b), we fine-
tune T5 with all control tokens as defined in Martin
et al. (2020b) to control different aspects of the
output sentences. Moreover, we add one more
control token (number of words ratio) in order to
be able to generate new sentences with a similar
length as the source but shorter in word length as
we believe that the number characters ratio alone is
not enough for the model to generate shorter words.

3 Model

In this work, we fine-tune T5 pre-trained model
with the controllable mechanism on Text Simplifi-
cation. T5 (A Unified Text-to-Text Transfer Trans-
former) (Raffel et al., 2019) is pre-trained on a
number of supervised and unsupervised tasks such
as machine translation, document summarization,
question answering, classification tasks, and read-
ing comprehension, as well as BERT-style token
and span masking (Devlin et al., 2019). There are
five different variants of T5 pre-trained models: T5-
small (5 attention modules, 60 million parameters),
and T5-base (12 attention modules, 220 million
parameters). Due to the limited resources of Co-
lab Pro, we are able to train only T5-small and
T5-base.

3.1 Control Tokens

We use control tokens to control different aspects of
simplification such as compression ratio (#Chars),
paraphrasing (Levenshtein similarity), lexical com-
plexity (word rank), and syntactic complexity (the
depth of dependency tree) as defined in (Martin
et al., 2020b). Then, we add another control to-
ken word ratio (#Words) to control word length.
We argue that word ratio is another important con-
trol token because normally word frequency cor-
relates well with familiarity, and word length can
be an additional factor as long words tend to be
hard to read (Rello et al., 2013b). Moreover, cor-
pus studies of original and simplified texts show
that simple texts contain shorter and more frequent
words (Drndarević and Saggion, 2012). Therefore,
we add word ratio to help the model generate sim-
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plified sentences with a similar amount of words
and shorter in word length, whereas #Chars alone
could help the model regulate sentence length but
not word length.

• #Chars (C): character length ratio between
source sentence and target sentence. The num-
ber of characters in target divided by that of
the source.

• LevSim (L): normalized character-level Lev-
enshtein similarity (Levenshtein, 1966) be-
tween the source and target.

• WordRank (WR): inverse frequency order
of all words in the target divided by that of the
source.

• DepTreeDepth (DTD): maximum depth of
the dependency tree of the target divided by
that of the source.

• #Words (W): number of words ratio between
source sentence and target sentence. The num-
ber of words in target divided by that of the
source.

Table 1 shows an example of a sentence embed-
ded with control tokens for training.

Source

simplify: W 0.58 C 0.52 L 0.67 WR 0.92
DTD 0.71 In architectural decoration Small
pieces of colored and iridescent shell have been
used to create mosaics and inlays, which have
been used to decorate walls, furniture and boxes.

Target

Small pieces of colored and shiny shell has been
used to decorate walls, furniture and boxes.

Table 1: This table shows how control tokens are em-
bedded into the source sentence for training. The key-
word simplify is added at the beginning of each source
sentence to mark it as a simplification task.

4 Experiments

Our model is developed using the Huggingface
Transformers library (Wolf et al., 2019)2 with Py-
Torch3 and Pytorch lightning4.

2https://huggingface.co/transformers/
model_doc/t5.html

3https://pytorch.org
4https://pytorchlightning.ai

4.1 Datasets
We use the WikiLarge dataset (Zhang and Lapata,
2017) for training. It is the largest and most com-
monly used text simplification dataset containing
296,402 sentence pairs from automatically aligned
complex-simple sentence pairs English Wikipedia
and Simple English Wikipedia which is compiled
from (Zhu et al., 2010; Woodsend and Lapata,
2011; Kauchak, 2013).

For validation and testing, we use TurkCorpus
(Xu et al., 2016), which has 2000 samples for vali-
dation and 359 samples for testing, and each com-
plex sentence has 8 human simplifications. We also
use a newly created dataset called ASSET (Alva-
Manchego et al., 2020) for testing, which contains
2000/359 samples (validation/test) with 10 simpli-
fications per source sentence.

4.2 Evaluation Metrics
Following previous research (Zhang and Lapata,
2017; Martin et al., 2020a), we use automatic eval-
uation metrics widely used in text simplification
task.

SARI (Xu et al., 2016) compares system outputs
with the references and the source sentence. It
measures the performance of text simplification on
a lexical level by explicitly measuring the goodness
of words that are added, deleted and kept. So far, it
is the most commonly adopted metric and we use
it as an overall score.

BLEU (Papineni et al., 2002) is originally de-
signed for Machine Translation and is commonly
used previously. BLEU has lost its popularity on
Text Simplification due to the fact that it correlates
poorly with human judgments and often penalizes
simpler sentences (Sulem et al., 2018). We keep
using it so that we can compare our system with
previous systems.

FKGL (Kincaid et al., 1975) In addition to SARI
and BLEU, we use FKGL to measure readability;
however, it does not take into account grammatical-
ity and meaning preservation.

We compute SARI, BLEU, and FKGL using
EASSE (Alva-Manchego et al., 2019)5, a simplifi-
cation evaluation library.

4.3 Training Details
We performed hyperparameters search using Op-
tuna (Akiba et al., 2019) with T5-small and reduced

5https://github.com/feralvam/easse

https://huggingface.co/transformers/model_doc/t5.html
https://huggingface.co/transformers/model_doc/t5.html
https://pytorch.org
https://pytorchlightning.ai
https://github.com/feralvam/easse
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size dataset to speed up the process. All models
are trained with the same hyperparameters such
as a batch size of 6 for T5-base and 12 for T5-
small, maximum token of 256, learning rate of
3e-4, weight decay of 0.1, Adam epsilon of 1e-8, 5
warm up steps, 5 epochs, and the rest of the param-
eters are left with default values from Transformers
library. Also, the seed is set to 12 for reproducibil-
ity. For the generation, we use beam size of 8.
Our models are trained and evaluated using Google
Colab Pro, which has a random GPU T4 or P100.
Both have 16GB of memory, up to 25GB of RAM,
and a time limit of 24h maximum for the execution
of cells. Training of T5-base model for 5 epochs
usually takes around 20 hours.

4.4 Choosing Control Token Values at
Inference

In this experiment, we want to search for control
token values that make the model generate the best
possible simplifications. Thus, we select the values
that achieve the best SARI on the validation set
using the same tool that we use for hyperparameters
tuning, Optuna (Akiba et al., 2019), and keep those
values fixed for sentences in the test set. We repeat
the same process for each evaluation dataset.

4.5 Baselines

We benchmark our model against several well-
known state-of-the-art systems:

YATS (Ferrés et al., 2016)6 Rule-based system
with linguistically motivated rule-based syntactic
analysis and corpus-based lexical simplifier which
generates sentences based on part-of-speech tags
and dependency information.

PBMT-R (Wubben et al., 2012) Phrase-based
MT system trained on a monolingual parallel cor-
pus with candidate re-ranking based on dissimilar-
ity using Levenshtein distance.

UNTS (Surya et al., 2019) Unsupervised Neu-
ral Text Simplification is based on the encode-
attend-decode style architecture (Bahdanau et al.,
2014) with a shared encoder and two decoders and
trained on unlabeled data extracted from English
Wikipedia dump.

Dress-LS (Zhang and Lapata, 2017) A Seq2Seq
model trained with deep reinforcement learning

6http://able2include.taln.upf.edu

combined with a lexical simplification model to
improve complex word substitutions.

DMASS+DCSS (Zhao et al., 2018b) A Seq2Seq
model trained with the original Transformer ar-
chitecture (Vaswani et al., 2017) combined with
the simple paraphrase database for simplification
PPDB. (Pavlick and Callison-Burch, 2016b).

ACCESS (Martin et al., 2020b) Seq2Seq system
trained with four control tokens attached to source
sentence: character length ratio, Levenshtein simi-
larity ratio, word rank ratio, and dependency tree
depth ratio between source and target sentence.

BART+ACCESS (Martin et al., 2020a) The sys-
tem fine-tunes BART (Lewis et al., 2020) and adds
the simplification control tokens from ACCESS.

4.6 Results
We evaluate our models automatically on two
different datasets TurkCorpus and ASSET. In
addition, we also perform a human evaluation
on one of our models, which is described in
Section 5. Table 2 reports the results of auto-
matic evaluation of our models compared with
other state-of-the-art systems. Our model T5-
base+#chars+WordRank+LevSim+DepTreeDepth
performs best on TurkCorpus with the SARI score
of 43.31, while the other model T5-base+All
Tokens performs best on ASSET with SARI score
of 45.04 compared to the current state-of-the-art
BART+ACCESS with the SARI score of 42.62 on
TurkCorpus and 43.63 on ASSET. Following these
results, our models out-perform all the state-of-
the-art models in the literature in all approaches:
rule-based, supervised and unsupervised approach
even without using any additional resources.

5 Human Evaluation

In addition to automatic evaluation, we performed
a human evaluation on the outputs of different sys-
tems. Following recent works (Alva-Manchego
et al., 2017; Dong et al., 2019; Zhao et al., 2020),
we run our evaluation on Amazon Mechanical Turk
by asking five workers to rate using 5-point lik-
ert scale on three aspects: (1) Fluency (or Gram-
maticality): is it grammatically correct and well-
formed?, (2) Simplicity: is it simpler than the
original sentence?, and (3) Adequacy (or Mean-
ing preservation): does it preserve meaning of the
original sentence? More detailed instructions can
be found in Appendix A. For this evaluation, we

http://able2include.taln.upf.edu
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Model Data
ASSET TurkCorpus

SARI↑ BLEU↑ FKGL↓ SARI↑ BLEU↑ FKGL↓

YATS Rule-based 34.4 72.07 7.65 37.39 74.87 7.67

PBMT-R PWKP (Wikipedia) 34.63 79.39 8.85 38.04 82.49 8.85

UNTS Unsup. Data 35.19 76.14 7.60 36.29 76.44 7.60

Dress-LS WikiLarge 36.59 86.39 7.66 36.97 81.08 7.66

DMASS+DCSS WikiLarge 38.67 71.44 7.73 39.92 73.29 7.73

ACCESS WikiLarge 40.13 75.99 7.29 41.38 76.36 7.29

BART+ACCESS WikiLarge 43.63 76.28 6.25 42.62 78.28 6.98

T5-base+#Chars+WordRank

+LevSim+DepTreeDepth WikiLarge 44.91 71.96 6.32 43.31 66.23 6.17

T5-base+All Tokens WikiLarge 45.04 71.21 5.88 43.00 64.42 5.63

Table 2: We report SARI, BLEU and FKGL evaluation results of our model compared with others on TurkCorpus
and ASSET test set (SARI and BLEU higher the better, FKGL lower the better). BLEU and FKGL scores are
not quite relevant for sentence simplification, and we keep them just to compare with the previous models. All
the results of the literature are taken from Martin et al. (2020a), except YATS which is generated using its web
interface.

randomly select 100 sentences from different sim-
plification systems trained on WikiLarge dataset,
except YATS which is rule-based. Table 3 reports
the results in averaged values.

Model Fluency Simplicity Adequacy
YATS 4.03* 3.62* 3.92*
DMASS+DCSS 3.84* 3.70* 3.48*
BART+ACCESS 4.41 4.02 4.13

Our Model 4.30 3.99 4.18

Table 3: Results of human evaluation on 100 random
sentences selected from TurkCorpus test set. Best re-
sults are marked in bold, and results marked with an
’*’ are significantly lower than our model according to
pared t-test with p<0.01. Our model in use here is T5-
base+All Tokens.

The results have shown that our model per-
forms lower in fluency and about the same in
simplicity, and better in adequacy compared to
BART+ACCESS. Based on our observation, there
are two reasons that humans rated our model lower
on fluency: (1) our model generates incorrect text
format (without spaces) in some sentences (exam-
ples in Table 4). The problem can be easily spotted
by human, but it does not affect the automatic eval-
uation as EASSE uses a tokenizer which can split
the whole sentence correctly. (2) Our model tends
to produce longer sentences than BART+ACCESS

and in some cases, the subject is repeated twice
when the sentence is split into two (e.g., relative
clause). The repetition is also considered as one
of the key features of simplification as it makes
text easier to understand, but for native or fluent
language speakers, repetition and the longer sen-
tence make the fluency worse. Moreover, due to
these problems, the evaluators also tend to lower
the simplicity score as they consider it harder to
read.

Sentence

So far the’celebrity’episodes have included Vic
Reeves, Nancy Sorrell, and Gaby Roslin.

New South Wales’biggest city and capital is
Sydney.

Table 4: Examples of incorrect text format generated
by our model.

6 Ablation Study

In this section, we investigate the contribution of
each token and different T5 pre-trained models to
the performance of the system. Table 5 reports
the scores of models trained on WikiLarge and
evaluated with TurkCorpus and ASSET test set.
Table 6 shows all control token values used for all
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Model
ASSET TurkCorpus

SARI↑ BLEU↑ FKGL↓ SARI↑ BLEU↑ FKGL↓

T5-small (No tokens) 29.85 90.39 8.94 34.50 94.16 9.44

T5-small + All Tokens 39.12 86.08 6.99 40.83 85.12 6.78

T5-base (No tokens) 34.15 88.97 8.94 37.56 90.96 8.81

T5-base:

+#Words 38.51 84.02 7.45 38.86 89.10 8.61

+#Chars 39.58 79.22 6.06 38.95 84.81 7.76

+LevSim 41.58 82.52 6.53 40.90 85.45 7.55

+WordRank 41.40 76.75 5.85 41.44 85.46 7.67

+DepTreeDepth 40.08 81.94 6.56 39.18 87.60 7.81

T5-base:

+WordRank+LevSim 42.85 80.38 4.47 41.75 83.90 7.42

+#Chars+WordRank+LevSim 44.89 56.76 5.93 42.91 67.09 6.53

+#Words+#Chars+WordRank+LevSim 44.65 58.52 5.52 43.03 68.11 5.96

+#Chars+WordRank+LevSim+DepTreeDepth 44.91 71.96 6.32 43.31 66.23 6.17

+All Tokens 45.04 71.21 5.88 43.00 64.42 5.63

Table 5: Ablation study on different T5 models and different control token values. Each model is trained and
evaluated independently. We report SARI, BLEU and FKGL on TurkCorpus and ASSET test set. Control token
values corresponded to each model are listed in the Table 6

Model ASSET TurkCorpus

T5-small (No tokens)

T5-small + All Tokens W1.05 C0.95 WR0.75 L0.75 DTD0.75 W1.05 C0.95 WR0.85 L0.85 DTD0.85

T5-base (No tokens)

T5-base:

+#Words W0.75 W0.85

+#Chars C0.5 C0.75

+LevSim L0.75 L0.85

+WordRank WR0.25 WR0.85

+DepTreeDepth DTD0.5 DTD0.75

T5-base:

+WordRank+LevSim W0.75 L0.75 W0.85 L0.85

+#Chars+WordRank+LevSim C0.95 WR0.75 LevSim0.75 C0.95 WR0.85 L0.85

+#Words+#Chars+WordRank+LevSim W1.05 C0.95 WR0.75 L0.75 W1.05 C0.95 WR0.75 L0.75

+#Chars+WordRank+LevSim+DepTreeDepth C0.95 WR0.75 L0.75 DTD0.75 C0.95 WR0.75 L0.75 DTD0.75

+All Tokens W1.05 C0.95 WR0.75 L0.75 DTD0.75 W1.05 C0.95 WR0.85 L0.85 DTD0.85

Table 6: These are the control token values used for the ablation study in Table 5. Each model is trained and
evaluated independently. The values are selected using the hyperparameters search tool mentioned in Section 4.4.
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Figure 1: Influence of #Words and #Chars control tokens on the simplification outputs. Red represents the outputs
of the model trained with four tokens, without #Words control token. Blue represents the outputs of the model
trained with all five tokens. Green is the reference taken from TurkCorpus. The first row shows the compression
ratio (number of chars ratio between system outputs and source sentences), and second row is the Levenshtein
similarity (words similarity between system outputs and source sentences) of each model. We plot the results of
the 2000 validation sentences from TurkCorpus. Other control token values used here are set to 0.75, the example
in Table 7.

the models in Table 5 which are selected using the
same process and tool as mentioned in Section 4.4.

Based on the results, the larger model (T5-base)
performs better than the smaller one (T5-small) on
both datasets (+3.06 on TurkCorpus, +4.3 on AS-
SET). It is due to the fact that larger model has
more information which could generate better and
more coherent text. Moreover, when added con-
trol tokens, the performance increases significantly.
With only one token, WordRank performs best on
TurkCorpus (+3.88 over T5-base) and LevSim on
ASSET (+7.43 over T5-base).

Using pre-trained model alone does not gain
much improvement, only when combined with con-
trol tokens, the results improve by a big margin
(+3.06 and +9.28 for T5-small with and without
tokens), and (+5.75 and +10.89 for T5-base with
and without tokens).

6.1 Analysis on the effect of #Words

Our goal of using #Words control token is to make
the model learn to generate shorter words whereas
#Chars alone could help the model regulate the
sentence length but not word length, so here we
investigate how #Words and #Chars control tokens
affect the outputs.

For the model with #Words token to work, it has
to be incorporated with #Chars as #Words deter-

mines the number of words and #Chars limits the
number of characters in the sentence. In our exam-
ples Table 7, we set #Words to 1.0, which means
the number of words in the simplified sentence has
to be similar to the original sentence, and #Chars
is set to 0.5 and 0.75, which means keeping the
same amount of words but reduces 50% or 25% of
characters.

Figure 1 shows the differences in density distri-
bution (first row) and similarity (second row) be-
tween model 1 in red without #Words token, model
2 in blue with #Words tokens, and the one in green
is the reference. The first column #Chars is set
to 0.25, second column #Chars=0.5, third column
#Chars=0.75, fourth #Chars=1.0, and in all cases
#words is set to 1.0. From the plots, we can see
that model 1 does more compression than model
2, which means model 2 preserve more words than
model 1.

Table 7 shows some example sentences com-
paring models with #Chars 0.75 and #Chars 0.5.
When #Chars is set to 0.75, we do not see much dif-
ference between the two models, but when #Chars
is set to 0.5, the two models have differences in
terms of sentence length and word length. For
example, the word mathematics in the example
number one is replaced with the word math in
model 2 (with #Words) and removed by model 1



348

Tokens
Model 1: #Chars 0.5 WordRank 0.75 LevSim 0.75 DepTreeDepth 0.75
Model 2: #Words 1.0 #Chars 0.5 WordRank 0.75 LevSim 0.75 DepTreeDepth 0.75

Source: In order to accomplish their objective, surveyors use elements of geometry, engineering,
trigonometry, mathematics, physics, and law.

Model 1: In order to accomplish their objective, surveyors use geometry, engineering, and law.
Model 2: In order to do this, surveyors use geometry, engineering, trigonometry, math, physics,

and law.
Source: The municipality has about 5700 inhabitants.
Model 1: The municipality has 5700.
Model 2: The town has about 5700.
Source: A hunting dog refers to any dog who assists humans in hunting.
Model 1: A hunting dog is any dog who hunts.
Model 2: A hunting dog is a dog who helps humans in hunting.

Tokens
Model 1: #Chars 0.75 WordRank 0.75 LevSim 0.75 DepTreeDepth 0.75
Model 2: #Words 1.0 #Chars 0.75 WordRank 0.75 LevSim 0.75 DepTreeDepth 0.75

Source: The park has become a traditional location for mass demonstrations.
Model 1: The park has become a popular place for demonstrations.
Model 2: The park has become a place for people to show things.
Source: Frances was later absorbed by an extratropical cyclone on November 21.
Model 1: Frances was later taken in by an extratropical cyclone.
Model 2: Frances was later taken over by a cyclone on November 21.
Source: There are claims that thousands of people were impaled at a single time.
Model 1: There are claims that thousands of people were killed.
Model 2: There are also stories that thousands of people were killed at a time.

Table 7: Examples showing the differences between the model with number of words ratio versus the one without.
Model 1 trained with four tokens, without #Words control token, and model 2 trained with all five control tokens.
All control token values used to generate the outputs are listed in the rows Tokens. We use bold to highlight the
differences.

(without #Words). Second example, the word mu-
nicipality is replaced by the word town by model
2, and model 1 simply keeps the word and crops
the sentence (the same problem with the third ex-
ample). In addition, the fourth example, the word
location is replaced by both models with the word
place, the phrase mass demonstration is reduced
to demonstration by the model 1 whereas model
2 changes to four shorter words people to show
things.

There are many cases where model 1 and model
2 generate the same substitutions, but very often
model 1 tends to crop the end of the sentence or
drops some words to fulfill the length constraint.
Whereas model 2 tends to generate longer sen-
tences than model 1, less crop, and very often re-
places long complex words with shorter ones. Even
though, based on the results from Table 2, adding

the #Words control token does not significantly im-
prove the SARI score and sometimes even lowers
the score, it certainly holds its purpose.

7 Conclusion

In this paper, we propose a method which lever-
ages a big pre-trained model (T5) fine-tuning it
for the Controllable Sentence Simplification task.
The experiments have shown good results of 43.31
SARI on TurkCorpus evaluation set and of 45.04
on ASSET evaluation set, outperforming the cur-
rent state-of-the-art model. Also, we have shown
that adding the control token #Words is useful for
generating substitutions with a shorter lengths.
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text simplification as a preprocessing step for ma-
chine translation into an under-resourced language.
In Proceedings of the International Conference on
Recent Advances in Natural Language Processing
(RANLP 2019), pages 1141–1150.

Elior Sulem, Omri Abend, and Ari Rappoport. 2018.
BLEU is not suitable for the evaluation of text sim-
plification. In Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Process-
ing, pages 738–744, Brussels, Belgium. Association
for Computational Linguistics.

Sai Surya, Abhijit Mishra, Anirban Laha, Parag Jain,
and Karthik Sankaranarayanan. 2019. Unsupervised
neural text simplification. In Proceedings of the
57th Annual Meeting of the Association for Com-
putational Linguistics, pages 2058–2068, Florence,
Italy. Association for Computational Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

Tu Vu, Baotian Hu, Tsendsuren Munkhdalai, and Hong
Yu. 2018. Sentence simplification with memory-
augmented neural networks. In Proceedings of the
2018 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 2 (Short Pa-
pers), pages 79–85, New Orleans, Louisiana. Asso-
ciation for Computational Linguistics.

Willian Massami Watanabe, Arnaldo Candido Junior,
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A Human Evaluation Interface

Figure 2: Our interface is based on the one proposed by Kriz et al. (2019), and the consent form based on Alva-
Manchego et al. (2020).


